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1. Möbius transformations

We will work in the extended complex plane C = C ∪ {∞}. The extended
complex plane has a concrete model which is the Riemann sphere S consisting of
points u = (u1, u2, u3) ∈ R3 such that |u− (0, 0, 1/2)| = 1/2. Thus S has diameter
1 and lies on the complex plane C touching C at 0 when C is identified with
R2 ⊂ R3 so that x + iy corresponds to (x, y, 0). The “north pole” of S is the
point (0, 0, 1) and S touches C at the south pole 0 = (0, 0, 0) The stereographic
projection s maps C bijectively onto S. The point z = x+ iy would correspond to
the point s(z) ∈ S so the line through the north pole and z intersects S at s(z).

We can define a metric in the extended complex plane by means of the Riemann
sphere and the stereographic projection. We will call this metric the spherical
metric of C and denote it by q. The spherical distance of z and w is q(z, w) =
|s(z) − s(w)| = the euclidean distance of the points s(z) and s(w) in R3. It is
calculated in the complex analysis course that

q(z, w) =
|z − w|√

1 + |z|2
√
1 + |w|2

and q(z,∞) = 1/
√

1 + |z|2. The actual formula for q is not so important, what is
enough is that∞ has a neighborhood basis consisting of sets of the formD(∞, r) =
{∞} ∪ {w ∈ C : |w| > 1/r} and points z ∈ C have the usual neigborhoods.

A Möbius transformation is a bijective self-map of C of the form

f(z) =
az + b

cz + d

where the coefficients a, b, c, d are complex numbers such that ad−bc ̸= 0. We will
recapitulate a few facts about Möbius transformations. A Möbius transformation
is a bijection of C, if we set f(∞) = a/c (if c = 0, then f(∞) = ∞) and
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2 INTRODUCTION TO KLEINIAN GROUPS

f(−d/c) = ∞. This is how they must be defined if f is to be continuous. One
can directly compute that the inverse of a Möbius transformation is a Möbius
transformation and the composition of two Möbius transformations. Thus Möbius
transformations form a group. We denote

M = the group of Möbius transformations of C.

There is an important connection between matrices and Möbius transforma-
tions. If A is the complex 2× 2 matrix

(0) A =

(
a b

c d

)
we can set

fA(z) =
az + b

cz + d
This is a Möbius transformation if the determinant of A, denoted detA = ad− bc,
is non-zero. One can show (exercise) that the matrix multiplication corresponds
to composition of Möbius transformations, that is

fAB = fA ◦ fB.
The set of complex 2× 2 matrices with non-vanishing determinant is denoted by
GL(2,C) (GL comes from “general linear group”). Thus the map A 7→ fA is a
homomorphism GL(2,C) → M .

We now recall some basic properties of Möbius transformations, proved in Com-
plex Analysis I.

Conformality. The derivative is

f ′(z) =
ad− bc

(cz + d)2
.

This is non-zero at all finite points where cz + d ̸= 0, i.e. f(z ̸= ∞), and so f is
conformal at all such points, i.e. f is angle preserving. At the point z = −d/c or
at the point ∞ conformality is defined by means of the auxiliary map ϱ(z) = 1/z
which is used to transfer the situation so that the point is finite. For instance at
z = −d/c, ϱ ◦ f(z) = 0 and one easily checks that (ϱ ◦ f)′(−d/c) ̸= 0. The map f
is conformal at ∞, if f ◦ ϱ is conformal at 0; if it should happen that f(∞) = ∞,
we have to check that ϱ ◦ f ◦ ϱ is conformal at 0. We leave as an exercise to check
that f is conformal at all points.
Thus Möbius transformations are conformal self-maps of the Riemann sphere

C. One can show using the generalized Liouville theorem, that all conformal
homeomorphisms of C are Möbius transformations. This is one of the reasons
why Möbius transformations are important.

Preservation of cross-ratio. We define the cross ratio of four points zi as

(z1, z2, z3, z4) =
z1 − z3
z1 − z4

:
z2 − z3
z2 − z4

.

Thus the cross-ratio is the ratio of two ratios justifying the name crossratio (kak-
soissuhde in Finnish). This is not the only way to define the cross ratio, sometimes



INTRODUCTION TO KLEINIAN GROUPS 3

one takes the crossratio as the quotient

(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
.

However, this can be obtained from the first crossratio by a permutation of zi,
namely permutate (z1, z2, z3, z4) 7→ (z1, z3, z4, z2). To begin with, zi are distinct
complex numbers but by continuity the cross-ratio can be extended to the case
that zi ∈ C and that at most two of the numbers zi coincide. If two zi’s coincide,
then the crossratio assumes the value 0, 1 or ∞.

Three points determine a Möbius transformation. Let zi and wi i ≤ 3, be
two sets of three distinct points. Then there is a uniquely determined Möbius
transformation f such that f(zi) = wi. The map f can be determined by solving
w = f(z) from the equation

(w,w1, w2, w3) = (z, z1, z2, z3).

In practice, it is often simpler to solve the coefficients from the three equations

wi =
azi + b

czi + d
.

The coefficients a, b, c, d are not well-defined and one can often fix that one of them
is 1.

Preservation of circles. We say that S ⊂ C is a Möbius circle, if either S ⊂ C
and S is a usual euclidean circle or S is of the form L ∪ {∞} where L is a line
of C. These are circles if mapped to the Riemann sphere by the stereographic
projection. Möbius transformations preserve Möbius circles. If S is a Möbius
circle, then the image fS is also a Möbius circle for any Möbius transformation f .
If S1 and S2 are Möbius circles, then there is a Möbius transformation f such

that fS1 = S2. This can be found by taking 3 points zi ∈ S1 and wi ∈ S2 and
finding the Möbius transformation such that f(zi) = wi.

If Si is an euclidean circle, then C \ Si has two components, one of which is an
ordinary euclidean disk and the other contain ∞. If S2 = L∪∞, then C \ S2 has
two components, and both are half-spaces. For instance

f(z) =
z − i

z + i

maps the upper half-space U = {z ∈ C; Im z > 0} to the unit disk |z| < 1.
(Check). There are often situation where need for this kind of mappings arises.

One sees easily (exercise) that if f is as in (1) and

g(z) =
a′z + b′

c′z + d′

then f = g if and only if the coefficients are proportional: that is, there is a
complex number λ ̸= 0 such that a′ = α, b′ = λb, etc. Thus we can multiply
all coefficients by the same complex number λ ̸= 0 without changing the complex
number. If we multiply by λ the coefficients of f in (0), then ad − bc is changed
into λ2(ad− bc). Thus if λ−1 is one of the two values of

√
ad− bc, then λA, A as

in (2), has determinant 1. Thus we can choose A so that detA = 1. Since the
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square root has two values differing by sign, there are two matrices A and B such
that f = fA = fB and B = −A.
Since detAB = (detA)(detB), the complex 2 × 2 matrices with determinant

1 form a group, denoted SL(2;C) (SL comes from the “special linear group”).
Thus the map A 7→ fA is a homomorphism SL(2,C) → M so that to f ∈ M
corresponds two matrices A,−A ∈ SL(2;C). So we obtain M from SL(2,C)
by identifying A and -A. The kernel of the map SL(2,C) is {I,−I} and M is
isomorphic to the quotient SL(2;C)/{I,−I}.

The group SL(2,C) has some advantages compared to GL(2;C). For instance
forming the inverse matrix is easy in SL(2,C). One easily checks that(

a b

c d

)(
d − b

−b a

)
= (detA)I

where

I =

(
1 0

0 1

)
is the unit matrix. Thus if

f(z) =
az + b

cz + d
,

where ad− bc = 1, then

f−1(z) =
dz − b

−cz + a
.

We will see that SL(2,C) has other advantages as well.

Examples of Möbius transformations. Some very simple mappings are Möbius
transformations. For instance, the identity map id : C → C such that z 7→ z can
be written as

id(z) =
1z + 0

0z + 1
and hence is a Möbius transformation. Similarly

1

z
=

0z + 1

1z + 0

A translation f(z) = z + a can be written as

z + a =
1z + a

0z + 1

and finally az + b = az+b
0z+1

. We will see that every Möbius transformation is topo-
logically and conformally similar to one of these maps. We can divide Möbius
transformations into types and each type can be exemplified by this kind of map-
ping.

A basic distinction between Möbius transformations is the number of fixpoints.
A fixpoint of f is a point z such that f(z) = z. We will see that a Möbius
transformation f ̸= id has one or two fixpoints.

Translations. Translations are of the form f(z) = z+a (a ̸= 0), or f(z) = z+1
if we want to be as simple as possible. It has one fixpoint which is ∞. These maps
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will exemplify parabolic Möbius transformation. One often characterizes Möbius
transformations by means of circle families. Let

(1) T1 = {L ∪ {∞} : L is a line parallel to a}.

Then f maps each S ∈ T1 onto itself: fS = S. Actually, we can characterize T1 as
the family of Möbius circles preserved by f . Let T2 be the family of Möbius circles
orthogonal to the circles of T1, i.e. if L∪{∞} ∈ T2, then L intersects orthogonally
L′ if L′∪{∞} ∈ T2. Now fL is the line L+a = {z + a : z ∈ L} and so f preserves
T2 as a circle family: fS ∈ T2 if S ∈ P2 although fS ̸= S.
We note also that fn = f ◦ . . . ◦ f (f composed with itself n times) is the map

f(z) = z+na and fn is the identity only if n = 0 (we set f−n = (f−1)−n = f −nz
if n < 0 and f 0 = id.)

Affine maps. A (complex) affine map is of the form f(z) = λz+b, λ ̸= 0, or more
simply f(z) = λz. These maps have two fixpoints. ∞ is one and z = −b/(λ− 1)
is the other. Thus the fixpoints of f(z) = λz are 0 and ∞. These maps exemplify
several types of Möbius transformations, depending on the value of λ. We have

a) if |λ| = 1, then f is elliptic.
b) if λ ∈ R and λ > 0 and λ ̸= 1, then f is hyperbolic
c) if |λ| ̸= 1, then f is loxodromic.
We have above assumed that λ ̸= 1; if λ = 1, then f = id and we regard the

identity mapping also elliptic. Sometimes one calls only such maps loxodromic
where |λ| ̸= 1 and λ ̸∈ R so that the cases a), b) or c) are exclusive.
We will now study the behavior of these by means of two circle familes: Let Sr

be the circle {z; |z| = r] and Rα the Möbius circle consisting ∞ and of the points
teiα, t ∈ R and set

(2) S1 = {Rα : α ∈ R}S2 = {Sr : r > 0}

Thus the circle family S1 is orthogonal to S2. We easily see that S1 and S2 are
preserved as circle families and have

fSr = S|λ|rfRα = Rα+arg λ.

If f we have case a) or b), If |λ| = 1 then fSr = S|λ|r = Sr and thus f preserves
circles Sr ∈ S2. If we have case b), then λ > 0, then f(z) = λz and we see that f
preserves not only circles Sα ∈ S1, but that f preserves the two arcs to which the
fixpoints 0 and ∞ divide Sα. We can think that when we apply f , we glide the
points along the arcs. Note that if λ < 0, then f interchanges these two arcs.

Conjugation of maps. We will see that every Möbius transformations f ̸= id
is similar to one of these types. This similarity is made precise by the notion of
conjugation of maps. We explain this first generally, without reference to Möbius
transformations.

Let A and B be sets and let h : A → B be a bijective map. We use h to transfer
the features of A to B. In particular, we can transfer maps A → A to maps
B → B by a process called conjugation (with h). If f : A → A is a map, we can
transfer it to map of B conjugating with h; This is the map g = h ◦ f ◦ h−1. We
use usually the shorter notation g = hfh−1 for the compositions of maps. Thus g
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is a map B → B; we say that g is obtained from f by conjugating with h. Note
that we obtain f from g by conjugating with h−1.

We note here some properties of the conjugated map g = fgh−1.

1◦ f(a) = b if and only if g(h(a)) = h(b) (a, b ∈ A). In particular, a is a fixpoint
of f if and only if h(a) is a fixpoint of g. Thus f is the identity map of A if and
only if hfh−1 is the identity map of B.

2◦. If X,Y ⊂ A, then fX = Y if and only if g(hY ) = hY . In particular,
fX = X if and only if g(hX) = Y .

3◦. The map f is a bijection (injection, surjection) of A if and only if hfh−1 is
a bijection (injection, surjection) of B.

4◦ If G is a group of bijections of A, then hGh−1 = {hgh−1 : g ∈ G} is a group
of bijections of B and if φ(g) = hgh−1 is an isomorphism onto the group H = φG
of bijections of B, the inverse being φ−1(g) = h−1gh.

These are easy to check by using the definition. It is also useful to draw a
diagram in the first two cases which shows graphically what happens.

We now return to Möbius transformations. We say that f, g ∈ M are conjugate
by a Möbius transformation (or simply conjugate) if there is h ∈ M such that
g = hfh−1. Since M is a group, this is an equivalence relation (exercise).

We will consider here only conjugation with a Möbius transformation, but it
would be reasonable to consider conjugations by a homeomorphism of C. This
would be also an equivalence relation with larger equivalence classes than conju-
gation by a Möbius transformation.

We will now show that every Möbius transformation is conjugate either to a
translation or to a map which fixes 0 and ∞.

Theorem 1.1. If f ̸= id is a Möbius transformation, then f has one or two
fixpoints. We have that f has one fixpoint if and only if f is conjugate to a
translation and we can take this translation be z 7→ z + 1. The map f has two
fixpoints if and only if f is conjugate to the map z 7→ λz; here λ ̸= 0, 1 and λ
is uniquely determined if we require that either |λ| > 1 or that λ = eiα where
0 < α ≤ π.

Proof. Let

f(z) =
az + b

cz + d
.

If c = 0, then f is of the form f(z) = λz + β and has ∞ as one fixpoint. If λ = 1,
then β ̸= 0 and hence f is a translation. If λ ̸= 1, then the only fixpoint z ∈ C of
f is −β/(λ − 1). (The case λ = 1 and β = 0 is excluded since f ̸= id. If c ̸= 0,
then f(z) = z is equivalent to

cz2 + (d− a)z − b = 0

and this equation has one or two complex solutions. Note that in this case ∞ is
not a fixpoint. So ∞ is a fixpoint if and only if c = 0 and in this case f is of the
form f(z) = λz + β.

So f has 1 or 2 fixpoints. Suppose that z0 is the only fixpoint of f . We choose
a Möbius transformation h such that h(z0) = ∞. Thus if g = hgh−1, then ∞ is
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the only fixpoint of g. Thus f is of the form λz + β, β ̸= 0, and since ∞ is the
only fixpoint, λ = 1. We can conjugate further by the map k(z) = β−1 and then

kgk−1(z) = (kh)f(kh)−1(z) = β−1(βz + β) = z + 1.

