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Zeros of higher derivatives of meromorphic functions in the
complex plane

Katsutoshi Yamanoi

ABSTRACT

We prove the Gol’dberg conjecture, which states that the frequency of distinct poles of a
meromorphic function f in the complex plane is governed by the frequency of zeros of the second
derivative f”. As a consequence, we prove Mues’ conjecture concerning the defect relation for
the derivatives of meromorphic functions in the complex plane.

1. Introduction

1.1. Main results

The central result of Nevanlinna’s value distribution theory of meromorphic functions is the
defect relation: If f is a non-constant meromorphic function in the plane, then the Nevanlinna
defects (a, f), where a € C, satisfy

0<d(a,f) <1 (1.1)

and

> d(a, f) <2 (1.2)

aeC

These estimates are best possible in the strong sense that there is no relation for the defects
other than (1.1) and (1.2) which is valid for all non-constant meromorphic functions. This
is a consequence of the positive resolution of Nevanlinna’s inverse problem due to Drasin
[9]. On the other hand, meromorphic functions in proper subclasses of all non-constant
meromorphic functions may satisfy another relation for the defects which does not hold for
all non-constant meromorphic functions. In this paper, we consider meromorphic functions
which have primitives, and prove the following conjecture of Mues [23].

THEOREM 1.1 (Mues’ conjecture). Let f be a meromorphic function in the complex plane
whose derivative f’ is non-constant. Then we have

> e )< (1.3)

aeC\{oo}

The origin of this problem is a work of Hayman [15], who observed that the sum in (1.3) is
bounded above by %, based on the fact that the derivative f” has only multiple poles. Mues [23]
proved the estimate similar to (1.3) but the derivative f’ is replaced by the second derivative
f”, provided all poles of f are simple. Up to now, the best-known upper bound for the sum in
(1.3) is 3, which was proved by Ishizaki [20] and Yang [34] (see also [30]).
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It is known that the Mues conjecture follows from the Gol’dberg conjecture, which states
that the frequency of distinct poles of f is governed by the frequency of zeros of the second
derivative f”. In this paper, we prove the Gol’dberg conjecture in more general form as below;
The original Gol’dberg conjecture corresponds to the case k = 2 and A = ().

THEOREM 1.2. Let f be a transcendental meromorphic function in the complex plane. Let
k > 2 be an integer, and let € > 0. Let A C C be a finite set of complex numbers. Then we
have

(k= 1)N(r,00,f) + > Ni(r,a, f) < N(r,0, f®) + T(r, f) (1.4)
acA

for all r > e outside a set E C (e, 00) of logarithmic density 0. Here E depends on f, k, ¢ and A.

When k = 1, the estimate (1.4) is still valid, but obvious. Thus we exclude this case from
the statement.

A related estimate was proved by Frank and Weissenborn [13] by an elegant Wronskian
method. In particular, they proved the estimate (1.4) with A =), provided all poles of f
are simple. Another related result was established by Langley [22], who proved that if f is
meromorphic of finite order whose second derivative f” has finitely many zeros, then f has
finitely many poles. In the same paper, Langley constructed a counter example to show that
this statement does not hold if f is of infinite order: there exists a meromorphic function of
infinite order such that f” is zero-free while f has infinitely many poles.

1.2. Notation of Nevanlinna theory

General references for Nevanlinna theory are [8, 14, 16, 25, 35]. Let f be a meromorphic
function in the complex plane. Put

C(t) ={z € C;|z| < t}.
We define the spherical characteristic function T'(r, f) by

1 (" dt
T(T7 f) = ; Jl A(t7 f)?7
where
Atp=| foe
C(t)
Here
1 v—1 _

is the spherical area form on the Riemann sphere C such that the total area of the Riemann
sphere is 7.
Let a € C. We define the counting function N(r,a, f) by

N(r,a, f) :J

1

r

dt
Tl(t, a, f)?a

where n(t, a, f) is the number of solutions to f(z) = a on C(t) counting multiplicity. We also
define the reduced counting function N(r,a, f) by

Niraf) = [ attonf.
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where 7i(t, a, f) is the number of solutions to f(z) = a on C(¢) without counting multiplicity.
We put
Nl(raaaf) = N(Taavf) 7N(Taa,f)'
We define the chordal distance between two points in the complex plane by
—b
[a,b] = la — bl .
VI+laPy/1+ b

We extend the chordal distance continuously by

1

ool = T

We define the proximity function m(r,a, f) by

- 1 do
ol f) = | loe
The defect d(a, f) is defined by
. m(r,a, f)
6(a, f) = liminf ——==.
D =BG )

By the first main theorem,
T(r,f) = N(r,a, f) + m(r,a, f) — m(1,a, f),
we can write

. N(r,a,
d(a,f)=1-— hmsupjg(rf)

1.3. Theorem 1.2 implies Theorem 1.1

We first consider the case that f is rational. In general, if g is a non-constant rational function,
then the defect relation is valid in the stronger form ) _ d(a,g) < 1. Indeed we have §(a, g) =
0 for all a # g(c0). Thus, the estimate of Theorem 1.1 holds if f is a rational function. In the
following, we assume that f is transcendental.

Let a1, as,...,aq be distinct complex numbers. By the second main theorem, we have
> m(roai f)) <T(r, f') + N(r,00, f') = N(r,0, ) + o(T(r, 1))
1<i<q

outside a set F of finite linear measure. We apply Theorem 1.2 to the case k = 2 and A = ().
Given an arbitrary positive constant € > 0, we have

N(T,Oo,f/) 7N(T505f//) < €T(’I”,f)
for all r > e outside a set E’ of logarithmic density 0. Hence, we obtain
> mlrai, f) < T(r, ) +€T(r, f) + o(T(r, )
1<i<q

for all r > e outside F U E’.
Now by a theorem of Hayman and Miles [17], there exists a subset E” C (e, 00) with

log dens B < 1
such that
lim sup (r, /)

% (r, f")

< 3e+1.
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Since log dens(EF'U E' U E”) < 1, we have

Zlgigq m(n Qi, fl)

T(r, )

S S(en ) < lmsup

- 7—00
1<i<q r¢ EUE'UE"

<1+e(3e+1).

Since € is arbitrary, we obtain
> d(ai f) < 1.
1<i<q

This proves Theorem 1.1.

1.4. Outline of the proof of Theorem 1.2

Let R4 be the set of all rational functions of degree less than or equal to d including the
constant function which is identically equal to co. The proof of Theorem 1.2 is based on lower
and upper estimates of the following modification of the proximity function:
sz 1 do

I - — .
o 19524 O [f(re®), a;(re®) 27

md,q(ra f) - sup
(alv“’aq)e(Rd)q

A generalization of the first main theorem shows that mg q(r, f) is finite (cf. Remark 2.3).

THEOREM 1.3 (Lower estimate of m). Let f be a transcendental meromorphic function in
the complex plane. Let k be a positive integer and let € > 0. Let v : R.. — N+ be a function

such that
T(r)\*
~ [logt —~2 . 1.
v(r) ~ (1og" 1)) (15)

Then we have
2T(r, f) + (k — 1)N(r,00, f) < my_1,0(m) (r, f) + N(r,0, f®) + Ny (r, 00, f) +T(r, f)

for all r > e outside an exceptional set of logarithmic density zero.

THEOREM 1.4 (Upper estimate of m). Let f be a transcendental meromorphic function on
the complex plane. Let d and ¢ be positive integers. Let € > 0. Let B C C be a finite set of
points in the Riemann sphere and set p = #B. Then we have

(p+q)""

() (10g )"/

md,q('raf) + Z Nl(rvaaf) < (2+€)T(va) +
a€B

for all r > 0 outside a set of finite linear measure Ey 4 which only depends on f and d.

Theorems 1.3 and 1.4 imply Theorem 1.2. Let A C C be a finite set of complex numbers.
Given € > 0, we apply Theorem 1.4 to the case B =AU {oo}, d =k — 1 and ¢ = v(r), where
v:Rs. — Ny is a function satisfying (1.5). Then we obtain

mk—l,l/(T)(rﬂ f) + Nl(ra 00, f) + Z Nl(ra a, f)
a€A

<Q2+)T(r, f)+ (Z)—H;#T(T)M%log 74)1/5
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for all » > 0 outside a set of finite linear measure Ey j_1, where p = #A4 + 1. Combining with
Theorem 1.3, we have

(ki I)N(T,Oo,f) + ZNl(Taa7f)
acA
17
< (0,5 ®) 4 227, 1) + LEAD iy 1oy
outside a set of logarithmic density zero. Since f is transcendental, we have

. T(r)
1 = 0. 1.
A Togr = (16)

Thus, by (1.5), we have

This proves our theorem.

1.5. A remark on error terms

We may replace the error term €T'(r, f) in Theorem 1.2 by o(T(r, f)). This follows from the
following lemma applied to

S(r) = (k= 1)N(r,00, f) + > _ Ni(r,a, f) = N(r,0, f™).

a€A

LEMMA 1.5. Suppose that S(r), wherer > e, is a function such that the logarithmic density
of the ‘exceptional set’

E.={r>e€ S(r)>eT(r)}
is zero for all € > 0. Then we have
S(r) < o(T'(r))

for all r > e outside some exceptional set of logarithmic density zero.

Proof. Since

dt/t
lim j[e,r]ﬂEE( /) -0
700 log r

for all € > 0, we may take a positive number r,, > e, where n > 0, such that

J‘[e,r]ﬁEl/Qn (dt/t) < 1
log 2n

is valid for all r > r,,. We may assume without loss of generality that these numbers form a
sequence e < rg < 11 < ro < --- which tends to infinity. We set e(r) =1/2" if r,, <7 < 741,
and ¢(r) = 1if e < r < rg. Then £(r) — 0 when r — co. Let

E={r>e; S(r)>elr)T(r)}.
Then for r < 7,41, we have [e,7] N E C [e,r] N By jpn. Thus, for r, <7 < rpp1, we have

J‘[eﬁ-]ﬂg (dt/t) < ].

log on’
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Hence, for r > rg, we have

o 1ne(dt/t)
7j[" ]l:);r <e(r).

This shows that the logarithmic density of £ is zero. We have
S(r) <e(r)T(r) = o(T(r))

for all » > e outside £. ]

1.6. An asymptotic equality in the second main theorem

To derive Theorem 1.2, we apply Theorem 1.3 for k£ > 2 together with Theorem 1.4. If we apply
Theorem 1.3 for k = 1, then we obtain a reversion of the second main theorem. Together with
a uniform version of the second main theorem, we obtain the following asymptotic equality.

THEOREM 1.6. Let f be a transcendental meromorphic function on C. Let v : Ry, — Ny
satisfies (1.5). Then we have

mO,V(r) (Tv f) + Z Ny (’I", a, f) = QT(Ta f) + O(T(T7 f))’ (18)
acC

where 1 — oo outside a set of logarithmic density 0.

Here, by definition, we note

27
20.0(r. ) | log ———— &
mo,q(r, f) = sup max log ———————.
0,9 (a1 anyetado 1<i<a [f(reif), a;] 27

Proof.  'We consider the case k =1 in Theorem 1.3. Using
Ni(r,00, f) + N(r,0, f") ZNlraf
acC
and Lemma 1.5, we obtain
27(r, f) < Mo (1 ) + Y Narya. f) +o(T(r. ), (1.9)
acC

where 7 — 0o outside a set of logarithmic density 0.
On the other hand, a uniform version of Nevanlinna’s second main theorem asserts that for
ai,...,aq € C, we have

27 1
J'o 12?§qIOgW ZCNl roa, f) <2T(r, f) + 3logT(r, f) + 2logq  (1.10)
ac

for all » > 1 outside an exceptional set E of finite linear measure which only depends on f. We
prove this statement in the final section. Thus outside F/, we obtain

Mo,y (7, f) + ZNl(r,a,f) < 2T(r, f) + 3logT(r, f) + 2logv(r). (1.11)
ae@

By (1.5), we have
3log T(r, f) + 2logw(r) = o(T'(r, f)).
Thus, by (1.9) and (1.11), we obtain (1.8). O
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For other investigations of asymptotic equalities in the second main theorem, we refer the
reader to [31, Chapter 4 and 11].

1.7. Contents of the paper

In Section 2, we prove some general estimates in Nevanlinna theory. In particular, we show
that mgq q(r, f) is finite.

In Section 3, we prove Theorem 1.3. The proof is based on an estimate of the oscillation of
meromorphic functions on small arcs of the circle |z| = r (cf. Proposition 3.1). This is achieved
by Poisson—Jensen’s formula. Once we obtain this estimate, the proof of Theorem 1.3 goes as
follows. We equi-divide the circle |z| = r into v(r) small arcs ci, ..., ¢, (), where the oscillation
of log | f®)] is small. From each arc ¢;, we chose a polynomial a;(z) of degree at most k — 1 to
be the first k£ leading term of the Taylor expansion of f at one of the end points of the arc
ci. Since f(z) — a;(z) is recovered from integrating f*)(z) and the oscillation of log | £ (2)] is
small on the arc ¢;, the term log(1/|f(z) — as(2)|) is bounded from below by log(1/|f*)(2)])
on the arc ¢; with small errors. Together with some technical computation, we obtain a lower
bound of

v(r) 1 do
ZJ 8 ), () 2

j=1 "¢

which is trivially bounded from above by M1, () (r, f). This produces Theorem 1.3.

In Sections 4-8, we prove Theorem 1.4. In Section 4, we introduce a uniform second main
theorem for rational target functions (cf. Theorem 4.1), from which Theorem 1.4 is easily
deduced, and its local version (cf. Proposition 4.3). Theorem 4.1 is a generalization of a second
main theorem for rational target functions obtained in [33]. Crucial improvements are uniform
controls of both error terms and exceptional sets over all possible rational functions of degree
at most d, and polynomial dependence of error terms with respect to the number of rational
functions. This polynomial dependence plays crucial role in the estimate (1.7). Proposition 4.3
treats a local value distribution of f over a topological disc or an annulus €2 on the punctured
sphere X (a1, ..., aq) where the values of rational functions ay, . .., a4 are all distinct. We do this
under the additional assumption that the boundary 0f2 is short with respect to the hyperbolic
length of X (as,...,aq).

In Section 5, we derive Theorem 4.1 from Proposition 4.3. The derivation is based on
hyperbolic geometry, namely thick-thin decomposition of the punctured sphere X (a1, ..., aq).
A rough outline of the derivation is as follows; On the thin parts of X(ai,...,aq), which
consist of annuli or punctured discs with short boundaries, we may apply Proposition 4.3 to
obtain a local version of Theorem 4.1 over the thin parts. On the thick parts of X (a,...,a4),
we apply Proposition 4.3 over all embedded hyperbolic discs with a fixed small hyperbolic
radius and average the resulting estimates. This produces a local version of Theorem 4.1 over
the thick parts. Summing these estimates for the thin parts and the thick parts, we derive
Theorem 4.1.

In Sections 6-8, we prove Proposition 4.3. In Section 6, we perturb f quasiconformally and
construct a quasimeromorphic function g over €2, where €2 is a topological disc or an annulus
on X(as,...,ay) with short boundary. We do this under an additional assumption that the
g-pointed sphere (C,a;1(z),...,a,(x)) is Sio-thick (see Definition 6.1) for some z € Q. The
procedure is as follows. We consider the rational functions a;,...,a, as a holomorphic motion
of ¢ points {a1(x),...,a,(z)} over Q. We try to extend this motion to a holomorphic motion
of whole sphere. It is well known that this extension problem has a topological obstruction
if 2 is not simply connected. In Proposition 6.2(1), we show that this obstruction vanishes if
(C,ay(x),...,aq4(x)) is Sho-thick and 9Q is sufficiently short. Thus the motion extends to a
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holomorphic motion QAS : Q2 x C — C of whole sphere. We perturb f by

¢(2,9(2)) = f(2)
to obtain a quasimeromorphic function g(z) on Q. The role of the motion QAS is to convert
the rational target functions into constants, at the price of replacing f by quasimeromorphic
function g. Indeed two equations f(z) = a;(z) and g(z) = a;(x) are equivalent over {2, where
a;(x) are constants. The shortness of 9§ implies that the perturbation is small so that the
order functions of f and g are close (cf. Proposition 6.2(3)).

