ON A REVERSAL OF THE SECOND MAIN THEOREM FOR MEROMORPHIC FUNCTIONS OF FINITE ORDER

KATSUTOSHI YAMANOI

1. Introduction

Let f be a non-constant meromorphic function in the plane. We set

$$
\bar{m}_{q}(r, f)=\sup _{\left(a_{1}, \cdots, a_{q}\right) \in(\hat{C})^{q}} \int_{0}^{2 \pi} \max _{1 \leq i \leq q} \log \frac{1}{\left[f\left(r e^{i \theta}\right), a_{i}\right]} \frac{d \theta}{2 \pi} .
$$

Here $[x, y]$ is the chordal distance between two points in the extended complex plane:

$$
[x, y]=\frac{|x-y|}{\sqrt{1+|x|^{2}} \sqrt{1+|y|^{2}}}
$$

We prove the following theorem.
Theorem 1. Let f be a transcendental meromorphic function of finite order. Let ν : $\mathbb{R}_{>e} \rightarrow \mathbb{N}_{>0}$ satisfies $\nu(r) \rightarrow \infty$ and $\log \nu(r)=o(T(r, f))$ as $r \rightarrow \infty$. Then we have

$$
\begin{equation*}
\bar{m}_{\nu(r)}(r, f)+N_{1}(r, f)=2 T(r, f)+o(T(r, f)) \tag{1.1}
\end{equation*}
$$

where $r \rightarrow \infty$ outside a set of logarithmic density 0 .
In [8, Theorem 1.6], the estimate (1.1) is proved for general transcendental meromorphic functions, including the case of infinite order, provided that the function ν satisfies

$$
\begin{equation*}
\nu(r) \sim\left(\log ^{+} \frac{T(r, f)}{\log r}\right)^{20} \tag{1.2}
\end{equation*}
$$

Our theorem shows that $\nu(r)$ may be arbitrary slow growth if f is of finite order.
The proof of Theorem 1 is quite similar to that of [8, Theorem 1.6]. If $\nu: \mathbb{R}_{>e} \rightarrow \mathbb{N}_{>0}$ satisfies $\log \nu(r)=o(T(r, f))$, then a uniform version of Nevanlinna's second main theorem yields

$$
\begin{equation*}
\bar{m}_{\nu(r)}(r, f)+N_{1}(r, f) \leq 2 T(r, f)+o(T(r, f)) \tag{1.3}
\end{equation*}
$$

for all $r>e$ outside an exceptional set of finite linear measure (cf. [8, Section 1.6]). Thus the issue is to prove the reversal of (1.3). This is contained in the following theorem.

Theorem 2. Let f be a transcendental meromorphic function of finite order λ. For $0<$ $\varepsilon<1$, there exist a positive integer $q_{\lambda, \varepsilon}$ and a set $E_{f, \varepsilon} \subset[e, \infty)$ with

$$
\overline{\log \operatorname{dens}} E_{f, \varepsilon}<\varepsilon
$$

such that for all $r \geq e$ outside $E_{f, \varepsilon}$, the following inequality holds:

$$
2 T(r, f) \leq \bar{m}_{q_{\lambda, \varepsilon}}(r, f)+N_{1}(r, f)+\varepsilon T(r, f)
$$

Here $q_{\lambda, \varepsilon}$ only depends on λ and ε.

Here we denote by $\overline{\log \text { dens }} E$ the upper logarithmic density of E :

$$
\overline{\log \operatorname{dens}} E=\varlimsup_{r \rightarrow \infty} \frac{\int_{E \cap[e, r]} \frac{d t}{t}}{\log r} .
$$

The proof of Theorem 2 shows that we may take $q_{\lambda, \varepsilon}=\left\lceil\left(2^{203} 2^{7680 \lambda / \varepsilon^{2}}\right) / \varepsilon^{20}\right\rceil$, where $\lceil x\rceil$ is the smallest integer which is not less than x.