It follows that f is conjugate to the map z 7→ z + 1 if and only if f has only one
fixpoint.

Suppose then that f has fixpoints z1 and z2. Then we can find h ∈ M such that
f(z1) = 0 and f(z2) = ∞. Thus the map hfh−1 has fixpoints 0 and ∞ and hence
is of the form h(z) = λz where λ ̸= 0, 1. If k(z) = 1/z, then k(z) interchanges the
fixpoints of g and so kgk−1 has also fixpoints 0 and ∞ but

kgk−1(z) = λ−1z

and so, possibly by replacing h with kh, we can assume that |λ| ≥ 1 and if |λ| = 1,
we can obtain that λ = e−iα where 0 < α ≤ π.
So to conclude the proof we must show that λ is unique if it is chosen as indicated

in the theorem. Suppose that also h̃ conjugates f to a map with fixpoints 0 and
∞. Thus h̃(z1, z2} = {0,∞} and hence if k = h̃h−1, then k{0,∞} = {0,∞}. If
k(0) = 0 and k(∞) = ∞, then k(z) = µz for some µ ∈ C \ {0} and one easily

checks h̃f h̃−1(z) = kgk−1(z) = λz.
The other case is that k(0) = ∞ and k(∞) = 0. Let σ(z) = 1/z. Then σk

preserves 0 and ∞ and hence (σk)g(σk)−1(z) = λz and so kgk−1(z) = σkσ−1(z) =

λ−1z (note that σ2 = id). Since kgk−1 = h̃f h̃−1, we see that by changing the
conjugating map, we can only obtain that λ is replaced by λ−1 and λ is unique if
chosen so as indicated in the theorem.

A consequence is that if f ∈ M has two fixpoints and we conjugate f to a map
of the form z 7→ λz, then if |λ| = 1 for one conjugating map, then this is true for
any conjugating map and the same is true of the positivity of λ. Hence we can
define.

Definition. Let f ∈ M . Then

(a) f is parabolic if f can be conjugated to a translation.
(b) f is elliptic if f can be conjugated to a map z → λz where |λ| = 1.
(c) f is hyperbolic if f can be conjugated to a map z 7→ λz where λ > 0

and λ ̸= 1.
(d) f is loxodromic if f can be conjugated to a map z 7→ λz where |λ| ̸= 1.

Remark. We regard he identity map also elliptic. This fits to the above definition
although f has infinite number of fixpoints.

We can now transfer the properties of translations and maps z 7→ λz to the
general case using the conjugating map.

If f is parabolic, then there is h ∈ M such that hfh−1 is the translation g(z) =
z + 1. Thus f = h−1gh, and so h−1 conjugates g back to f . If Ti are as defined
above (cf. (1)), and if Pi = h−1Ti = {h−1S : S ∈ Ti}, then P1 and P2 are two
families of circles such that if Si ∈ Pi, then S1 and S2 intersect orthogonally and
one of the points of intersection is the fixpoint of f . We can note that if S is a
Möbius circle invariant under z 7→ z + 1, then S ∈ S1. We can conclude that R1

is the family of Möbius circles preserved by f .



8 INTRODUCTION TO KLEINIAN GROUPS

If f has two fixpoints, then there is h ∈ M conjugating f to the map g(z) = λz
and h conjugates g back to h. Let Si be as in (2) and set Ri = h−1Si. Then R1

and R2 are families of Möbius circles so that R1 is orthogonal to R2. Since the
situation regarding Si and g is transferred to the situation of Ri are and g, we see
that f preserves the family Ri as a family. Furthermore, if f is elliptic, we see
that f preserves S if S ∈ S2 and if f is hyperbolic, f preserves the arcs into which
the fixpoints of f divide circles S ∈ R1. If f is hyperbolic, we can describe f so
that if z ∈ S ∈ R1, then f glides z along on arc of S \ {fixpoints of f} containing
z.

There is a fundamental difference between elliptic and loxodromic maps. If f
is elliptic and z is not a fixpoint of f , then z ∈ S ∈ R2. Since S is preserved
by f , f stays always on S which is a circle seprating the fixpoints of f . On the
other hand, if f is loxodromic and z is not fixed by f , then fn(z) tends toward a
fixpoint of f . This can be seen easily if f(z) = λz where |λ| ̸= 1, and since every
loxodromic f is conjugate to such a map, this follows for every loxodromic f . We
leave the checking of this as an exercise.

There is also another difference between elliptic and other types of Möbius
transformations. If f ∈ M , we say that the order of f is the smallest number
n > 0 such that fn = id; if fn ̸= id for all n > 0, we say that f is of infinite
order otherwise f is of finite order . A map f ∈ M can be of finite order only if
it is elliptic. This can be easily checked from the basic form of different types. If
f is elliptic, then f is conjugate to z 7→ eiαz and fn(z) = einαz and so fn is the
identity if nα is a multiple of 2π. This happens for some n > 0 if and only if α is
a rational multiple of π.
Remark. If f is loxodromic, R1 consists of Möbius circles passing through the

fixpoints of f . To given an intrinsic for R2 is a little less straightforward but it
can be show that R2 consists of Möbius circles

Rt = {z ∈ C :
|z − z1|
|z − z2|

= t}, t > 0,

when z1 and z2 are the fixpoints of f so that R2 = {Rt : t > 0}. This can be seen
by using the cross-ratio and noting that Sr in (2) is the set

{z ∈ C : |(0,∞, z, z1)| = 1}

where |z1| = r. Details are left as an exercise.

Trace and the type of a Möbius transformation. If

A =

(
a b

c d

)
is a 2× 2 matrix, the trace (in Finnish “jälki”) trA is

trA = a+ d.

A basic property of the trace is that trAB = trBA (exercise). Using this one
easily sees that trace is conjugation invariant

(3) trBAB−1 = trA.
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If f ∈ M , then f = fA = f−A for some A ∈ SL(2,C). The matrix A is well-
determined up to sign. Thus we can define the trace of f ∈ M up to sign by the
formula

tr f = trA

if A is one of the two matrices such that fA = f . We could fix tr f for instance by
requiring that that Re(\tr; f) ≥ 0 but we prefer to think that tr f is two-valued
and if we write t = tr f , we mean that t is one of the two values of tr f and
equation

tr f = tr g

means that we can choose the traces to be equal. We see from (3) that conjugacy
invariancy extends to traces of Möbius transformations: tr gfg−1 = tr f .
We can characterize the type of a Möbius transformation by means of the trace.

Theorem 1.2. Let f ∈ M , f ̸= id . Then
Remark. If f is the identity map, then tr f = 2. Thus the trace cannot

distinguish a parabolic map from the identity. Proof. In view of the conju-
gacy invariancy, it suffices to consider the basic case that f is a translation
(if f is parabolic) or that 0 and ∞ are the fixpoints. If f is translation,
then f = fA for A ∈ SL(2,C) of the form

A =

(
1 a

0 1

)
and hence trA = 2. If f(z) = λz, then f = fA if

A =

(
µ 0

0 µ

)
where µ =

√
λ. Thus, if λ = reiα, then

trA = (r1/2 + r−1/2) cosα/2 + i(r1/2 − r−1/2) sinα/2.

The elliptic case corresponds to r = 1 and the hyperbolic case to α = 0. If
f is loxodromic, then r > 0 and we see that our claim is valid.
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2. The convergence properties of Möbius transformations

The notion of uniform convergence (′′tasainen suppeneminen′′ suomeksi)
is important for us. If fi and f are mappings of C onto itself we say that
fi converge uniformly (in the spherical metric) toward f , if given ε > 0,
there is n0 such that spherical distance

q(fi(z)), f(z)) < ε

for all z ∈ C whenever i ≥ n0. In particular, fi(z) converges pointwise to
f(z) for every z ∈ C but the converse is not true. Uniform convergence is
a much stronger notion. Uniform convergence depends on the metric used
but we will use the spherical metric except if not otherwise stated. Thus
when we say that fi → f uniformly, uniform convergence with respect to
the spherical metric is meant.

A general property of uniform convergence is that uniform limits of con-
tinuous functions are continuous. SinceC is compact, we have the following
useful characterization of uniform convergence.

Lemma 2.1. Let fi and f be continuous maps of C onto itself. Then
fi → f uniformly if and only if fi(zi) → f(z) whenever zi ∈ C is a
sequence such that zi → z as i → ∞.

The proof is left as an exercise. We can use it to have a characteri-
zation of uniform convergence using the matrix representation of Möbius
transformations. Let

(1) Ai =

(
ai bi
ci di

)
and A =

(
a b

c d

)
be complex matrices. We say that Ai converge to A (and write Ai → A) if
we have the convergences ai → a, bi → b, etc. for the entries of matrices.

Lemma 2.2. If Ai and A are matrices of GL(2,C) such that Ai → A,
then fAi

→ fA uniformly.

Proof. This follows easily using Lemma 2.1. Let zi ∈ C be points
converging toward z. It is easy to see that if Ai and A are as in (1), then

aizi + bi
cizi + di

→ az + b

cz + d
.

If z ̸= ∞ and cz+d ̸= 0, this follows from standard convergence properties
of complex numbers and the remaining cases are easily dealt with. For
instance, if cz+d = 0 (and c ̸= 0), then one checks that az+b ̸= 0 because
of the determinant condition and hence fAi

(zi) → ∞ = fA(z). Other cases
are dealt similarly.

The converse to Lemma 2.2 is more difficult since to each f ∈ M corre-
sponds several matrices but we have:
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Lemma 2.3. Let fi and f be elements of M such that fi → f uniformly.
Then there are Ai ∈ SL(2,C) and A ∈ SL(2, C) such that fi = fAi

and
f = fA and such that Ai → A.

Proof. Pick three distinct points zk ∈ C, k ≤ 3, such that wk = f(zk) ∈
C. If we set wki = fi(zk), then wki → zk as i → ∞ and hence it is
enough to consider the case that wki ∈ C. By the Möbius invariance of
the crossratio, we have

(fi(z), w1i, w2i, w3i) = (z, z1, z2, z3)

from which fi(z) can be solved in the form

fi(z) =
aiz + bi
ciz + di

so that the coefficient ai, bi, ci and di are rational functions of the points
zk and wki not depending on i. Thus ai = g(z1, z2.z3, w1i, w2i, w3i). Since

(f(z), w1, w2, w3) = (z, z1, z2, z3)

we see that if we solve f(z) from this equation in the form

f(z) =
az + b

cz + d

then a = g(z1, z2, z3, w1, w2, w3). Since wki → wi, it follows that ai → z.
The same argument is valid for other coefficients as well and hence we have
found Ai ∈ GL(2,C) and A ∈ GL(2;C) so that Ai → A.
In order to obtain that the matrices are in SL(2,C) we have to divide

the entries by
√
detAi and

√
detA, respectively. There is the problem that

the square root does not have a global branch in all of C. However, it is
enough that we find a branch in neighborhood U of detA and use this
branch whenever detAi ∈ U . Since detAi ∈ U for large i, we can ignore
other Ai.

Remark. Actually, the lemma is true as soon as fi(z) → f(z) for three
points; for instance if fi(z) → f(z) pointwise. This is a consequence of
Theorem 2.6 (cf. corollary 2.6). Actually, this is what we need and in this
manner we need not treat the cases where one zi or wi is ∞.

Lemmas 2.2 and 2.3 have the following consequence.

Lemma 2.4. Let fi, gi, f and g be Möbius transformations such that
fi → f uniformly and gi → g uniformly. Then the fi ◦gi → f ◦g uniformly
and f−1 → f−1 uniformly.

Proof. We find matrix representations for the maps and obviously the
matrix product and taking the inverse of the matrix depend continuously
on the entries and the theorem follows. (Remember that taking the matrix
inverse is especially easy in SL(2,C).
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Convergence sequences. The following situation occurs often in the sit-
uation of Kleinian groups. Let (gi)i>0 be a sequence of Möbius transfor-
mations. We say that (gi) is a convergence sequence if there are points
a, b ∈ C such that

gi(z) → a

if z ̸= b and if the convergence is uniform outside neighborhoods of b. That
is, given a neighborhood U of A and V of b, there is n0 such that

(1) gi(C \ V ) ⊂ U

if i ≥ n0. We can think that a attracts the points gi(z), z ̸= b, and so
a is called the attracting point of the sequence. Similarly, we can think
that b repels these points and hence b is called the repelling point of the
sequence. We can also think that gi blow up neighborhoods of b so that
they eventually fill C \ {a}.
Examples. There are two simple examples of convergence sequences

which provide good models. The first gi(z) = aiz where ai → ∞ as
i → ∞. In this case ∞ is the attracting and 0 the repelling point. If
ai → 0, the attracting and repelling point are interchanged. The second is
gi(z) = z + bi where bi → ∞. In this case ∞ is both the attracting and
repelling point. Thus the attracting and the repelling point need not be
distinct.

The following is an easy consequence of the definitions.

Theorem 2.5. If (gi) is a convergence sequence, then (g−1
i ) is also a con-

vergence sequence so that the attracting point of (g−1
i ) is the repelling point

of (gi) and the repelling point of (gi)
−1 is the attracting point of (gi).

For the proof, we need simply to note that (1) can be written also as
g−1
i (C\U) ⊂ V , by applying g−1

i onto both sides and taking complements.

The following lemma is used in our main theorem in this section:

Lemma 2.6. Suppose that (gi) is a convergence sequence whose attracting
point is a and the repelling point is b. Let hi, h ∈ M be mappings such that
hi → h uniformly. Then

a) hi ◦ gi is a convergence sequence whose attracting point is h(a) and
the repelling point b.
b) gi ◦ hi is a convergence sequence whose attracting point is a and the

repelling point h−1(b).

Proof. To prove a), let U be a neighborhood of h(a) and V a neighbor-
hood of b. Because of uniform convergence, there exists a neighborhood
U ′ of a and n0 such that hiU

′ ⊂ U if i ≥ n0. Because of the convergence
property of (gi), we can find ni such that gi(C \ V ) ⊂ U ′ if i ≥ ni. Thus
higi(C \ V ) ⊂ U if i ≥ max(n0, n1).
The proofs of other points are similar and left as exercise. It is enough

to prove a) as this will imply b) in view of Lemma 2.1.
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The following theorem expresses the general convergence property of
Möbius transformations.

Theorem 2.7. A sequence gi of Möbius transformations has a subsequence
gni

such that gni
is either a convergence sequence or converges uniformly

in the spherical metric toward a Möbius transformation g.