In Section 7, we recall Ahlfors’ theory of covering surfaces in the form where the constants
‘h’ (cf. [25]) in the theory are controlled explicitly. Here an important feature is the polynomial
dependence of the constants h with respect to the number of the target points, which implies
the above-mentioned polynomial dependence of error terms in Theorem 4.1 with respect to
the number of rational target functions. As already noted by Ahlfors [1], this theory can
be applied not only for meromorphic functions but also for quasimeromorphic functions. We
apply the theory to the quasimeromorphic function g to obtain Proposition 7.2, which is a
main conclusion of Sections 6 and 7 towards the proof of Proposition 4.3.

In Section 8, we complete the proof of Proposition 4.3 to conclude the proof of Theorem
4.1, using Proposition 7.2. The main difficulty arises from the fact that Proposition 7.2 only
treats the case when (C, a1 (x), ... ,aq(z)) is zio-thick. Thus the main issue is to decompose the
general case into 2%—thick cases. We use a similar trick as in [32, 33] based on combinatorial
arguments of trees.

In Section 9, we prove the estimate (1.10), which is used in the proof of Theorem 1.6.

2. General estimates in Nevanlinna theory

If f(2) and a(z) are distinct meromorphic functions on C, we set

2 1 do

’”“““f):J; 8 T (r %), a(r )] 2

Let f=g/h be a reduced representation, that is, g and h are entire functions with no
common zero. Let a = b/c be a reduced representation. We denote by n(t,a, f) the number of
solutions of gc — hb = 0 on C(t) with counting multiplicity. We put

N(r,a, f) = L n(t,a,f)%.

We also define N(r,a, f) by
Nraf) = | nta.n)F.
1

where 7i(t, a, f) is the number of solutions of gc — hb = 0 on C(¢) without counting multiplicity.
We put

Nl(r7aaf) :N(T7a7f) _N(Taaaf)'
LEMMA 2.1. Let § >0 and r > 6. Then

(L)L (1, )
s \ew” ")t mli \ew ©)t

= JT n(t,a,f)% +m(r,a, f) —m(0,a, f).
5

3



ZEROS OF HIGHER DERIVATIVES 711

In particular, we have

T(r,f)+T(r,a) = N(r, f,a) + m(r, f,a) — m(1, f,a).

Proof. Let \(z) = log(1/[f(2),a(2)]?). Then we have
A(z) = —log |gc — hb|* + log(|g[* + |h[*) +log([b* + [c]),
where f = g/h and a = b/c are reduced representations. Hence, we have
1 1
dd°[\] = — d=(ge = hb)d. + — frwe + —a"we
[A] g:or (gc ) —&—wac—l—wawc

in the sense of currents on C, where §, is the Dirac measure supported on z. Now the derivation
of the estimate is standard (cf. [8, Chapter 1]). O

LEMMA 2.2. Let a € Ry. Let f be a meromorphic function with f ¢ Rgq. Then we have
m(17 f7 a) < C’

where C' is a positive constant which only depends on d and f.

Proof.  Assume that there is a sequence a1(2),az(z),... € Rq such that

m(17 f7 a‘n) — 0.

By considering a suitable subsequence, we may assume that aj(z),a2(2),... converge locally
uniformly to a(z) € Ry outside a finite set of points in C. We take a constant ¢ such that

(1) 0<d<1,

(2) a1(z),a2(2),... converges to a(z) uniformly on {|z| = d},

(3) mingco<an(f(5¢”),a(de)] > 0.

These properties imply that

supm(0, f,an) < co. (2.1)
On the other hand, we shall show
lim m(d, f,a,) = co. (2.2)

This gives a contradiction, which proves our lemma.
By Lemma 2.1, we have

1 Jl J I dt 1 Jl J . dt
— we | —+ — a We | —
mls \Jew” ©) t  wls \ewy ©) ¢

Jl dt
= n(t,a,f)? +m(l,a, f)—m(d,a,f).
5

By the estimates
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we have

1
m(6, fran) > m(1, f,an) — H <L( )f*%> ? + dlogs.
t

5
This shows (2.2). O

For a meromorphic function with f € Ry, we set

Cya= sup m(1, f,a). (2.3)
a€ER4

REMARK 2.3.  We show that mg q(r, f) is finite for f € Rq. For a € R4, we have
m(r7 a, f) = m(lﬂ a(rz), f(TZ)) < Cf(rz),d'

Thus, for (a1,...,aq) € (Ra)?, we have
27 q
1 do
I i ; — < s gy < C rz),d:
L 235,198 (5 ooy S 224 f) S 4

I
—

< 00.

~— .

Hence Mg q(r, f) < qCf(r2,q- In particular, mqq(r, f
Next we prove the following lemma:

LEMMA 2.4. Let f be a meromorphic function with f € Rg. For ay,as,as3, a4 € Rq — {00}
with aya4 — asas #Z 0, we have

T (Tv (llf—az) < T(T, f) + QCf,zd + 8dlog r.
azf — ay

Before proving this lemma, we shall recall the Nevanlinna theory for holomorphic curves
F :C — P* into the projective space [27, p. 101]. The case k=1 reduces to the theory

of meromorphic functions. Let [X7 :---: Xj11] be homogeneous coordinate of Pk, Let F:
C — P* be a holomorphic curve with a reduced representation [gy : -+ : gx11]. By definition,
g1, --.,gr+1 are entire functions with no common zero. We set

r - dt
T(r, F) :J Jc(t) dd® log <Z |g,-|2> - (2.4)
i=1

1
Let H C P* be a hyperplane defined by {X; = 0}. We set
N(TvFvH) = N(Taoagl)'

We define the Weil function \f : PF\H — R for H by
k+1

1 | Xi|?
= -1 1 ) 2.
Ao 5 og< +;|X1|2> (2.5)

We set

27
m(r,F,H) = %L i (F(re'?)) db.

Then we have the first main theorem

T(r,F)=N(r,F,H)+m(r, F,H) —m(1,r, F). (2.6)
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Proof of Lemma 2.4. By Lemma 2.1, we have

T (7“, a1f—a2) =N (r,alf_a2,0) +m (r,alf_aQ,O) —-m (1,a1f_a2,0> .
asf — a4 asf — a4 asf — a4 asf — a4

Since N(r, (a1 f —az)/(asf — a4),0) < N(r, f,a2/a1) + 2dlogr, we have

arf —ag
A Pt ]
( Cl3f—6l4>
arf —az arf —az
< N(n, f, (T a2 o) (g, 4 92 2d1og - 2.
(rfag/al)er(r o — 0> m( a5l — s 0)+ ogr (2.7)

We estimate the proximity functions on the right-hand side. Let a, b, ¢, d € C with ad — bc # 0.
Set

1 ]2 + |d|?
Ala,b,c.d) = =1 14+ —— .
Then we have
Aaybe,d) —log —-— <o ! < Alabe,d)+log ———.  (28)
@06 S Tw,d/d S %% [(aw — b)/(cw —d),0] > P*G & Tw,bja]’ '

Indeed we have

A(a,b,c,d) —log [1d] =
w

’c

o (el +|d]*) |ew — d|”

o <1 T {aP |b|2)> ((1 + lwP)(|e” + d2)>
o lew — d|?

o8 (1 T aE PR T |w2)> '

Since |aw — b|* < (Ja|® + [b]?)(1 + |w|?), we have

<

S

N = N

1 1 lew — d|? 1
Ala,b,c,d) —log ———— < =1 1+ — | =1 .
(@bc.d) ~log orgrg <3 Og( *wawm2> °8 10, (aw — B)/(cw — d)
This shows the left half of (2.8).
‘We have

L (R (L P (el + )
M) los g = s (1 o ) ()
u&+wma+mm)
|aw — b|? '

1
> §log <1+

Since |cw — d|? < (|c|? + |d|?*)(1 + |w|?), we have

lew — d|? 1

1
law — b|2) = log [0, (aw — b)/(cw — )]

1
A(a,b,c,d) +log ——— > =1 1
(o crd) g > i (14
This shows the right half of (2.8).
Now by (2.7) and (2.8), we have

TQFJ‘@><Nmﬁ@mo+mmﬁ@mn+m@ﬁMMg
asf —ay

27
o df
+ L A(ay,as,as,a4)(r e“g)%

2m 0 do
- Aay,a9,a3,a4)(e"”)— +2dlogr.
0 2m
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By Lemmas 2.1 and 2.2, we have
N(r, fas/ar) + m(r, f,as/a1) < T(r, f) + Cyoq + 2dlogr.
Hence, we obtain
°r do

- i0
e A a0
T<T’ agfa4) \T(r’f)+2cf12d+L A(a1,az,a3,a4)(re )27T

27 » d9
_J' A(ay, az,a3,a4)(e”) 5= +4dlogr.
0 s

Finally, we claim

27 0 de 27 0 de
A(ay,az,a3,a4)(re") A(aq,az,as,a4)(e )2— < 4dlogr. (2.9)
T

0 27 0
2 11 . 2
2 '

Fi(z)=la1:a2:a3:a4], Fa(z)=las: as].
Let H C P? be defined by {X; = 0} where [X; : X5 : X3 : X4 is a homogeneous coordinate of
P3. Let H' C P! be defined by {Y; = 0} where [Y; : Y3] is a homogeneous coordinate of P!.
Then by the first main theorem (2.6), we have
m(r, F1, H) —m(1,F1,H)+ N(r, 1, H) <
m(r, Fo, H) — m(1, Fy, H') + N(r, Fo, H') >
By N(r,Fy, H') < N(r,F1, H) and

Indeed we have
2

2
a9 +

a1

as aq

a1

az

a1

+

1
A(ay,az,a3,a4) = 3 log <1 +

ai

We define Fy : C — P32 and F, : C — P! by

4dlogr,
0

2m 2m
. dl 0\ d0
J A(ar, a2, a3, a4)(r 619)2* —J A(ar, a2, as, a4)(€w)*
0 ™ 0 2
= m(T‘,F]_,H> - m<17F17H) - m(T7F27H/) + m<17F27HI>7

we obtain (2.9). O

3. Proof of Theorem 1.3

3.1. Beginning of the proof of Theorem 1.3

The first step in our proof of Theorem 1.3 is the estimate of oscillation of meromorphic functions
on circles centred at the origin. For a meromorphic function f, we put

v(r, f,0) = sup ( sup log|f(re)| — _inf 10%|f(?"6”)|>,

7€[0,27] \t€[r,7+0] te[r,7+0]
T ~1
A(r) = min {1, <log+ (7")> } .
log r

PRrROPOSITION 3.1. Let f be a transcendental meromorphic function in the complex plane.
Let € > 0. Then we have

v(r, £, A(r)*) < eT(r)

for all r > e outside a set of logarithmic density zero.
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To prove this proposition, we begin with the following lemma:

LEMMA 3.2. Let f be a transcendental meromorphic function in the complex plane. Let
1 < o < e. Then we have

J h M dt < 508(log 0)*(T(0”r, f) + ¢)

for r > 1, where ¢ is a positive constant which only depends on f.

Proof. We apply the Poisson—Jensen formula (cf. [25]). Let P(z,0) be the Poisson kernel
for the unit disk:
1 122
P(z,0) = —————.
(2,6) 27 | et — 2|2

Let g(z,a) be the Green function on the unit disk:

1—az
9(z,a) = log
z—a
Suppose that ay,...,a, are the zeros and that by, ..., b, are the poles of f(z) in |z| < p, where

we put p = o?r. We apply the Poisson—Jensen formula to obtain

logf(Z)I—Eﬂloglf(pew)P(;,@)gi—i (22%)+ Zg( 2 ey

k=1

for |z| < p. In the following, we shall estimate the oscillation of log | f| in terms of the oscillations
of the Poisson kernel and the Green functions.
For 0 <t <1, we put

T0€[0,27] \ x€[70,70+7] z€[10,T0+7]

a(t,f,7) = sup ( sup  P(te™,0) —  inf P(temﬁ))
and

B(t,a,7) = sup ( sup  g(te',a)—  inf g(te”,a)).

T0€[0,27] \ z€[10,70+7T] z€[10,T0+T7]
Set a(t,7) = a(t,0,7). Since P(z,0) = P(ze~?,0), we have
a(t,0,7) = a(t, 7). (3.2)
Now by (3.1) and (3.2), for 0 < ¢t < p, we have
t t ap - t by
u(t, f, 7 <a<,7)J log|f(pe?)||— ﬁ( ’7'>+ 5(,,7).
. f,7) 5 [log | f( H Z > 5 kz::l >

Using the first main theorem, we obtain

v(t,f,7)<o<<i )(2Tp7 o) +Zﬁ<t ay, >+Zﬁ(t 23 )

where ¢ is a positive constant which only depends on f. After dividing this estimate by ¢, we
integrate the resulting estimate from p/o? to p/o to obtain

rlo dt -
|| et 0% < @T00.5) + () + (ot ),

p/o?
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where we put

and

~ 1/o d
B = sw | BtanF.

la|<1J1/02

Using the definition of the counting function and the first main theorem, we have
p+ v =mn(p,00, f) +n(p,0, f)
1
< 7(N(U,O,oo,f) +N<Up70af))

logo
< T ) ) .
s Tlon D) +0) (33)
where ¢ is a positive constant which only depends on f. Thus, we obtain
ar dt 1+logo N ~
| vt n S < S @Top ) + o) + 5. (3.4

CrLamM 1. We have
27T

a(r) < (Tog o )2

Proof of Claim. Since

0 0 t(14+¢)(1 —t)sind
—P(te,0) = — ‘
gl te™0) Tl —te0[t
we have
0 ; 2
—P(te? 0)] < ——.
gl e )’ (1 —1)3
Hence, we obtain
alt,7) < 2T T
T (1 —t)3 T (1 —1)3°
Thus, we have
e dt T03
a(T) = t,7)— < ———logo.
i) = | e <l no
Since logo < o — 1 and 02 < 27, we complete the proof of the claim. ]
CLAIM 2.
~ 107
< ——= 4+ 90(log o).
6(7—) (10g0)7 + (OgO')

Proof of Claim. We denote § = (logo)*. For |a| < 1, we set
I(a) = [la| =6, lal + 8] N [1/0%,1/0],
J(a) = [1/0*,1/o\[la| -, |al +4].

Then we have

1/o
J, peenG<et| sranas| peanT (35

1/02 J(a) ¢
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First, we estimate the first term on the right-hand side of (3.5). Since we have

; 1 —tlal 1
B(t,a,7) < max g(te,a) =log < log ,
B T R ]
we obtain
1 1
J B(t,a,7)dt < 2J log — dz = 2(log 0)* + 8(log o)* log .
I(a) 0 T log o
Since log(1/log o) < (1/logo), we obtain
J B(t,a,7)dt < 2(logo)* 4 8(log o)?. (3.6)
I(a)

Next we estimate the second term on the right-hand side of (3.5). Since

ﬁ(tvaa’r) = ﬁ(tv |a|,7),

it is enough to consider the case 0 < a < 1. Since

@(t e ) = atsing  atsinf
a0 U M —ate®2 |a—tei®]2’
we have
89, i 1 1 1 1
—(te' < < :
zw(e’“ﬁ O—at?  (a—02 SU=12  (a=12

Hence, we obtain
T T

phen s Gt G

Hence, on t € J(a), we have

0'27’ T

(c—17 " (logo)®

B(t,a,7) <

Since logo < o — 1, we obtain

0'27' T

(logo)?  (loga)®’

Bt a,7) <

Thus, we obtain

dt o3 T
B(t,a, 7)— < + —. 3.7
L(a) ( )t logo ~ (logo)? (37)

From (3.5)—(3.7), we complete the proof of our claim. O

Now Lemma 3.2 is an obvious consequence of (3.4) and the claims above. (Recall that

p=0%r.) O

In order to deal with the term T'(o3r), we need a growth lemma.