Remark. Let $a_{1}, \ldots, a_{q} \in \widehat{\mathbb{C}}$ be distinct points. We have

$$
\sum_{i=1}^{q} m\left(r, a_{i}, f\right)=\int_{0}^{2 \pi} \max _{1 \leq i \leq q} \log \frac{1}{\left[f\left(r e^{i \theta}\right), a_{i}\right]} \frac{d \theta}{2 \pi}+O(1) \leq \bar{m}_{q}(r, f)+O(1)
$$

where $O(1)$ only depends on a_{1}, \ldots, a_{q}. Thus we may recover usual estimate of Nevanlinna's second main theorem

$$
\begin{equation*}
\sum_{i=1}^{q} m\left(r, a_{i}, f\right)+N_{1}(r, f) \leq 2 T(r, f)+o(T(r, f)) \tag{1.4}
\end{equation*}
$$

from (1.3), provided $\nu(r) \rightarrow \infty$ as $r \rightarrow \infty$.
The question of reversal of (1.4) is already discussed in [5] and is a theme of [7, Chapter 4]. For many familiar functions, (1.4) is known to be an asymptotic equality rather than inequality. For instance, this holds for meromorphic functions with finitely many critical and asymptotic values, provided $\left\{a_{1}, \ldots, a_{q}\right\}$ contains all critical and asymptotic values (cf. [6]). See also [2] for other investigation of this problem from potential-theoretic view point. Our quantity \bar{m} is introduced in [8] to resolve conjectures of Mues and Gol'dberg concerning value distribution of derivatives of meromorphic functions.

2. Notations of Nevanlinna Theory

Let f be a non-constant meromorphic function in the complex plane. Put $\mathbb{C}(t)=\{z \in$ $\mathbb{C}:|z|<t\}$. We denote by $T(r, f)$ the spherical characteristic function of f, i.e.,

$$
T(r, f)=\int_{1}^{r}\left(\int_{\mathbb{C}(t)} f^{*} \omega_{\hat{\mathbb{C}}}\right) \frac{d t}{t}
$$

where

$$
\omega_{\widehat{\mathbb{C}}}=\frac{1}{\left(1+|w|^{2}\right)^{2}} \frac{\sqrt{-1}}{2 \pi} d w \wedge d \bar{w}
$$

is the Fubini-Study form on the Riemann sphere $\hat{\mathbb{C}}$.
We denote by $n_{1}(t, f)$ the number of critical points of f in $\mathbb{C}(t)$, counting multiplicity. We define the ramification counting function $N_{1}(r, f)$ by

$$
N_{1}(r, f)=\int_{1}^{r} n_{1}(t, f) \frac{d t}{t}
$$

Let $a \in \hat{\mathbb{C}}$. We define the proximity function $m(r, a, f)$ by

$$
m(r, a, f)=\int_{0}^{2 \pi} \log \frac{1}{\left[f\left(r e^{i \theta}\right), a\right]} \frac{d \theta}{2 \pi}
$$

The detail of Nevanlinna theory may be found in [1], [3], [4], [5], [9].

3. Proof of the theorems

For a meromorphic function f, we put

$$
v(r, f, \theta)=\sup _{\tau}\left(\sup _{t \in[\tau, \tau+\theta]} \log \left|f\left(r e^{i t}\right)\right|-\inf _{t \in[\tau, \tau+\theta]} \log \left|f\left(r e^{i t}\right)\right|\right)
$$

We first show
Proposition 1. Let f be a transcendental meromorphic function of finite order λ. Let $0<\varepsilon<1$. Then there exists a positive constant $\theta_{\lambda, \varepsilon}$ such that

$$
v\left(r, f, \theta_{\lambda, \varepsilon}\right) \leq \varepsilon T(r, f)
$$

for all $r>e$ outside an exceptional set $E_{f, \varepsilon}$ with $\overline{\log \operatorname{dens}} E_{f, \varepsilon}<\varepsilon$.
The proof of Proposition 1 shows that we may take $\theta_{\lambda, \varepsilon}=\varepsilon^{20} / 2^{140} 2^{120 \lambda / \varepsilon^{2}}$. To prove Proposition 1, we need several lemmas.
Lemma 1. For $0<\varepsilon<1$, there exists $\tau_{\varepsilon}>0$ such that

$$
\int_{r}^{2 r} \frac{v\left(t, f, \tau_{\varepsilon}\right)}{t} d t<\varepsilon T(8 r, f)
$$

for $r>r_{0}$, where $r_{0}>1$ is a constant which only depends on f.
The proof shows that we may take $\tau_{\varepsilon}=\varepsilon^{10} / 2^{110}$.
Proof. By [8, Lemma 3.2], we have the following: Let $1<\sigma<e$. Then

$$
\begin{equation*}
\int_{r}^{\sigma r} \frac{v\left(t, f,(\log \sigma)^{10}\right)}{t} d t<508(\log \sigma)^{2}\left(T\left(\sigma^{3} r, f\right)+c\right) \tag{3.1}
\end{equation*}
$$

for $r>1$, where c is a positive constant which only depends on f.
Now given $0<\varepsilon<1$, we take a positive integer l such that

$$
l \geq \frac{1016(\log 2)^{2}}{\varepsilon}
$$

We take $r_{0}>1$ such that $T\left(r_{0}, f\right)>c$. Then for $i=0, \ldots, l-1$ and $r>r_{0}$, (3.1) yields

$$
\int_{2^{i / l_{r}}}^{2^{(i+1) / l_{r}}} \frac{v\left(t, f,\left(\log 2^{1 / l}\right)^{10}\right)}{t} d t<1016\left(\log 2^{1 / l}\right)^{2} T\left(2^{(3+i) / l} r, f\right) \leq \frac{1016(\log 2)^{2}}{l^{2}} T(8 r, f)
$$

Thus we get

$$
\int_{r}^{2 r} \frac{v\left(t, f,\left(\log 2^{1 / l}\right)^{10}\right)}{t} d t<\varepsilon T(8 r, f)
$$

for $r>r_{0}$. We set $\tau_{\varepsilon}=\left(\log 2^{1 / l}\right)^{10}$ to conclude the proof.
In order to deal with the term $T(8 r, f)$, we need a growth lemma.
Lemma 2. Let $g(r)$ be a continuous, non-decreasing function in $[e, \infty)$ and $g(e)>0$. Suppose that

$$
M=\varlimsup_{r \rightarrow \infty} \frac{\log g(r)}{\log r}<\infty
$$

Given $0<\varepsilon<1$, put

$$
\begin{gathered}
C(\varepsilon)=2 \cdot 8^{2 M / \varepsilon} \\
E_{\varepsilon}=\{r \in[e, \infty) ; g(8 r) \geq C(\varepsilon) g(r)\} .
\end{gathered}
$$

Then we have

$$
\overline{\log \operatorname{dens}} E_{\varepsilon}<\varepsilon
$$

Proof. Suppose that E_{ε} is bounded, then our lemma is trivial. Thus in the following, we assume that E_{ε} is not bounded.

We define a sequence of positive numbers r_{1}, r_{2}, \cdots by the following inductive rule:

$$
\begin{gathered}
r_{1}=\inf E_{\varepsilon}, \\
r_{i+1}=\inf \left(E_{\varepsilon} \cap\left[8 r_{i}, \infty\right)\right) .
\end{gathered}
$$

Since E_{ε} is a closed set, we have $r_{i} \in E_{\varepsilon}$. Hence we have

$$
\begin{equation*}
g\left(r_{i+1}\right) \geq g\left(8 r_{i}\right) \geq C(\varepsilon) g\left(r_{i}\right) . \tag{3.2}
\end{equation*}
$$

Now given large R with $E_{\varepsilon} \cap[e, R] \neq \emptyset$, there is a positive integer $n(R)$ such that

$$
E_{\varepsilon} \cap[e, R] \subset \bigcup_{i=1}^{n(R)}\left[r_{i}, 8 r_{i}\right]
$$

and

$$
r_{n(R)} \leq R .
$$

Then since

$$
\int_{E_{\varepsilon} \cap[e, R]} \frac{d t}{t} \leq \sum_{i=1}^{n(R)} \int_{r_{i}}^{8 r_{i}} \frac{d t}{t} \leq n(R) \log 8
$$

we have

$$
n(R) \geq \frac{1}{\log 8} \int_{E_{\varepsilon} \cap[e, R]} \frac{d t}{t}
$$

Hence by (3.2), we have

$$
\begin{aligned}
\log g(R) \geq \log g\left(r_{n(R)}\right) & \geq \log \left(C(\varepsilon)^{n(R)-1} g\left(r_{1}\right)\right) \\
& =n(R) \log C(\varepsilon)-\log C(\varepsilon)+\log g\left(r_{1}\right) \\
& \geq\left(\frac{1}{3}+\frac{2 M}{\varepsilon}\right) \int_{E_{\varepsilon} \cap[e, R]} \frac{d t}{t}-\log C(\varepsilon)+\log g\left(r_{1}\right) .
\end{aligned}
$$

Hence we have

$$
\varlimsup_{R \rightarrow \infty} \frac{1}{\log R} \int_{E_{\varepsilon} \cap[e, R]} \frac{d t}{t} \leq\left(\frac{3 \varepsilon}{6 M+\varepsilon}\right) \varlimsup_{R \rightarrow \infty} \frac{\log g(R)+\log C(\varepsilon)-\log g\left(r_{1}\right)}{\log R}<\varepsilon .
$$

This proves our lemma.
Lemma 3. Let $F \subset \mathbb{R}_{>e}$ be a measurable set, and let $\alpha \geq 0$. We define a set E by

$$
E=\left\{r ; \int_{F \cap[r, 2 r]} \frac{d t}{t}>\alpha\right\} .
$$

Then we have

$$
\overline{\log \operatorname{dens}} F \leq \frac{\alpha}{\log 2}+\overline{\log \operatorname{dens}} E
$$

Proof. Put $G=[e, \infty) \backslash E$. Then G is a closed set. Suppose that G is bounded. In this case, the upper logarithmic density of E is equal to 1 , so our lemma is trivial. Hence in the following, we assume that G is unbounded.

We define a sequence of positive numbers $\left\{r_{n}\right\}$ by the following inductive rule:

$$
\begin{gathered}
r_{0}=e, \\
r_{i+1}= \begin{cases}2 r_{i} & r_{i} \in G \\
\inf \left[r_{i}, \infty\right) \cap G & r_{i} \notin G\end{cases}
\end{gathered}
$$

Since we are assuming that G is unbounded, this sequence is infinite. We observe that

$$
\begin{equation*}
r_{i+2} \geq 2 r_{i} . \tag{3.3}
\end{equation*}
$$

Indeed, this is obvious if $r_{i} \in G$. Suppose that $r_{i} \notin G$. Then since G is closed, we conclude $r_{i+1} \in G$. Hence $r_{i+2}=2 r_{i+1}$, and we conclude (3.3) for $r_{i} \notin G$. From (3.3), we see that the sequence $\left\{r_{n}\right\}$ tends to infinity.

Now given $R>e$, there is a non-negative integer $n(R)$ such that

$$
r_{n(R)} \leq R<r_{n(R)+1} .
$$

We put

$$
\begin{aligned}
& A=\left\{i \in \mathbb{Z}_{\geq 0} ; r_{i} \in G \text { and } i \leq n(R)-1\right\}, \\
& B=\left\{i \in \mathbb{Z}_{\geq 0} ; r_{i} \notin G \text { and } i \leq n(R)-1\right\} .
\end{aligned}
$$

Then for the cardinarity of A, we have

$$
|A| \leq \frac{\log (R / e)}{\log 2}
$$

Hence we have

$$
\begin{aligned}
\int_{[e, R] \cap F} \frac{d t}{t} & =\sum_{i=0}^{n(R)-1} \int_{\left[r_{i}, r_{i+1}\right] \cap F} \frac{d t}{t}+\int_{\left[r_{n(R)}, R\right] \cap F} \frac{d t}{t} \\
& =\sum_{i \in A} \int_{\left[r_{i}, r_{i+1}\right] \cap F} \frac{d t}{t}+\sum_{i \in B} \int_{\left[r_{i}, r_{i+1}\right] \cap F} \frac{d t}{t}+\int_{\left[r_{n(R)}, R\right] \cap F} \frac{d t}{t} \\
& \leq \alpha(|A|+1)+\int_{[e, R] \cap E} \frac{d t}{t} \\
& \leq \alpha\left(\frac{\log (R / e)}{\log 2}+1\right)+\int_{[e, R] \cap E} \frac{d t}{t}
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\varlimsup_{R \rightarrow \infty} \frac{1}{\log R} \int_{[e, R] \cap F} \frac{d t}{t} & \leq \alpha \varlimsup_{R \rightarrow \infty}\left(\frac{1}{\log 2}+\frac{1}{\log R}\right)+\varlimsup_{R \rightarrow \infty} \frac{1}{\log R} \int_{[e, R] \cap E} \frac{d t}{t} \\
& \leq \frac{\alpha}{\log 2}+\overline{\log \operatorname{dens}} E .
\end{aligned}
$$

This proves our lemma.
Proof of Proposition 1. Let $0<\varepsilon<1$. First we apply Lemma 1 for

$$
\frac{\varepsilon^{2} / 4}{C\left(\varepsilon^{2} / 2\right)}
$$

where $C\left(\varepsilon^{2} / 2\right)=2 \cdot 8^{4 \lambda / \varepsilon^{2}}$ is the constant from Lemma 2. Then we get a positive constant $\theta_{\lambda, \varepsilon}$ such that

$$
\int_{r}^{2 r} \frac{v\left(t, f, \theta_{\lambda, \varepsilon}\right)}{t} d t<\frac{\varepsilon^{2} / 4}{C\left(\varepsilon^{2} / 2\right)} T(8 r, f)
$$

for $r>r_{0}$. Here $\theta_{\lambda, \varepsilon}=\tau_{\varepsilon^{2} / 2^{3+\left(12 \lambda / \varepsilon^{2}\right)}}$.
Next we apply Lemma 2 for $\varepsilon^{2} / 2$ to get a set E such that

$$
T(8 r, f)<C\left(\varepsilon^{2} / 2\right) T(r, f)
$$

for all r outside E. Here we have

$$
\overline{\log \operatorname{dens}} E<\frac{\varepsilon^{2}}{2} .
$$

Thus we have

$$
\int_{r}^{2 r} \frac{v\left(t, f, \theta_{\lambda, \varepsilon}\right)}{t} d t<\frac{\varepsilon^{2}}{4} T(r, f)
$$

for all $r>r_{0}$ outside E.
Now we set

$$
F=\left\{r ; v\left(r, f, \theta_{\lambda, \varepsilon}\right) \geq \varepsilon T(r, f)\right\} .
$$

Then we have

$$
\int_{[r, 2 r] \cap F} \frac{d t}{t} \leq \int_{r}^{2 r} \frac{v\left(t, f, \theta_{\lambda, \varepsilon}\right)}{\varepsilon T(t, f) t} d t \leq \frac{1}{\varepsilon T(r, f)} \int_{r}^{2 r} \frac{v\left(t, f, \theta_{\lambda, \varepsilon}\right)}{t} d t<\frac{\varepsilon}{4}
$$

for all $r>r_{0}$ outside E. Thus by Lemma 3, we have

$$
\overline{\log \operatorname{dens}} F<\frac{\varepsilon}{4 \log 2}+\frac{\varepsilon^{2}}{2}<\varepsilon
$$

