Lataa materiaali omalle koneelle: pdf
Tarvittavat tiedostot: tex ja logo

5. Integrointi

5.3 Määrätty integraali

5.3.3 Nimityksiä

Aiemmin määriteltiin: $$ \int_a^b f(x)dx. $$
Luetaan, esimerkiksi: määrätty integraali \(a\):sta \(b\):hen \(f(x)\) \(dx\).
Nimityksiä:
\(\bullet\) \(\int\) on integraalimerkki
\(\bullet\) luvut \(a\) ja \(b\) ovat integroimisrajat
\(\bullet\) \(a\) on alaraja ja \(b\) on yläraja
\(\bullet\) \(f\) on integrandi eli funktio, jota ollaan integroimassa
\(\bullet\) \(x\) on integroimismuuttuja. Se mitä kirjainta käytetään, ei vaikuta integraalin suuruuteen, vaikkapa: $$ \int_a^b f(x)dx=\int_a^b f(y)dy $$ \(\bullet\) \(dx\) on differentiaali, joka kertoo, minkä muuttujan suhteen ollaan integroimassa. Esimerkiksi $$ \int tx^2 dx=\frac{1}{3}tx^3+C, \quad\textrm{mutta}\quad \int tx^2 dt=\frac{1}{2}t^2x^2+C, $$

VIITTEET

[1] R. A. Adams and C. Essex, Calculus: a complete course, Ninth edition, Pearson, Ontario, 2018. Sivut 68–70.