LEMMA 3.3. Let g(r) be a continuous, non-decreasing function in [rg, 00) with g(rg) > 2,
where rg > 1. Suppose that

lim g(r) = oo.

T—00

Given a fixed positive constant s > 1, we put
1
o(r) =

(log g(r))*
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Set
E={r>ro; g(e3“"(r)r) > 2g(r)}.

Then we have
J’ dt
— < 00.
EN[rg,0) t

Proof. Suppose that F is bounded, then our lemma is trivial. Thus in the following, we
assume that F is unbounded.
We define a sequence of positive numbers r1, 79, ... by the following inductive rule:

ry = inf F,
rip1 = inf(EN [63“"(”)7’2-, 00)).
Since F is a closed set, we have r; € E. Hence we have
g(riv1) = g(e*"ry) > 2g(ry).
Thus, we obtain
g(rn) 22" (3.8)

This shows that limr,, = oco. By the construction of the sequence {r,}, we have

EC U [, €32, .

n=1
Using (3.8), we obtain

e3¢ (rn) .

J ’ ﬂ =3p(r,) = 3 < 3
£ (log g(ra)) S (nlog2)*

Thus, we conclude

dt (¢ T dt 3 > 1
< — < — < 0.
| > | F < T o <%

Alro,00] ¢

/

This proves our lemma. ]

COROLLARY 3.4. Let f be a transcendental meromorphic function in the complex plane.
We have

T( ) < 3T(r)

for all r > e outside a set E C [e,00) of finite logarithmic measure [ (dt/t) < co.

Proof. For r > 1, the function T'(r)/logr is a continuous, non-decreasing function. Since f
is transcendental, we have lim, o, T'(r)/logr = co. We apply Lemma 3.3 to obtain

T(r) ()
log(e32 (1)) log r

for all » > e outside a set of finite logarithmic measure. Hence we obtain

T ) < 2 (1 + 31’:)22> T(r)

for all 7 > e outside a set of finite logarithmic measure. Since lim, _ . (A(r)?/logr) = 0, we
complete the proof of our corollary. ]
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LEMMA 3.5. Let FF CRs. be a measurable set. Let ¢ :[e,00) — (0,00) be a positive,
continuous and non-increasing function. Assume that the set

dt
E. = r}e;J — > ep(r)
FN[r,e?(™r] t

has finite logarithmic measure for every € > 0. Then the logarithmic density of F' is zero.

Proof. We fix an arbitrary small positive constant € > 0. Set G = [e,00)\E.. Since ¢ is
continuous, G is a closed set. Since E. has finite logarithmic measure, G is unbounded.
We define a sequence of positive numbers {r,,} by the following inductive rule:

ro = €,
S e?ridp, r; € G,
TV inflr,00) NG 1 €G.

Since G is unbounded, this sequence is infinite.
We claim that

lim r; = oco.

11— 00

To see this, assume contrary: there exists a positive constant « such that r, < a for all n. Then
we have

Fivg = e @p;. (3.9)

Indeed this is obvious if r; € G, since ¢ is non-increasing function. Suppose that r; € G. Then
since G is closed, we conclude r;41 € G. Hence 7,19 = e*"(”“)mﬂ. This shows that (3.9) also
holds for 7; & G. Since e#(®) > 1, (3.9) contradicts the boundedness assumption r,, < «. Hence,
we conclude that the sequence {r,} tends to infinity.

Now given R > e, there is a non-negative integer n(R) such that

o) < B <TpR)y1-
We put
A={i €Zsp; r; € Gandi<n(R)—1},

B={i€Zxp; 7 ¢ Gand i <n(R)—1}.

dt dt
— <ep(r) =¢ —.
[ [riria] t

ri,rip1]NF t

[ oo
[ri,it1] t [ri,rit1]NEe t

For i € A, we have

For i € B, we have

Hence, we have
n(R)—1

IRCE R
le.RinE t D5 i, n+1]ﬂF t e RinF
9| 1031 IR 55 .
iea dlririp]NF t iepYlriripi]NE t [rn(r), RINF ¢

Ryq J dt N JR dt
<e = .
le,rn(ry]NE: t Tn(R) t
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If Tn(R) € G, then

If r(r) € G, then

JR at J dt
Tn(R) t [rn(r),RINE: t

dt dt
J —gslogR—&-J — 4+ ©(rn(r))-
[e,R]nF t [e,RINE.

Hence, we have

Thus, we obtain

T J <e+ lim J dt + o(rnr)) £
im — <e+ lim — ») | =e¢
R—oolog R Ji¢ rinF t R—oolog R \ Jic rjnE. 1 no

Since € > 0 is arbitrary, we complete the proof of our lemma. |

A(r)

Proof of Proposition 3.1. We apply Lemma 3.2 for 0 = e * to obtain

eA(T)QT

J M dt < 508A(r)*(T(eP)"r, ) + ).

By Corollary 3.4, we obtain

2
MMy

|

outside a set of finite logarithmic measure.
Now given positive constants € > 0 and & > 0, we have

w dt < 508(r)*(3T(r, f) +c)

eA(T)2r

J 2l £, 2" j(’”)m) dt < = AT (r, )

outside a set E. ./ of finite logarithmic measure. Set
Fo={r>e o(r, f,\r)*) > eT(r, f)}.

Then we have

2
ey

eMT)27‘
J [N 1|
(rerM2nF, =, eT(t, ft S eT(r, f) ).

for all r outside E; .,. Thus, by Lemma 3.5, we establish Proposition 3.1. ]

o(t, f, A()*°)
t

dt < e'\(r)?

3.2. Proof of Theorem 1.3

LEMMA 3.6. Let f be a transcendental meromorphic function in the complex plane, and
let k be a positive integer. Put

up = (k+1)log™ | f| + log |1/ f®)].
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Then given a positive integer q, we have

27 . de
| untre) 37 < gl ) + (= D e, 1)
0
+o(r, f,2m/q) +v(r, f*), 21 /q) + klog(2mr) + 2kqlog 3

for all r > 1.

Proof. If f has a pole on the circle |z| = r, then v(r, f,27/q) is infinite. So the estimate is
trivial. In the following, we show the estimate for » with the property that f does not have a
pole on the circle |z| = r. We fix such r and work on the circle |z| = 7.

Set 0y = 27wl/q. For | =0,1,...,q — 1, we put

Il = [O’l,JH_l].

We define a polynomial a;(z) of degree less than k by
k . .
Z f(J) re)(z —retot).
=0/

Then we have
O (retor) — al(j)(rei‘”) =0
for 0 < 7 < k— 1. Thus, we have
. . 0 01 Ok—1 . . .
f(re?y —ay(re) = J J e J FE (o eR) d(r e%) - - d(r e?2)d(r e).

o Joy leg}

Thus, for 0 € I;, we have
f(re) —ai(re”)] < e (2mr)",

where we put

— 1 (k) is )
7 = max og [ (re")

Since we have

lOg <-7+ ’U(’I“, f(k)a 271—/Q)

1
| f) (r i)
for 6 € I;, we obtain

; <lo !
B e S 1fre®) —a(re?)]

for 6 € I;. Hence, we obtain

log + v(r, o, 27 /q) + klog(2mr)

JQW 10 1 ﬁ
& [FO0 ]2
J“Hl 1 do

: —— ) 9 klog(27r).
rew)—al(rew)|27r+v(r’f 27/q) + klog(2mr)

MQ

1=0 "

Thus, using

o + 6 do
IOg |f<’/'€ )|7 Sm(r,oo,f),
0 27T
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we have
27 q— 1 Ol+1 1 . d9
u(r e’ | ( i o+ 2log” |f(r e”>|) @
L lz:; o |f(re?) — a(re?)] 2m
+ (k= 1)m(r, 00, f) +v(r ,f(k),27r/q) + klog(27r). (3.10)
We estimate the right-hand side of (3.10). O

CramMm 1. Let a(z) be a polynomial of degree less than k. Then we have

log™ |a(r )|

i+t 0y, do
< J log™ |a(re™)| == + 2k log 3.
q 2m

o)

Proof. 1t is enough to prove this claim assuming a(z) # 0. We consider the following
function:

log |a(e’™)| _ rl
q

g0

Ulaz)) = log (€)o7

Then we have
U(Xa(z)) = Ul(a(2)) (3.11)

for non-zero \. If

then we have
U(a(2))=U(z—aq) + -+ U(z — ag). (3.12)
Now we observe that
U(z —a) < 2log3. (3.13)
Indeed if || < 2, then we have
log |e?0 — logS
q q

and

o1 , do ; de

—J log|e? — a|— = —log™ |a] +J log e — o —

o0 2 (0,27]\[00,01] 2
< log 3.

This shows (3.13).
Next we consider the other case |a| > 2. By (3.11), we have

U(z—a)=U(z/a—1).
Using
1 i0 3
log 5 < logle™ /o — 1] <log 3

we obtain (3.13). Thus, we have proved (3.13).
Combining (3.12) and (3.13), we obtain

Ul(a(z)) < 2klog3.
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Now for a polynomial a(z) # 0 of degree less than k, we consider the polynomial b(z) =
a(re'z). Then we have
log |a(r et)| JC”“ df  log|b(etv)] J‘” 9y, do
oemre - 1 LA 0y 27
. o la(r )| 22 o (e o2

a1 g0

Hence, we have

1 10 0141 . do
logla(re™)| J log afr )| 22 + 2klog3
Y

q

i 0y, do
< J log™ |a(r 6“9)|2— + 2k log 3.
(o] ™

Our claim is an obvious consequence of this estimate. O

CLAIM 2. Let a and b be two points in C. Then we have

log —— +log™ |a| +log™ |b] < log ——

1 1
Al [a, 0]

Proof. Since
la — b

a7b = )
! V1+]alPy/1+[bP

we obtain
+log+/1+ |a|? 4+ log \/1 + |b]?

+log™ |a| + log™ |b]. O

log = log

1
|la — bl

1
|la —b]

1
[a, b]
> log

We go back to the proof of Lemma 3.6. For 6 € I;, we have
log™ | f(re)| <log* |f(re™)| +v(r, f,2m/q)
=log™ |ai(re'™)| +(r, f,27/q).
Hence, we obtain
e 1 . do
lo - 1 2log™ | f(re' )
[, (e gy = 2s ) 57
N
< 0 - ,
o \CCTTGre®) —ared)
2
, vl g 2n/a)
q
We use the two claims above to obtain

) . do
+log™ | f(r ew)\ +1log™ |ay(r e“”)|> —

2

J'0l+1 | 1 1 21loat 1£( 19)| ﬁ
o \EfGrem —arem] 208 OO o
oLt 1 do  v(r, f,2m/q)
< 1 @ 2k 1 .
JJ[ Og [ (7" 67’0) al(r 67,0)] 27T + k Og3

Combining this estimate with (3.10), we obtain

J- " ZJ' 141 log Teie)lal(:r 7 % + (k= 1)m(r, 00, f)
=0 )
o(r, f

0
+o(r, f,21/q) +

,27r/q) + klog(2nr) + 2kqlog 3.
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Now since

log

q—1 Tl+1 1 d9
J [f(reif), a;(r ei)] 2

1=0 “1
we complete the proof of Lemma 3.6.

LEMMA 3.7.

0

Proof. Put

< mk—l,q(r7 f)a

2
| untre) 37 = e DT 1) = N0,0,£9) = kN 00, 1) + O,

i = (k+ 1) log|f| +10g\1/f(k)|.

Then we have

0
By the first main theorem, we have

27 ] de 27 ) da

1 0\ 2 1 LAY el

| eztrrenigE - | o lsenig

JZ‘n'l 1 ie B J~27r1 1 ie
o ClFEreny|am ~ Jy B F®(e) | 2

Combining these estimates with

27 ) de 27 ) d9
~ 0\ 0\
J ug(re )27r (k+1) Jo log | f(re™)| 5 —|—J log

27 1

L |4
FIr e

27’

0

ZN(’I“,O,f)—N(’I“,OO,f),

= N(r,00, f®)) = N(r,0, f*)).

N(r,00, f¥)) = N(r, 00, f) + kN(r, 00, f),

we obtain

J ﬂ”lk(r@i")dft9 —J Wﬂk(ew)dj = (k+ 1)(N(r,0, f) = N(r, 00, f)) + N(r,00, )

- N(T’, 07 f(k))
= (k+1)N(r,0, f)
We note that

- N(’/‘,O’f(k)) - kNl(T,OO,f)-

up = iy, + (k +1)log™ [1/f].

By the first main theorem, we have

27
Jo log™ |1/f(rei9)|% + N(r,0,f)=T(r, f) +O(1).

Now by (3.14)—(3.16), we obtain

0
Thus Lemma 3.7 is proved.

By Lemmas 3.6 and 3.7, we obtain

2
|t e®) 57 = (k4 DT ) = N0, 1) = kN 00, )+ O(0).

(k+1)T(r, f) — N(r,0, f(k)) — kN1 (r, 00, f) < mp—1,4(r, f) + (k= L)m(r, o0, f)

+ klog(27r) + 2kqlog 3 + C
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where C' is a positive constant which only depends on f. By the first main theorem, we have
T(r, f) = m(r,00, f) + N(r,00, f) + Ni(r,00, f) + O(1).
Hence, we obtain
2T(r, f) + (k= DN (r, 00, ) < —r,4(r, f) + N (1,0, f&) + N1 (r, 00, f)
+o(r, f,27/q) + v(r, o 27 /q) + klog(27r)
+ 2kqlog3 + C. (3.17)

Proof of Theorem 1.3. Let f be a transcendental meromorphic function and let € > 0. By
Proposition 3.1, we have

o(r, LA™ < T f)

outside some exceptional set of logarithmic density zero. For r sufficiently large, we have
2m /v(r) < 7TA(r)?°. Hence, we have

o(r, f,27/v(r)) < ST(r. f) (3.18)
for all » > e outside a set E; of logarithmic density zero. Again by Proposition 3.1, we have

o0 O30 < gy T )

for all » > e outside some set Fy of logarithmic density zero, where we set

A(r) = min {1, (1og+ W) 1} .

By Nevanlinna’s Lemma of the logarithmic derivative, we have
T(r, f™) < (k+2)T(r, f)
for all 7 > e outside a set Es5 of finite linear measure. Hence, we obtain
o(r, {9 A?) < ST f)

for r > e outside the set Fy U F3 of logarithmic density zero. We find a positive constant rq
such that A(r)20 < 2X\(r)?° for r > rg outside E3. Hence, we have

o(r, fONP) < ZT(r, f)
for r > ry outside Fy U E3. Hence, we have
o(r, f®,2m/u(r)) < ST(r. f) (3.19)

for r > e outside an exceptional set Fy of logarithmic density zero.
Since f is transcendental, we find a positive constant r; such that

klog(2mr) + 2kv(r)log3 + C < %T(r, f) (3.20)

for r > rq.
Now we put

FE = [6,7’1] U E1 U E4.
Then E has logarithmic density zero. By (3.18)—(3.20), we have
2 2
vl f, il +or f0), Tl + klog(2nr) + 2kv(r)log3 + C < eT'(r, f)
v(r) v(r)
for all r > e outside E. Combining this estimate with (3.17), we complete the proof of
Theorem 1.3.
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4. General form of Theorem 1.4 and its local version
4.1. Introduction

In the rest of this paper, we shall prove Theorem 1.4 in the following general form.

THEOREM 4.1. Let f be a transcendental meromorphic function in the plane and let d be a
positive integer. Then there exists a set Fy q C Rsq of finite linear measure with the following

property: Given an arbitrary g-tuple of distinct ai,...,a, € Rq and an arbitrary € > 0, we
have
27 1
max log - Ny(rya;, f)
Jo 1<G<a - [f(ret?), a;(re?)) lg:<q 7

<@+T(r )+ qu(r)“/ *(logr)'/®

for all r > 0 outside Ey 4.