Proof. With these lemmas at our disposal, we can easily prove Theorem
2.2. We will pass several times to subsequences of gi and to avoid com-
plicated notation, we will still denote the subsequence as gi. We can also
always replace gi by gi ◦ hi or by hi ◦ gi and the uniform convergence or
convergence sequence property of the original sequence does not change as
can be seen from Lemma 2.4 and 2.6.

We will first reduce the proof to the case that gi(∞) = ∞ for all i. In
any case, C being compact, we can pass to a subsequence so that gi(∞) →
a ∈ C. If a = ∞, we replace gi by ϱ ◦ gi where ϱ(z) = 1/z (i.e. gi(z)
is replaced by 1/gi(z)). Lemmas 2.3 and 2.4 say that we can do this
replacement. If we do this replacement, gi(∞) will tend to 0. Thus we
can assume that gi(∞) ̸= ∞, possibly by passing to a subsequence. Let
hi(z) = 1/(z − gi(∞)). Then hi ◦ gi(∞) = ∞ and it is not difficult to see
that hi → h uniformly when h(z) = 1/(z − a), a = limi→∞ gi(∞).
So, replacing gi by hi ◦ gi, we can assume that gi(∞) = ∞. If it is now

the case that given R > 0, there is n0 such that

(2) |gi(z)| ≥ R, |z| ≤ R, i ≥ n0,

whenever |z| ≤ R, then (gi) is a convergence sequence such that both at-
tracting and the repelling point coincide of (gi) is ∞. Every neighborhood
of ∞ contains a set of the form D(∞, r) = {∞} ∪ {z ∈ C : |z| > 1/r} and
we see from (2) that beginning from some i, gi maps the complement of
D(∞, r) into D(∞, r).

Thus we can assume that there is a sequence of points zi such that
|zi| ≤ R and |gi(zi)| ≤ R. Thus, passing to a subsequence we can assume
that zi → a ∈ C and f(zi) → b ∈ C.

Let hi(z) = z + zi and fi(z) = z − f(zi). Using Lemma 2.2, we see that
h → h and fi → f uniformly if h(z) = z + a and f(z) = z − b. Using
Lemma 2.4 twice, we can replace gi by figihi and obtain a map that fixes
0 and ∞. Thus, after this replacement

gi(z) = λiz.

If now there are m > 0 and M > 0 such that m ≤ |λi| ≤ M , we can pass
to a subsequence so that λi → λ. Thus if g(z) = λz, gi → g uniformly.
Otherwise there is a subsequence so that either λi → 0 or λi → ∞. In both
cases gi is a convergence sequence so that {0,∞} is the set of attracting
and repelling points.

Corollary 2.7. Let fi ∈ M be a sequence such that there are three distinct
points zk ∈ C, k ≤ 2, such that fi(zk) → wk where wk are distinct. Then
there is f ∈ M such that fi → f uniformly
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If fi ∈ M tend pointwise toward a Möbius transformation, then the
convergence is uniform.

The proof is left as an exercise. Use Lemma 2.1 and and Theorem 2.6
and note that no subsequence of (fi) can be a convergence sequence.

A consequence is that a sequence of Möbius transformations converges
uniformly as soon as it converges pointwise. Thus we can simply say that
fi → f since the convergence will be uniform.

3. Kleinian and Fuchsian groups.

We can now present the definition of Kleinian groups. Kleinian groups
are subgroups of M whose action on C satisfies a certain condition. We
call subgroups of M Möbius groups. Thus elements of a Möbius group G
are Möbius transformations, G contains the identity map, and if f, g ∈ G
both f−1 and f ◦ g are in M . In the sequel we usually denote fg for f ◦ g
for brevity.

The action of G on C is simply the rule (g, x) 7→ g(x) which assigns to
each g ∈ G and x ∈ C the point g(x) to which g moves x. Here this notion
is so natural as to be obvious but sometimes one considers abstract groups
which may have different actions on the same space.

Definition. The action of a Möbius group G is discontinuous at a point
x ∈ C if x has a neighborhood U such that gU ∩ U ̸= ∅ for only finitely
many g ∈ G.

Definition. The group G is Kleinian if G is discontinuous at some point
x ∈ C.
We denote

Ω(G) = {x ∈ C : G is discontinuous at some point x ∈ C}, L(G) = C \ Ω(G).

The set Ω(G) is the set of discontinuity for or the ordinary set for G. The
set L(G) is the limit set of G. Points of Ω(G) are ordinary points of G
and points of L(G) are limit points of G. A direct characterization of L(G)
would be that z ∈ L(G) if, given any neighborhood U of z, then U∩gU ̸= ∅
for infinitely many g ∈ G. We will see that the action of G is very different
in these two sets.

The first rather obvious theorem for Kleinian groups is

Theorem 3.1. If G is Kleinian, then every z ∈ C is either an ordinary
point or a limit point of G (but not both). The set of discontinuity Ω(G)
is non-empty and open and the limit set L(G) is closed.

Proof. We need only to observe that if z ∈ Ω(G) and U is a neighborhood
of z such that U ∩ gU ̸= ∅ for only finitely many g ∈ G and since U is a
neighborhood of w ∈ U , it follows that U ⊂ Ω(G). Thus Ω(G) is open and
hence L(G) is closed. By the definition of Kleinian groups Ω(G) ̸= ∅.
Examples. Obviously, the full Möbius group M is not Kleinian. Equally

obviously, the trivial group G consisting of the identity mapping is Kleinian
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and Ω(G) = C. Simple non-trivial examples are cyclic groups generated
by a parabolic or a loxodromic element. If for instance g(z) = 2z, then the
fixpoints 0 and ∞ are obviously limit points. If z ̸= 0,∞, then U = {w :
|z|/

√
2 < |w| <

√
2|z|} is a neighborhood of z such that U ∩ gU ̸= ∅ only

for g = id. Similarly if g is parabolic with fixpoint ∞.
A slightly more complicated Kleinian group is

G = {Tn+mi : n,m ∈ Z}
and where Ta is the translation Ta(z) = z + a. Its only limit point is ∞
and hence Ω(G) = C. We leave the details as an exercise.

These are all groups of the type called elementary . The construction of
more complicated Kleinian groups requires more work.

G-invariant sets. A subset A ⊂ C is G-invariant if gA = A for every
g ∈ G. A basic example of a G-invariant set are the sets Gz = {g(z) : g ∈
G}; such sets Gz are called orbits and Gz is the orbit of z. The ordinary
and the limit set are G-invariant.

Theorem 3.2. The ordinary set Ω(G) and the limit L(G) of G are G-
invariant.

Proof. We need to prove this only for Ω(G) and it follows for L(G) by
taking the complements. Suppose that z ∈ Ω(G) and γ ∈ G. We claim
that also γ(z) ∈∈ Ω(G). Since z ∈ Ω(G), there is a neighborhood U of z
elements g1, . . . , gn ∈ G such that if U ∩ gU ̸= ∅ where g ∈ G, then g is
some gi. Let V = γU which is a neighborhood of γ(z). Now, V ∩ gV ̸= ∅,
g ∈ G, is equivalent to

∅ ̸= γ−1(V ∩ gV ) = γ−1V ∩ γ−1gγγ−1V = U ∩ γ−1gγU.

Thus γ−1gγ is some gi, or equivalently, g is some γgiγ
−1 and hence V ∩gV ̸=

∅, g ∈ G, only if g ∈ {γg1γ−1, . . . , γgnγ
−1}

Conjugate groups. Let γ ∈ M . We denote γGγ−1 = {γgγ−1 : g ∈ G}. If
Γ = γGγ−1, we say that Γ is obtained from G by conjugating with γ and Γ
is conjugate to G. The map φ : G → Γ, φ(g) = γhγ−1 is an isomorphism
with inverse g 7→ γ−1gγ. If γ ∈ G, then γGγ−1 = G and so φ is in this
case an isomorphism of G.
If z ∈ Ω(G), and U is a neighborhood of z such that U ∩ gU ̸= ∅ only

if g ∈ {g1, . . . , gn}, then we see as above that γU is a neighborhood of
γ(z) such that γU ∩ g(γU) ̸= ∅ only if g ∈ {γg1γ−1, . . . , γgnγ

−1}. Thus
γ(z) ∈ Ω(Γ). We have

Theorem 3.3. If Γ = γGγ−1, then Ω(Γ) = γΩ(G) and L(Γ) = γL(G).

Cyclic groups. The group generated by an g ∈ M is denoted by ⟨g⟩
and it consists of elements of the form gn, n ∈ Z. If gn = id for some
n > 0, then the group is finite and ⟨g⟩ = {g, g2,n }. Otherwise, all gn are
distinct amd in this case the group is called infinite cyclic. Examples are
groups generated by a parabolic or loxodromic g. These are conjugate to
the group generated by z 7→ λz or by z 7→ z + 1. We have seen that these
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groups are Kleinian and the limit set is the fixpoint set of the generator
and hence this is true for all infinite cyclic groups generated b a parabolic
or loxodromic element.

On the other hand, we will see that, if g is elliptic, then g generates a
Kleinian groups if and only if g is of finite order, i.e. gn = id for some
n > 0. Obviously, if g is of finite order ⟨g⟩ is finite and hence Kleinian.

Discrete groups. A Möbius group G is discrete if it is a discrete subset
of M in the sense that if f ∈ M , then there are no sequences of distinct
gi ∈ G such that gi → f uniformly. We could define a metric d in M so
that

d(f, g) = sup
z∈C

q(f(z), g(z))

and then discreteness of G would have the usual meaning that G has no
accumulation points in M . However, the above definition is enough for us.

Theorem 3.4. A Möbius group G is non-discrete if and only if there is a
sequence of distinct elements gi ∈ G such that gi → id.

Proof. We need only to prove that if G is non-discrete, then there are
distinct gi ∈ G such that gi → id uniformly. Since G is non-discrete, there
are f ∈ M and distinct gi ∈ G such that gi → f . Thus g−1

i → f−1 (Lemma
2.4). Using again Lemma 2.4, have that

gi ◦ g−1
i+1 → f ◦ f−1 = id

uniformly. Since gi are distinct, gi ◦ g−1
i+1 ̸= id and hence we can pick a

subsequence so that gi are distinct.

Theorem 3.5. A Kleinian group G is discrete.

Proof. IfG is not discrete, then there is a sequence of distinct gi ∈ G such
that gi → id uniformly. It follows that if z ∈ C and U is a neighborhood
of z, then giU ∩ U ̸= ∅ beginning from some n0 (which depends on U).
Hence gi ∩ U ̸= ∅ for infinitely manu gi and so the discontinuity set of G
is empty and G is not Kleinian.
Remark. The converse is not true: there are discrete groups which are

not Kleinian, i.e. the discontinuity set is empty. Sometimes one defines
that a Kleinian group is a discrete Möbius group but then it may happen
that L(G) = C and Ω(G) = ∅.
We can also characterize discreteness using convergence sequences:

Theorem 3.6. A Möbius group is discrete if and only if every sequence of
distinct elements gi ∈ G has a subsequence which is a convergence sequence.

Proof. If gi → g ∈ M , then no subsequence of gi is a convergence
sequence and hence non-discreteness of G implies that there are sequence
of distinct elements with no convergence subsequences.

Suppose that G is discrete and suppose that gi ∈ G are distinct. Theo-
rem 2.7 says that gi has a subsequence (denoted in the same manner) such
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that either gi → g ∈ M uniformly or (gi) is a convergence sequence. By
non-discreteness the first case is impossible and hence there are conver-
gence subsequences.

The following corollary will be important for us.

Corollary 3.7. If G is Kleinian and gi ∈ G are distinct, then (gi) has a
convergence subsequence.

It is possible to use matrices to characterize discreteness. This will help
us later to find some non-trivial Kleinian groups.

We can identify a complex 2× 2 matrix
(
a b
c d

)
with (a, b, c, d) ∈ C4. C4

has the usual euclidean metric so that the distance of z and w is

|z − w| =

√√√√ 4∑
i=1

|zi − wi|2

when z = (z1, z2, z3, z4) and similarly w. Thus we can regard SL(2,C) as
a subset of C4 and this gives a topology to SL(2,C). This is the topology
what we used earlier in the convergence Ai → A of matrices.

If G is a Möbius group, we define

Ĝ = {A ∈ SL(2,C) : fA ∈ G}.
It is easy to check that Ĝ is a subgroup of SL(2,C). It is discrete if it has
no accumulation points when regarded as a subset of C4.

Theorem 3.8. A Möbius groups G is discrete if and only if Ĝ is discrete.

Proof. We note that if A is an accumulation point of Ĝ, then A ∈
SL(2,C) since detA is a continuous function of A and detA = 1 in
SL(2,C). Suppose that A is such an accumulation point. Thus there

are distinct Ai ∈ Ĝ so that Ai → A, implying that fAi
→ fA ∈ M uni-

formly. Since fAi
= fAk

for at most one k ̸= i, we can find a subsequence
so that fAi

are distinct and hence G is not discrete if A is not discrete.

On the other hand, suppose that Ĝ is discrete but G is not. Thus there
are distinct gi ∈ G such that gi → g ∈ M uniformly. By Lemma 2.3, there
matrices Ai and A in SL(2,C) such that Ai → A and fAi

= gi and fA = f .

Thus Ai ∈ Ĝ and so Ĝ is not discrete.
We have the following corollary, analogous to Theorem 3.4 and proved

like it. The unit matrix I =
(
1 0
0 1

)
is the neutral element of SL(2,C).

Corollary 3.9. A Möbius group G is discrete if and only if the unit matrix
I has a neighborhood U such that U ∩ Ĝ \ {I}.
Corollary 3.10. A Kleinian group is countable.

Proof. The group Ĝ is a discrete subset C4 = R8 and hence is countable
as proved in topology. This implies the countability of G.

We can use these results to characterize elliptic elements in a Kleinian
group.
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Theorem 3.11. If g is an elliptic element of a Kleinian group, then g is
of finite order.

Proof. We can conjugate the group so that the fixpoints of g are 0 and
∞, that is g(z) = eiαz for some α ∈ R. Let

A = {einα : α ∈ Z} ⊂ S1

Thus gn is of the form eiβ where β ∈ A. If A is finite, then there are n
and m such that eiαn = eiαm where n ̸= m, that is gn = gm and hence
gn−m ̸= id. Since n−m ̸= 0, g is of finite order.

If A is not finite. then it a subset of the circle S1 which is compact.
Hence, there is a sequence einkα → eiβ where einkα are distinct. Hence

βk = ei(nk+1α)/αinkα = ei(nk+1−nk)α ̸= 0

and βk → 0 as k → ∞. But if γk = gnk+1g−nk , then γk = βk(z) and hence
γk → id and γk ̸= id. Thus G cannot be discrete and hence G is not
Kleinian.

