Localization of linear differential equations

\p

UNIVERSITY OF
EASTERN FINLAND

JUHA-MATTI HUUSKO

in the unit disc by a conformal map

Department of Physics and Mathematics, University of Eastern Finland

ABSTRACT

Lower bounds for the growth of solutions of a higher order linear
differential equation, with coefficients analytic in the unit disc of
the complex plane, can be obtained by localizing the equation
via a locally univalent function from the unit disc into itself and
applying known results for the unit disc.

As an example, we study equations in which the coefficients have
certain explicit exponential growth in one point on the boundary
of the unit disc and consider the iterated M-order of the solutions.
Earlier results in [S. Hamouda, Properties of solutions to linear
differential equations with analytic coefficients in the unit disc.

Electron. J. Differential Equations 2012, No. 177, 8 pp.|] are
generalized and improved.

The theorems obtained are not new, since Theorem 2 in
|S. Hamouda, lterated order of solutions of linear differential equa-
tions in the unit disc, Comput. Methods Funct. Theory. 13,

(2013), no. 4, 545-555] directly implies them. Therefore the sig-

nificance of this paper lies not in the results but in the elementary
method.

INTRODUCTION

We study the growth of solutions of the linear differential equation
P4 ap @+t a)f faz)f =0, (1)

where ag(z),a1(2), ..., ai_1(2) are analytic in the unit discD = {z € C :
|z| < 1} of the complex plane C, denoted by ag, aq,...,a._1 € H(D)
for short. Since all solutions are analytic, one natural measure of their
growth is the n-order defined by

1Og7—§_|_1 M(T, f)
—log(1—17) °

opp(f) = limsup feHD), neN.

r—1-

Here log™ 2 = max{logz,0}, logfat = log™ 7, log;{H = log™ log)! x
and M (r, f) is the maximum modulus of f on the circle of radius r
centered at the origin.

It is known that the growth of the coefficients restricts the growth of the
solutions and vice versa, since all solutions [ satisfy oy, 11(f) < «
if and only if opyp(a;) < a forall j = 0,1,...,k — 1 [11, Theo-
rem 1.1]. On the other hand, all nontrivial solutions are of maximal
growth at least when ag dominates the other coefficients in the whole

disc in some suitable way. One sufficient condition is that o/ ,(a;) <
onplag) for all 3 = 1,2,...,k — 1 [11, Theorem 1.2]. A refined

condition is that (o ,(a;), Tarnla;)) < (oarnlan), Tarnlag)) for all
j=1,2,...,k =19, Theorem 3|. Here 7, is the n-type defined by

Tara(f) = limsup(l — )74 logh M(r, f),  f € H(D), neN,

r—1-

and we write (a,b) < (c,d) if either a < cora = c and b < d, for
a,b,c,d € RU{oo}.

Localization is a standard technique found in the literature. If f € H(D),
() C D is a simply connected domain and ¢ : D — () is analytic and
locally univalent, then we can study f in {) by studying the function f o ¢
in ID. The most simple localization mapping is an affine map, in which
the image of D is a horocycle. For example, all solutions of

0o oA
frt+et=f +el=f =0

satisfy ops0(f) = 1. The inequality opro(f) < 1 follows from [11,
Theorem 1.1] and the converse inequality is seen by studying g = f o ¢,
where ¢ : D — D, ¢(2) = HTZ and applying [11, Theorem 1.2]. For a
more general result, see Theorem 3.

One example of localization is [5, Proof of Theorem 4], where the authors
use a localization map v : D — D,

1—0
Y(z) = ewzig :L i, where  ©(2) = e im0/ (i i z) —1q,

0 € [0,27], a € (0,00) and § € (0,2/5).

The explicit expression of the localization map may not be needed, since
the existence of the mapping can be deduced from the Riemann mapping
theorem and the analytical properties of the mapping can be estimated
by the geometrical properties of the boundary curve of the image, see [8,

Proof of Theorem 3].

In this paper, we wish to provide an example of the local study of (1),
when the growth of the solutions is measured by the n-order. In particular,
we consider the equation

k—1 b .
F) Z:O Aj(z) expp, <<1 _JZ)%> U =o, (2)
j:

where A; € H(DU{1}), bj,qj € Candn; € Nfor j =0,1,...,k—1.
The point 1 € 0D plays no special role as can be seen by a change of
variables.

The results of this paper improve the results in [10] concerning the growth
of solutions of (2) and give proofs simpler than the original ones. Our

method is elementary and therefore of interest, even though our results
can be deduced from [9, Theorem 2].