Derivation of Theorem 1.4 from Theorem 4.1 Let ay, . . ., a, be distinct points in the Riemann
sphere. Let by,...,by € Rq. We apply Theorem 4.1 to the subset

{al,...,ap,bl,...,bq}CRd.

Then we obtain, for arbitrary € > 0,

2
1
J fg?gqbg [f(re?),b;(re)] Z Ni(r,ai, f

0 1<i<p
<24)T(r ) + %T(r)‘lm(log )1/

for all r > 0 outside E'y 4. Taking the supremum for (b1,...,b,) on the left-hand side, we obtain

Fagr )+ Y Nulras 1) < @+ T )+ LD 000375 10g )15

, et
1<i<p

for all » > 0 outside Fy 4, as desired. ]

We introduce a local version of Theorem 4.1. Some notation are needed.

DEFINITION 4.2. We denote by 74 a constant such that 4 > e so that the following
estimates hold for all r > ~g4:

(1) logr < T(r),
(2) T(r,cr(f,ai,a;,a)) < 2T(r) for all distinct a;, aj, arp € Rq.

Here cr denotes the cross-ratio:

(w1 — wa)(wz — wy)

(w1 — wg) (w3 —wa)

Note that by (1.6), (1) is valid for all sufficiently large r. By Lemma 2.4, (2) is true for all

sufficiently large 7. Thus -4 exists.
For distinct aq,...,a, € Rq, where d > 1 and ¢ > 3, we set

X(a1,...,aq) ={z€ C—{0,1}; a;(2) # a;(z) for i # j}.

cr(wl,wg,wg,w4) =
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Then X(ai,...,aq) is a p-punctured sphere with 3 <p < 2d xg(¢—1)/2+ 3. Hence,
X(ai,...,aq) is hyperbolic. For the hyperbolic area of X(ai,...,qq), we have
(cf. [12, p. 233))

= Z(p—2) < 2dg*. (4.1)

Ahyp(X(alaw-aaq)) B

Here and what follows, we always normalize the hyperbolic metrics so that its curvature is
equal to —4. Thus the hyperbolic metric on the unit disk is |dz|/(1 — |2|?). For a curve + on
X(ay,...,aq), we denote by lx(q,,...a,)(7) its hyperbolic length.

Let Q C C be an open set. We set

70, £.9) = - | A6 50T,

1

where
At f) =] e
C(t)nQ

Let a(z) be a meromorphic function on the plane which is distinct from f(z). Let f = g/h and
a = b/c be reduced representations. We put

Nira.f.9) = | att.a £ )T,

where n(t, a, f,2) is the number of solutions of gc — hb = 0 on C(¢) N Q ignoring multiplicity.

PrOPOSITION 4.3. Let f be a transcendental meromorphic function in the complex plane
and let a1, . ..,a, € Ry be distinct with ay = oo, whered > 1 and g > 3. Let x € X (a1, ..., aq)
be a point and let Q C X(a,...,a,) be a neighbourhood of x which is a topological disk or
an annulus with £x g, .. a,)(0Q) < 1/(2%°q). Let 0 < m < 27°, and let * € Q be a relatively
compact domain such that each connected component of 2 — Q* is an annulus of modulus
greater than or equal to m. For each 1 <i < ¢ — 2, we take i¢ € {i+1,...,q— 1} such that

|aio (z) = ai(z)] < |aj(z) — ai(@)|

forallj € {i+1,...,q—1}. Then we have

q—2 q dqg 1 3/4
( ) Z (r, fya;, Q) + 270WT (r + T(r)> (logr)l/4 (4.2)

i=1 i=1

for all r > 4.

Outline of the proof of Theorem 4.1. In the next section, we derive Theorem 4.1 from
Proposition 4.3. Sections 6-8 are devoted to the proof of Proposition 4.3. In Section 6, we
perturb f quasiconformally and construct a quasimeromorphic function g over 2, under
an additional assumption that the ¢-pointed sphere (@,al(m),...,aq(x)) is ir-thick (see
Definition 6.1). In Section 7, we apply Ahlfors’ theory of covering surfaces to g. For our purpose,
we need good control of the constants 'h’ (cf. [25]), here an important feature is polynomial
dependence of h with respect to the number of the targets. In Section 8, we finish the proof of
Theorem 4.1, using a similar trick as in [32, 33] based on combinatorial arguments of trees to
handle the case that the g-pointed sphere (C,ay(z), ..., aq(x)) is not ks-thick.
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5. Derivation of Theorem 4.1 from Proposition 4.3

In this section, we shall derive Theorem 4.1 from Proposition 4.3. We first introduce a smooth
(1,1)-form on the plane, which plays important role in the derivation. Let ay,...,a; € Rq —
{oo} be distinct rational functions, which are not identically equal to co. We define a non-
negative, smooth (1,1)-form k(f,a1,...,ar) by

alfsar, s ap) = dd°L g(|f< —a@E Y f(z)ak<z>|2)

outside the singular set which consists of zeros and common poles of f —ay,...,f —ar. We
remark that x(f,a1,...,ar) extends to the whole plane as a smooth (1,1)-form. To see this,
we take a meromorphic function h and entire functions g1, ..., gr without common zeros such
that

= hgk.

1
L
g1, f_ak

1
[—a

Then we have

K(f,al,. N ,ak) _ ddclog(|gl(z)|2 + -+ |9k(2)‘2) +ddclog|h(2)|2
= ddlog(|g1(2)> + - - - + |gr(2) %)

outside the zeros and poles of h. Now the function log(|g1(2)|? + - -+ + gk (2)]?) is a C°° subhar-
monic function. Hence dd®log(|gi(2)|? + -+ + |gk(2)|?) is a non-negative, smooth (1,1)-form
on the whole plane, which proves our claim. For an open set U C C, we set

T(Ta K’(fa Aty ..., ak’)a U) = Jl <J@(t)mU I‘i(f,al, . ,ak)> %

The derivation consists of three steps. The first step is to derive Proposition 5.1 from
Proposition 4.3. The issue is to show that

q—2 —w
- Ot
i—1 ( azo_az ()>

is comparable with T'(r, k(f,a1,...,ax),2(t)) modulo a small error, where Q* C Q(¢) C Q is
defined by (5.2) (cf. Lemma 5.2). A non-integrated version of this estimate is first proved (cf.
Lemma 5.4), where the error term depends on the length of cr(f, aq, ag, ay)(0(2(t) N C(r))),
then we apply length-area method to show this length is relatively small (cf. Lemma 5.5).

In the second step, we globalize Proposition 5.1 to show Proposition 5.7, which works on
C(r) while Proposition 5.1 works on €. The derivation is based on thick—thin decomposition of
the punctured sphere X (a1, ..., a,). On the thin parts of X (a1, ..., a,), which consist of annuli
or punctured discs with short boundaries, we may apply Proposition 5.1. On the thick parts of
X(ai,...,aq), we apply Proposition 5.1 over all embedded hyperbolic discs with a fixed small
hyperbolic radius and average the resulting estimates. Summing these estimates for the thin
parts and the thick parts, we establish Proposition 5.7.

In the final step, we estimate T'(r, k(f,a1,...,ar)) from below by

27 q
J max log 41 4 ﬁ+ZN(Tafaai)_2T(rvf)

o 1<i<q  [f(rei?),a;(re?)] 2

i=1

with a small error (cf. Lemma 5.10). This and Proposition 5.7 yield Theorem 4.1.

5.1. The first step

We derive the following proposition from Proposition 4.3.
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ProrosiTtioNn 5.1. Let f,ai,...,aq be the same as in Proposition 4.3. Let Q C
X(al,.. ,aq) be a topological disk or an annulus with {x(a,... a,)(0Q) <1/(2%¢). Let 0 <
m < 273 be given, and let Q* € Q be a relatively compact domain such that each connected
component of Q — Q* is an annulus of modulus greater than or equal to m. Then we have

dq® 1\
73 1/4
T(r,k(fyat,...,aq-1) E (r, fra;, ) +2 WT (T + T(T)) (logr)*/*  (5.1)

for all r > 4.

To derive this proposition from Proposition 4.3, the most important task is to compare the
left-hand sides of (4.2) and (5.1). This is contained in Lemma 5.2.

Let {A;}* | be the set of connected components of 2 — Q*. Here, k = 1 if () is a topological
disk and k£ = 2 if 2 is an annulus. Let p; be the modulus of the annulus A;. Then p; > m. Let
hi {1 < |z] < e*™i} — A; be a standard conformal map with h;(|]z| = 1) C 9Q*. For 0 < t <
m, we set

Q(t) :Wuum(u < 2| < €2, (5.2)

Then (t) is a domain with Q* € Q(¢) € Q. For r > 0, we set Q(r,t) = Q(¢t) N C(r).
Now we claim the key estimate in our derivation.

LEMMA 5.2. Letz € X(ay,...,aq) and * € 2 be the same as in Proposition 4.3. For each
1<i<q—2, wetakei® € {i+1,...,q— 1} such that

Flaie (@) — ai(z)| < Jaj(2) — ai(z)]

forallje{i+1,...,q—1}. Then we have

l

qZ ( - _al,Q(t)) —T(r,k(f,a1,...,ag_1), Q)| dt

=1

3/4
< 215q5T (T + 21_‘()> (lOg T)1/4 (53)

for r > 4.

This lemma is stronger than what we need in our derivation, since the assumption for ¢® is
weaker than that for i©. We shall apply Lemma 5.2 in Section 8 in this stronger form.

The proof of Lemma 5.2 is rather lengthy. We first remark that by the definition of ¢°, we
have

ler(aj(x), ai(x), as (), aq(x))] > §
forall j € {i+1,...,q}. The next lemma immediately implies

ler(a;(2), ai(2), aie (2), aq(2))| = 5 (5.4)
forallzeQand je{i+1,...,q}.

LEMMA 5.3. Let QC X(ai,...,aq) be a topological disk or an annulus with
CX(ay,...;aq) (082) < 2725, Then, for z,w € §, we have

[ex(ai(2), aj(2), ar(2), ar(2)), ex(ai(w), a;(w), ax (w), ay(w))] < 272,

where i, j, k and | are distinct elements in {1,...,q}.
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Proof. Let ¢ : X — C be a map defined by o(z) = cr(a;(z), a;j(2),ax(2),a(z)), where X =
X(a1,...,aq). Weremark that ¢ omits 0, 1 and co. We set X = X /Im(m1(Q) — 71(X)), where
X denotes the universal covering of X. Namely, X — X is the covering space corresponding
to 7(m () C m1(X), where 7 : w1 (2) — m1(X) is the induced group homomorphism (cf. [28,
p. 71]). Then ©Q C Xqg. Note that Xqg is an annulus when € C X is an essential annulus,
otherwise Xq = X. We denote by ¢ : Xq — C\{0,1, 00} the composition of the covering map
Xg—Xandyp: X — (C\{O7 ,00}. We consider two cases, whether lift b : Xo — D of ¢ to the
universal cover D — C\{0,1, 00} exists or not.

If the lift b : X — D exists, then we have dp(b(z),b(w)) < 2725, where dp is the hyperbolic
distance function on ID. Hence, we have

d@\{o’l’oo}(ap(z), p(w)) < 27%
where d¢, 4 ) s the hyperbolic distance function on C\{0,1,00}. By [6, p. 267], we have
dspherical<x7 y) < 5d@\{0,1,oo}<x7 y) (55)

for z,y € (@\{0, 1,00}, where dspherical is the spherical distance function on C with respect to
the line element |dz|/(1 + |z|?). Hence, we obtain our estimate.

We next consider the case when the lift b: Xo — D does not exist. In this case, Xq is
an annulus. For each £ € ), there exists a loop 7 C X passing through ¢ such that ~ is
homotopically non-trivial and £x (7) < 272°. We remark that

(i) the image (v) does not lift to the covering D — C\{0, 1, 00},
(ii) La(¥(y)) <2722, by (5.5), where (s denotes the length function with respect to the
spherical line element |dz|/(1 + |2]?).

Hence, we have dspherical(¥(€), {0, 1,00}) < 2723 for all £ € Q. Hence, ¢() is contained in the
2~23_neighbourhood of one of 0,1 and co. We establish our estimate.
Next we prove the following non-integrated version of (5.3). ]

LEMMA 5.4. We have

T
Q(r,t) i=
<297 Y La(er(f, aa, a, a,)(0Q(r, 1))

o, B,y

q— 21
- f7az>az‘ a)
17TJQ(7‘t) o) e

Here the summation is taken over all distinct triples («, 3,) in the set {1,2,...,q}.

Proof. To prove the lemma, it is enough to show

1
J ”i(f7aia"'7a'q—1)_J' H(f7ai+17"'7aq—1)_ 7‘[ Cr(f?a‘iaai’7a’q)*w(fj
Q(r,t) Q(r,t) T JQ(rt)

< 2% Z le(er(f,an,ag, ay)(08A(r,t))). (5.6)

o, B,y

Here, we remark x(f,aq—1) = 0.
We have outside the singular set

q—1 2

dd®log

- R(fa Qijyevny aq—l)a

— | f—a;



ZEROS OF HIGHER DERIVATIVES 731

q—1 1 2
ddclog Z f_aj :K:(faai-‘rla"'aaq—l)’
Jj=i1+1
ae —a;|? 1
dd¢log (1 + } — ail ) = ;cr(f, ai, ai.7aq)*wC.

Hence denoting
I/ — )P
(14 (@i —ai)/(f = a)P) (I [/ (f = a5)?)

we have outside the singular set

1
dd* log G= K:(fa Qs v vy aq—l) - ’%(f? Ajt1y -y aq—l) - ;Cr(f7 Qj, Qe aq)*w(fj' (57)

Set
1 1

:1+mw—mvwgww"%:<v—mw+mr—mmmu—%ﬂr
Tl e (F—am)/(f—apl

Then we have

Gh

G3

! L YAF —ail  fae —af?)
T+ [(am —a) /(= a) " ST 1/(f — ap)P

Since G1 < 1, G5 < 2, G3 < 1, we have

G = =G+ GaGs.

G <3.

Cram. If z € Q, then
G(z) > —.

Proof of Claim. We consider two cases.

Case 1: |cr(f(2),ai(2),a:(2),a4(2))| > %. Note that Gi(z)=[0,cr(f(2),a;(2),a;s(2),
aq(2))]?. Thus we have G > G > 1-.

Case 2: |cr(f(2),ai(2), aze(2),aq(2))| < 7. Since

) e ) ai(2) 0 (), 4(2))
cr(f(z),al( )7 q( )5 T ( )) (f( . ) Z)
we have [cr(f(2), ai(2), aq(2), a:(2))] < 3. Since

cr(f(2), aq(2), ai(2), ais (2))

T 1 alf(2),ai2), aie(2), aq(2))’
we have [cr(f(z),aq(2),ai(2),a:(2))| < 3. Hence
_ ! > 2

ler(f(2), ai(2), ag(2), a (2)) + ler(f(2), ag(2), ai(2), aze ()2 = 17"
By (5.4), we have |cr(as(2), a;i(2), aze (2), aq(2))| > 5 for all s =i+1,...,q — 1. Thus, we have
fors=i+1,...,q—1 and s # i°,

ler(f(2), ais (2), aq(2), as(2))|
cr(f(2), ai(2), aie (2), aq(2)) — 1

_ < 5.

cr(f(2), ai(2), aie (2), aq(2)) — cx(as(2), ai(2), aie (2), aq(2)) | ~

Ga(z)
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Hence, we obtain

Ga(2) = 1 1

P .
I+ Zs i+1,57#4° |cr(f(z), Qje (Z), aq(z)v as(z))|2 1+ 25¢

Thus, we have

1
G > GaGs > .
2737 9 1 50q
On combining these two cases, we obtain
1 1 1
G > > 56, UJ
mm{w 2+50q} 264

Now log G is a smooth function on (2. Hence, we have

: G
J' ddclogG:J d°10gG:J' .
Q(r,t) 89 (r,t) ooy G

Thus by the claim above, we have

J dd®log G| < 2°
Q(r,t)

qJ |[d°G.
oQ(r,t)

Hence, by (5.7), we have

< QGQJ d°c].
oQ(r,t)

1
J' (H(fa gy e ;aq—l) - H(f’ Qjg1y-ey a‘q—l) - —cr(f, CLi,Gi-,aq)*w(@)
Q(r,t) ™

Since |d¢|z|?| < 2|2||dz|, we have

2|(ae —ai)/(f — ai)ll((aie — ai)/(f — ai))'| ds] < |((aie —ai)/(f —ai))'| dz|
(1 + [(ais —ai)/(f — a;)|?)? S 4@ —a)/(f —a) P

1d°G1| <

Hence, we obtain
| G < te (el fansam ) 0005, 1).
oQ(r,t)

For w € C, we have
1+ |w|?