Corollary 3.12. If H = ⟨g⟩ is a cyclic subgroup of a Kleinian group and
H is infinite, then g is parabolic or loxodromic, otherwise elliptic.

The limit set and convergence sequences. There is a connection between
the limit set and convergence sequence given by the following theorem. A
convergence sequence of G is a convergence sequence gi such that gi ∈ G.
The following notation is handy

#A = the number of elements of the set A.

Theorem 3.12. If gi is a convergence sequence of a Kleinian group G, then
the attractive and repelling points of (gi) are in L(G). Conversely, every
z ∈ L(G) is the attractive (or repelling) point of convergence sequence of
G.

Proof. Let a be the attractive point of such a convegence sequence gi.
Let b be the repelling point. Let z ̸= B. Since the orbit Ga is countable by
the countability of G, there exists z ̸= b such that z ̸∈ Ga. Thus gi(z) → a
but gi(z) ̸= a for every i. It follows that if U is a neighborhood of z, then
gi(z) ∈ U for infinitely gi. Thus

#Gz ∩ U = ∞
for infinitely many g ∈ G. This is possible only if a ∈ L(G).
If a is the repelling point of gi, then a is the attractive point of g−1

i .
Hence a ∈ L(G) also in this case.
Suppose then that z ∈ L(G), i.e. if U is a neighborhood of z, then

g(z) ∩ U ̸= ∅ for infinitely many g ∈ G. Thus we can inductively define zi
∈ C and gi ∈ G such that

q(z, zi) < 1/n and q(z, gi(zi) < 1/n

and that gi are distinct. Since q(z, w) ≤ 1 for all z, w we can choose z1
and g1 freely. Suppose then that we have chosen zi and gi for i ≤ n. Let
U = {w : q(z, w) < 1/n}. Thus U ∩ gU ̸= ∅ for infinitely many g ∈ G,
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and hence we can find gn+1 distinct from earlier gi and zi ∈ U so that
gi(zi) ∈ U .

So we have such a sequence as claimed. Since gi are distinct, we can pass
to a convergence subsequence. Let a be its attractve and b the repelling
point. If z ̸= a, b, then gi(zi) → a which is impossible since gi(zi) → z.
Hence either z = a or z = b. If z = a, we are done. If z = b, then z is
attractive point of g−1

i and we are again done.

Corollary 3.13. The limit set of a Kleinian group G is empty if and only
if G is finite.

Proof.. Obviously. L(G) = ∅ is G is finite. If G is infinite, then there is a
sequence gi of distinct elements of G. This has a convergence subsequence
(Corollary 3.7). The attractive point of this convergence sequence is in
L(G).

We can give as a consequence another characterization of the limit set
and have some results on topological character of the limit set.

Theorem 3.14. The limit set L(G) of a Kleinian group is the set of ac-
cumulation points of any orbit Gz where z ∈ Ω(G).

Proof. Let z ∈ Ω(G) and let a ∈ L(G). Thus there is a convergence
sequence (gi) of G whose attractive point is a. Since the repelling point is
a limit point, z cannot be the repelling point and hence gi(z) → a. Since
gi(z) ∈ Ω(G), gi(z) ̸= a and hence a is an accumulation point of {gi(z)}
and hence of Gz.
Conversely, if a is an accumulation point of Gz, then every neighborhood

U of a contains infinitely many points of the form g(z), g ∈ G, and hence
U ∩ gU ̸= ∅ for infinitely many g ∈ G.

This theorem gives a reason for the name “limit point”. Such a point is
the limit of points in a fixed orbit Gz. An ordinary point cannot be such
a limit.

Kleinian groups are divided into two types depending on the number of
points in the limit set:

Definition. A Kleinian group G is elementary if #L(G) is at most 2.
Otherwise G is non-elementary.

In topology, one calls closed sets which do not contain isolated points
“perfect sets”. Thus every point of the set is an accumulation point of
the set. Limit sets of non-elementary Kleinian groups are of this type and
hence if there are more than two points in L(G), L(G) is actually an infinite
set. One can show that L(G) is even uncountable in this case.

Theorem 3.15. The limit set of a non-elementary Kleinian group is a
perfect set.

Proof. The basic fact is that since G is non-elemetary, the limit set
contains at least 3 points. Thus, given a convergence sequence there is a
point of L(G) which is not the attractive nor the repelling point of the
sequence.
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Let a ∈ L(G). Thus there is a convergence sequence (gi) of G whose
attractive point is a. Let b be the repelling point. Since #L(G) > 2,
there is z ∈ L(G) distinct from a and b. Thus gi(z) → a. If {gi(z)}i>0

is infinite, then a is an accumulation point of {gi(z)} and hence of L(G)
since gi(z) ∈ L(G).
If {gi(z)}i>0 is finite, then gi(z) = a for infinitely many gi. Thus we pass

to a subsequence so that gi(z) = a. Let hi = gig
−1
1 . Then hi(a) = a and hi

is still a convergence sequence with attracting point a. The repelling point
b may have changed but still there is z ∈ L(G) \ {a, b}. Since hi(a) = a,
hi(z) ̸= a and we see that a is an accumulation point of {hi(z)} and of
L(G).

Another theorem in the same vein is

Theorem 3.16. Let G be a discrete Möbius group and let A be a G-
invariant closed set such that A ̸= C and that A contains at least 2 points.
Then G is Kleinian and L(G) ⊂ A.

Proof. We is enough to show that G acts discontinuously at every point
z ∈ C \ A. If G is not discontinuous at such a point, we can find like in
the proof of Theorem 3.10 points zi ∈ C and gi ∈ G such that zi → a
and gi(z) → a and that gi are distinct. Thus we can pass to a convergence
subsequence. Let a be the attractive point and b the repelling point.
We claim that a ∈ A. To see this, we can find a point w ∈ A \ {b} since

#A ≥ 2. Thus gi(z) → a. If gi(z) = a for some i, then a ∈ A since A
is G-invariant. If gi(z) ̸= a for all i, then a is an accumulation point of
{gi(z)}i>0 and hence of A. However, A is closed and so a ∈ A.
Similarly, b is the attractive point of (g−1

i ) and a similar reasoning shows
that b ∈ A.

Thus a, b ∈ A. Since z ̸∈ A, z is distinct from a and b and we can find
a neighborhood W for z, a neighborhood V of b and a neighborhood U of
a such that W ∩ V = W ∩ U = ∅. Now, gi is a convergence sequence such
that gi(C\V ) ⊂ U beginning from some i = n0. Thus giW ⊂ U if i ≥ ∩n0

and hence W ∩ \giW = ∅ if i ≥ n0. This contradicts the fact that zi → z
and gi(z) → z.
So every z ∈ C \ A is an ordinary point and hence G is Kleinian and

L(G) ⊂ A.

Remark. It is essential that #A ≥ 2. Obviously, ∅ is G-invariant but
L(G) ̸⊂ ∅ unless G is finite. A more non-trivial counterexample is give by
G = ⟨g⟩ where g is loxodromi. Now, L(G) is the set of fixpoints of g. If
A = {v} where v is a fixpoint of g, then A is G-invariant but L(G) ̸⊂ {v}.

Example. Let SL(2,Z) consists of matrices of SL(2,C) so that all the
entries of matrices are integers. It is obviously a discrete subset of C4 when
we identify

(
a b
c d

)
with (a, b, c, d) ∈ C4. It follows that the group

M = {fA : A ∈ SL(2,Z)}
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is discrete (Theorem 3.8). If

g(z) =
az + b

cz + d

where the coefficients are real, then obviously gA = A for A = R ∩ {∞}.
It follows that M is Kleinian and L(M) ⊂ R ∪ {∞}. This group is called
the modular group. It is important in number theory and one can show
that L(M) = R ∪ {∞}.

4. The quotient surface of a Kleinian group

A very important notion in the study of a Kleinian group is the quotient
surface obtained from Ω(G) as follows. We note first that the orbits Gz =
{g(z) : g ∈ G} form a partition of C, that is, every point of w ∈ C is in
one and only one orbit Gz. That is the relation ∼ such that

(1) z ∼ w ⇔ there is g ∈ G such that g(z) = w

is an equivalence relation and its equivalence classes are the orbits Gz,
z ∈ C. This follows from the group properties of G and we leave the proof
of this fact as an (easy) exercise.

It turns out that the orbits Gz where z ∈ L(G) behave very differently
from the orbits Gz, z ∈ Ω(G). In the first case Gz is usually dense in L(G)
(proved like Theorem 3.16 if #Gz ≥ 2). On the other hand, we know
by Corollary 3.15 that Gz is a discrete subset of Ω(G). This is the fact
that makes it very useful to consider the space of orbits Gz, z ∈ Ω(G).
Note that since Ω(G) is G-invariant, Gz ⊂ Ω(G) if z ∈ Ω(G), and thus
{Gz : z ∈ Ω(G)} is a partition of Ω(G), We denote

Ω(G)/G = {Gz : z ∈ L(G)}
that is, Ω(G)/G is the set of equivalence classes of ∼ when restricted to
Ω(G). We call Ω(G)/G the quotient of Ω(G) by G or more simply the
quotient surface since it will turn out that Ω(G)/G is a surface in the
topology that it inherits from Ω(G), in the so-called factor topology.
We will show in this section that Ω(G)/G is a surface, that is every point

has a neighborhood homeomorphic to an open subset of the complex plane.
We will even show that Ω(G)/G has a natural conformal structure so that
it is a Riemann surface. We will define this notion later.

We start with some preliminary results. If z ∈ Ω(G), we set

Gz = {g ∈ G : g(z) = z}.
Gz is the stabilizer of z (in G). It is easily seen to be a subgroup of G.
More generally, if A ⊂ Ω(G), we set

GA = {g ∈ G : gA = A}
which is also a subgroup of G.
The following theorem will be important for the quotient surface. The

letter G will denote a Kleinian group during this section.
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Theorem 4.1. If a ∈ Ω(G), then Ga is either the trivial group {id} or is a
finite cyclic group generated by an elliptic element g which is conjugate to
a map of the form z 7→ e2π/n where n is the order of g, that is the smallest
number n > 0 such that gn = id.

Proof. Suppose that h ∈ Gz \ {id}. We note that Ga must be a finite
group since if U is any neighborhood of a, then

(∗) gU ∩ U ̸= ∅
for any g ∈ Ga. However, we know that there are U such that the number
of g ∈ G satisfying (*) is finite. Hence Ga is finite. It follows that Ga

cannot contain parabolic or loxodromic g since g ∈ Ga implies all powers
gn are in Ga. Hence Ga is all elliptic group (we regard the identity element
also as elliptic).

Let now h, g ∈ Ga be two non-identity elements. Thus both fix a and let
b the other fixpoint of h and c the other fixpoint of g. We claim that b = c.
This follow since if b ̸= c, there are parabolic elements in the group Gz

(this was exercise 3 in the 3rd exercise set) which is seen to be impossible.
The existence of parabolic elements is easiest to see if we conjugate the
group so that a = ∞ and b = 0 so that h(z) = λz and g(z) = νz + β. An
easy calculation shows that if k(z) = hg−1h−1, then k(z) = ν−1z+ λβ and
kh(z) = z + α where α ̸= 0 since the fixpoint z0 of g is not the fixpoint of
k and hence kg(z0) ̸= z0 and hence kg ̸= id and so α ̸= 0. k(z) = z + α′

Thus there is b ̸= a so that all elements of Ga are elliptic with fixpoints
a and b. Let γ ∈ M be an element such that γ(a) = 0 and γ(b) = ∞. If
we conjugate G by γ, we obtain a group Γ such that Γ0 = γGaγ

−1 and all
elements of Γ0 fix 0 and ∞. It suffices to prove the theorem for Γ and Γ0

and we can assume that a = 0 and b = ∞ (and return to original notation).
Thus every g ∈ Ga = G0 is of the form g(z) = eiαgz where 0 ≤ αg < 2π.
Since Ga is finite, we can enumerate Ga \ {id} as {h1, . . . , hn} so that if
βi = αhi

, then
0 < β1 < · · · < βn < 2π.

We claim that if we set g = h1 then hk = gk or equivalently bk = kβ1.
Obviously g1 = h1 and we are done if n = 1.

If n > 1 and if β1 ̸= 2β1, then we would have β1 < β2 < 2β1 and thus
0 < β2 − β1 < β1. However h2h

−1
1 ∈ Ga and h2h

−1
1 (z) = (β2 − β1)z. This

contradicts the definition of βi and so g2 = h2. If n > 2 and β3 ̸= 3β1 we
would obtain a similar contradiction from 0 < (k−1)β1 = βk−1 < βk < kβ1.

Corollary 4.2. If g, h ∈ G \ {id} have a common fixpoint a ∈ Ω(G), then
they fix the same points and are in a cyclic subgroup generated by an elliptic
element of G.

Remark. This need not be true a ∈ L(G) as is shown by Ex. 2 of 3rd
set of exercises.

Lemma 4.3. The set of a ∈ Ω(G) such that Ga ̸= {id} is a discrete subset
of Ω(G).
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Proof. Let A = {a ∈ Ω(G) : Ga ̸= {id}} and suppose that b ∈ Ω(G) is
an accumulation point of A. Thus there is a sequence ai ∈ A of distinct
points such that Gi = Gai is not trivial. Let gi be the generator of Gi.
Thus gi is elliptic and has fixpoint ai. We can pass to a subsequence so
that ai ̸= ck for all k. Choose gi ∈ Gi \ {id}. If U is a neighborhood of
a, then ai ̸= U ∩ giU ̸= ∅ for infinitely many i. If gi = gk where gi ̸= gk,
then the fixpoint set of gi = gk is {ai, ak}. Thus we see that giU ∩ U ̸= ∅
actually for infinitely many gi’s (and not only for infinitely many i’s).

Theorem 4.4. Let z ∈ Ω(G). Then z has arbitrarily small neighborhoods
U such that gU = U if g ∈ Gz and gU ∩ U = ∅ if g ∈ G \Gz.

Proof. Since z ∈ Ω(G), z has a neighborhood U such that the set

{g ∈ G : gU ∩ U ̸= ∅} = H

is finite. Obviously, H ⊃ Gz. Suppose that g ∈ H and g(z) ̸= z. Choose a
neighborhood W for g(z) and a neighborhood V for z such that W ∩ U =
∅. Since g is continuous, there is U0 ⊂ W such that gU0 ⊂ V . Thus
U0 ∩ gU0 = ∅. Thus if we replace U by U0, the number of elements of H is
decreased by 1. If we continue in this manner, we see that we can replace
U by a smaller set, still denoted U , so that H = Gz. Since Gz is finite,

V =
∩
g∈Gz

gU

is a finite intersection of neighborhoods of z and hence a neighborhood of
z. If h ∈ Gz,

gV =
∩
g∈Gz

hgV =
∩
g∈Gz

gV

since g 7→ hg is a bijection of Gz onto itself.

