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ABSTRACT

We discuss the oscillation of solutions of f”/+ Af = 0 by focusing
on four separate situations. In the complex case A is assumed to
be either analytic in the unit disc ID or entire, while in the real case
A is assumed to be continuous either on (—1,1) or on (0, c0). We
consider the separation of zeros of non-trivial solutions in the case
that A grows beyond bounds that ensure finite oscillation.

In the complex case, we show that the growth of the max-
imum modulus of A determines the minimal separation of zeros
of all non-trivial solutions, and vice versa. This gives rise to new
concepts called zero separation exponents. As a by-product of
these findings, we rediscover the 1955-result of B. Schwarz, which
asserts that sup,p |A(2)|(1 — |2|?)? < oo if and only if the zero-
sequences of all non-trivial solutions are separated in the hyper-
bolic sense. The striking plane analogue reveals that the Euclidean
distance between any distinct zeros of any non-trivial solution is
uniformly bounded away from zero if and only if A is a constant.

In the real case, we show that the separation of zeros of non-
trivial solutions is restricted according to the growth of A, but not
conversely.

INTRODUCTION

The purpose of this research is to offer a unified and consistent discussion
on the oscillation of solutions of the linear differential equation

f"+Af =0 (1)
in different situations. In the real case, A = A(z) is assumed to be
continuous either on a finite open interval (—1,1) or on a half-bounded
interval (0,00). In the complex case, A = A(z) is analytic either in

the open unit disc D or in the whole complex plane C. Under these
assumptions all zeros of all non-trivial solutions of (1) are simple.

In the cases of (—1,1) and DD the distance between distinct zeros of
solutions is measured by means of the hyperbolic metric. For any complex
numbers z1, 290 € DD, the pseudo-hyperbolic distance o,(z1, 22), and the
hyperbolic distance ¢j,(z1, z9), between 2] and z9 are given by

21 — 22 1. 14 op(21,22)

and - op(21, 22) = 5 log -— (oL 29)’
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op(21, 22) =
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In the cases of (0,00) and C the distances between distinct zeros of
solutions are given in terms of the Euclidean metric.

The proofs of the main results rest upon a method of localization pro-
viding with an effective tool that takes advantage of Sturm’s comparison
theorem, as well as theorems of Nehari [9] and Kraus [8].

THE REAL CASE

Theorem 1 shows that the separation of zeros of solutions of (1) is con-
nected to the growth of the coefficient A.

Theorem 1 Let A be a continuous function in (—1,1), and let
Y :10,1) — (0, 1) be a non-increasing function such that

()
K = 0;1;:21 y (az—kfb(a:) )

1+a1p(x)

< 00. (2)

If A(x) (¢(|$D(1—x2))2 < M < oo forallx € (—1,1), then the
hyperbolic distance between any distinct zeros x| and ro of any
non-trivial solution of (1) satisfies

Y(tn(@1,72)))

max{Kv/M,1}
_ YUt(z,za)])

max{K+v/'M,1}

where t,(x1, x9) is the hyperbolic midpoint of x| and x9.

Condition (2) for the non-increasing weight function v is not very restric-
tive, because it permits 1 to either decrease arbitrarily fast or arbitrarily
slowly. Each of the following conditions is sufficient to ensure (2):

e :|0,1) — (0,1) is differentiable, convex and lim,_,1- ¢ (x) = 0;
e :|0,1) — (0,1) is concave and lim,_,;- ¥ (x) = 0;

e the Lipschitz condition supg.4-¢1 ‘w(‘?:f(t)‘ < 1 is satisfied.

However, there are non-increasing differentiable functions 1) for which (2)
fails. The functions ©) and ¥ in Theorems 2-5 have similar properties.

It is well-known that the separation of zeros of non-trivial solutions
of (1) does not restrict the growth of the coefficient A. This follows
from [1, Lemma 1], which implies that (1) is disconjugate whenever

fil max{A(z),0} dr < 2. Therefore, if A is chosen appropriately, then
MAX]| ;| < A(x) exceeds any pregiven function in growth, while all non-
trivial solutions of (1) vanish at most once.

Theorem 2, which concerns the case of (0, c0), is analogous to Theorem 1.

Theorem 2 Let A be a continuous function on the interval
(0,00), and let ¥ : (0,00) — (0,1) be non-increasing on |1, c0)
such that V(x) = \IJ(%) for all x € (0, 0), and

K = sup < 00. (3)

1<z<00 I (xl—l—\lf(:p))

1—V(x)

If A(x) (\If(a:):z:)2 < M < oo for all x € (0,00), then the Eu-
clidean distance between any distinct zeros x1 and x> of any non-
trivial solution of (1) satisfies

21 — 9| > 2min {(K@)—l, 1} ta(1, 29) U (tg(21, 72)),

where t,(x1,x2) and ty(z1, x2) are the arithmetic and the geo-
metric mean value of x1 and xo, respectively.