The study [10] was motivated by certain results concerning the differential
equation

"+ A()e” f' + B(z)e f =0, (3)

where A(z) and B(z) are entire functions and a,b € C, see [1, 2, 3, 7].
See also [4, 6, 11, 12| about methods based on the dominant of some
coefficient. The techniques of [10] were inherited from the plane case and
are analogous to those used in [2]. For example, if in (3) we have ab # 0
and either arga # argb or a/b € (0,1), then all nontrivial solutions f
are of infinite order on the plane [2, Theorem 2]. Analogously, if in the

equation
b1 by

f” 4 Bl(z)e(ZOT)qf/ + By(z)elo=21 f = 0,

where B; € H(DU{z0}), b; € C\ {0}, g € (1,00), we have in addition
arg by # argbgy or by /by € (0,1), then all nontrivial solutions f satisfy
opa(f) = oo [10, Theorem 1.11].

To define the localization map employed here, let T : D — D,

/1 \P
T(:) = Ty () = 1 = sin3/2)e (37 @

where 8 € (0,7/2], v € (—7/2,7/2) such that || < (7 — §)?/2% €
(0,7/2), and p = p(B) = B(x — B)/7* € (0,1/4]. For the power
Z (152)]0 Here T'(D) is a tear
shaped region having a vertex of angle pm touching 9D at z = 1. The
domain T'(ID) has the symmetry axis T'((—1, 1)) which meets the real axis
at angle . As [ decreases, T'(ID) becomes thinner, T'((—1, 1)) becomes
shorter and the angle v can be set larger. If f satisfies (2) and we set
g = f o, then g has to satisfy a differential equation whose coefficients
correspond to those of (2), see Lemma 1. By applying [11, Theorem 1.2]
or [9, Theorem 3| to this differential equation, we obtain a lower bound

for the n-order of g, which in turn gives a lower bound for the n-order of
f by Lemma 2.

, we choose the principal branch.

25in(5/2)
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KEY LEMMAS

Lemma 1 Let f be a solution of

P pap (2 f Y b a(2)f + agl2) f = ag(2),

where ag, ay,...,ap € H(D). Let T : D — D be locally univa-
lent and g = f oT". Then g is a solution of

k—1)

g ¥ + e 1(2)g* Y 1 ke (2)d + col2)g = eplz),

where c¢; € H(D). Moreover, if Ts) s nonvanishing and
ann((T@))t) = (0 forn,s € N and t € Z, then

JM,n<Cj) < %%?{UM,n(am oT)},

and
TMn(cj) Smax{Ty playoT) : oprplay oT) = maxy,>i{on plamoT)}},

forj =0,1,...,k — 1, whereas

UM,n(Ck> = OM,n(ak oT) and TM,n(Ck) = TM,n(ak oT).

Lemma 2 Let f € H(D) and g = f o T, where T is defined
by (4). Then ann(f) > O'Mm(g)/p forn € N.

RESULTS

The first result in this paper discusses the case when in equation (1) only
the coefficient ag is unbounded near a boundary point of the unit disc
and generalizes [10, Theorem 1.6]. In the remainder of this paper, the
argument of a complex number z # 0 attains values arg(z) € (—m, 7|.

Theorem 3 Consider the differential equation
O 4 Ay (2) D e Ay (2)f + Ao(2) ey () £ =0,

where k,n € N, A; € H(DU{1}) forj = 0,1,...,k — 1,
Ay #0,b,q € C\{0} and Re(q) > 0. Suppose that Im(q) # 0
or |arg(b)| < 5(Re(q)+1). Then all nontrivial solutions f satisfy

oMn1(f) = Re(q).

Next we consider a second order equation with possibly both coefficients
unbounded near the point z = 1, namely

b1 by

f" 4 A1(2)eT T f + Ag(z)eT0 f =0, )

where A; € H(D U {1}), Ay #Z 0, bj,q; € C\ {0} for j = 0,1, and
Re (gqp) > 0. The most interesting case is when q; = qq. First we consider
q1 = qo € (0,00), then q; = gy € C\ R and after that the case q; # qp.

Theorem 4 Let 1 = gy = q € (2,00) and arg(by) # arg(bg) in
equation (5). Then all nontrivial solutions f satisty opro(f) > q.

The case ¢ € (0,2] in Theorem 4 can be done with stronger assumptions.
For ¢ € (2,00), Theorem 4 improves [10, Theorem 1.8] which states that
for ¢ € (1,00) we have oy 1(f) = co.

Theorem 5 Let q; = qy = q, Im(q) # 0, Re(q) > 0 and
1b1| < |bg| in equation (5). Then all nontrivial solutions f satisfy

omo(f) = Re(q).

Theorem 6 Let q; # qo in equation (5). Assume that either

q0,q1 € (0,00) and

b1 b
Re (&Wl) < 0 < Re (ei%]o) for some v € (—m/2,m/2)
or Im(qp) # 0 and Re(q1) < Re(qp). Then all nontrivial solu-

tions [ satisfy opro(f) > Re(qo).
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