Jw? + 1 = wf* > Jwl* + (1 = |w])® > —5

Hence, we have

2(f = ai)/(f = aw)lI((f = a:)/(f — ai))’ |+2|(ai- —a;)/(f —a)||
((ais — ai)/(f — aiv))

. /
7G| < (T — a0/ —am)P + (@ — a)/(f —am)E)? 421
Ol((f — a)/(f — )| Ol (ase — a)/(f —a))| |
S T /T = a1 Th lan = o)/ = a1

Hence,
LQ( ) |d°Ga| < e (cr(f, ai,aq,azs)(02r,t))) + 9a(cr(f, aq, as, aze)(0(r,t))).
Also we have
S0 e 2 —ai )/ (f = a)l|((f —ais)/(f —a;))]
(L4 3200 e [(F = aie) [ (f = a;)[2)?

S ((F—am)/(f )]
2 T am = app

|[d°Gs| <

|dz|

X
J=itl it
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hence
qg—1

J{)Q(nt) |d GS‘ < Z KC(Cr(fa ai-,aq,aj)(ﬁQ(r, t)))

j=itl,j£e

Hence, we have

J d°G| = J |d°Gy + Gad°Gs + G3d°Ga| <9 Y Le(cr(f, an, ag, ay)(09(r,1))).
o0 (r,t) oQ(r,t) By

This proves (5.6). We conclude the proof of Lemma 5.4. O

Now we integrate both sides of the estimate of Lemma 5.4 to obtain

I

( Qe — a; Q(t)) —T(r,k(f,an,...,aq-1),t))|dt

<29 ) J J (cr(f, aas ap, ay) (I (u, t)))d—udt (5.8)

o, B,y

To estimate the right-hand side, we need the following

LEMMA 5.5.  Let p(z)|dz| be a conformal metric on Q. Set A(r,t) = [, , 2)|dz|? and
Urt) = Jooemp P(2)ld2]. Let A, A :Rs; — Rog be functions with

A(r) > max {J A(u, m)du,logr} ,
u

1

A(r) > max {A(rm (r + A(lr)) } .

Then we have

forr > e.

Proof. Set
Y1(r,t) = 0Qr, t) NOC(r), v2(r,t) = 0Q(r,t)\11(r, 1),
Bt =] el =] p@ldl,
Y1 (r;t) Y2 (r,t)

Using the Schwarz inequality, we have

d
01 (r, 1) < 2777“514(7", t).

We define r; € [1,7] according to three cases: (i) if A(1,¢) > 1, then vy =1, (ii) if A(r,t) <1,
then r; = r, (iii) otherwise, we may take 71 € [1,r] such that A(ry,t) = 1. Then we have

jmu,wd“:j )2 +j () 2
1 U

1

du
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‘We have

o dA L du "qu\Y? o d 1/2
P < (| & 2 Au,
L udu (u,t) " <L " ) (L Tu (u,t) du)

< (logr)'/?

JT dA du (" dA/du ut

r 1/2 1/2
< J dA/du u, t) du J A(u,t) du
T1 A(U,’ t) T1 u

< (log™ A(r, t))/? (J A(“’t)du> v .

1 u

< logr,

Hence, we have

" du T A(u,t) Y
J 0y (u, t) < V2r(log™ A(r, t))1/? (J ’du) + V27 logr.
1 1 u
Let r < R < er. Since A(r, t) is increasing, we have
R R
A(r,t)log B_ A(r, t)J du < J A(u,t)d—u.
r r U 1

Hence, using log z < 24/z, we obtain

R " d
log A(r,t) < —loglog . + log J A(u,t)j)
1

R 1/2
—loglog § +2 (J A(u > .
1

1/2
log™ A(r,t) < —log log —+2 < > .
Thus, by /= +y < /x + /¥, we obtain
= p 1/2 p 3/4
J 04 (u, t) <V2 loglog— (J A(u,t)u> + 2T <J A(u, t)u> + V2mlogr.
u u

Hence, we conclude

JmJ'Tﬁl(u t)—dt \/; —loglogf<JRA(u,m)cf7>l/2

0 J1 1

R 3/4
V2
logr )i/ < A(u > + gﬂ-logr.

1

The last term is non-negative, hence

R

1

We set R =1+ 1/A(r). Since (log2)z < log(l + z) for 0 < z < 1, we have

—loglog E —loglog ( TA( >

< log ZL() < log (2rA(r)) < 2logr + log A(r)
0

< 2(A() Y2 (log r) Y2 4+ 2A(r)Y2 < 4A(r)Y?(log r)'/2.
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Hence, we have

El(u, )7 dt

Jm J 3v2m + 2f~( )/ (log r) /4.

0 J1

Next, using the Schwarz inequality, we have

d
ly(r, 1) < Q%A(r, t).

We have
J lo(rt) dt < V2 d—(r, t) dt
m 1/2 m 1/2
<V2 (J dt) (J A(r,t) dt>
0 0o d
< \@A(r m)l/2
Since
" u " du\'?
J et < iogr ([ am )
1 1
we obtain
" d“ V2 A ()3/4 1/4
fg(u t) —dt V2+/log r — < V2A(r)**(log r) /4.
0 u
Since 3v/27 + 24/7 < 24, we obtain our estimate. U

Applying Lemma 5.5 to the case A(r) = 2T (r) and A(r) = 27T (r + 1/2T(r)) for r > 74,
we obtain

COROLLARY 5.6. For r > 74, we have

m T u 3/4
J JEC(cr(f,ai,aj,ak)(aﬂ(u,t)))d—dt <r+2T1(r)) (logr)M/4. (5.9)

0 J1

Now we obtain (5.3) by substituting (5.9) to (5.8). Thus, we have proved Lemma 5.2.

Derivation of Proposition 5.1 from Proposition 4.3. Let Q* € Q C X(aq,...,a4) be the
same as in Proposition 5.1. We take a point z € Q and chose i® for each 1 <i<¢q—2 as
in Proposition 4.3. The estimate (5.3) implies for r > 4

T(T K’(fvala" aq 1)39*)

Z ( a0 — C;’ (m/2)) N 21;‘17(1571 <T + 27“1(7"))3/4 (log r)*/4,

On the other hand, Proposition 4.3 applied to Q(m/2) € Q implies

q—2 q dqg 1 3/4 /
i 2727T 1 1/4
1:1 (L0 < 2N ) + 27 () e

for r > ~4. This proves Proposition 5.1.
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5.2. The second step

In Proposition 5.1, we treat a local value distribution of f over a topological disk or an annulus
whose boundary is short. In this step, we consider global value distribution. We shall derive
the following proposition from Proposition 5.1.

ProposiTION 5.7. Let f,a1,...,a, be the same as in Proposition 4.3. Given ¢ > 0, we
have
q d q13 1 3/4
(1—e)T(r,k(f,a1,...,aq-1) Z 7, fya;) + 23 s T<T+T(T)) (logr)** (5.10)

i=1

for all r > ~y4.

To derive this proposition from Proposition 5.1, we use thick—thin decomposition of
the punctured sphere X = X(a1,...,aq) (cf. [7, Theorem 4.4.6]): For § < arcsinh(1)/2, let
Ay, ..., A; be the connected components of X_g5, where X5 denote the subset of X with
hyperbolic injectivity radius less than §. Here the hyperbolic injectivity radius at a point
x € X is the radius of the largest embedded hyperbolic ball centred at x. Then each A; is
either a horoball neighbourhood of a cusp or a collar neighbourhood of a closed geodesic of
length less than 20. The number k satisfies the bound k < 2p — 3, where p is the number of
the punctures of X. Since p < d¢?, we have

k < 2d¢*. (5.11)

LEMMA 5.8. Letd < % and let A be a connected component of X 5. Let C' be a boundary
circle of A. Then

(x(C) < 46. (5.12)

Proof. Let w: Xc — X be the covering space corresponding to (C) C w1 (X). Then X¢
is an annulus or a punctured disk. We identify X¢ with A(R) = {#;1 < |z| < R} and A with
{z;5 < |z| < R/s}, where 1 < s <+/R. When A is a cusp neighbourhood, then R = co. The
hyperbolic metric on A(R) is given by

m/log R |dz|
2sin(mlog |z|/log R) |2|
We note that this metric converges to the hyperbolic metric of the punctured disk when R — oo.

For 1 < r < R, we denote by C, the circle |z| = r in A(R) and by n(r) the hyperbolic length
of C,.. Then we have

7/log R

n(r) = 7Tsin(w logr/log R)’

We may take s < t < v/R such that 5(t) = 25. We claim that

t
log; < . (5.13)

To show this, we take a point a € Oy and a closed essential loop v C A(R) passing through a
such that the hyperbolic length satisfies ¢(y) = 24. If v and C; do not intersect, then £(v) > 24,
which is a contradiction. Hence, v and C} intersect. This shows

diSt(CS, Ct) < 5,
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where dist(Cy, Cy) is the hyperbolic distance of Cs and Cy. On the other hand, we have

1 r 7/log R dx

dist(C, Ct) = 2 |, sin(nlogz/logR) =

RN

xT

This shows (5.13).
Now by (5.13), we have

. [(7mlogt . [(7mlogs mlog(t/s) . (rmlogs w2
< < .
S ( log R ) - ( log R ) * log R S log R + log R
Since 7(t) < 3, we have
w2 _ 1 “in mlogt
logR = 2 logR )~
mlogt . (mlogs
<2 .
n(logR) sm(logR)

Ix(C) =n(s) < 2n(t) = 44. O

Thus,

Hence, we obtain

For x € X, we denote by p(x) the hyperbolic injectivity radius at .

COROLLARY 5.9. Let § and A be the same as in Lemma 5.8. For § < §' < 1, let A be the
connected component of X o5 such that A C A’. Let B be a connected component of A’ — A.
Then B is an annulus whose modulus p satisfies

6 =46

- (5.14)

>

Proof. Let w: A(R) — X be the covering as in the proof of Lemma 5.8. We identify A with
{z;5 < |z| < R/s}, where 1 < s < v/R. Then A’ corresponds to {z;e ?™"s < |z| < e*™*R/s}.
We may assume without loss of generality that B corresponds to {z;e 2™s < |z| < s}. Then
using the notation in the proof of Lemma 5.8, we have

. L w/log R dz
dist(Co-zrus, Cs) = 2 J'e—zms sin(rlogz/log R) «
1 (° dx
5| L @

< mn(e ?™s).

By Lemma 5.8, we have n(e~?™"s) < 40’. Hence, we have
. dist(Ce-2mug, C5)
44’ '
On the other hand, we obviously have |p(x) — p(2')| < dist(x, 2’) for all z,2’ € X. Hence,
we have

dist(0X 5,0Xc5) = 0" — 4. (5.15)
Hence, we obtain (5.14). O
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For § > 0 and &' > ¢, we set
Xos={z € X; plx) 20}, Xpon={re€X;d<p)<d}

Derivation of Proposition 5.7 from Proposition 5.1. It is enough to consider the case ¢ < 1,
for otherwise the estimate (5.10) is obvious. We take a large integer L such that
5 8
-<L<-. (5.16)
€ €
Set o = 1/(2%%¢). Since Xiotj(o/L)o+(i+1)(o/L)) for 7 =0,1,..., L — 1 are disjoint, we have
L—1 q

D (T, 5, Xiosjo /Lot 410/ 1) Z 7 f5 a6, Xiotj(o/L).0+ (141)(0/1))))
=0 t=1

q
Z faat

Here k = k(f,aq,. .. 7aq,l) We choose 0 < 7 < L — 1 which minimizes

q
T(r, 5y Xiosj(o/L).o+ (G40 (0/0) + D N0 f1 00 KXot jo/0).04 (41 (0/L)))s
t=1

and set =0+ j(o/L), 7' =0+ (j + 1)(0/L). Then we have

1
—(T(r,) +

MQ

q
T(T‘, R, X[T,T’)) + ZN(T, fv at,X[T,T/)) <
t=1

N(r, f,a)). (5.17)

1

t
In the following, we shall prove the following two estimates for r >

Ya:
~ 3/4
T(r,k, X<r) < ZN(T, fras, Xem) + 280021 12T ( )> (log r)'/4, (5.18)
’I"
t=1
3 a 3/4
<1 - L) T(T7 K:vX)T’) < ZN(ra f7 a/i,XQT) + 2140d2q13L4T (’I" + T(r)) (10gT)1/4.

i=1

(5.19)
These two estimates imply (5.10). Indeed combined with (5.17), we obtain

q 3/4
<1 - i) T(rk) < (1 + i) ;N(r, fra;) + 2" d? B LAT (r + T??“)) (log r)*/4
for r > ~4. Hence by 1 —5/L < (1 —4/L)/(1+1/L) and (5.16), we obtain (5.10).

Now it remains to prove (5.18) and (5.19). We first prove (5.18).

Let Aq,...,Ax be the connected components of X.,. Then each A; is either a horoball
neighbourhood of a cusp or a collar neighbourhood of a geodesic of length less than 27. Let A,
be the connected component of X+ such that A; C A’. Let u be the modulus of a connected
component of A, — A;. Then by (5.14), we have

- - 1

47’ 8L’

We first assume that A; is a collar neighbourhood of a geodesic. By (5.12), we may apply
Proposition 5.1 for Q@ = A} and Q* = A, to obtain

o=

T(r)

If A; is a horoball neighbourhood of a cusp, this estimate is still true by a limiting argument;
First we take a small constant 0 < § < 7, and remove A; N X4 from A; to obtain an annulus

q 3/4
T (r,k,A;) < ZN (r, f,a;, AL) +27dg° L*T (T + ) (log 7).
i=1
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B,. Next, we remove a small horoball neighbourhood from A} to obtain an annulus B so that
B; is relatively compact in B/ and two connected components of B] — B; are annuli of the same
modulus p. Then we apply Proposmon 5.1 for Q = B], O* = B; and finally let 6 — 0.

Thus, by (5.11), we obtain (5.18).

Next we prove (5.19). For z € X, we denote by D(z) the hyperbolic 1/(23%¢L)-ball centered
at . Then, for x € X5,, D(x) is an embedded ball. Let D*(x) C D(z) be the hyperbolic
ball centred at = such that the modulus of the annulus D(x) — D*(z) is equal to 1/(8L). For
x € X5, the hyperbolic areas of D(x) and D*(z) are constants independent of z. We denote
these constants by

o= Apyp(D(2)), o' = Anyp(D*(2)).