We conclude the proof of Proposition 1.
Now we prove Theorem 2. Let $q>0$ be a positive integer. We claim

$$
\begin{equation*}
2 T(r, f) \leq \bar{m}_{q}(r, f)+N_{1}(r, f)+2 v(r, f, 2 \pi / q)+v\left(r, f^{\prime}, 2 \pi / q\right)+\log r+C \tag{3.4}
\end{equation*}
$$

for all $r>1$, where C is a positive constant which only depends on f. This is a consequence of more general results given in Lemmas 3.6 and 3.7 in [8]. However we shall give a direct proof of (3.4) in the following, for the direct proof is simpler than the general one.

Let $\sigma_{k}=2 \pi k / q$. For $l=0,1, \cdots, q-1$, we set $I_{l}=\left[\sigma_{l}, \sigma_{l+1}\right]$ and $a_{l}=f\left(r e^{i \sigma_{l}}\right)$. We have

$$
\left[f\left(r e^{i \theta}\right), a_{l}\right] \leq \int_{\sigma_{l}}^{\theta} f^{\#}\left(r e^{i \theta}\right) r d \theta
$$

where $f^{\#}$ is the spherical derivative defined by

$$
f^{\#}(z)=\frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}
$$

Set $\tau_{l}=\max _{s \in I_{l}} \log f^{\#}\left(r e^{i s}\right)$. Then for $\theta \in I_{l}$, we have

$$
\begin{equation*}
\left[f\left(r e^{i \theta}\right), a_{l}\right] \leq e^{\tau_{l}} 2 \pi r / q \tag{3.5}
\end{equation*}
$$

We set

$$
v\left(r, f^{\#}, \theta\right)=\sup _{\tau}\left(\sup _{t \in[\tau, \tau+\theta]} \log f^{\#}\left(r e^{i t}\right)-\inf _{t \in[\tau, \tau+\theta]} \log f^{\#}\left(r e^{i t}\right)\right)
$$

Then for $\theta \in I_{l}$, we have

$$
\log \frac{1}{f^{\#}\left(r e^{i \theta}\right)} \leq-\tau_{l}+v\left(r, f^{\#}, 2 \pi / q\right)
$$

Combining this estimate with (3.5), we get

$$
\log \frac{1}{f^{\#}\left(r e^{i \theta}\right)} \leq \log \frac{1}{\left[f\left(r e^{i \theta}\right), a_{l}\right]}+v\left(r, f^{\#}, 2 \pi / q\right)+\log (2 \pi r / q)
$$

for $\theta \in I_{l}$. Thus

$$
\int_{0}^{2 \pi} \log \frac{1}{f^{\#}\left(r e^{i \theta}\right)} \frac{d \theta}{2 \pi} \leq \sum_{l=0}^{q-1} \int_{\sigma_{l}}^{\sigma_{l+1}} \log \frac{1}{\left[f\left(r e^{i \theta}\right), a_{l}\right]} \frac{d \theta}{2 \pi}+v\left(r, f^{\#}, 2 \pi / q\right)+\log (2 \pi r / q)
$$

By

$$
\sum_{l=0}^{q-1} \int_{\sigma_{l}}^{\sigma_{l+1}} \log \frac{1}{\left[f\left(r e^{i \theta}\right), a_{l}\right]} \frac{d \theta}{2 \pi} \leq \bar{m}_{q}(r, f)
$$

we conclude

$$
\int_{0}^{2 \pi} \log \frac{1}{f^{\#}\left(r e^{i \theta}\right)} \frac{d \theta}{2 \pi} \leq \bar{m}_{q}(r, f)+v\left(r, f^{\#}, 2 \pi / q\right)+\log (2 \pi r / q)
$$

Combining this with the following well-known estimate (cf. [1, Proposition 2.4.2])

$$
\int_{0}^{2 \pi} \log f^{\#}\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi}=-2 T(r, f)+N_{1}(r, f)+\int_{0}^{2 \pi} \log f^{\#}\left(e^{i \theta}\right) \frac{d \theta}{2 \pi}
$$

we get

$$
2 T(r, f)-N_{1}(r, f) \leq \bar{m}_{q}(r, f)+v\left(r, f^{\#}, 2 \pi / q\right)+\log (2 \pi r / q)+\int_{0}^{2 \pi} \log f^{\#}\left(e^{i \theta}\right) \frac{d \theta}{2 \pi}
$$

By

$$
v\left(r, f^{\#}, 2 \pi / q\right) \leq 2 v(r, f, 2 \pi / q)+v\left(r, f^{\prime}, 2 \pi / q\right)
$$

we conclude (3.4).
Now let $0<\varepsilon<1$. Set $q_{\lambda, \varepsilon}=\left\lceil 2 \pi / \theta_{\lambda, \varepsilon / 8}\right\rceil$. By Proposition 1, we have

$$
\begin{equation*}
v\left(r, f, 2 \pi / q_{\lambda, \varepsilon}\right)<\frac{\varepsilon}{8} T(r, f) \tag{3.6}
\end{equation*}
$$

for all $r>e$ outside E_{1} with

$$
\begin{equation*}
\overline{\log \operatorname{dens}} E_{1}<\frac{\varepsilon}{8} . \tag{3.7}
\end{equation*}
$$

Since f^{\prime} has the same order λ, Proposition 1 yields that

$$
v\left(r, f^{\prime}, 2 \pi / q_{\lambda, \varepsilon}\right)<\frac{\varepsilon}{8} T\left(r, f^{\prime}\right)
$$

for all $r>e$ outside E_{2} with

$$
\overline{\log \operatorname{dens}} E_{2}<\frac{\varepsilon}{8}
$$

By Nevanlinna's Lemma on logarithmic derivative, we have

$$
T\left(r, f^{\prime}\right) \leq \frac{5}{2} T(r, f)
$$

for all $r>e$ outside E_{3} of finite linear measure. Hence we obtain

$$
\begin{equation*}
v\left(r, f^{\prime}, 2 \pi / q_{\lambda, \varepsilon}\right)<\frac{5 \varepsilon}{16} T(r, f) \tag{3.8}
\end{equation*}
$$

for $r>e$ and $r \notin E_{2} \cup E_{3}$, where we have

$$
\begin{equation*}
\overline{\log \operatorname{dens}}\left(E_{2} \cup E_{3}\right)<\frac{\varepsilon}{8} \tag{3.9}
\end{equation*}
$$

Since f is transcendental, we find a positive constant r_{1} such that

$$
\begin{equation*}
\log r+C<\frac{\varepsilon}{8} T(r, f) \tag{3.10}
\end{equation*}
$$

for $r>r_{1}$.
Now we put

$$
E=\left[e, r_{1}\right] \cup E_{1} \cup E_{2} \cup E_{3} .
$$

Then by (3.7) and (3.9), we have

$$
\overline{\log \operatorname{dens}} E<\varepsilon
$$

By (3.6), (3.8), (3.10), we have

$$
2 v\left(r, f, 2 \pi / q_{\lambda, \varepsilon}\right)+v\left(r, f^{\prime}, 2 \pi / q_{\lambda, \varepsilon}\right)+\log r+C<\varepsilon T(r, f)
$$

for all $r>e$ outside E. Combining this estimate with (3.4), we conclude the proof of Theorem 2.

We prove Theorem 1. Let n be a positive integer. We recall $E_{f, 1 / 2^{n}}$ and $q_{\lambda, 1 / 2^{n}}$ from Theorem 2. By $\nu(r) \rightarrow \infty$ as $r \rightarrow \infty$, we may take $c_{n}>e$ such that $\nu(r)>q_{\lambda, 1 / 2^{n}}$ for all $r>c_{n}$. We define $F_{1 / 2^{n}} \subset[e, \infty)$ such that $r \in F_{1 / 2^{n}}$ iff

$$
2 T(r, f)>\bar{m}_{\nu(r)}(r, f)+N_{1}(r, f)+\frac{1}{2^{n}} T(r, f)
$$

Then we have $F_{1 / 2^{n}} \cap\left[c_{n}, \infty\right) \subset E_{f, 1 / 2^{n}} \cap\left[c_{n}, \infty\right)$. Thus we have $\overline{\log \operatorname{dens}} F_{1 / 2^{n}}<1 / 2^{n}$.
Now we take $r_{n}>e$ such that

$$
\frac{\int_{F_{1 / 2} n \cap[e, r]} \frac{d t}{t}}{\log r}<\frac{1}{2^{n}}
$$

for all $r \geq r_{n}$. We may assume without loss of generality that the sequence r_{1}, r_{2}, \ldots satisfies $r_{1}<r_{2}<r_{3}<\cdots$ and $r_{n} \rightarrow \infty$ as $n \rightarrow \infty$. For $r \in\left[r_{n}, r_{n+1}\right)$, we set $\varepsilon(r)=1 / 2^{n}$. Then $\varepsilon(r)$ is defined for all $r \geq r_{1}$ and $\varepsilon(r) \rightarrow 0$ as $r \rightarrow \infty$.

We define $F \subset\left[r_{1}, \infty\right)$ such that $r \in F$ iff

$$
2 T(r, f)>\bar{m}_{\nu(r)}(r, f)+N_{1}(r, f)+\varepsilon(r) T(r, f)
$$

Then we have $F \cap\left[r_{1}, r_{n+1}\right) \subset F_{1 / 2^{n}} \cap\left[r_{1}, r_{n+1}\right)$. Thus we have

$$
\frac{\int_{F \cap\left[r_{1}, r\right]} \frac{d t}{t}}{\log r}<\frac{1}{2^{n}}
$$

for $r_{n} \leq r<r_{n+1}$. Thus F has logarithmic density 0 . Thus we have

$$
2 T(r, f) \leq \bar{m}_{\nu(r)}(r, f)+N_{1}(r, f)+o(T(r, f))
$$

where $r \rightarrow \infty$ outside a set of logarithmic density 0 . Combining this estimate with (1.3), we conclude the proof of Theorem 1.

References

[1] W. Cherry and Z. Ye, Nevanlinna's theory of value distribution. The second main theorem and its error terms, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2001.
[2] A. Eremenko and M. Sodin, On the distribution of values of meromorphic functions of finite order, Soviet Math. Dokl. 43 no. 1, (1991), 128-131.
[3] A. Goldberg and I. Ostrovskii, Value distribution of meromorphic functions, Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 2008.
[4] W. K. Hayman, Meromorphic Functions, Oxford University Press, 1964.
[5] R. Nevanlinna, Eindeutige analytische Funktionen, Springer-Verlag 1936. English translation: Analytic Functions, Springer-Verlag, 1970.
[6] O. Teichmüller, Eine umkehrung des zweiten hauptsatzes der wertverteilungslehre, Deutsche Mathematik, 2 (1937) 96-107.
[7] H. Wittich, Neuere Untersuchungen über eindeutige analytische Funktionen, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 8. Springer-Verlag, Berlin-Gttingen-Heidelberg, 1955.
[8] K. Yamanoi, Zeros of higher derivatives of meromorphic functions in the complex planes, preprint. [9] L. Yang, Value distribution theory, Springer-Verlag, Berlin; Science Press, Beijing, 1993.

Department of Mathematics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551 Japan.

E-mail address: yamanoi@math.titech.ac.jp

