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1. INTRODUCTION

Let f be a non-constant meromorphic function in the plane. We set
2
T 1 de
mq(r, f) = sup max log ———————.
1 (a17~-- 7aq)€(C)q 0 1§7/§q [f(relg), CL@] 27T
Here [z, y] is the chordal distance between two points in the extended complex plane:
[z — ]
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[, 9]

We prove the following theorem.

Theorem 1. Let f be a transcendental meromorphic function of finite order. Let v :
R.. — N.g satisfies v(r) — oo and logv(r) = o(T(r, f)) as r — co. Then we have

(1.1) M) (7, f) + Ni(r, f) = 2T(r, ) + o(T(r, )

where r — 0o outside a set of logarithmic density 0.

In [8, Theorem 1.6], the estimate (1.1) is proved for general transcendental meromorphic
functions, including the case of infinite order, provided that the function v satisfies

(1.2) v(r) ~ (1og+ M)%.

logr
Our theorem shows that v(r) may be arbitrary slow growth if f is of finite order.
The proof of Theorem 1 is quite similar to that of [8, Theorem 1.6]. If v : R., — Nyg
satisfies log v(r) = o(T(r, f)), then a uniform version of Nevanlinna’s second main theorem
yields

(1.3) M) (1, f) + Ni(r, f) < 2T(r, f) + o(T(r, )

for all 7 > e outside an exceptional set of finite linear measure (cf. [8, Section 1.6]). Thus
the issue is to prove the reversal of (1.3). This is contained in the following theorem.

Theorem 2. Let f be a transcendental meromorphic function of finite order A. For 0 <
e < 1, there exist a positive integer qr. and a set E¢. C [e,00) with

log dens By, < e
such that for all v > e outside E., the following inequality holds:
2T (r, f) < g, (1, f) 4+ Ni(r, f) +T(r, f).

Here gy, only depends on X and €.



Here we denote by log dens £ the upper logarithmic density of E:

I | &
log dens £ = lim JEnfer] t

r—oo logr
The proof of Theorem 2 shows that we may take gy . = [(220327680V/¢*) /2201 where [z] is
the smallest integer which is not less than x.

Remark. Let aq,...,a, € C be distinct points. We have

2 1 de

S miran f) = [ maxlog +0(1) < my(r, f) + O(1),
=1

o 10 [f(re®),a] 2m

where O(1) only depends on ay, . .., a,. Thus we may recover usual estimate of Nevanlinna’s
second main theorem
q
(1.4) > m(r,ai, f) + Ni(r, f) < 20(r, f) + o(T(r, f))
i=1
from (1.3), provided v(r) — oo as r — oo.

The question of reversal of (1.4) is already discussed in [5] and is a theme of [7, Chapter
4]. For many familiar functions, (1.4) is known to be an asymptotic equality rather than
inequality. For instance, this holds for meromorphic functions with finitely many critical
and asymptotic values, provided {ay,...,a,} contains all critical and asymptotic values
(cf. [6]). See also [2] for other investigation of this problem from potential-theoretic view
point. Our quantity m is introduced in [8] to resolve conjectures of Mues and Gol’dberg
concerning value distribution of derivatives of meromorphic functions.

2. NOTATIONS OF NEVANLINNA THEORY

Let f be a non-constant meromorphic function in the complex plane. Put C(¢t) = {z €
C : |z| < t}. We denote by T'(r, f) the spherical characteristic function of f, i.e.,

re= [ ([ o) T

1 V-1

1
dw N dw
1+ [wp)? 27 0N

is the Fubini-Study form on the Riemann sphere C.
We denote by ny(t, f) the number of critical points of f in C(¢), counting multiplicity.
We define the ramification counting function Ny(r, f) by

r d
Ni(r, f) = / mit, ).

where

w@:

Let a € C. We define the proximity function m(r, a, f) by

o 1 df
= log ——+——.
e )= o8
The detail of Nevanlinna theory may be found in [1], [3], [4], [5], [9].



3. PROOF OF THE THEOREMS

For a meromorphic function f, we put

T\ te[r,r+0] [r,

o(r, 1,0) = sup ( sup log|f(re")| — _inf _log |f(7"e“)|> -

We first show

Proposition 1. Let f be a transcendental meromorphic function of finite order . Let
0 < e < 1. Then there exists a positive constant 0y . such that

U(Tv f7 8)\,6) S ET(Tv f)
for all r > e outside an exceptional set Ey. with log dens Fy. < €.
The proof of Proposition 1 shows that we may take 6. = £20/21402120A/¢’
Proposition 1, we need several lemmas.

. To prove

Lemma 1. For 0 < e < 1, there exists 7. > 0 such that

/QT Mdt < eT(8r, f)

for r > 1o, where ro > 1 is a constant which only depends on f.