For x € X>,, we apply Proposition 5.1 for Q@ = D(z) and Q* = D*(z) to obtain

q

3/4
T(r,k, D*( Z r, f,as, D(x)) +27d¢° L*T (r + T(r)) (log r)*/* (5.20)
i=1

for 7 > v4. We set

. 1
Y = {Z S X;dlSt(Z,X)T/) < M}

We integrate both sides of (5.20) over Y with respect to the hyperbolic area of X. Then by
(4.1), we obtain

J T(r, k, D*(y)) dAnyp ()
Y

q 3/4
<| ZN<r,f,ai7D<y>>dAhyp<y>+280d2q“L2T<r+m)) (logr)/%.  (5.21)

We note that D*(z) is contained in Y for € X> .. Hence, for x € X>,/, we have

| AAiyols) = Anp(D () =
{yeY; zeD*(y)}

We set k = &(x) dz A dZ. Then K(x) is a non-negative, smooth function. By Fubini’s theorem,
we have

J T(r,k, D*(y)) dAnyp(y) = ” JTJ R(x) dx A dmd dAnyp (y)
Y v J1 Jp=y)nc)

J

o dt
_ J J dApyo(y) | #(2) do A dz®
J1 JazeC(t) \J{yeY; zeD*(y)} t

o dt
J J dAnyp(y) | R(z) dz A dZ—
J1 Jzec(t)nXs . \HyeY;zeD*(y)} t

=a"T(r Kk, X>r). (5.22)

WV

Next by (5.15), D(z) is contained in X, for € Y. Hence, for x € X, we have

[ dAnyp(y) = 0.
{yeY; zeD(y)}
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Hence, by Fubini’s theorem, we have

q
dt
jz o, D) ) = [ [ AL Ay (y)
vy J1 Jp)nc

dt
dAhyp( ) dl/f

J Le@(t) J‘{er; z€D(y)}

dt
dAnyp (y) dv +

1 Le«:(t)nX>T Ler; z€D(y)}
q

gaZN(r,f,ai,XgT). (5.23)
i=1

Here, v is a measure such that v(A) = Y7 #{z € 4; f(2) = a;(2)}. Hence, by (5.21)-(5.23),
we obtain
q

3/4
_ 1
a*T(r, Kk, X>r) < aZN(r, fras, Xsp) +280d%¢" 12T (r + T(r)) (log r)*/4.

Now to conclude the proof of (5.19), what we need to prove is as follows:

1 . 3
Z oz @ ><1‘L)“~

The first estimate follows from the fact that the area of the hyperbolic r-ball is greater than
7r?. For the second estimate, we note that Apy,—p(D(r)) = 7r?/(1 —r?) for 0 < r < 1. Hence,
for0<r< %, we have

re—2/Lp2

2
_ayp TT .
Anyp-n(D(e “HEr)) = m Z € J/Ll_irz =€ 3/LAhyp—JD(]D)(T))-

Thus, we have Ayyp—p(D(e /7)) > (1 — 3/L)Apyp—n(D(r)) for 0 < r < . This shows the
second estimate.

5.3. The final step

We derive Theorem 4.1 from Proposition 5.7. We need the following lemma:

LEMMA 5.10. Let ay,asz...,aq € Rq be distinct with a; = 0 and aq, = oo. Then we have

27 1 de q
1 . — — N ) — 2T
Jo 11213&2((1 og [F(r e, a;(re®)] 21 +; (r, f,a;) (r, f)
<T(r6(f,01,...,a09-1)) + dq? logr + q(Cq+1). (5.24)

Here, we recall the constant C 4 from (2.3).
Proposition 5.7 and Lemma 5.10 imply Theorem 4.1. We take a positive constant v/ > g
such that the following two estimates are valid for all r > ~/:

dlogr 4 Cpaq+1 < T(r)3*(logr)/4, (5.25)

2180d2T(r)3/4(log 7")1/4 < T(r)4/5(log 7,)1/5.

E{r>1;T<T+T(1T)> >2T(r)}.

‘We set
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Then by Borel’s growth lemma [25, p. 245], F has finite linear measure. We set
Epa={r;0<r<~,}UE.

We note that E¢ 4 only depends on f and d.
By Lemma 2.1 and (5.25), we have

m(r, fya;) + N(r, fya;) <T(r, f) + T(r)3/4(10g r)1/4 < 2T(r, f) (5.26)

for r > +/. Thus, the estimate of Theorem 4.1 is obvious if € > 2¢ or ¢ < 2. In the following,
we assume that ¢ < 2¢ and ¢ > 3.
We first consider the special case that a; = 0 and a, = co. By (5.24) and (5.25), we have

o 1 <
1 . —— — N ) —=2T
JO 1121?%((] 0g [f(T 610),aj(7‘ 67‘0)] o +Jz::1 (Tv f7 a]) (7", f)

< T(T’, H(fa Ay ..., aq—l)) + qu(T', f)5/4(10g T')l/4

for r > +/,. We apply Proposition 5.7, where ¢ is replaced by £/4¢, to obtain

0 121]?%110?; [f(rei?),a;(re?)] o + ;N(ﬁ fra;) —2T(r, f)

sz 1 o/ —

€ ~ o 162 d*q"" 1\ 1/4
< 1+) N(r, f,a;) + 2 T(T+) logr
(1+5 > N0 fra ) osn

et

for r > +/,. Here, we remark that 1/(1 —e/4¢q) < 14 ¢/2¢ < 2. Hence by (5.26), we have

1 - —— — N ;
195<q o8 [f(re),a;(re)] 2m +]Z=; 1 fr5)

r” 1 P/ —
0

17

q
< 2+E)T(r, ) + 5oy T(r) Y logr) V7

for all » > 0 outside Ey 4.

For the general case, we add two constant functions 0 and oo to the set {ai,...,aq}, if
necessary, to reduce to the special case above. Note that in this reduction, the number ¢ is at
most replaced by ¢ + 2, which is smaller than 2q.

Proof of Lemma 5.10. 'We need some estimates involving chordal distance.

CrLamM. For w,aq,...,a € C, we set

A w,a a)—llo 1+i£ +lo ! +lo !
B O = R Tw0] T Tw o]

Then we have:

k
1 1 1
A < log —— +log —— + log ——— + k, 5.27
(w01, san) < 3 log o +log o +log g (527

1
} < A(wyay,...,ax) +2. (5.28)

[w, o0

,log ,log

max og——,...,10
g ’ , 108 [ [U}70]

[w, a4] w, ag)
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Proof.  We first prove (5.27). We have

|wl|? 1 1 log k
I 1+ —— I 1
Og( To—al)f T w0 T % e T 2

{ 1 log 2

Alw,ay,...,ar) < max

+—— ¢ +lo ! +1o #4—1(%]€
BT, 0] " Blw,o0 T2
1 log 2k

[w, o0] + 2

[w, a;] 2

1 1
< Z log : + log [,0] + log

Since log 2k < 2k, we obtain (5.27).
To prove (5.28), we first show

1 1 1
log —— < - log + log + log + 2
[wya] ~ 2 a|2 [w, 00]
for w,a € C. Indeed since |w| > |a|/2 or |w —al > |a|/2 we have
lw—al> + |w* > Lal?.

Hence, if |a| > 1, we have

_ A2 2 2
waP P (LY, P 1
T+ JaP? wi) 2 1T+ aP) ~ 8

|w — a|? + Jw|? 1 |wl|? 1 1

_— 14— )2—(14+—= | = -

( 1+ [af? Twr)” 2 ) 7 2

lw — a|? + |w|? 1 11
_— 1 > - > —.
( T+ [aP? TpE)Z8 @

By this estimate, we have

If |a| < 1, we have

Thus, we obtain

1 1+ |w?)(1 + |a|?
210g[w ]:bg( | I)a|2||>

1+ |al?
=1 1 log(1 1 _—
og(-i- )—i—og( +|w)+0g<|w_&|2+w|2
1
log(1+ )+log 1+ |wl )+10g<1+|w2>+4
1 1
= log 1+ +2log — + 2log —— + 4.
[w, o0] [w, 0]
This proves (5.29).
Now by (5.29), we have
1 1 |wl|? 1 1
log—— < =1 1+ ——— 1 1 2
% fwal 52 Og( " |w—az-2> T8 T 0] T Twod]

< A(w,ay,...,a5) +2.
This proves (5.28).

Now we prove Lemma 5.10. Define a holomorphic curve F : C — P72 by

SR
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Using the notation from (2.4), we have
T(r,c(f,a1,...,aq-1)) =T (r, F).
Thus, by (2.6), we have
T(r,k(f,a1,...,a9-1)) = N(r,F,H) + m(r, F,H) — m(1, F, H). (5.30)

We shall estimate the right-hand side of (5.30). By the definition of the Weil function Ay (cf.
(2.5)), we have

1 1
A 0 F(z) = A (=), a2(2). .. ag-1(2) — log sy = log rs
Thus, we have

2

m(r,F,H) = L A(f(re),as(re), ... a1 (r eie))g —m(r, f,0) — m(r, f,0).
Hence, by (5.27), we have
m(1,F,H) < (¢q—2)Cfa+q—2. (5.31)
By (5.28), we have
J'27T max log . ! . d6‘ m(r, F, H) +m(r, f,0) +m(r, f,00) + 2. (5.32)
o 1<isa - [f(re?),a;(re)] o S

y (5.30)—(5.32), we obtain

2m 1 do
N(r,F,H 1 : 7 -
(r, F, )+L 18X 108 T o] 2 m(r, f,0) —m(r, f,00)

<T(r6(f,a1,...,a9-1)) + (¢ —2)Ca+q. (5.33)

Next we claim

ZN(T‘, f,a;) < N(r,F,H) 4 d¢* log r. (5.34)

To show this, we take reduced representations f = g/h and a; = b;/c;, where b; and ¢; are
polynomials of degree less than or equal to d. Since

C1 Cq—1
F zZ) = —_— e — s
( ) |:Clg—b1h Cq_lg—bq_lh:|
we have
" g —bih | dt
NrFH) =| Y max {00rd, — 2 %9 = (5.35)
1 2<i<qg—1 c19 —bih C; t
z€C(t)
Hence, we have
N(r,F,H) > J ,dnax {o ord —— b } ZN 7,0 (5.36)
zec(r) 19— 0

Since mln{ord (cig — b;h),ord,(cjg — bjh)} < ord,(bic; — bje;), we have

Zordz(cig —bh) £ max {ord (c;g — bjh)} + Z ord, (bic; — bjc;)

i<q—
asisa 2<i<j<q—1

g — bih
< max {O,ordz Cg} + Z Ordz(biCj - bjCi)-

2<i<q—1 c19 —bih
SIS A 1<i<j<g-1
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Combined with (5.36), we obtain

q—1 qg—1
N(r,f,a;) < N(r,F,H)+ > N(rbic; — bje;,0)+ Y _ N(r,¢;,0).
i=2 1<i<j<qg—1 i=2

This shows (5.34).
Now by (5.33), (5.34) and

m(r,f,()) +N(’I",f,0> —I—m(r,f,oo) +N(T‘,f,00) < QT(T’f) +20f7d»
we obtain (5.24). O

6. Holomorphic motion and quasiconformal perturbation

6.1. Introduction

We begin the proof of Proposition 4.3. Our goal of this section is to perturb f quasiconformally
and construct a quasimeromorphic function g over €2 which has appropriate properties to show
Proposition 4.3. Our main tool is holomorphic motion, which we introduce below.

A holomorphic motion of a set A C C over a connected complex manifold with base point
(Y,y) is a mapping ¢ : Y x A — C, given by (), 2) — ¢(2) = ¢(), 2), such that:

(1) For each fixed z € A, ¢x(2) is a holomorphic function of A,
(2) For each fixed A € Y, ¢x(z) is an injective function of z,
(3) The injection is the identity at the base point, that is, ¢, (z) = 2.

A fundamental result is that if ¢ is a holomorphic motion of the whole sphere @, then for each
fixed A € Y, ¢5(2) is a quasiconformal map of z.

Given a Riemann sphere with finitely many punctures S with #(C —85) >3, we call a
Beltrami coefficient p on S harmonic if

e
05(2)

where 1(2) dz? is a holomorphic quadratic differential on S and gg(z)|dz| is the Poincaré line
element in S.

n(z) 5

DEFINITION 6.1 (e-thick). Let 0 <e < 1. A g-pointed sphere (C,bl, ..., bg) is called e-
thick if there is no annulus A C C\{by, ..., by} with Mod(A4) > —(1/27)loge such that each
connected component of C\A contains at least two elements of {b1,...,b,}.

Let ai,...,ay € Rq, where d>1 and ¢q >3, be distinct with a; =00 and let z €
X(ai,...,aq). Over X(aq,...,aq), we consider {ai(A),...,a,(N)} as a holomorphic motion ¢ of
g-points {a;(z),...,a,(x)} C C. Namely the map ¢ : X (a1,...,a,) x {a1(z),...,aq(x)} — C
is defined by

(A ai(z)) = ai(A).

PROPOSITION 6.2. Let f and x € Q2 C X(a1,...,aq) be the same as in Proposition 4.3.
Assume that (C,ay(x), ..., a,(z)) is o -thick.

(1) There exists a holomorphic motion é : Q x C — C which agrees with ¢ on their common
domain of definition, such that for each A € Q the Beltrami coeflicient p $, 18 harmonic on

C —{ai(x),...,aq4(x)} and satisfies 124, oo < 55-
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(2) We define a map g: Q — C by

DA, g(N) = F(A). (6.1)
Then g is quasimeromorphic with |gz| < %|g2| and real-analytic on the inverse image of

C\{ai(z),...,aq(x)}.

(3) Let Q* € Q be the same as in Proposition 4.3. We recall the notation Q(t) from (5.2).

We have
J T(nf_“ﬂQ@)T<ng_%@),Q@>Pt
0 aj = a; aj(z) — ai(x)
3/4
< 229 d 2T 1 - 1 1/4
1 (14 g70)  Oorn)
for r > ~4, where ¢ and j are distinct elements in {1,...,q— 1}.

The role of the motion é in the proof of Proposition 4.3 is to convert the rational
target functions ag,...,a, into constants aq(z),...,aq(x), at the price of replacing f by a
quasimeromorphic function g. Indeed the two equations f(z) = a;(z) and g(z) = a;(x) are
equivalent over €2 as the definition (6.1) shows. Thus

ﬁ(gzai($)79(r7 t)) = ﬁ(fz ai,Q(r, t))? (62)

where we recall Q(r,t) = Q(t) N C(r). Proposition 6.2(3) claims that the order functions of f
and g are close. In the next section, we apply Ahlfors’ theory to the quasimeromorphic function
g with the constant targets a1(x), ..., aq(z). The conclusion is Proposition 7.2, which is a main
result of Sections 6 and 7.

We remark that Proposition 6.2 is trivial if ¢ = 3. Indeed the desired motion is given by a
holomorphic map qAﬁ : Q0 x C — C defined by

cr(p(A, 2), a1(A), az(A), asz(N)) = cr(z, a1(x), az(z), as(x)).
Here, pj, = 0. The map g defined by (6.1) is meromorphic and satisfies

cr(f(2), a1(2), a2(2), as(2)) = cr(g(2), ar(x), az(), as(x)).

Thus the left-hand side of the estimate of Proposition 6.2(3) is equal to 0. Hence to prove
Proposition 6.2, it is enough to consider the case ¢ > 4.

Teichmiiller space. We review some facts from Teichmiiller theory which is needed in the
proof of Proposition 6.2. For details of the theory, we refer the reader to [2, 18, 19, 24]. Let S
be a g-punctured sphere, where ¢ > 4. The Teichmiiller space T'(S) of S is the set of Teichmiiller
classes [¢] of quasiconformal mappings

<p:S'—><p(S)CC,

where, by definition, two such quasiconformal maps ¢ and ¢’ belong to the same Teichmiiller
class if and only if there exists a conformal map h : ¢(S) — ¢'(S) such that the self-mapping
(¢')"tohoy of S is isotopic to the identity modulo the punctures C— 8. Let S* be the
complex conjugate of S. Let Q(S*) be the space of holomorphic quadratic differentials on S*
with at worst simple poles at the punctures of S*. We have the Bers embedding 3 : T'(S) —
Q(S*), which preserves the base points, that is, 8([ids]) = 0. For each ¢ € Q(S*), we define a
harmonic Beltrami differential u[¢)] on S by
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where pg(z)|dz| is the Poincaré line element in S. We consider Q(S*) as a Banach space with
a Nehari norm

[Y]loe = sup [u[¥](2)]-
z€S

For § >0, we set B(6) ={ € Q(S);||¥||c < }. A fundamental result about the Bers
embedding is

B(1) c B(T(S)) C B(3). (6.3)

For the Carathéodory distance cp(3) on B(3), we have (cf. [10])

CB(3) (0,9) = da(0,[|yl[oc/3)- (6.4)

To see this, we remark that for each z € S, the map y — p[y](z) is holomorphic. This gives a
holomorphic map u[-](2) : B(3) — A(3). Hence by the definition of the Carathéodory distance,
we have

e8(3)(0) = sup da (0, uly)(2)/3) = da 0, ly[loc/3).