The quotient topology. We recall the quotient topology (this is treated
in Topology II) what we will use to topologize Ω(G)/G. A topology of a
set X is given by giving its open sets, that is a family T of subsets of X.
In order to be a topology of X, T needs to satisfy

(a) ∅ ∈ T and X ∈ T .
(b) If Ui, i ∈ I, are in T , then

∪
i∈I Ui is in T .

(c) If U1, . . . , Un ∈ T , then U1 ∩ . . . ∩ Un ∈ T .
The elements U ∈ T are the open subsets of X and a set is closed if and

only if its complement is open. The conditions a) - b) is everything that is
needed to define topological notions like continuity etc.

Let now ∼ be an equivalence relation of X. Let X/ ∼ be the set of
equivalence classes of ∼ and let p : X → X/ ∼ be the canonical projection
so that

p(x) = the equivalence class of x.

The quotient topology is defined so that U ⊂ X/ ∼ is open if and only if
p−1U is open. It is easy to see that the open subsets of X/ ∼ defined in
this manner satisfy conditions a)-b).
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The following theorem is useful in connection with the quotien topology.
Here Y is another topological space. Recall that an open map is a map such
that fU is open whenever U is open. Actually, we do not need this notion
but state it as some kind of characterization of the quotient topology.

Theorem 4.5. A map f : X/ ∼ → Y is continuous if and only if
f ◦ p : X → Y is continuous. In particular, the canonical projection is
continuous.

A bijection f : X/ ∼ → Y is a homeomorphism if f ◦ p is continuous
and open.

We refer to the topology for the course. We do not use it here but it
gives a characterization of the quotient topology.

The quotient surface. A topological space X is a surface if it is a Haus-
dorff space such that any point has a neighborhood which is homeomorphic
to an open subset of the plane C = R2. A space is Hausdorff if any two
points x and y, x ̸= y, have disjoint neighborhoods.
An example of a surface is C. If z ∈ C, then C is a neighborhood

of z homeomorphic to an open subset of C. If z = ∞, then C \ {0} is
homeomorphic to C and the homeomorphism between them is f(z) = 1/z.

Another example is the sphere S2 = {z ∈ R3 : |z| = 1. We leave it as
an exercise to check that it is a surface. One can use the projections like
(x, y, z) → (x, z) (there are 3 different projections of this kind), restricted
to suitable subsets to have neighborhoods of the kind required.

Still another is the product of two circles, called torus. The typical torus
is S1 × S1. Again, it is an exercise to show that this is a surface.
Now, we come to our main theorem. We use the following notation to

denote p(z) and p(A): We set

p(z) = Gz = z̃.

pA = {Gz : z ∈ A} = Ã.

We start with the following lemma.

Lemma 4.6. a) If U ⊂ Ω(G) is open, then Ũ is open and hence the
canonical projection is an open mapping..

b) If z ∈ Ω(G) and Ui, i ∈ I, form a basis of neighborhoods of z, then
Ũi i ∈ I form a basis of neighborhoods for z̃.

Proof. To prove a), we need only to note that p−1Ũ =
∪

g∈G gU is open
as a union of open sets.

To prove b), let W be a neighborhood of x̃, x ∈ Ω(G). Thus U = p−1(x̃)
is an open set containing x. Thus there is some Ui ⊂ U . Obviously,
Gz ⊂ U if z ∈ U and hence GUi =

∪
z∈i

Gz ⊂ U , showing that Ũi ⊂ Ũ .

A notion that is important in the study of the quotient is that of a
covering map. A map p : X → Y is called a covering map or a covering
projection if the following is true. Any point x ∈ X has a neighborhood
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U such that p−1U =
∪

i∈I Vi where Vi are disjoint subsets of X such that
p|Vi is a homemorphism Vi → U .

Theorem 4.7. The quotient Ω(G)/G is a surface in the quotient topology.
If G does not contain elliptic elements, the canonical projection p : Ω(G) →
Ω(G)/G is a covering map.

Proof. We first show that Ω(G)/G is Hausdorff. Let x, y ∈ Ω(G) be
points such that x̃ ̸= ỹ. If x̃ and ỹ do not have disjoint neighborhoods, we
derive a contradiction as follows. Let Un = B(x, 1/n) and Vn = B(y, 1/n)
when B(z, r) = {w ∈ C : q(w, z) < r}. Thus Ũn is a neighborhood of x̃
and Ṽn a neighborhood of ỹ. If Ũn ∩ Ṽn ̸= ∅, there is xn ∈ Un and yn ∈ Vn

such that x̃n = ỹn, that is Gxn = Gyn. Thus there is gn ∈ G such that
gn(xn) = yn. Thus

xn → x and yn = gn(xn) → y.(∗)
There are two cases depending on whether {gn : n > 0} is finite or

infinite. If it is finite, then it is possible to pass to a subsequence so
that gn = g for some fixed g. If this is the case, it would follow from the
convergences (*) that g(x) = y, contrary to the assumption that x̃ = Gx ̸=
ỹ = Gy.

If {gn : n > 0} is infinite, it is possible to pass to convergence subse-
quence. Its repelling point is a limit point and hence distinct from x. Thus
gn(xn) tend toward the attracting point which is also a limit point and
so distinct from y. This contradicts (*). We have proved that Ω(G)/G is
Hausdorff.

We then show that x̃ has a neighborhood homeomorphic with an open
subset of C. This is easier if Gx = {id} and so we first assume this. In
this case x has a neighborhood U such that gU ∩ U = ∅ if g ∈ G \ {id}.
We claim that in this case p|U is a homeomorphism U → Ũ .

Note that it may be that ∞ ∈ U and hence U is not a subset of C. This
does not matter, since we can assume that U ̸= C and in this case U can
be mapped by a homeomorphism, for instance by a Möbius transformation
onto an open subset of C.

The map p|U is surjective by the definition of Ũ . It is injective, since
Gz ∩ U contains at most one point.
The continuity of p|U follows from the fact that the canonical projection

is continuous. Thus it suffices to show that if V ⊂ U is open, then pV = Ṽ
is open. But this is the case by Lemma 4.6

It now follows easily that if G does not contain elliptic, elements, and
U is a neighborhood of x such that the sets gU , g ∈ G, are disjoint, then
p−1Ũ =

∪
g∈G gU and p|gU is a homeomorphism gU → Ũ for every g ∈ G.

Thus p is a covering projection.
If Gx is not trivial, then it is more difficult to prove that x̃ has a neigh-

borhood homeomorphic to an open subset of the plane. In any case Gx is
a cyclic group generated by an element conjugate to h(z) = e2πi/nz.

We assume first that x = 0 and that Gx is generated by the above map
h(z) = e2πi/nz. Thus ∞ is the other fixpoint of non-trivial elements of Gx.
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Again, we choose a neighborhood U of x such that gU ∩ U = ∅ if g ∈
G \ Gx and gU = U if g ∈ Gx. By making U smaller if necessary we can
assume that

U = {z ∈ C : |z| < R}.
Let f(z) = zn. Thus f maps U onto V = {z : |z| < Rn}. The map

f is not injective, but the points rei(φ+2πk/n) are mapped onto the same
point w = rneinφ. Thus f−1{w} consists of these n points if w ̸= 0, but
f−1{0} = {0}. The map f is useful to us since if z = reiφ, then

(∗∗) Gz ∩ U = {rei(φ+2πk/n) : k = 0, . . . , n− 1} = f−1{w}.

Thus we can define a map k : Ũ → V so that k(z̃) = f(z) = zn. Obviously,
k is surjective and it is injective by (**). Hence k is bijective and we will
show that it is a homeomorphism.

The continuity of k follows from the general properties of the quotient
topology (Lemma 4.6) since k ◦ p(z) = f(z) = zn is a continuous map
U → V . So we need only to show that k is open. Suppose that W ⊂ V
is open, then kW = kp(p−1W ∩ U). Here p−1W is open by the definition
of the quotient topology and henced so is W ′ = p−1W ∩ U . However,
f(z) = kp(z) = zn is an open mapping and so fW ′ = kW is open. We
leave it as exercise to show that zn is open. This is a special case of the
more general fact that non-constant analytic functions are open.

We still need to justify that we can assume that x = 0 and that Gx is
generated by h(z) = e2πi/n. This follows by the next theorem which we
will need to apply separately for each elliptic fixpoint a ∈ Ω(G) and find a
suitable conjugation for each such a.

Theorem 4.7. Let Γ = hGh−1. Then h(Gz) = Γh(z) and the map h̃ :

Ω(G)/G → Ω(Γ)/Γ defined h̃(Gz) = Γh(z) = h(Gz) is a homeomorphism
in the quotient topology.

Proof. We have

Γh(z) = {γ(z) : γ ∈ Γ} = {hgh−1h(z) : g ∈ G} = {hg(z) : g ∈ G} = h(Gz)

and so the map h̃ is well-defined. Thus h maps the partition {Gz : z ∈
Ω(G)} of G onto the partition {Γz : z ∈ Ω(Γ)} of Ω(Γ). Since h is a
homeomorphism, i.e. sends the topology (that is open subsets) of Ω(G)
bijectively onto the topology of Ω(Γ), it is obvious that the induced map
is also a homeomorphism. If one needs a formal proof, it is easy.

Example. Let G be the parabolic group generated by g(z) = z+1. Thus
G = {gn : n ∈ Z}. The point ∞ is a parabolic fixpoint and hence a limit
point and it is not difficult to see that Ω(G) = C. The orbit of a point
z ∈ C is

Gz = {z + n : n ∈ Z}.
We claim that Ω(G)/G = C/G is homeomorphic to X = S1 ×R. Here S1

is the unit circle whose elements are of the form eiz. Define h : C → X so
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that
h(x+ iy) = (e2πix, y)

We note that f(z) = f(w) if and only if w = z + n for some n ∈ Z. Thus

(∗) h−1(x, y) = Gz

if z = x+ iy. We can define f : Ω(G)/G → X so that h(Gz) = f(z). Thus
h = f ◦ p if p : Ω(G) → Ω(G)/G is the canonical projection. Obviously, h
and f are surjective and in view of (*), h is a injective and hence a bijection.
Since f is continuous, it follows from Theorem 4.5 that h is continuous.
The map h = f ◦ p is open (this is a general fact for non-constant analytic
mappings and easy to see directly). Hence the second part of this theorem
implies that f is open. We have proved that f is a homeomorphism.

The method of the above example is difficult to apply to more com-
plicated groups, but there are other methods to find the homeomorphism
class of the quotient surface.

Riemann surfaces. It is possible to give a complex analytic structure to
the quotient surface. These structure are called conformal structure and
surface provided with this kind of structure is called a Riemann surface. If
S is a Riemann surface we can speak of analytic and conformal maps of S.
A Riemann surface is a surface such that there are given a family Ui,

i ∈ I, of open subsets of S as well homeomorphisms Φi : Ui → Vj of Ui

onto an open subset Vi of C. If Ui ∩ Uj ̸= ∅, then we denote by

(2) Φij = Φj ◦ Φ−1
i |Φi(Ui ∩ Uj)

which is a hoemomorphism Φi(Ui ∩Uj) → Φj(Ui ∩Uj) and we require that
these maps are conformal. That is they are analytic and the derivative is
non-zero at all points.

The family (Ui,Φi)i∈I is a called a conformal atlas of S. The maps Φi

are often called chart mappings or charts. Often one uses the name local
coordinates or coordinate maps since one can transfer considerations of
analyticity on S by means of the coordinate maps to C. The maps Φij in
(2) are called coordinate change maps.

The coordinate maps allow defining analyticity and conformality on Rie-
mann surfaces. For instance, a map f : S → C is analytic if all the maps
f ◦Φ−1

i : Vj → C are analytic. Note that if z ∈ Ui∩Uj and we set zi = Φi(z)
and zj = Φj(z), then a = (f ◦ Φ−1

i )′(zi) may differ from b = (f ◦ Φ−1
j )′(zj)

but a ̸= 0 implies b ̸= 0.
In the other direction, a map f : V → S, V ⊂ S open is analytic, if Φf ,

Φ a chart mapping, is analytic at all points where it is defined.
We define that a map Φ : U → V between an open subset of S and an

open subset of C is conformal if (Φ◦Φ−1
i )′(z) ̸= 0 for all z ∈ Φi(U ∩Ui). A

map Ψ : V → U is conformal if (Φi ◦Φ)′(z) ̸= 0 if Φ(z) ∈ Ui. In particular,
all chart mappings are conformal .

More generally, if S is a Riemann surface with atlas A and S ′ is another
Riemann surface with atlas A′, then f : S → S ′ is conformal if Ψj ◦f ◦Φ−1

i ,
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Φi ∈ A and Ψj ∈ A′, is conformal at points where it is defined. Note that
we do not require that f is a homeomorphism. It is useful to note that the
composition of conformal mappings is still conformal.

Often, if given an atlas A = (Ui,Φi) one adds to it all maps Φ : U → V
(U open subset of S and V an open subset of C) which are conformal in
the above sense. It satisfies the compatibility condition and is called the
maximal conformal atlas of S compatible with A.

Example. 1. Any open subset U of C is a Riemann surface in the above
sense. In this case the conformal atlas contains just the pair (U, id).
2. The extended complex plane C can be given a conformal structure as

follows. The conformal atlas consists of two coordinate maps Φi : Ui → V1,
i = 1, 2, such that U1 = V1 and Φ1 is the identity map U1 → V1 and
Φ2 = 1/z and is a map U2 = C \ {0} → V2 = C. Now, U1 ∩ U2 = C \ {0}
and the map Φ12 (and also the map Φ21) is the map 1/z regarded as a map
C \ {0} onto itself.

Theorem 4.8. The quotient surface Ω(G)/G has a conformal structure in
which the canonical projection p is analytic and is conformal at each point
z not fixed by an elliptic element.

Remark. The fact that p is analytic and in addition conformal outside
elliptic fixpoints implies that this conformal structure is uniquely deter-
mined. The verification is not difficult and left as an exercise.

Helpful in the proof. In the construction of the conformal structure, it
is natural to allow that the coordinate maps Φi are homeomorphisms of
open subsets of Ω(G)/G onto open subsets of C. Conformality is defined
between maps of open subsets of C using the auxiliary map ϱ(z) = 1/z and
we require that the coordinate change maps are conformal in this sense.
We can always go back to the original definition so that Φi is replaced by
the map ϱ ◦Φi = 1/Φi and possibly by making the domain of definition of
Φi smaller.

Proof if there are no elliptic elements. Assume first that there are no
elliptic elements. In this we define the conformal atlas A so that it consists
of charts obtained as follows. Actually, the charts are the maps constructed
in the proof that Ω(G)/G is a surface. Thus if x ∈ Ω(G), then, since there
are no elliptic elements, x has a neighborhood V such that gV ∩ V = ∅ if
g ∈ G \ {id}. Set U = pV and since Gz ∩ V consists of at most one point,
there is a well-defined homeomorphism Φ : U → V such that Φ ◦ p(z) = z.
This is a homeomorphism as we have seen.

Since p is open V = pU is open. Obviously, every point of Ω(G)/G
is in a set of this form and hence they form an open cover of Ω(G)/G.
Thus we must only show the conformality condition for two charts. Let
Ψ : U ′ → V ′ be another chart obtained in this manner. We claim that
Φ0 = Ψ ◦ Φ−1 is conformal at z ∈ Φ(U ∩ U ′). Let w = Φ0(z). Thus
Ψ−1(w) = p(w) = Φ−1(z) = p(z). Thus w = g(z) for some well-defined
g ∈ G; note that g may depend on z. However, z has a neighborhood W
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such that gW ⊂ U ′. If ζ ∈ W , then g(ζ) ∈ U ′ and hence g(ζ) = Φ0(ζ)
since g(ζ) is the only point of Gζ ∩ U ′. Since Möbius transformations are
conformal, Φ0 is indeed conformal at z.

Thus the chart mappings are local inverses of the canonical projection
p. A local inverse of p is a a homeomorphism map q : U → V where
U ⊂ Ω(G)/G and V ⊂ Ω(G) are open and pq(z) = z on U . If q : U → V
is such a local inverse, then p is injective on V and hence U is an open
subset of Ω(G) such that #(Gz ∩ V ) ≤ 1. Hence (U, q) ∈ A.
It is immediate from the definitions that the canonical projection p is

conformal. Let x ∈ Ω(G) and y = p(x). Suppose that y ∈ U such that
Φ : U → V is a chart mapping. Thus Φp(x) = g(x) for some g ∈ G and we
see as above that this is true also in some neighborhood of x. Hence Φp is
conformal at points where it is defined.

Proof if there are elliptic elements. Let E ⊂ Ω(G) be the set of elliptic
fixpoints of G, that is x ∈ E if there is elliptic g ∈ G \ {id} such that
g(x) = x and set

Ω′(G) = Ω(G) \ E.

We note that Ω′(G) is G-invariant and hence we can consider the quotient
Ω′(G)/G = {Gx : x ∈ Ω′(G)} ⊂ Ω(G)/G. Since every x ∈ E has a
neighborhood U such that U ∩ gU = ∅ if g ∈ G \ Gx, the set pE is a
discrete subset of Ω(G)/G and hence

Ω/G)/G = Ω′(G)/G ∪ pE

is obtained from Ω′(G)/G by adding a discrete subset.
The first part of the proof applies if we replace Ω(G) by Ω′(G) and

also p|Ω′(G) is conformal. Hence we have an atlas A of Ω′(G)/G whose
elements are local inverses of the canonical projection. We will extend this
conformal structure to Ω(G)/G so that if u ∈ pE, we find a neighborhood
U ⊂ Ω′(G)/G ∪ {u} and a homeomorphism Φ : U → V , V ⊂ C open
so that Φ|U \ {u} is conformal in the conformal structure of Ω′(G)/G we
have defined. Thus adding the chart (U,Φ) to A, elements of A satisfy
the compatibility condition (2) and hence we have extended the conformal
structure to Ω′(G)/G ∪ {u}. We add such a chart for every element of pE
and this extends the conformal structure to Ω(G)/G.

The actual construction was done when we showed that Ω(G)/G is a
surface also if there are elliptic elements. We only show that we get in this
manner a conformal atlas.

So, let x ∈ E. Let {x, y} be the fixpoint set of elements of Gx. Find
γ ∈ M so that γ(x) = 0 and γ(y) = ∞. Thus γ conjugates Gx to a group
Γ0 generated by h(z) = e2πi/n. We also know that there is a neighborhood
U of x such that

gU ∩ U = ∅ if g ∈ G \Gx

and that γU = {z ∈ C : |z| < R}. Now, if z ∈ U ,

γ(Gxz) = γ(Gz ∩ U) = Γ0γ(z)
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and we know that f(z) = zn maps orbits of Γ0 onto the same point so that
f−1{f(w)} = Γ0w. Hence fγ send orbits Gxz onto the same point and

Gxw = (fγ)−1{fγ(w)}.
It follows that

(3) Φ(p(z)) = fγ(z)

maps pU bijectively onto V = {|z| < Rn}.
We claim that Φ|pU \{p(x)} is conformal. To see this, let ζ = p(z) ∈ pU

where z ∈ U . We can use the fact that the canonical projection is conformal
in Ω′(G) and hence so are the local inverses of p. By (3), Φp = fγ is
conformal in U \ {x}. If q : W → U is a local inverse of p in W ⊂ U , then
Φ|W = Φpq = fγq and hence is conformal.
Finally, the analyticity of the canonical projection p needs to be checked

only at elliptic fixpoints since we already know that it is conformal at other
points. This follows from (3) since fγ is analytic. Recall that analyticity
of p means that Φp is analytic; note that, given elliptic fixpoint x, there is
only one chart mapping Φ so that Φp(x) is defined. It is the one constructed
above and is analytic by (2).

5. Fuchsian groups and the hyperbolic metric

A Möbius disk is the image of an ordinary euclidean disk, by a Möbius
transformation. It is either a euclidean disk a half-space or the complement
of the closure of a euclidean disk.

Definition. A Fuchsian group is a Kleinian group G such that G has a
G-invariant Möbius disk..

If D is a Möbius disk such that gD = D for g ∈ G, then we say that
D is the invariant disk for G or that G is a (Fuchsian) group of D. Note
that C\D is also an invariant disk for G but except for this ambiguity the
invariant disk is well-defined for non-elementary groups, as follows from
Theorem 5.1. Usually the invariant disk is either

∆ = {z ∈ C : |z| < 1} = the unit disk, or

U = {z ∈ C : Im z > 0} = the upper half-space.

Some tasks are easier to do in ∆, others in U . One can change between
them by a conjugating with a Möbius transformation f such that gU = ∆,
for example by

f(z) =
z − i

z + i
.

LetD be a Möbius disk. We denote the group of Möbius transformations
leaving a Möbius disk D invariant by M(D). Elements of M(D) are also
called Möbius transformations of D.

Theorem 5.1. A subgroup G of M(D) is a Fuchsian group of D as soon
as it is discrete and in this case L(G) ⊂ ∂D.
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Proof. This is a special case of Theorem 3.16.

Thus L(G) is a subset of ∂D and it is customary to say that G is of the
first kind if L(G) = ∂D and of the second kind if L(G) ̸= ∂D.
An advantage of the upper half plane U is that elements M(U) can

be represented by elements of GL(2,R), that is by 2 × 2 matrices with
real entries and non-vanishing determinant. SL(2,R) is the subgroup of
GL(2,R) consisting of matrices with determinant 1.

Lemma 5.2. If A ∈ GL(2,R) and detA > 0, then fA ∈ M(U). Con-
versely, every g ∈ M(U) can be represented by a matrix of SL(2,R).

Proof. Note that ∂U = R ∪ {∞} and hence fA(∂U) = ∂U if A has real
entries. Thus it either preserves or interchanges components of C \ ∂U
which are U and the lower half-space L. It preserves the components if
fA(i) ∈ U . Let A =

(
a b
c d

)
. We compute

fA(i) =
ai+ b

ci+ d
=

c2 + bd+ i(ad− bc)

c2 + d2
;

and the imaginary part of this is postive if and only if ad− bc > 0.
Conversely, choose distinct real numbers zi, i ≤ 3, and let wi = f(zi).

We can assume that zi are so chosen that wi are real. Now, w = f(z) can
be solved from

(w,w1, w2, w3) = (z, z1, z2, z3)

as

w = f(z) =
az + b

cz + d
where coefficients are rational functions of zi and wi and hence real. We
have seen that the condition fU = U implies that ad − bc > 0. We can
obtain that A =

(
a b
c d

)
∈ SL(2,R) by dividing the entries with

√
ad− bc

which is a real number.

It follows by Corollary 3.9 that if H is a discrete subgroup of SL(2,R),
then the group G = {fA : A ∈ H} defined by the matrices of H is discrete
and hence Fuchsian. In particular, the modular group consisting of Möbius
transformations fA such that A ∈ SL(2,Z) which was found to be discrete
in the end of Section 3, is a Fuchsian group. It is of the first kind since
L(M) = R ∪ {∞} (an exercise in the 4th set.) The group generated
by hyperbolic g(z) = λz, λ > 1 would be an example of an elementary
group of the second kind. In this case, L(G) = {0, 1}. One can show that
if G is a non-elementary group of the second kind, then the limit set is
homeomorphic to the Cantor set.

The mirror point. Mirror point are taken with respect to a Möbius circle,
that is the Möbius image of a euclidean circle S. If S = R ∪ {∞}, then
the mirror point of z is z̄ ( and the mirror point of ∞ is ∞). Intuitively,
we think that R is the mirror and we think that z is reflected on R to
obtain the mirror point. We usually denote the mirror point by z∗ though
it depends on also on the Möbius circle S.
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Given z1, z2, z3 ∈ R ∪ {∞}, the map z 7→ (z, z1, z2, z3) is a Möbius
transformation and hence a bijection of C. Since z̄i = zi, we have

(z, z1, z2, z3) = (z̄, z1, z2, z3).

Thus we can characterize z∗ = z̄, the mirror point of z with respect to
R ∪ {∞} as the unique point z∗ such that

(0) (z∗, z1, z2, z3) = (z, z1, z2, z3);

this is indepedent of the choice of the points zi ∈ R ∪ {∞}.
Equation (0) makes it possible to define the mirror point with respect

to any Möbius circle S as the point z∗ which satisfies (0), provided that
zi ∈ S are distinct points. The independence of the definition of z∗ from
the points zi ∈ S was clear if S = R ∪ {∞} but for general Möbius circles
this must be checked. This follow from the following lemma which gives
also the rule for calculating z∗.

Lemma 5.2. If S = {z : |z − a| = r], then the mirror point with respect
to S is given by

(1) z∗ = a+ r2/(z − a)

and if S = L∪ {∞}, L a euclidean line, then the mirror point is the point
z∗ such that L intersects orthogonally the line segment J with endpoints z
and z∗ as the midpoint of J .

Note that if S is the unit circle |z| = 1, then we have the simple formula

(2) z∗ = 1/z̄

for the mirror point. In the general situation, if z = a+ teiα, we have

(3) (a+ teiα)∗ = a+ r2eiα/t;

thus z and z∗ are on the same ray starting from the center a of S but on
different components of C \ S. Using (3) we see that

(4) z∗ = z on S

and that

(5) (z∗)∗ = z.

These are valid also if S = L ∪ {∞}.

Proof. Let f(z) = ā + r2/(z − a) which is a Möbius transformation.

Then (1) is equivalent to z∗ = f(z). We need only to check that if zi ∈ S

are distinct, then f(z) is the point z∗ which satisfies (1). Let zi ∈ S be

distinct and note that f(z) = z if z ∈ S.

(f(z), z1, z2, z3) = {f(z), f(z1), f(z2), f(z3))0} = (z, z1, z2, z3).

We leave the case that S = L ∪ {∞} as an exercise.
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Lemma 5.3. Let S be a Möbius circle. Then a Möbius transformation g
preserves the mirror point:

(2) g(z∗) = g(z)∗

where on the left hand side the mirror point is taken with respect to S and
on the right hand side with respect to gS.

Proof. Let zi ∈ S, i ≤ 3, be distinct. Then wi = g(zi) ∈ gS are distinct.
Now

(g(z∗), w1, w2, w3) = (z∗, z1, z2, z3) = (z, z1.z2, z3) = (g(z), w1, w2, w3)

and hence g(z)∗ = g(z∗).

The action of elements of a Fuchsian group. We can use these results to
describe elements of a Fuchsian group.

In particular, (2) is valid if G is a Fuchsian group of D and z∗ and g(z)∗

are mirror points with respect to ∂D, (2) is valid. Thus the actions of G
in the two components of C \ ∂D are mirror images of each other.

Theorem 5.4. Let G be a Fuchsian group of the Möbius disk D. Let
g ∈ M(D) \ {id}. Then g is either hyperbolic, parabolic or elliptic. If g
is hyperbolic or parabolic, the fixpoints of g are on ∂D. If g is elliptic,
then one fixpoint of g is in D and the other outside D and they are mirror
points of each other with respect to ∂D.

Remark. Thus M(D) does not contain loxodromic elements.
Proof. Let g ∈ M(D), g ̸= id. If z is a fixpoint of g, then g(z∗) =

g(z)∗ = z∗ is also a fixpoint of D. Thus if z ̸∈ ∂D, then z and z∗ are the
fixpoints of g. If g is not elliptic, it would follow that gn(z), z ∈ ∂D, would
tend toward either z or z∗ as n → ∞. Thus if g has a fixpoint z ̸∈ ∂D,
then g is elliptic and z, z∗ is the fixpoint pair of g.

So we need only t show that if g has fixpoint z ∈ ∂D, then g is either
parabolic or hyperbolic. If g is parabolic, we are done. If this is not the
case, then g has two fixpoints a and b on ∂D. We can conjugate the
situation so that D = U , the upper half-space and a = 0 and b = ∞. Thus
g(z) = λz, λ ̸= 1. Since g(∂D) = ∂D, gR = R. Thus λ ∈ R. If λ < 0,
then g interchanges the upper and half-space which is impossible since g
preserves D.

The hyperbolic metric. A very important notion for Fuchsian groups is
the hyperbolic metric. It is a metric d on the invariant disk of the group
which invariant for g ∈ M(D). This means that

(6) d(g(z), g(w)) = d(z, w)

if g ∈ M(D) and z, w ∈ D. These metrics are usually constructed using a
metric density ϱ which is a positive real function on D. If γ : [a, b] → d is
path, then the ϱ-length of γ is

|γ|ϱ =
∫
γ

ϱ|dz| =
∫ b

a

ϱ(γ(t))|γ′(t)|dt.
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The metric density is invariant for g ∈ M(D) if

(7) ϱ(g(z))|g′(z)| = ϱ(z)

for all z ∈ D. If ϱ is invariant, then ϱ-length of paths is unchanged under
g

|g ◦ γ|ϱ =
∫ b

a

ϱ(g ◦ γ(t))|(g ◦ γ)′(t)|dt(8) =
∫ b

a

ϱ(g(γ(t))|g′(γ(t)||γ′(t)|dt =
∫ b

a

ϱ(γ(t))|γ′(t)dt = |γ|τ .

We see the reason for invariancy better if we write w = g(z) and dw =
g′(z)dz. If we multiply both sides of (7) by |dz| we obtain

(9) ϱ(w)|dw| = ϱ(z)|dz|;
here ϱ(z)|dz| would be the infinitesimal ϱ-length of the infinitesimal eu-
clidean length |dz| and ϱ(w)|dw| would be the corresponding ϱ-length of
the induced infinitesimal dw.

Given a metric density ϱ, one defines a metric dϱ on D by

dϱ(x, y) = inf
γ
|γ|ϱ

where the infimum is taken over all regular paths of D joining x and y. Un-
der some reasonable condition, for instance ϱ is continuous, this is indeed
a metric on D. If ϱ is invariant for g ∈ M(D), also dϱ is invariant.

Thus the trick is to construct a Möbius-invariant metric is to find a
Möbius invariant metric density. We use the Möbius invariance of the cross-
ratio to derive such an invariant metric density and metric. Let g ∈ M be
a fixed Möbius transformation and let z, ζ ∈ C, z ̸= ζ, so that w = g(z)
and ν = g(z) are in C. Further we consider two numbers h and k which

are thought to be small and tend toward 0. Denote h̃ = g(z + h) − g(z)

and k̃ = g(ζ + h) − g(ζ) so that g(z + h) = w + h̃ and g(ζ + k) = ν + k̃.

Thus h̃/h → g′(z) and k̃/k → g′(ζ) as h → 0 and k → 0. The crossratio

(z + h, ζ, z, ζ + k) =
(z + h)− z

(z + h)− (ζ + k)
:

ζ − z

ζ − (ζ + k)
=

hk

[(z − ζ) + (h− k)](ζ − z)

is by the Möbius-invariance the same as

(w + h̃, ν, w, ν + k̃) =
h̃k̃

[(w − ν) + (h̃− k̃)](ν − w)

and hence

(h̃/h)(k̃/k)

[(w − ν) + (h̃− k̃)](ν − w)
=

1

[(z − ζ) + (h− k)](ζ − z)
.

If h → 0 and k → 0, then also h̃ → 0 and k̃ → 0, and h̃/h → g′(z) and

k̃/k → h′(ζ) and hence we have in the limit the following equality

(10)
g′(z)g′(ζ)

(w − ν)2
=

g′(z)g′(ζ)

(g(z)− g(z))2
=

1

(z − ζ)2

and this is valid for all distinct z, ζ ∈ C such that g(z), g(ζ) ∈ C.
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Sometimes a more useful way to think of this equality is to multiply both
sides by dz dζ and write dw = g′(z)dz, dν = g′(ζ)dζ so that we obtain

(11)
dw dν

(w − u)2
=

dz dζ

(z − ζ)2

this can be thought as a relation between the product of the infinitesimal
chance dz of z and dζ of ζ and of the corresponding infinitesimal changes
of w = g(z) and ν = g(ζ).
Although formula (11) is an expression of Möbius-invariancy, it involves

two variable, z and ζ. We have to get rid of one of them. We use the
mirror point z∗ and let ζ = z∗. To be more precise, we assume that z ∈ D1

and let ζ = z∗ be the mirror point of z with respect to ∂D1. We need a
more precise notation and denote

z∗ = σ1(z)

for the mirror point with respect to ∂D1. Let D2 = gD1. and thus ν =
g(ζ) = g(z∗) = w∗ where now w∗ is the mirror point with respect to ∂D2.
We let σ2 be the mirror point with respect to σ2 so that w∗ = σ2(w). By
Lemma 5.3, we have the following commutativity relation

(12) gσ1 = σ2g.

and so w∗ = gσ1(z) = σ2g(z). Thus we can write (10) as

(13)
g′(z)g′(z∗)

(w − w∗)2
=

1

(z − z∗)2
.

Before we continue the general case, we study the special case that D1 =
D2 = U = the upper half-plane. In this case z∗ = z̄ and w∗ = w̄. Since
g(z̄) = g(z), we obtain that

g′(z̄) = lim
h→0

g(z̄ + h̄)− g(z̄)

h̄
= lim

h→0

g(z + h̄)− g(z)

h̄
= g′(z).

Write z = x + iy and w = u + iv so that z − z∗ = 2y and w − w∗ = 2v.
We can now write (13) in the following form, after taking square roots of
the moduli and multiplying by 2,

(14)
|g′(z)|

v
=

1

y
.

In the infinitesimal form this is

|dw|
v

=
|dz|
y

.

Equation (14) shows that the metric density ϱ(z) = 1/Im y = 1/y is
invariant for g ∈ M(U) and thus g does not change the ϱ-length of a path
γ of U . The ϱ-length will be called the hyperbolic length of γ and ϱ is the
hyperbolic metric density though sometimes ϱ is divided by 2 reflecting
the fact that we multiplied by 2 to obtain (14).

The general case is a little more complicated. We need to calculate
g′(z∗). Here the problem is that the map z 7→ z∗ is not analytic and
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so does not have complex derivative since it involves taking the complex
conjugate and the map z 7→ z̄ is not analytic. However, the absolute value
|dz∗|/|dz| still exists, defined as the limit

(15) lim
h→0

|(z + h)∗ − z∗|
|h|

and this is all that is needed. If z∗ = z̄ as above, then obviously

(16)
|dz∗|
|dz|

= 1.

In the general case, w∗ and z∗ could be mirror points with respect to
different circles. Hence it might be better to use the notation σ2(w) and
σ1(z) as above for the mirror points. Since w∗ = g(z)∗ = g(z∗), we obtain
by the appropriate form of the chain rule from σ2g = gσ1 that

|σ′
2(w)||g′(z)| = |g′(z∗)||σ′

1(z)|

giving

(18) |g′(z∗)| = |g′(z)||σ′
2(w)||σ′

1(z)|−1.

Note that since σi are not analytic, we have to modify the chain rule so
that we take absolute values. We leave it as an exercise to show that the
chain rule is in the above form valid. Easiest, if unexact, way to see it, is to

note that if ζ is a function of w and w a function of z, then |dζ|
dz| =

|dζ| |dw|
|dw| |dz| .

Formally, easiest proof goes by noting that σ2(z) and σ1(z̄) are analytic
functions of z.

Now, we substitute (18) in (13) and take square root of the moduli and
obtain

(19)
|g′(z)|2|σ′

2(w)|
|w − w∗|2

=
|σ′

1(z)|
|z − z∗|2

Define

(20) ϱDi
(z) =

2
√

|σ′
i(z)

|z − z∗|
.

Here the constant 2 is added in order to get simplest possible form for
Di = U . We obtain from (19)

(21) ϱD2(g(z))|g′(z)| = ϱD1(z).

In other words,

(22) ϱD2(w)|dw| = ϱD1(z)|dz|

and we would obtain as in (8) that the ϱD2-length of gγ is the same as the
ϱD1-length of the path γ of D1.
So we need to calculate

(23) ϱD =
2
√

|dz∗|/|dz|
|z − z∗|
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where the mirror point is taken with respect to ∂D. We haved already
seen that if D = U , then

ϱU(z) =
1

y

if z = x+ iy. If D = ∆ = the unit disk, then z∗ = 1/z̄ and hence

|dz∗|
|dz|

= |d(1/z)/dz| = 1

|z|2
.

Hence, remembering that |z| < 1 in ∆,

ϱ∆(z) =
2

|z − 1/z̄||z|
=

2

1− |z|2
.

Conclusion, if g ∈ M maps the Möbius disk D1 onto D2, then the hy-
perbolic metric density is preserved, i.e. (22) is true.

Construction of the metric from the metric density. So we now assume
that we have a disk D on which we have a metric density ϱD given by (23).
We will now define a metric using ϱD. This metric is the hyperbolic metric
of D and it is defined so that the distance of two points z, w ∈ D is

(24) d(z, w) = inf
γ
|γ|ϱD

where the infimum is taken over all regular paths γ such that z is the inital
point w the endpoint and as above,

|γ|ϱD =

∫
γ

ϱD|dz|

is the ϱD-length of γ.
We have to check that d is indeed a metric of D, that is we need to check

that is it satisfies
(i) d(z, z) ≥ 0 and d(z, w) = 0 only if z = w.
(ii) d(z, w) = d(w, z)
(iii) d(z, w) ≤ d(z, u) + d(u, z).
We check these points. Obviously, d(z, w) ≥ 0 and d(z, z) = 0 since the

ϱD-length of the constant path γ(t) = z is 0. It would not be difficult to
prove that d(z, w) > 0 but we postpone it and prove it in connection with
geodesics.
To prove ii), we note that we can always parametrize paths so that the

parameter interval is [0,1]. Then the reverse path of γ is σ(t) = γ(1 − t)
whose initial point is the endpoint of γ and vice verse. One easily checks
(by performing the change of variable t = 1 − s in the integral) that
|σ|ϱD = |γ|ϱD . It follows that the of the ϱD-lengths in (24) is the same for
d(z, w) and for d(w, z). Thus ii) is true.

To prove iii) we choose paths γ with the initial point z and endpoint u
and another path with initial point u and endpoint z such that

|γ|ϱD ≤ d(z, u) + ε/2 and |β|ϱD ≤ d(u, z) + ε/2.
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Since the endpoint of γ = the initial point of β, we can join the paths and
form the combined paths γ ∗ β whose initial point is z and endpoint is w.
Thus

d(z, w) ≤
∫
γ∗β

ϱD|dz| =
∫
γ

ϱD|dz|+
∫
β

ϱD|dz| ≤ d(z, u) + d(u, z) + ε.

Since ε > 0 was arbitrary, the triangle inequality is true and d is a metric.
(Actually, since i) is so far only partially proved, we know only so far that
d is a pseudo-metric).

An isometry between metric spaces X and Y is a homeomorphism g
which preserves the metric:

(25) d(g(z), g(w)) = d(z, w).

Theorem 5.5. If D is a Möbius disk and D′ = gD, g ∈ M , then g is a
hyperbolic isometry D → D′, that is g satisfies (24).

Proof. Let z, w ∈ D and let F be the family of regular paths with
initial point z and endpoint w. Then gF = {g ◦ γ : γ ∈ F} is the family of
regular paths with g(z) as the initial point and g(w) as the endpoint. Thus
these families are in one-to-one correspondence. We have seen that |γ|ϱD =
|g ◦ γ|ϱD′ and hence the infimums (25) giving d(z, w) and d(g(z), g(w)) are
the same.

Notation. If the hyperbolic disk D is fixed, we denote

|γ|h = |γ|ϱD
for the hyperbolic length.

Geodesics. A hyperbolic geodesic of a Möbius disk D is first of all a
subset L of D such that there is a homeomorphism σ : R → L which is
regular so that lengths are defined. Thus if a = σ(t) and b = σ(s), (we
choose the notation so that t < s), then the subarc Lab is parametriced by
γts = γ|[t, s] and has hyperbolic length

|Lab|h = |γts|h.
L is a geodesic of the hyperbolic metric if

d(a, b) = |Lab|h.
Thus the distance d(a, b) can be realized as the length of the arc Lab. If c
is “between” a and b, then Lac is the union of the adjacent arcs Lac and
Lcb with c as the common point and hence

(26) d(a, b) = |Lab|h = |Lac|h + |Lcb|h = d(a, c) + d(c, b).

Any two points of a the hyperbolic space D can be joined by a geodesic.
We start with

Lemma 5.6. The positive imaginary axis I = {it : t > 0} is a geodesic
isometric to R and

d(it, is) =

∣∣∣∣log t

s

∣∣∣∣ .
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If γ is a path joining two points a, b ∈ I contains a point outside γ, then

|γh| > d(a, b).

Proof. Let a = it and b = is. We can assume that t < s. Let γ : [0, 1] →
U be a regular path such that γ(0) = a and γ(1) = b. Write

γ(t) = α(t) + iβ(t)

where α and β are real functions. Note that the path iβ, t 7→ iβ(t), also

joins a and b. Thus γ(t) =
√

α′(t)2 + β′(t)2 and ϱU(γ(t)) = β(t) and hence

|γ|h =

∫ 1

0

√
αÃ1′(t)2 + β′(t)2

β(t)
dt ≥

∫ 1

0

β′(t)

β(t)
dt(∗) = log β(1)− log β(0) = log

s

t
.

If γ contains a point outside I, then α is not constant and hence α′(t) ̸= 0
for some t. Hence |γ′(t)| > β′(t) and we see that there is a proper inequality
in (*) since paths are piecewise continuously differentiable. Thus I is a
geodesic and hence log(s/t) = d(is, it). Thus the map I → R, z 7→ d(z, i)
is a bijection and an isometry of I onto R.

Theorem 5.7. Let D be a Möbius disk which is provided with the hyper-
bolid metric. Then the geodesics of D are of the form L = S∩L where S is
a Möbius circle intersecting orthogonally ∂D and each such L is isometric
to R. Any two distinct points of D are contained in a unique geodesic.

Proof. If D′ = gD, g ∈ M , then g is an isometry of the hyperbolic
metrics of D and D′. Also, if S is a Möbius circle S is orthogonal to ∂D
if and only if gS is orthogonal to ∂gS. Thus it is enough to prove the
theorem in the case that D = U , the upper half-plane.

We already know that the positive imaginary axis I is a geodesic isomet-
ric to R. Hence so is gI for any g ∈ M . Since I is orthogonal to ∂U (at ∞
this needs to be checked using the auxiliary map 1/z) also gI is orthogonal
to ∂U .

So we need to check the following.
1. If S is a Möbius circle orthogonal to ∂U , then S ∩ U = gI for some

g ∈ M(U).
2. If z, w ∈ U are distinct, then there is a one and only one Möbius

circle S orthogonal to ∂U such that z, w ∈ U .
3. If L ⊂ U is a hyperbolic geodesic, then there is a unique Möbius circle

S orthogonal to ∂U such that L ⊂ U .
To prove 1, let {z1, z2} = S ∩ ∂U . Pick another point z3 ∈ ∂U \ {z1, z2}.

Thus there is a Möbius transformation g such that g(0) = z1, g(∞) = z2
and g(1) = z3. Thus either gU = U or gU = L, the lower halfplane. In the
latter case we replace g by 1/g(1/z) after which gU = U and g still sends
{0,∞} onto {z1, z2}. Thus gI is orthogonal to S and hence gI = S ∩ U .

Proof of 2. Let z = x + iy and w = u + iv. If x = u, then z and w
are on L = {z ∈ U : Re z = x = u} which is a Möbius circle intersecting
∂U orthogonally at ∞ and x = u and there is no other such Möbius circle.
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If x ̸= u, then suppose that there is a circle S orthogonal to ∂U and
containing z and w. Then the center a of S is a real number and

(x− a)2 + y2 = (u− a)2 + v2.

This is equivalent to

x2 − 2xa+ y2 = u2 − 2ua+ v2

and hence

a =
x2 + y2 − u2 − v2

2(x− u)
.

Thus there is just one circle orthogonal to ∂U containing z and w and 2.
is proved.

Finally, suppose that L is a hyperbolic geodesic. If a, b ∈ L, let Lab be
the closed subarc of L with endpoints a and b and let Sab be the Möbius
circle containing a and b and orthogonal to ∂U . It follows from Lemma 5.6
that Lab ⊂ Sab. If c, d are another pair of points of L such that Lab ⊂ Lcd,
we obviously Scd = Sab. Hence we can denote S = Sab independently of
a, b ∈ L and it follows that L ⊂ S. Thus also 3. is true and the theorem is
proved.

Hyperbolic metric is a metric and not a pseudo-metric. We can now
conclude then proof that d(z, w) > 0 if z ̸= w. If z, w ∈ I, this follows
from the formula in the lemma and otherwise we can map z, w to I by a
Möbius transformation.

Usage of the word geodesic. Our original definition allows that a geodesic
need not be maximal. We have seen that such geodesics are contained
circles orthogonal to ∂D. Henceforth we mean by geodesics of D sets of
the form S ∩ D where S is a Möbius circle orthogonal to ∂D. These are
maximal geodesics and each of them is isometric in the hyperbolic metric
to R.
If D is the upper halfplane, then the hyperbolic lines are parts of vertical

lines or of circles with centers on R. If D = ∆, the unit disk, then the
hyperbolic lines through 0 are just parts of the euclidean lines through
origin and thus they are euclidean open line arcs with endpoints a and −a
where |a| = 1. It is easy to see from this situation that L is a hyperbolic line
and z ∈ L, then there is another hyperbolic line K through z intersecting
L orthogonally.

Hyperbolic geometry and trigonometry. Hyperbolic metric of a Möbius
diskD gives hyperbolic geometry toD. Its lines are the hyperbolic geodesics
which are of the form S ∩ D where S and ∂D intersect orthogonally. It
satisfies all the axioms of euclidean geometry except the parallel axiom: If
L is a hyperbolic line and z is outside L, then there are many (actually
infinite) number of hyperbolic lines through z which do not intersect L.
A hyperbolic triangle T consists of 3 hyperbolic line segments a b and c

which meet at 3 vertices. It is possible to have formulae similar to euclidean
trigonometry for hyperbolic triangles. Let a, b and c be the lengths of the
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sides of T and let α, β and γ be the angles at vertices of the triangle so
that α is opposite to the side whose lengths was denoted by a etc. The
hyperbolic cosine rule is

cosh c = cosh a cosh b− sinh a sinh b cos γ

where cosh and sinh are the hyperbolic sine and cose. In the limit, when
the lengths of the sides approach 0, this gives the euclidean formula

c2 = a2 + b2 − 2ab cos γ.

We have also the sine rule in the form
sinh a

α
=

sinh b

β
=

sinh c

γ
;

again this gives in the limit the euclidean sine formula.
A striking difference from the euclidean geometry is the absence of sim-

ilarity. We cannot multiply the sides of a triangle by a fixed constant and
have a new triangle with these multiplied side lengths and same angles.
This can be seen for instance from the sine formula.

One can use the hyperbolic metric to calculate areas. We do not go into
details but one can show that the area of a triangle T is

π − (α + β + γ)

when the angles of the triangle are α, β and γ. Thus the sum of the
angles of a triangle is always less than π but on the limit, when the area
approaches 0, the sum of the angles approaches π.

One can also consider ideal hyperbolic triangles so that one or more of
the vertices of the triangle are on the boundary circle. The angle at such
a vertex on the boundary is 0. If all the angles are on the boundary, then
all the angles are 0 in this case the triangle has the maximal area π.

The fundamental domain. An important application of the hyperbolic
metric and its Möbius-invariancy is that by means of it we can find a fairly
regular domain D so that D and its transforms gD, g ∈ G, cover D so that
distinct gD and hD (g, h ∈ G) overlap only on the boundary. This gives
insight into the geometry of the quotient surface D/G = {Gz : z ∈ D} for
a Fuchsian group G of D.

Before we start to construct such a fundamental domain, we need an
auxiliary result. We use the following notation. We consider a Möbius disk
D and the hyperbolic metric on it. We know that two distinct points z, w ∈
D are on a well-defined hyperbolic line Lzw of D. Thus there is a well-
defined subarc of Lzw with endpoints z and w; we denote it by Jzw. The
midpoint of Jzw is the well-defined point a such that d(a, z) = d(z, w) =
d(z, w)/2. There is a hyperbolic line through the midpoint z intersecting
Lzw orthogonally. We call it the (hyperbolic) orthogonal bisector of Jzw
and denote Bzw

Lemma 5.8. Let z, w ∈ D, then

(∗) Bzw = {ζ ∈ D : d(ζ, z) = d(ζ, w)}
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is the orthogonal bisector of the hyperbolic line segment Jzw.

Proof. Let K be the orthogonal bisector of Jzw. Thus Jzw and K in-
tersect orthogonally at a ∈ Jzw. We can apply a Möbius transformations
which maps D to U and K to the positive imaginary axis I (we refer to the
reasoning in the preceding theorem). The maps σ(x + iy) = −x + iy, the
reflection of U on I, obviously a hyperbolic isometry since |σ′(z)| = 1 at
all points and since it preserves the imaginary part of a complex number:

ϱU(σ(x+ iy))|σ′(x+ iy)| = 1

y
= ϱU(x+ iy).

Thus |γ|h = |σ ◦ γ|h and it follows that σ preserves the hyperbolic metric.
The hyperbolic line Lzw containing z and w is orthogonal to K and hence
σ(Lzw) = Lzw and it follows that σ(Jza) = Jwa and so σ(z) = w and
σ(w) = σ(z). Obviously σK = K.

Thus if ζ ∈ K, then

d(z, ζ) = d(σ(z), σ(ζ)) = d(w, ζ)

and so we need to prove only that if ζ ∈ U \ K, then d(ζ, z) ̸= d(ζ, w).
Suppose that this is not the case. Then one of the hyperbolic line segments
Jzζ and Jwζ intersects K, say Jwζ ∩K = {b}. Thus, as we have seen,

d(w, b) = d(z, b)

and hence

d(z, ζ) = d(w, ζ) = d(w, b) + d(b, ζ) = d(z, b) + d(b, ζ).

Thus in the triangle with vertices z, b and ζ, then length of one side is the
same as the sum of the lenghts of two other sides. This contradicts Lemma
5.7 which says that if a path γ connects two points z and b of a hyperbolic
line L0, then |γ|h > d(z, b) if γ goes outside L0.

The hyperbolic line Bzw divides the Möbius disk D into two components,
one of them contains z and the other w. We denote the one containing
z by Hzw (here the order is important Hwz is the other component. The
function f(ζ) = d(ζ, w)−d(ζ, z) vanishes on Bzw but is non-zero elsewhere.
Obviously f(z) > 0 and hence we can conclude that

Hzw = {ζ ∈ D : d(ζ, z) < d(ζ, w), (∗)} ,

that is, Hzw contains ζ ∈ D such that ζ is closer to z than w.
We obtain the fundamental domain F of a Fuchsian group of D so that

we fix a point s ∈ D such that g(a) ̸= z for g ∈ G \ {id}. Since the set of
elliptic fixpoints is discrete (Lemma 4.3), we can find such points. Let

Hg = Hag(a) = {z ∈ D : d(z, a) ≤ d(z, g(a))

where g ∈ G \ {id}. The fundamental domain of G with center a is

Fa =
∩
g∈G′

Hg = {z ∈ D : d(z, a) ≤ d(z, g(a)) for g ∈ G} = {z ∈ D : d(z, a) ≤ d(g(z), a) for g ∈ G}
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where G′ = G \ {id}. In the last equality we have used the fact that the
hyperbolic metric is Möbius-invariant and that G = {g−1 : g ∈ G}. The
last expression shows that we we pick to Fa the point (or points) from
each orbit Gz which is closest to a. This characterzation implies the first
property of Fa:

1◦. gFa = Fg(a) for g ∈ G.

We now keep a fixed and denote F = Fa for short. We examine its
properties.

A set A ⊂ D is hyperbolically convex if, whenever z, w ∈ A, the hyper-
bolic line segment Jzw with endpoints z and w is in A. The next property
of Fa is:

2◦. F is hyperbolically convex.

To see 2◦, we note that each closed half-plane is hyperbolically convex
and hence their intersection has the same property.

3◦. If z ∈ D, then there are g1, . . . , gn, n ≥ 1, such that z ∈ giF and
such that

d(z, g1(a)) = . . . = d(z, gn(a))

and z has a neighborhood U such that

d(z, gi(a)) < d(z, g(a))

for g ∈ G \ {g1, . . . , gn}.
To see 3◦, we note that since Ga is a discrete subset of D, then

m = inf
g∈G

d(z, g(a))

is attained by some g ∈ G. Since d(z, w) → ∞ as w tends toward the
boundary (see for instance Ex. 4 in the last exercise set), there can be
only a finite number of g ∈ G for which m = d(z, g(a)). So there are
such gi as claimed. The same reasoning shows that there is M > m such
that d(z, g(a)) ≥ M if g ∈ G \ {g1, . . . , gn} and hence there is such a
neighborhood U of a as claimed.

4◦. If g, h ∈ G, then gF ∩ hFa is either empty, a point, or hyperbolic
line, ray or segment.

This follows since gF ∩ hF is a convex closed subset of the bisector
Bg(a)h(a) which is a hyperbolic line. It follows that only the possibilities
mentioned can occur.

A side of gF is a set of form gF ∩ hF where h ∈ G \ {g} and h contains
more than one point. In the following ∂A denotes boundary in D.

5◦. ∂gF is the union of sides of gF . If s = gF ∩ hF , h ∈ G \ {g} is a
side of gF , and if z ∈ s is not endpoint of s, then

(∗∗) d(z, g(a)) = d(z, h(a)) < d(z, f(a))

if f ∈ G \ {h, g}. Hence s is a side only of gF and hF.
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Let z ∈ F . Let g1, . . . , gn and the neighborhood U of z be as in 3◦

where g = g1. If n = 1, then U ⊂ gF and hence z ∈ intF . Suppose
that n = 2. Then we see that d(z, g(a)) = d(z, h(a)), h ∈ G \ {g}. If
d(z, g(a) < d(z, f(a)) for f ∈ G\{g, h), then this is true in a neighborhood
U of z and U∩Bg1(a)g2(a) ⊂ gF ∩hF . So gF ∩hF is a side of gF . Obviously,
s is a side only of gF and hF .
If n > 2, then all the bisectors Bk = Bg(a)gk(a) have the common point

z. It is geometrically evident that the bisectors are distinct (we bypass the
verification of this simple fact). It is again geometrically evident that there
are two bisectors Bp and Bq such that Bq ∩ U ⊂ gF and Bp ∩ U ⊂ gF .
Hence gF ∩ gpF and gF ∩ gqF are sides of gF whose endpoint z is. We
can see from this that except for endpoints of s, (**) is valid.

6◦. The sets gF . g ∈ G, are distinct and cover D and if z ∈ int gD for
at most one g.

This follows since g(a), g ∈ G, are distinct and obviously g(a) is an
interior point of gD. By 5◦, z ∈ int gD is not a point of hD, h ̸= g.

7◦. If s is a side of F , then there is another side s′ and g ∈ G \ {id}
such that g(s) = s′. In addition, s ̸= s′ except if g is elliptic of order two
such that the fixpoint of g is on s.

To prove 6◦, let s = F ∩ gF . Thus s′ = g−1 ∩ gF is also a side of F and
s = gs′. If s = s′, then g2 = id since otherwise s would be a side in 3 sets
of the form hF , h ∈ G. Thus g2 = id and hence g is elliptic of order two
and one easily sees that the fixpoint is on s.

If g is as in 7◦, we say that g identifies s with s′ so that the point z ∈ s
is identified with g(z). We can form the quotient D/G = {Gz : z ∈ S}
as F/R where the relation xRy means that there is g ∈ G such x = g(y).
The equivalence classes are Gz ∩ F but now the relation is much easier to
handle: If x̃ is the equivalence class of x, then x̃ = {x} for interior points of
F and x̃ contains two points if x ∈ s for a side of F unless x is an endpoint
or elliptic fixpoint in which case x̃ is still finite.

An example. For simplicity we present the following example of a fun-
damental domain. It is not essential that G is Fuchsian or that the funda-
mental domain is obtained by means of the hyperbolic metric as described
above. What is essential is kind of polygonal structure so that sides are
identified in pairs. If G is the group of translations Tn+im(z) = z+n+mi,
n,m ∈ Z, then a fundamental domain would be

D = I × I

where I = [0, 1]. D has sides s1 = {0} × I, s2 = {1} × I, s3 = I × {0}
and s4 = I × {1}. To obtain the quotient, s1 would be identified with s2
and s3 with s4. The first identification gives a cylinder and the second
identification makes a torus out of the cylinder.
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Fuchsian group as the universal cover group. We mention here some con-
nections of Fuchsian groups to the surface topology and Riemann surface.
We refer to some topological facts. If you do not know these just skip this
section.

Suppose that G is a Fuchsian group of D. Since D is G-invariant, we
can define the quotient space

D/G = {Gx : x ∈ D}.
As Ω(G)/G, also D/G is a surface in the quotient topology. Let p(x) = Gx
be the canonical projection D → D/G. If G does not contain elliptic
elements, then p is a covering projection. We have now the extra infor-
mation that D is simply connected which may not be true in the general
case. Thus in this case G is isomorphic to the fundamental group of the
quotient surface, usually denoted π(D/G).

Suppose that S is a compact orientable surface. Then it is known that S
is homeomorphic to a quotientD/G, G Fuchsian group ofD, except if S the
2-sphere S2 or torus S1×S1. One can classify orientable compact surfaces
by a certain topological feature called the genus of the surface. Genus of
S2 is 0 and that of torus is 1. If the genus > 2, then S is homeomorphic
to the quotient of a Fuchsian group.

In the theory of Riemann surfaces, one is interested of the conformal type
of the surface. Two surfaces may be homeomorphic but do not have the
same conformal type. i.e there is not a conformal homeomorphism between
them. It is known that if the genus of a Riemann surface S is at least 2,
then S is conformally equivalent to some quotient D/G; recall that D/G
had a natural conformal structure.

These facts are the reason why Fuchsian groups are important in the
theory of surfaces and Riemann surfaces. It is often simpler to study the
group whose quotient is the surface than the surface itself.
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