The proof shows that we may take 7. = ¢!9/2110,
Proof. By [8, Lemma 3.2], we have the following: Let 1 < o < e. Then

t
for r > 1, where c is a positive constant which only depends on f.
Now given 0 < € < 1, we take a positive integer [ such that
> 1016(log 2)2'
€
We take ry > 1 such that T'(rg, f) > ¢. Then for i =0,...,l — 1 and r > r, (3.1) yields

9(i+1)/1,. 1/1N10 ’
, log 2 A 1016(log 2
/2” v(t, f, ( Zg )7 gy 1016(log 2YH)2T(26+0/1 £) < %

(3.1) / 10890 1 s08(log o) A(T(0%r, £) + )

l

T(8r, f).

Thus we get

/21“ v(t, f, (log 21/l)10>dt < T (8r, f)

t
for r > ro. We set 7. = (log 2"/!)'° to conclude the proof. O
In order to deal with the term T'(8r, f), we need a growth lemma.

Lemma 2. Let g(r) be a continuous, non-decreasing function in [e,00) and g(e) > 0.
Suppose that
M = EM < 00
r—00 logr
Given 0 < e < 1, put
Cle) =2-8M/e,

E. ={r € e,00);9(87) > C(e)g(r)}.



Then we have
log dens . < e.

Proof. Suppose that E. is bounded, then our lemma is trivial. Thus in the following, we
assume that E. is not bounded.
We define a sequence of positive numbers r1, 7y, --- by the following inductive rule:

ry = inf E.,
Tit1 = inf (Ea N [87“2', OO)) .
Since FE. is a closed set, we have r; € E.. Hence we have
(3.2) 9(riza) = g(8ri) = Cle)g(rs).
Now given large R with E. N [e, R] # (), there is a positive integer n(R) such that

n(R)

Nle,R] C U 7, 874

=1

and
Tn(R) < R.
Then since
87‘1
/ < Z / — < n(R)log8,
E.Nle, R]
we have

1 dt
n(R) > / —.
log 8 E:.Nle,R) t
Hence by (3.2), we have

log g(R) > log g(ru(r)) > lo g (Ce)" P tg(ry))
R)log C(e) —log C(e) + log g(r1)

n(
1 dt

(_+_) — —log C(e) +log g(ry).
3 E.N[e,R]

V

v

€

Hence we have

1 / dt 3e log g(R) +1log C'(¢) — log g(r1)
lim — < im <e
R—oolog R Jp e © 6M + ¢ ) R—oo log R

This proves our lemma. [

Lemma 3. Let F' C R.. be a measurable set, and let o« > 0. We define a set E by
dt
E = {’I“; / — > a} .
FN[r,2r] t

log dens F' < & + log dens E.
log 2

Then we have



Proof. Put G = [e,00)\E. Then G is a closed set. Suppose that G is bounded. In this
case, the upper logarithmic density of E is equal to 1, so our lemma is trivial. Hence in
the following, we assume that G is unbounded.

We define a sequence of positive numbers {r,, } by the following inductive rule:

To = ¢€,
Pip1 = { 27"i T € G
inf[r;,0c0) NG r, &G
Since we are assuming that G is unbounded, this sequence is infinite. We observe that
(3.3) Tiv2 = 2.

Indeed, this is obvious if r; € G. Suppose that r; & GG. Then since G is closed, we conclude
rit1 € G. Hence ;19 = 21,41, and we conclude (3.3) for r; ¢ G. From (3.3), we see that
the sequence {r,} tends to infinity.

Now given R > e, there is a non-negative integer n(R) such that

To(r) < R <Tprys1-

We put
A={i€Zsp; r; € Gand i <n(R)— 1},
B:{iEZZO; mgGandzgn(R)—l}
Then for the cardinarity of A, we have

log(R/e)

Al <
log 2

Hence we have
n(R)—1

dt

/[e R]ﬁF t Z /[7’1 "’l-‘rl]mF t /[;’n(R)aR}mF t
dt dt
> VA
[risris1]N [riyrig1]NF t [Pn(r)RINF t

<a (—log(R/e) + 1) +/ d
log 2 e,RNE Tt
Hence we have

T 1 / dt <aT 1 . 1 LT 1 / dt
1m — 111 1m —
R—o00 log R [e,RINF t = R—ooco IOg 2 log R R—oo log R [e,RINE t

5 +log dens E.

€A EB
dt

< a(jA| +1) + / <
le.RINE T

<
- log

This proves our lemma. [
Proof of Proposition 1. Let 0 < e < 1. First we apply Lemma 1 for

g2 /4
C(e?/2)’




where C(£2/2) = 2-8"/<" is the constant from Lemma 2. Then we get a positive constant
0 such that

/2’“ v(t, f, em)dt e2/4 (85 f)

<
t C(e2/2)
for r > ry. Here 0, = T.2 jga+(12/e2)
Next we apply Lemma 2 for £2/2 to get a set E such that

T(8r, f) < C(*/2)T(r, f)

for all » outside E. Here we have
2
log dens E < %.

2r t 4 A 2
/ —”(’ft’ A’)dt<€zT(r,f)

Thus we have

for all r > ry outside E.
Now we set

F={r; v(r, f,0c) > <T(r, f)}.