On the other hand, there is a holomorphic map A — B(3) defined by ¢ — (3/]|y||ec)ty. Thus,
by the distance decreasing property, we have

da(0, [[yllee/3) = cB(3)(0,y).

Thus, we obtain (6.4).

Universal holomorphic motion. Let E = {b1,...,b;_3,0,1,00} C C be a set of distinct q-
points in the Riemann sphere. Every ¢ € T(C — E) is a Teichmiiller class ] of a quasiconformal
mapping ¢ of C—E into C. Replacing ¢ by a composition ho ¢ with a suitable Mdbius
transformation h, we may assume without loss of generality that ¢ is normalized in the sense
that ¢ fixes 0, 1 and oo.

The universal holomorphic motion ® : T(C — E) x E — C of E over (T(C — E), [i ida_ ) is
defined by

o([¢],e) = p(e),

where ¢ is a normalized quasiconformal map. The universal holomorphic motion is well
defined. Indeed if ¢ and ¢’ are two normalized quasiconformal maps which belong to the
same Teichmiiller class, then there exists a conformal map h of ¢(C — E) into ¢'(C — E) such
that (¢')~1 o ho ¢ is isotopic to the identity modulo E. The map h is the identity, for A must
be a Mébius transform which fixes 0, 1 and co. Thus, we conclude (¢')|g = ¢|g, which means
that the map ® is well-defined. Note that the universal holomorphic motion is normalized in
the sense that 0,1, 00 € E are the fixed points of the map ®(t,-) for every ¢t € T(C — E).

We extend the universal holomorphic motion ® to a holomorphic motion ® : B(1) x C — C
of whole sphere over (B(1),0). Here, we identify T'(C — E) with its image S(T(C — E)) under
the Bers embedding and consider B(1) C T((@ — E). The motion is defined by

d(t, z) = wl(2)

for t € B(1), where w**] is the normalized quasiconformal mapping whose Beltrami coefficient
is p[t]. By the Ahlfors-Weill theorem, we have [w#!!l] = ¢, hence ®(t,e) = ®(t, e) for all (t,e) €
B(1) x E. Since u[t] depends holomorphically on ¢, the map t — w*’l(2) is holomorphic for
each fixed z € C. Thus, dis a holomorphic motion of whole sphere.

We remark that the map ¢ +— pu[t](z) is holomorphic for each z and the map (¢, z) — pu[t](2)
is real analytic on B(1) x (C — E). Hence, by the following lemma, the map & : B(1) x C — C
is real analytic on B(1) x (C — E).
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LEMMA 6.3. Let M be a complex manifold. Let v4(z) = v(t, z) be a complex valued function
on M x C with |v(t,z)| < 1 such that

(1) for each t € M, v, is a measurable function on C and ess.sup|v(z)] < 1,
C

ze
(2) for each z, the mapping M — A given by t — v(t, z) is holomorphic,
(3) there exists a domain D C C such that v is real analytic on M x D.

Then the normalized quasiconformal map w"*(z) is real analytic on M x D.

Proof. We first construct a local solution W (t,z) = Wy(z) of
9, 13}
§W(t z) = v(t, z)EW(t,z) (6.5)

on a neighbourhood of (tg,20) € M x D which is injective in z, holomorphic in ¢, and real
analytic in (¢, z). This is achieved by the Cauchy—Kowalevski theorem. We write as

v(t,2) =Y Caijt—t0)*(z = 20)'(2 — @),

a,,]

where « is multi-index. We set

Nt CE) = D Cay(t—10)*(¢ = 20)'(€ — 20).

Oél,_]

Then n(t, ¢, &) is analytic on a neighbourhood of (g, 2o, 20) € M x C x C. We consider the
following differential equation with initial data:

0

0
aié-U(t’ Cv g) = 7](75’ <7 5)7

a¢

By the Cauchy-Kowalevski theorem, this equation has a unique analytic solution U(¢,(,§) on
a neighbourhood of (¢, z0, 20). The initial data give

U(ta<7£)’ U(ta<720) = C (66)

0
aC

We set W (t,z) =U(t,z,z). Then W (t, z) is real analytic on a neighbourhood of (%o, zp), and
holomorphic in ¢. We note that

U(t,¢, %) = 1. (6.7)

ﬁW(t, z) =

0 _
ER —Ul(t, z,2).

2U(t,zj), 2W(t,z) = G

a¢ 0z

Hence, by (6.6), we conclude that W(t,z) is a local solution of (6.5). Also, by (6.7), we
obtain (9/0z)W (t,zp) = 1. This shows that W (t, z) is injective in z on a possibly smaller
neighbourhood of (¢, z). Thus, we have constructed the desired local solution W (¢, z) of (6.5).

Next, we set h(t,z) = hy(z) = w”* o W; *(2). Then h is holomorphic in z, since w”* and
W, have the same complex dilatation. We claim that & is holomorphic in ¢ (cf. [18, p.242]).
To show this, we take a small constant ¢ > 0 such that W;(z) is defined on the closed disk
{z;]2 — 20| < 0}. Let T; be the image under W; of the circle z = zy + g, where 0 < 0 < 27
Then I'; is a smooth Jordan curve, for W} is real analytic. We note that, by the initial condition
n (6.6), W(t, z9) = z0. Hence zg lies in the domain interior to I';. We apply Cauchy’s formula
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to the holomorphic function ht (2). Then if z is close enough to zy, we have

he(
hu(z) = 2mi J C
B LJ‘ htth (20 + 0€") OW, (20 + 0™ )dﬁ
- 2mi Wi( zo + Qe”)) -z a0
_ J'7r (20 + 0€®) OWi(z0 + 0€') 40
2mi Jo Wi(zo + 0€i) — 2 00 )

Since the functions w”t (2o + 0€%), Wy (20 + 0€%), OW; (20 + 0€'?)/06 are holomorphic in t and
continuous in (¢,0), we conclude that the map t +— h¢(z) is holomorphic. Hence by Hartogs’
theorem, A is holomorphic in (¢, z). Hence w"*(z) is real analytic on M x D. O

6.2. Proof of Proposition 6.2(1)

We prove more general statement.

LEMMA 6.4. Let Q be a neighbourhood of x € X(ay,...,a,). Assume that one of the
following condition is true:
(1) Q is a topological disk with {x (4, ... .q,)(092) < 75, or
(2) Q is an annulus with {x(a,.... 4,)(002) < ¢/(25q) and (@,al(x),...,aq(x)) is e-thick,
where 0 < € < 1.
Then there exists a holomorphic motion gi : Q x C — C which agrees with ¢ on their common
domain of definition, such that for each A € ) the Beltrami coefficient [+3, is harmonic on

C —{ai(x),...,a4(x)} and satisfies g, oo < -

We follow the proof of Bers—Royden’s %-extension theorem [4]. To normalize the motion ¢,
we set a;(z) = cr(a;(2), ag—2(2), ag—1(2), aq(2)) for i =1,...,q. Then ay_2 =0, ag—1 =1 and
oy = 00. Set E = {a1(x),...,a4-3(2),0,1,00}. We denote by ¢ the holomorphic motion

{ai(2),...,aq-3(2),0,1,00}

of E over (X, z), where we write X = X (a1,...,a,) to simplify the notation.

We denote by My, the complex manifold of ordered (g — 3)-tuples of distinct complex
numbers (cq,...,¢4—3) none of which equals 0 or 1. Using the universal holomorphic motion
®, we may define a holomorphic map p : T(C —E) — Moy, by

to (B(t, a1 (@), ., Dt ag-5()).

The map p is a universal covering map [4, p. 268].
We consider the motion ¢ as a holomorph1c map ¢ : X — My, defined by
p(z) = ((2), ..., ag-3(2)). (6.8)

The key lemma to prove Lemma 6.4 is as follows:

LEMMA 6.5. Assume that €2 satisfies the assumption of Lemma 6.4. Then there exists a
lifting @ : Q@ — T(C — E) of ¢ over Q which preserves the base points @(x) = [id]. Moreover,
we have @(Q) C B(5).

If we assume this lemma, we may prove Lemma 6.4 as follows. We first remark that over
2, the motion ¢ is the pull-back of the universal motion ® by ¢. Namely for (A, e) € Q x E,
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we have
e(A€) = 2(p(N),€).
We define a holomorphic motion ¢ : 2 x C — C of the whole sphere by

B\, z) = B(P(N), 2) (6.9)

for (A, 2) € Q x C. Then ¢ is an extension of ¢. The Beltrami coefficient satisfies ps, = p[@(\)]
for each A € Q. Hence, by @(Q) C B(z5), we obtain [|ug, || < 55 for cach A € Q.
Now the holomorphic motion ¢ : 2 x C — C defined by

CI“(¢)()\, 2)7 a’qf2(>‘)’ aqfl()‘)7 aq(/\)) = 9270" Cr(zv aqf2(x)’ aqfl(x% Aq (33))) (6'10)

has the desired properties. Thus we have derived Lemma 6.4 from Lemma 6.5.
It remains to prove Lemma 6.5. For y € Mg 4, we set

Bé(y) = {U) € MO,Q; d/\/lo,q (va) < 5};

where dy, , is the Kobayashi-Teichmiiller distance on My 4.

LEMMA 6.6. Let y = (y1,...,Yq—3) € Mo4 be a point such that (@,yl, ey Yg—3,0,1,00)
is e-thick, where 0 < e < 1. Then B, /504 (y) has an injective lift to the universal covering
p:T(C—E)— Moy,

Proof. Note that M, is a domain of C?2. Using the point y € M 4, we define a domain
P(y) C C973 by the following rule: b = (by,...,b,—3) € P(y) if and only if

2R<bi>>0, §R<bi_1>>0, §R(bi_bj>>0
Yi yi — 1 Yi — Yj

for1 <i<g—3and1 < j<q— 3withj # i. Then by the definition, we immediately conclude
that

P(y) C Mo 4

Next, we remark that P(y) is convex. Indeed if b = (b1, ...,bq—3) and ¢ = (c1,...,¢q—3) € P(y),
we have

(tbl + (1 — t)Ch . ,tbq_g + (1 — t)Cq_g) € P(y)

for 0 <t < 1. This follows from:
R (tbi +(- t>ci> _— (b) +(1-tR (c> >0,
Yi Yi Yi
R () o () o
§R<tbi+(l—t)ci—tbj—(l—t)6j> :tg%(bi—bj) +(1_tm<ci—cj) ~o

Yi —Yj Yi —Yj Yi —Yj

Now P(y) is convex, hence simply connected. Thus there exists an injective lift P(y) C T(C -
E) to the universal covering p : T(C — E) — M 4.
We finish the proof by showing B, 504(y) C P(y). For distinct , 4,k and I in {1,...,q}, we
define a holomorphic map n[i, j, k,1] : Mg,, — C —{0,1} by
77[1}]'7 ka l]((bla ceey bq—B)) = Cr(bi7 bja bk’7 bl),

where (by,...,b4—3) € Mo,q and we set by_o =0, bg—1 =1, by = oc.
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Cram. Let b= (b1,...,bq—3) € Bc/(50q)(y). Then we have
iy 3y ke U (b
‘arg nli g k, 1(b)
nli, j, k. [ (y)
for all distinct 4, j,k and I in {1,...,q}.

™

4

Proof. We assume without loss of generality that |n[¢,J, k,1](y)| <1, for otherwise we
replace n[i, j,k, 1] by nli,j,k, 1]~ = nli, 1, k,j]. We first prove that if e < |n[i, ], k,1](y)| < 1,
then

‘ nlé, j, k, 1)(b) ‘ m (6.11)

I )

To show this, we take a hyperbolic geodesic v connecting 7], j, k, {](y) and n[i, j, k, [](b) in

(C\{O, 1,00}. Then by the distance decreasing property, we have KC\{Oylm}('y) < ¢/(50q). We
apply (5.5) to obtain

5
Le —.
(c('Y) < 10q
This shows that v C {|z| < 2}. Hence, we obtain
.. .. €
|77[17J7 k, l](y) - 77[%]» k, l](bﬂ < EEUClid(V) < 56@(7) < 27(]7

where  lgpyaia(y) = fv |dz|. Thus, |arg(n[é,j,k,1](b)/nli, 4, k,1(y))| < 7/2 and sin(|arg
(nli, 4, k.7 (0)/nli, 4, k, 1 (y))]) < 1/2q. Hence, we obtain (6.11).
Next we consider the general case. We order all numbers in

{|Cr(y17 Yis Uk, yl)|a R |Cr(yQ7 Yis Uk, yl)|}
that is greater than or equal to |cr(ys, y;, ¥k, y)| and less than or equal to 1 in the form

|Cr(yi17yjaykayl)‘ < ‘Cr(yizvyjayk;yl)‘ g < |Cr(yisayj,yk7yl)| = ]-7

where i; =i, i; = k and s < ¢. Since (C, Yi,...,Yq) is e-thick, we conclude that
< ‘Cr(yit7yj7yk:7yl)| < 1 (612)
|Cr(yit+1 s Y55 Yk yl)|
fort=1,...,s — 1; otherwise, the annulus

{Z; |Cr(yi1,+1 s Yis Yk yl)|5 < |Z| < |Cr(yit+1 s Y55 Yk yl)|}
separates the ¢-points

Cr(ylv Yjs Yk, yl)7 Cr(y27 Yis Yk, yl)» ceey Cr(yqa Yis Yk, yl)v
which is a contradiction. Since

Cr(yit y Y55 Yk yl)
Cr(yit+1 s Yis Yk yl) ,

Cr(yi“yj, yit+17yl) =

we have o
nlit, J, ie1, 1] = m (6.13)
Thus by (6.12) and (6.13), we conclude for t =1,...,s — 1,
e < [nliv, Jy i1, (y) < 1,
hence by (6.11)
g M esn )| o1

n[it7j7it+17l](y) 4q
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Using (6.13) again, we obtain

liv kD0 i gk 1)
nlic, 3, k. 1) (y) nlit+1, 4, k, 1 (y)
Summing both sides of this estimate for t = 1,...,s — 2 and (6. 14) for t = s — 1, we establish
our claim. Ul

Now we go back to the proof of Lemma 6.6. Let b= (by,...,b,-3) € B./(504)(y). We have

Hence, by the claim above, we have

ar b- < — ar 1 b < il ar Yi bi — bj < il
8 Yi 4’ 8 1—y; 4’ & Yi—Y; b 4’
S

where 1 <i<¢q—3,1<j<¢—3andi#j. Thus, we conclude (b1,...,b,—3)
B (509)(y) C P( ). This concludes the proof of Lemma 6.6. O

Proof of Lemma 6.5. We set Xq = X /Im(m; () — m1(X)), where X is the universal
covering of X. Then 2 C Xq. Note that X¢ is an annulus when 2 C X is an essential annulus;
otherwise, Xgq is a disk.

We show that there is a lift ¢ : Q — T(C — E) of ¢ over Q. Let b: Xq — Mo, be the
composition of the covering map Xq — X and ¢. Then it is enough to show the existence of a
lift b: X — T(C — E) of b with b(z) = [id]. If Xq is a disk, this is obvious. Assume that X,
is an annulus. There exists an essential loop v in Xq passing through = with £x,, (v) < ¢/(25¢).
Then by the distance decreasing property, we have b( ) C B. /(oOq)( (z)). Hence, by Lemma 6.6,
we conclude the existence of the hft b: Xq — T(C — E) with b( ) = [id].