THE UNIT DISC CASE

Considerations in ID run parallel to the ones on (—1,1). If

sup [A(2)|(1 — |2[%)* < 1,
zeD

then every non-trivial solution of (1) vanishes at most once in . In
another form, this corresponds to the well-known univalence criterion of
Z. Nehari [9, Theorem 1].

A discovery [10, Theorems 3 and 4] due to B. Schwarz states that the
distance between distinct zeros of non-trivial solutions of (1) is uniformly
bounded away from zero in the hyperbolic sense if and only if

sup |A(2)|(1 — |2]%)* < oo.
zeD

The following result generalizes Schwarz's findings.

Theorem 3 Let A be analytic in D, R € [0,1), and let v
[R,1) — (0,1) be a non-increasing function such that

K= sup Pp(r)

rrsr<ty (£555)

< 00,

Y(R)+R .
S O(RR if0< R <1,

0, if R =0.
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(i) If the coefficient A satisfies |A(z)|(¢(]z])(1 — \z!z))Q <

M < oo for all R < |z| < 1, then the hyperbolic distance
between any distinct zeros z1 and zy of any non-trivial solution

of (1), for which |t},(z1, z0)| > R*, satisfies

|+ V([tn(21,22)])

max{K+v/'M,1}
onle1:22) 2 108y ) - 4

max{K+v/M,1}

(ii) Conversely, if (4) is satisfied for any distinct zeros z| and zo
of any non-trivial solution of (1), for which |t;(z1,29)| > R,
then the coefficient A satisfies

AG)| ((|2)(1 = |22)° < 3max{K?, 1} max{K>M, 1}

for R < |z| < 1.

Let A be analytic in ID. We define the zero separation exponent of (1) as

Qp(zjv )
T~ [tz 2 O} |

The infimum is taken over all zeros pairs of solutions, and we set
Apg(A) = oo, if the infimum is zero for all ¢ > 0.

The following result, which is a consequence of Theorem 3, under-
scores the linkage between existing growth results and the separation of

zeros. Equivalence of (i) and (ii) is previously known by [3, Corollary 1.3,
Theorem 1.4].

Apg(A) = inf {q > 0 : inf

Corollary 4 Let A be an analytic function in D, and \ € (1, c0).
Then, the following assertions are equivalent:
(i) sup [A(2)](1 = |22 < oo,
z€D
(ii) All non-trivial solutions f of (1) satisfy

log™t log™ max|,|—, | f(2)]

oy (f) = limsup = )\

r—1- - 10g<1 _ T)

(i) Apg(A) = A
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THE COMPLEX PLANE CASE

Theorem 5 Let A be entire, R € |0,00), and let V : |R, o00) —
(0, 00) be a non-increasing function such that

U(r)

K = sup < 00,

R*<r<oo \If(’l“ + \D(T))

o R+VY(R), if0< R < o0,
B 0, if R =0.

(i) If the coefficient A satisfies |A(2)| ¥(|z])> < M < oo for
all R < |z| < oo, then the Euclidean distance between any
distinct zeros z1 and z9 of any non-trivial solution of (1), for
which the Euclidean mid-point |t,(z1, z9)| > R*, satisfies

2 ([ta(z1,22)])
max{K+v'M,1}

(5)

|21 — 29| >

(ii) Conversely, if (5) is satisfied for any distinct zeros z| and zo
of any non-trivial solution of (1), for which |t,(z1,29)| > R,
then the coefficient A satisfies

[A(2)| U(|2])? < 3max{K?, 1} max{K*M,1}, |a|> R*.

The case n = 0 in Corollary 6 can be considered as a plane analogue of
Schwarz's classical unit disc result [10, Theorems 3 and 4].

Corollary 6 Let A be entire. The coefficient A is a polynomial of
degree n if and only if |21 — 29| (1 + |21 + 22\/2) n/2 s uniformly
bounded away from zero for any distinct zeros z1, zo € C of any
non-trivial solution of (1).

Let A be entire. We define the zero separation exponent of (1) as
TDE<A) = inf {q > 1 :inf |Z] — Zk‘(l + ]ta(zj, Zk)‘)q_l > 0} '

The infimum is taken over all zeros pairs of solutions, and we set
Tpr(A) = oo, if the infimum is zero for all ¢ > 1.

The following result emerges as a corollary of Theorem 5. Note in
Corollary 7 that not all values 1 € |1, 00) are permitted, since the degree
of the polynomial coefficient must be an integer. It is well-known that the
conditions (i)-(iii) in Corollary 7 are equivalent; see [4, Theorem 5], [6,
Corollary 1.4], [7, Proposition 5.1], and [5, Corollary 3].

Corollary 7 Let A be entire and i1 € |1,00). Then, the following
assertions are equivalent:

(i) Coefhicient A is a polynomial of deg(A) = 2u — 2;
(ii) All non-trivial solutions f of (1) satisfy

loglog maxy,_,. | f(z
J(f) = limsup 2= 1/ (2)]

1 = I;
r—00 ogr

(iii) Zeros {zn }~ ¢ of all non-trivial solutions f of (1) satisfy

y

p(f) =imfe B>0:> |z <00 p =
n=1

\

(iv) Tpg(A) = u.
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