Then we have

/ @ < /2T U(t7 f7 6)\,€>dt < 1 /2T U(t7 f7 HA,E)dt < E
[r,2r]NF t r €T<t7f)t B €T<T7 f) r t 4

for all » > rg outside E. Thus by Lemma 3, we have

82

— < e
Tog2 T2 <°F

We conclude the proof of Proposition 1. [
Now we prove Theorem 2. Let ¢ > 0 be a positive integer. We claim

(3.4) 27°(r, ) < mq(r, ) + Ni(r, f) + 20(r, f,27/q) + v(r, f',27/q) + logr + C

for all > 1, where C'is a positive constant which only depends on f. This is a consequence
of more general results given in Lemmas 3.6 and 3.7 in [8]. However we shall give a direct
proof of (3.4) in the following, for the direct proof is simpler than the general one.

Let o = 27k/q. For 1 =0,1,--- ,q—1, we set I; = [0, 0,41] and a; = f(re”t). We have

[f(re”), a)] < /9 f#(re) rad,

log dens F' <

where f# is the spherical derivative defined by

b WP

=T rp

Set 7; = max,ey, log f#(re®). Then for 6 € I;, we have
(3.5) [f(re®), a;] < e™2mr/q.

We set

T telr,m+6] te[r,7+6)

v(r, f#,0) = sup ( sup log f#(re) — inf log f#(reit)> )



Then for 6 € I;, we have

1
#
10gw < —m+o(r f7,21/q).
Combining this estimate with (3.5), we get
1 1
log ———~ < log ———— +v(r, 7,21 /q) + log(27r
8 FE ey = 18 e o (r, 7,27 /q) + log (277 /q)

for 8 € I;. Thus

2m 1 di & 141 1 do
log——— < log —— ) log(2 .
/0 8 FH (e 2r = /0 8 T re) ar] 21 +o(r, f7,21/q) +log(277/q)

By

1=0
we conclude

2 6.
| 08 e <l )+ £#.20/0) + o2 ).

Combining this with the following well-known estimate (cf. [1, Proposition 2.4.2])

/27r log f#(rew);l—e = =2T(r, f) + Ni(r, f) —i—/ 7rlog f#(ew)%
0 @ 0

27’
we get
do

2
(v )= Nilrf) < o ) + o0 £%.20/0) +log(2rr/a) + [ log ()

By
v(r, f7,2m/q) < 20(r, f,27/q) + v(r, [, 27/q),

we conclude (3.4).
Now let 0 < e < 1. Set g\ = [27/05/s]. By Proposition 1, we have

(36) o(r f,27/a2) < ST f)

for all r > e outside E; with

(3.7) Tog dens By < %

Since f’ has the same order A\, Proposition 1 yields that
ol S, 27 /) < ST f)

for all r > e outside E5 with
log dens Fy < %

By Nevanlinna’s Lemma on logarithmic derivative, we have

T(r, ) < 2T(r, f)

-~



for all » > e outside Ej5 of finite linear measure. Hence we obtain

(3.5) o, 727/ 0r) < ST, )
for r > e and r € Fy U E3, where we have
(3.9) log dens(E, U Ej) < %
Since f is transcendental, we find a positive constant r; such that
(3.10) logr 4+ C < %T(r, f)
for r > ry.

Now we put
E = [6,7"1] UE1UE2UE3
Then by (3.7) and (3.9), we have

log dens ' < €.
By (3.6), (3.8), (3.10), we have
21)(7“, f7 QW/QA,E) + U(T, f,7 27'('/(]/\75) + 10g7’ + C< ET(’I“, f)

for all » > e outside . Combining this estimate with (3.4), we conclude the proof of
Theorem 2.

We prove Theorem 1. Let n be a positive integer. We recall Ey /o0 and gy 1/2n from
Theorem 2. By v(r) — 0o as r — oo, we may take ¢, > e such that v(r) > gy /2 for all
r > ¢,. We define Fon C [e,00) such that r € Fyjon iff

2T<T7 f) > mu(r)(ﬁ f) + Nl(r7 f) + %T(T, f)

Then we have Fjon N [¢y,00) C Ef1/9n N [cn,00). Thus we have log dens Fyjon < 1/2".
Now we take r, > e such that

[ dt
F1/2n ﬂ[e,r} t 1

<5

log r 2m
for all » > r,. We may assume without loss of generality that the sequence ry,rs,. ..
satisfies r1 <7y <713 <--- and r, — 00 as n — o00. For r € [r,,Tp41), we set e(r) = 1/2".

Then &(r) is defined for all » > r; and e(r) — 0 as r — 0.
We define F' C [ry,00) such that r € F iff

2T(T7 f) > ml/(’l‘)(T7 f) + Nl(n f) + €(T)T(7’, f)
Then we have F'N [r1,7,41) C Fijon N [1r1,7041). Thus we have

I at
FNlri,r] t

log r 2n
for r, <r <r,y1. Thus F has logarithmic density 0. Thus we have

2T(r, f) < My (r, f) + Nu(r, f) + o(T(r, f))

where 7 — oo outside a set of logarithmic density 0. Combining this estimate with (1.3),
we conclude the proof of Theorem 1.
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