Next we show ||3 0 b(y)||ee < g for all y € Q, where 3 : T(C—E)— Q(C—E)*) is the
Bers embedding. Since the hyperbohc length of the boundary of Q2 C X is less than we
have

75’

CXq (xay) < Flo (615)

for y € Q, where cx,, is the Carathéodory distance on Xq. We note that the image of the map
Bob:Xq— Q(C— E)*) is contained in B(3) (cf. (6.3)). Thus using (6.4), we have for y € Q

cxa(,y) = eB(3)(0, 80 b(y)) = da(0, 18 0 b(y)lles/3) = 118 0 b(y)l]o /3.
Thus by (6.15), we have || 0 b(y)||s < 2. Hence, we conclude b(Q) C B(&5). O

6.3. Proof of Proposition 6.2(2)

Set f = cr(f,aq_2,aq_1,0aq) and § = cr(g, ag_o(x),ay_1(x), ag(x)). Then by (6.1) and (6.10),
we have

Hence, by (6.9), we have
FO) = 2(@(0), 5(N)- (6.16)
Let W : B(1) x C — C be defined by
(‘i)(y’ \I/(yv Z)) =z
for each (y, z) € B(1) x C. Then we have
g = (@), F(N). (6.17)
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Since the Jacobian of ® does not vanish (cf. 24, p. 37]), ¥ is real analytic outside U~'(E).

Hence g is real-analytic on the inverse image of C — {a1(z), ..., aq(x)}.
By (6.1), we have
of . N dg g
0100 = 30900 + 0,900 Z ) +6:00 9000 Z ().

Since f(A) is holomorphic, we have (8f/ON)(A) = 0. Since ¢ is holomorphic in A, we have
#5 (A, g(N)) = 0. Hence, we obtain

Hence, we have

This shows Proposition 6.2(2).

6.4. Proof of Proposition 6.2(3)

We may assume without loss of generality that i = ¢ — 2 and j = ¢ — 1. Thus with the previous
notation f = (f,as—2,aq—1,04) and § = (g, ag—2(x), ag—1(x), a4(x)), we are going to prove

" 29 5 2 1 o 1/4
L TG, £,9t)) — T, 3, 9() | dt < 22 dg T(1+2T(r)) (log ) (6.18)

for 7 > 4. Here, f and g satisfy (6.16) as well as (6.17).
For (y,z) € B(z5) x C, we set

Hy.z) = j@mz, by, w))we[w] - J@ (00, &y, w))wewl,

where
0(z,2") = —log[z, 2']?
for z, 2 € C. By the Holder continuity of the quasiconformal map <i>(y7 -), the two integrals in
the definition of H(y, z) are bounded. See the remark after Lemma 6.8.
The key lemma in the proof of Proposition 6.2(3) is as follows:

LEMMA 6.7. (1) On (B(z5) x C) — U~Y(E), H is smooth and satisfies
dd°H = piws — ¥ weg, (6.19)

where p; : B(25) X C — C is the second projection.
(2) Let (y,2) € (B(g5) x C) = U~Y(E) and let v = (v, v2) € Ty, (B(z5) % C) be a tangent
vector. Then we have

|d°H ()| < 2*(||orllpe—p) + [v2lle),

where HU1||T(@7E) is the infinitesimal Kobayashi metric on T(C — E) and lvz||¢ is the spherical

line element on C.

Derivation of Proposition 6.2(3) from Lemma 6.7. We consider the holomorphic map (¢, f ):
Q — B(4) X C and the composite function H( (A), f(\)) defined over X € Q. By Lemma
6.7(1), H(@(\), f(\)) is smooth outside (@, f)~ (¥~1(E)). Here, (@, f)~H(¥~1(E)) is the set
of A with ®(@()\), E) = f(\), which is a discrete set on . We denote by Q.(t) a subdomain of
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Q(t) C C obtained by deleting e-neighbourhood, in the Euclidean distance, of the points where
H(p(N), f(A)) is not smooth.
Now by (6.17) and (6.19), we have

dd°H (@, f) = f*we — 5w,

limJ dd°H(p, f) = J froe— J J we.
=0 (rt) Q(r.t) Q(ryt)

Using Stokes’ formula and Lemma 6.7(2), we obtain

hence

lim J d°H (@, f)
O (r,t)

e—0

limJ dd°H(@, f)| =
Q. (r,t)

e—0

< Bim 2 Ly oy (@00 (1, 1)) + o (F(O (r, 1))
= (0 oo (B2 D) + L (FOQr 1)),

where {7 & _ ) is the length function with respect to the infinitesimal metric || - || ). Since

gT((ﬁfE) (¢(aQ(r7 t))) < ZX (aQ(Ta t))>

we obtain

< 22(Ux (09(r, 1)) + Lo (F(0Q(r, 1))

J 9*%—J frog
Qrt) Q)

Taking the integral of both sides, we have

Jm T (r,§,Qt)) — T(r, f,Qt))| dt < 2% Jm Jr(fx(aﬂ(u, 1) + Le(F(0Q(u, t))))%u dt.

0 0 J1
To estimate the right-hand side, we remark that

m T d
J J Ux (09(u, ) L dt < 24 dg® log .
0 J1 u

Indeed, by (4.1), we may apply Lemma 5.5 to the case A(r) = 2dg? log r to obtain this estimate.
By Corollary 5.6, we obtain the estimate (6.18). Thus, we have derived Proposition 6.2(3) from
Lemma 6.7. U

It remains to prove Lemma 6.7. We begin with the following lemma:

LEMMA 6.8. Let 9 : C—C be a K-quasiconformal map which fixes 0, 1 and co. Suppose
that K < 2. Then, for each z € C, we have

1
J el <+ 2%
c 1%

P(w)] 2-K

REMARK 6.9. Since Kg, ) < 51 for y € B(z5), we conclude
J' 1
¢ [z, &y, )]
for (y,z) € B(z5) x C. Hence, we have
N 1
J@ n(z, @(y, w))we[w] < 2,[@ 60 w)]
Thus the integrals in the definition of H(y, z) is bounded.

wew] < 2'® (6.20)

we[w] < 2.
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Proof of Lemma 6.8.  'We consider the inverse map ¢! : C— (@, which is a quasi-conformal
map fixing 0, 1 and oo and satisfying K, -1 = K. We set

awzj e
P=1(D.(r))

where D, (r) = {w € C;[w, 2] < r}. Then we have
[ el = [ Laatr)
[ (w)] o’ '
Since [1v~1(2), %™ (w)] < 128[z, w]"/K (cf. [5, Lemma 4.1]), we have
H(D.(r)) C Dy-1(,)(1287Y/5).
Hence, we have
o(r) < J = oMgp2/ K
D¢_1(Z)(128r1/K)
Since K < 2, we obtain

ijwwmwﬂiwm

~ lim Jl L ag(r)

6—0Js T

= lim Giw(r)]: + Ll %290(7") dT’)

1
< lim (w(l) _ed) 2147TJ k2 dr)

6—0

=17+ 21471'% hm [T

— 5—0

=r+2Mr—.
™+ ™ K O
Next we show that H is Lipschitz continuous.

LEMMA 6.10. For (y,z2), (y,2') € B(z5) x C, we have
[H(y,2) = H(y',2")| < 22([z, ] + diy (4,))-

Proof. First we show the estimate

/ / ]‘ ]‘ = Z/ W wl
) =0 )] < 2 (o + ) % () + ), (6.21)
Indeed, since logxz < = — 1, we have
n(z’w) o n(z’,w’) _ 210g [[Z;az]/] < [Z/,w[/z] ;][Z,w]
Using [z, w'] < [z,w] + [z, '] + [w,w'], we obtain
— (W [z, 2] + [w, w'] 1 1 < ([2. 2 w.w
) =) < 2B <o (b ) (s o),

Similarly, we have

)~ ew) <2




ZEROS OF HIGHER DERIVATIVES 755

Thus, we obtain (6.21).
We have

IH(y, Z) - H(?/y Z/)| < J@ |77(Z’ (i)(yv w)) - TI(Z/a (i)(y/a w))| W@[w]
+ j@ (00, ®(y, 1)) — (00, By, w))| waluw].

By (6.21), we have

N N 1 1
2, ®(y,w)) —n(Z, ey, w))| <2 - -
|77< (y )) 77( (y ))| < ([Z, q)(y’w)] + [Z/ (y/’ UJ)])

x ([2,2'] + [@(y, w), &(y, w))).
Since @ is holomorphic in y € B(1), using (5.5), we have
[(y, w), D(y', w)] < 5dsa)(y,y')-

Hence, we obtain

. - 1 1
2, ®(y,w)) —n(, ey, w))| <10 . .
s o)) s ALl ([z,<1><y,w>1ﬂz',@(y',wn)

X ([Z, ZI] + dB(l) (y7 yl))
Thus, we have

|H(y,z) — H(y', )| < 10I([z, 2] + dp1) (1)), (6.22)

where

1 1 1 1
I = - - - - walwl.
J@ (et Tl mdm ety
By (6.20), we have
I < 220,

Thus, by (6.22), we have

|H(y,2) — H(y', 2")| < 2°*([2, '] + d) (4, 9"))- .

Proof of Lemma 6.7. We first show (1). By Lemma 6.10, H is continuous on B(z5) x C.
Note that pjws — ¥*we is smooth on B(1) x C outside ¥~'(E). Hence it is enough to show
(6.19) as currents of degree 2 on B(z5) x C.

For (y,z) € B(z5) x C and w € C, we set
hw(y?z) = log(l + |Z|2) - log ‘Z - (i)(y,’u})|2
Then we have

H(y,2) = j@ o (4, 2)[0].

By the Poincaré-Lelong formula [26, p. 171], we have for each w € C,

c 1 *
ddhoy = 5w = 0o _iyu-0) (6.23)

as (1,1)-currents on B(z5) x C.
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Now let n be a test form. We have

N

J Hddny = J hydd®n | walw],
B(1/50)xC JC \JB(1/50)xC

J Wrwe An = ) (J n) we [w]
B(1/50)xC Jwee \Jw-1(w)

=[] ) eelul
JweC (z—®(y,w)=0)
Hence, by (6.23), we have

1 >k
J _Hddn = J <J _—Phwe A — J ) 77) we[w]
B(1/50)xC ¢ \JB(1/50)xC T (z—®(y,w)=0)

pgw@/\n—J' Urwe An.
B(1/50)x €

B JB(I/50)><C

This shows (6.19) as currents. We complete the proof of Lemma 6.7(1).
Next we show Lemma 6.7(2). Let v = (y1,72) : (—1,1) — B(s5) x C be an arc such that
~v(0) = (y, z) and 4(0) = —Jwv. Since d°H (v) = (1/47) dH(—Jv), we have

d°H (0)| = o \dH (~Tv)

1|, HO) - HO0)
47 [t—0 t
_d 1), 1),
<22 <}in% s (n () 3“2') T () Z]) (by Lemma 6.10)
< 2%2(| = Jullsay + Il = Juzlle),
where || - ||(1) is the infinitesimal Kobayashi metric on B(1). For the last estimate, see [21,
p. 95, Lemma 3.5.33]. Using || — Jui|[ga) = ||vil[sa) and || — Jua||¢ = [|va]|a, we obtain
|d°H (v)] < 2(||v1l5(1) + [lvzlle)- (6.24)
Next we show
loallsy < 4ol (6.25)
To show this, we first claim that
{we T(C— E);dpe_p(lid],w) < log vV2} C B(1), (6.26)

where dpe_py is the Kobayashi-Teichmiiller distance on T(C — E). Indeed using (6.4), we
have

Ay e (fid w) > sy (0,0) = da (0, [[w]lc /3):

Hence, if dp e ) ([id], w) < log v/2 = da(0,1/3), then ||w||s < 1. Thus, w € B(1).
Now we set t = [|v1]|@_ ) There exists a holomorphic map f : A — T(C — E) with

- 1(1(2))-n

Since da(0,47/149) = 3 log 22, we have

. A 1 98
()< freme st < ).
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Since

dT((fj_E‘)([ld]vy) < dB(l) (07y) < dA(Oa 5710) = %log %v

f (A (f:fg)) C B(1).

we conclude from (6.26)

Thus, we have

lorllay < e (52) 19 < )
IB(1) X . = 7t 1 C—E)*
9z ) A(47/149) 47 e
This shows (6.25). Hence, by (6.24) and (6.25), we establish Lemma 6.7(2). O

7. Application of Ahlfors’ theory of covering surfaces

7.1. Introduction

We have constructed a quasimeromorphic function g over the domain Q@ C X (aq,...,a,) which
is described in Proposition 6.2. In this section, we apply Ahlfors’ theory of covering surfaces
to the quasimeromorphic function g to prove Proposition 7.2.

Base surface. Let {b1,...,b,} C C be a finite set of distinct points with by = 00. Set E =
{b1,...,b4—1}, which is a set of distinct points in C. For s >0 and i =1, ..., ¢, we define a
disk A;(s;b1,...,b,) around the point b; as follows; for i =1,...,¢ — 1, we set

Ai(s3b1,...,by) ={z € C;|z —b| < s0i},

where ¢; = min ez 1,3 minjc — b;|. For i = ¢, we set
R
Ay(sib1,...,0y) =42 €C;lz—by1| > <[

where R:maxceg\{bqfl}max\c—bq_l\. Given a constant s < <=, we remove ¢ disks

10°
Ai(s;b1,...,by) from the Riemann sphere to define the base surface

q
B(siby,...,by) = C— | Ai(siby,...,by).
1=1

For an arc v C @, we set
l=(y) = > le(eb.e(7)),
(b,c)eExE\diagonal

where the map ¢y . is defined by

one(s) = 2. (7.1)

For a subset D C C, we denote by A(D) the area of D with respect to the spherical area form
we, that is,
D

Notation from topology. If a domain D is bounded by a finite number of simple closed
curves, we denote by o(D) the negative of the Euler characteristic of D. Since B(s;b1,...,bq)
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is a sphere with ¢-holes, we have
o(B(s;b1,...,by)) =q—2. (7.2)

We set o1 (D) = max{o(D),0}.

We formulate the main results of Ahlfors’ theory in the following form where the constants
‘W (cf. [25]) in the theory are controlled explicitly. The first statement should be compared
with ‘Covering theorem 1’ [25, p. 328] and the second statement should be compared with
‘Main theorem’ [25, p. 332].

THEOREM 7.1. Assume that {0,1} C = and set B = B(s;b1,...,b;), where s < 1—10 and
q = 3. .
(1) Let F be a finite covering surface of the Riemann sphere with a covering map p : F' — C.
Then we have
A(F)  A(p~'(B))

- S | < teton).

(2) Assume that (C,by,...,b,) is e-thick, where 0 < ¢ < 1. Let F be a finite covering surface
of B with relative boundary 0'F. Then we have
A(F

A(B)

219q4

~—

(¢—-2) <ot (F)+ (=(8'F).

Here, area and length on a covering surface is measured using the pull back metric on the
base surface.

To state the main result of this section, we need to introduce the following notation. Let
D and G be two open sets in C. We define two subsets Z(D, G) and P(D,G) of the set of
connected components of D N G in the following manner. Let D’ be a connected component of
D NG, then D' is contained in Z(D, G) if and only if D’ is compactly contained in G, otherwise
D’ is contained in P(D, Q).

PROPOSITION 7.2. Let f be a transcendental meromorphic function in the complex plane
and let ay,...,aq € Rq be distinct with ay = oo, where d > 1 and q > 3. Assume that x € §)
and 0* € Q are the same as in Proposition 4.3. Assume (C,ay(z),...,a,(x)) is Fso-thick. Set
B = B(s;a1(x),...,aq(x)), where s < 15. