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1. Introduction

Let f be a non-constant meromorphic function in the plane. We set

m̄q(r, f) = sup
(a1,··· ,aq)∈(Ĉ)q

∫ 2π

0

max
1≤i≤q

log
1

[f(reiθ), ai]

dθ

2π
.

Here [x, y] is the chordal distance between two points in the extended complex plane:

[x, y] =
|x− y|√

1 + |x|2
√
1 + |y|2

.

We prove the following theorem.

Theorem 1. Let f be a transcendental meromorphic function of finite order. Let ν :
R>e → N>0 satisfies ν(r) → ∞ and log ν(r) = o(T (r, f)) as r → ∞. Then we have

(1.1) m̄ν(r)(r, f) +N1(r, f) = 2T (r, f) + o(T (r, f))

where r → ∞ outside a set of logarithmic density 0.

In [8, Theorem 1.6], the estimate (1.1) is proved for general transcendental meromorphic
functions, including the case of infinite order, provided that the function ν satisfies

(1.2) ν(r) ∼
(
log+

T (r, f)

log r

)20

.

Our theorem shows that ν(r) may be arbitrary slow growth if f is of finite order.
The proof of Theorem 1 is quite similar to that of [8, Theorem 1.6]. If ν : R>e → N>0

satisfies log ν(r) = o(T (r, f)), then a uniform version of Nevanlinna’s second main theorem
yields

(1.3) m̄ν(r)(r, f) +N1(r, f) ≤ 2T (r, f) + o(T (r, f))

for all r > e outside an exceptional set of finite linear measure (cf. [8, Section 1.6]). Thus
the issue is to prove the reversal of (1.3). This is contained in the following theorem.

Theorem 2. Let f be a transcendental meromorphic function of finite order λ. For 0 <
ε < 1, there exist a positive integer qλ,ε and a set Ef,ε ⊂ [e,∞) with

log densEf,ε < ε

such that for all r ≥ e outside Ef,ε, the following inequality holds:

2T (r, f) ≤ m̄qλ,ε(r, f) +N1(r, f) + εT (r, f).

Here qλ,ε only depends on λ and ε.
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Here we denote by log densE the upper logarithmic density of E:

log densE = lim
r→∞

∫
E∩[e,r]

dt
t

log r
.

The proof of Theorem 2 shows that we may take qλ,ε = ⌈(220327680λ/ε2)/ε20⌉, where ⌈x⌉ is
the smallest integer which is not less than x.

Remark. Let a1, . . . , aq ∈ Ĉ be distinct points. We have

q∑
i=1

m(r, ai, f) =

∫ 2π

0

max
1≤i≤q

log
1

[f(reiθ), ai]

dθ

2π
+O(1) ≤ m̄q(r, f) +O(1),

where O(1) only depends on a1, . . . , aq. Thus we may recover usual estimate of Nevanlinna’s
second main theorem

(1.4)

q∑
i=1

m(r, ai, f) +N1(r, f) ≤ 2T (r, f) + o(T (r, f))

from (1.3), provided ν(r) → ∞ as r → ∞.
The question of reversal of (1.4) is already discussed in [5] and is a theme of [7, Chapter

4]. For many familiar functions, (1.4) is known to be an asymptotic equality rather than
inequality. For instance, this holds for meromorphic functions with finitely many critical
and asymptotic values, provided {a1, . . . , aq} contains all critical and asymptotic values
(cf. [6]). See also [2] for other investigation of this problem from potential-theoretic view
point. Our quantity m̄ is introduced in [8] to resolve conjectures of Mues and Gol’dberg
concerning value distribution of derivatives of meromorphic functions.

2. Notations of Nevanlinna Theory

Let f be a non-constant meromorphic function in the complex plane. Put C(t) = {z ∈
C : |z| < t}. We denote by T (r, f) the spherical characteristic function of f , i.e.,

T (r, f) =

∫ r

1

(∫
C(t)

f ∗ωĈ

)
dt

t
,

where

ωĈ =
1

(1 + |w|2)2

√
−1

2π
dw ∧ dw̄

is the Fubini-Study form on the Riemann sphere Ĉ.
We denote by n1(t, f) the number of critical points of f in C(t), counting multiplicity.

We define the ramification counting function N1(r, f) by

N1(r, f) =

∫ r

1

n1(t, f)
dt

t
.

Let a ∈ Ĉ. We define the proximity function m(r, a, f) by

m(r, a, f) =

∫ 2π

0

log
1

[f(reiθ), a]

dθ

2π
.

The detail of Nevanlinna theory may be found in [1], [3], [4], [5], [9].
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3. Proof of the theorems

For a meromorphic function f , we put

v(r, f, θ) = sup
τ

(
sup

t∈[τ,τ+θ]

log |f(reit)| − inf
t∈[τ,τ+θ]

log |f(reit)|

)
.

We first show

Proposition 1. Let f be a transcendental meromorphic function of finite order λ. Let
0 < ε < 1. Then there exists a positive constant θλ,ε such that

v(r, f, θλ,ε) ≤ εT (r, f)

for all r > e outside an exceptional set Ef,ε with log densEf,ε < ε.

The proof of Proposition 1 shows that we may take θλ,ε = ε20/21402120λ/ε
2
. To prove

Proposition 1, we need several lemmas.

Lemma 1. For 0 < ε < 1, there exists τε > 0 such that∫ 2r

r

v(t, f, τε)

t
dt < εT (8r, f)

for r > r0, where r0 > 1 is a constant which only depends on f .

The proof shows that we may take τε = ε10/2110.
Proof. By [8, Lemma 3.2], we have the following: Let 1 < σ < e. Then

(3.1)

∫ σr

r

v(t, f, (log σ)10)

t
dt < 508(log σ)2(T (σ3r, f) + c)

for r > 1, where c is a positive constant which only depends on f .
Now given 0 < ε < 1, we take a positive integer l such that

l ≥ 1016(log 2)2

ε
.

We take r0 > 1 such that T (r0, f) > c. Then for i = 0, . . . , l − 1 and r > r0, (3.1) yields∫ 2(i+1)/lr

2i/lr

v(t, f, (log 21/l)10)

t
dt < 1016(log 21/l)2T (2(3+i)/lr, f) ≤ 1016(log 2)2

l2
T (8r, f).

Thus we get ∫ 2r

r

v(t, f, (log 21/l)10)

t
dt < εT (8r, f)

for r > r0. We set τε = (log 21/l)10 to conclude the proof. �
In order to deal with the term T (8r, f), we need a growth lemma.

Lemma 2. Let g(r) be a continuous, non-decreasing function in [e,∞) and g(e) > 0.
Suppose that

M = lim
r→∞

log g(r)

log r
< ∞.

Given 0 < ε < 1, put
C(ε) = 2 · 82M/ε,

Eε = {r ∈ [e,∞); g(8r) ≥ C(ε)g(r)}.
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Then we have

log densEε < ε.

Proof. Suppose that Eε is bounded, then our lemma is trivial. Thus in the following, we
assume that Eε is not bounded.

We define a sequence of positive numbers r1, r2, · · · by the following inductive rule:

r1 = inf Eε,

ri+1 = inf (Eε ∩ [8ri,∞)) .

Since Eε is a closed set, we have ri ∈ Eε. Hence we have

(3.2) g(ri+1) ≥ g(8ri) ≥ C(ε)g(ri).

Now given large R with Eε ∩ [e,R] ̸= ∅, there is a positive integer n(R) such that

Eε ∩ [e,R] ⊂
n(R)∪
i=1

[ri, 8ri]

and

rn(R) ≤ R.

Then since ∫
Eε∩[e,R]

dt

t
≤

n(R)∑
i=1

∫ 8ri

ri

dt

t
≤ n(R) log 8,

we have

n(R) ≥ 1

log 8

∫
Eε∩[e,R]

dt

t
.

Hence by (3.2), we have

log g(R) ≥ log g(rn(R)) ≥ log
(
C(ε)n(R)−1g(r1)

)
= n(R) logC(ε)− logC(ε) + log g(r1)

≥
(
1

3
+

2M

ε

)∫
Eε∩[e,R]

dt

t
− logC(ε) + log g(r1).

Hence we have

lim
R→∞

1

logR

∫
Eε∩[e,R]

dt

t
≤
(

3ε

6M + ε

)
lim
R→∞

log g(R) + logC(ε)− log g(r1)

logR
< ε.

This proves our lemma. �

Lemma 3. Let F ⊂ R>e be a measurable set, and let α ≥ 0. We define a set E by

E =

{
r;

∫
F∩[r,2r]

dt

t
> α

}
.

Then we have

log densF ≤ α

log 2
+ log densE.
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Proof. Put G = [e,∞)\E. Then G is a closed set. Suppose that G is bounded. In this
case, the upper logarithmic density of E is equal to 1, so our lemma is trivial. Hence in
the following, we assume that G is unbounded.

We define a sequence of positive numbers {rn} by the following inductive rule:

r0 = e,

ri+1 =

{
2ri ri ∈ G
inf[ri,∞) ∩G ri ̸∈ G

Since we are assuming that G is unbounded, this sequence is infinite. We observe that

(3.3) ri+2 ≥ 2ri.

Indeed, this is obvious if ri ∈ G. Suppose that ri ̸∈ G. Then since G is closed, we conclude
ri+1 ∈ G. Hence ri+2 = 2ri+1, and we conclude (3.3) for ri ̸∈ G. From (3.3), we see that
the sequence {rn} tends to infinity.

Now given R > e, there is a non-negative integer n(R) such that

rn(R) ≤ R < rn(R)+1.

We put

A = {i ∈ Z≥0; ri ∈ G and i ≤ n(R)− 1},
B = {i ∈ Z≥0; ri ̸∈ G and i ≤ n(R)− 1}.

Then for the cardinarity of A, we have

|A| ≤ log(R/e)

log 2
.

Hence we have∫
[e,R]∩F

dt

t
=

n(R)−1∑
i=0

∫
[ri,ri+1]∩F

dt

t
+

∫
[rn(R),R]∩F

dt

t

=
∑
i∈A

∫
[ri,ri+1]∩F

dt

t
+
∑
i∈B

∫
[ri,ri+1]∩F

dt

t
+

∫
[rn(R),R]∩F

dt

t

≤ α(|A|+ 1) +

∫
[e,R]∩E

dt

t

≤ α

(
log(R/e)

log 2
+ 1

)
+

∫
[e,R]∩E

dt

t
.

Hence we have

lim
R→∞

1

logR

∫
[e,R]∩F

dt

t
≤ α lim

R→∞

(
1

log 2
+

1

logR

)
+ lim

R→∞

1

logR

∫
[e,R]∩E

dt

t

≤ α

log 2
+ log densE.

This proves our lemma. �
Proof of Proposition 1. Let 0 < ε < 1. First we apply Lemma 1 for

ε2/4

C(ε2/2)
,
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where C(ε2/2) = 2 · 84λ/ε2 is the constant from Lemma 2. Then we get a positive constant
θλ,ε such that ∫ 2r

r

v(t, f, θλ,ε)

t
dt <

ε2/4

C(ε2/2)
T (8r, f)

for r > r0. Here θλ,ε = τε2/23+(12λ/ε2) .

Next we apply Lemma 2 for ε2/2 to get a set E such that

T (8r, f) < C(ε2/2)T (r, f)

for all r outside E. Here we have

log densE <
ε2

2
.

Thus we have ∫ 2r

r

v(t, f, θλ,ε)

t
dt <

ε2

4
T (r, f)

for all r > r0 outside E.
Now we set

F = {r; v(r, f, θλ,ε) ≥ εT (r, f)}.
Then we have∫

[r,2r]∩F

dt

t
≤
∫ 2r

r

v(t, f, θλ,ε)

εT (t, f)t
dt ≤ 1

εT (r, f)

∫ 2r

r

v(t, f, θλ,ε)

t
dt <

ε

4

for all r > r0 outside E. Thus by Lemma 3, we have

log densF <
ε

4 log 2
+

ε2

2
< ε.

We conclude the proof of Proposition 1. �
Now we prove Theorem 2. Let q > 0 be a positive integer. We claim

(3.4) 2T (r, f) ≤ m̄q(r, f) +N1(r, f) + 2v(r, f, 2π/q) + v(r, f ′, 2π/q) + log r + C

for all r > 1, where C is a positive constant which only depends on f . This is a consequence
of more general results given in Lemmas 3.6 and 3.7 in [8]. However we shall give a direct
proof of (3.4) in the following, for the direct proof is simpler than the general one.

Let σk = 2πk/q. For l = 0, 1, · · · , q− 1, we set Il = [σl, σl+1] and al = f(reiσl). We have

[f(reiθ), al] ≤
∫ θ

σl

f#(reiθ) rdθ,

where f# is the spherical derivative defined by

f#(z) =
|f ′(z)|

1 + |f(z)|2
.

Set τl = maxs∈Il log f
#(reis). Then for θ ∈ Il, we have

(3.5) [f(reiθ), al] ≤ eτl2πr/q.

We set

v(r, f#, θ) = sup
τ

(
sup

t∈[τ,τ+θ]

log f#(reit)− inf
t∈[τ,τ+θ]

log f#(reit)

)
.
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Then for θ ∈ Il, we have

log
1

f#(reiθ)
≤ −τl + v(r, f#, 2π/q).

Combining this estimate with (3.5)，we get

log
1

f#(reiθ)
≤ log

1

[f(reiθ), al]
+ v(r, f#, 2π/q) + log(2πr/q)

for θ ∈ Il. Thus∫ 2π

0

log
1

f#(reiθ)

dθ

2π
≤

q−1∑
l=0

∫ σl+1

σl

log
1

[f(reiθ), al]

dθ

2π
+ v(r, f#, 2π/q) + log(2πr/q).

By
q−1∑
l=0

∫ σl+1

σl

log
1

[f(reiθ), al]

dθ

2π
≤ m̄q(r, f),

we conclude ∫ 2π

0

log
1

f#(reiθ)

dθ

2π
≤ m̄q(r, f) + v(r, f#, 2π/q) + log(2πr/q).

Combining this with the following well-known estimate (cf. [1, Proposition 2.4.2])∫ 2π

0

log f#(reiθ)
dθ

2π
= −2T (r, f) +N1(r, f) +

∫ 2π

0

log f#(eiθ)
dθ

2π
,

we get

2T (r, f)−N1(r, f) ≤ m̄q(r, f) + v(r, f#, 2π/q) + log(2πr/q) +

∫ 2π

0

log f#(eiθ)
dθ

2π
.

By

v(r, f#, 2π/q) ≤ 2v(r, f, 2π/q) + v(r, f ′, 2π/q),

we conclude (3.4).
Now let 0 < ε < 1. Set qλ,ε = ⌈2π/θλ,ε/8⌉. By Proposition 1, we have

(3.6) v(r, f, 2π/qλ,ε) <
ε

8
T (r, f)

for all r > e outside E1 with

(3.7) log densE1 <
ε

8
.

Since f ′ has the same order λ, Proposition 1 yields that

v(r, f ′, 2π/qλ,ε) <
ε

8
T (r, f ′)

for all r > e outside E2 with

log densE2 <
ε

8
.

By Nevanlinna’s Lemma on logarithmic derivative, we have

T (r, f ′) ≤ 5

2
T (r, f)
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for all r > e outside E3 of finite linear measure. Hence we obtain

(3.8) v(r, f ′, 2π/qλ,ε) <
5ε

16
T (r, f)

for r > e and r ̸∈ E2 ∪ E3, where we have

(3.9) log dens(E2 ∪ E3) <
ε

8
.

Since f is transcendental, we find a positive constant r1 such that

(3.10) log r + C <
ε

8
T (r, f)

for r > r1.
Now we put

E = [e, r1] ∪ E1 ∪ E2 ∪ E3.

Then by (3.7) and (3.9), we have

log densE < ε.

By (3.6), (3.8), (3.10), we have

2v(r, f, 2π/qλ,ε) + v(r, f ′, 2π/qλ,ε) + log r + C < εT (r, f)

for all r > e outside E. Combining this estimate with (3.4), we conclude the proof of
Theorem 2.

We prove Theorem 1. Let n be a positive integer. We recall Ef,1/2n and qλ,1/2n from
Theorem 2. By ν(r) → ∞ as r → ∞, we may take cn > e such that ν(r) > qλ,1/2n for all
r > cn. We define F1/2n ⊂ [e,∞) such that r ∈ F1/2n iff

2T (r, f) > m̄ν(r)(r, f) +N1(r, f) +
1

2n
T (r, f).

Then we have F1/2n ∩ [cn,∞) ⊂ Ef,1/2n ∩ [cn,∞). Thus we have log densF1/2n < 1/2n.
Now we take rn > e such that ∫

F1/2n∩[e,r]
dt
t

log r
<

1

2n
,

for all r ≥ rn. We may assume without loss of generality that the sequence r1, r2, . . .
satisfies r1 < r2 < r3 < · · · and rn → ∞ as n → ∞. For r ∈ [rn, rn+1), we set ε(r) = 1/2n.
Then ε(r) is defined for all r ≥ r1 and ε(r) → 0 as r → ∞.

We define F ⊂ [r1,∞) such that r ∈ F iff

2T (r, f) > m̄ν(r)(r, f) +N1(r, f) + ε(r)T (r, f).

Then we have F ∩ [r1, rn+1) ⊂ F1/2n ∩ [r1, rn+1). Thus we have∫
F∩[r1,r]

dt
t

log r
<

1

2n

for rn ≤ r < rn+1. Thus F has logarithmic density 0. Thus we have

2T (r, f) ≤ m̄ν(r)(r, f) +N1(r, f) + o(T (r, f))

where r → ∞ outside a set of logarithmic density 0. Combining this estimate with (1.3),
we conclude the proof of Theorem 1.
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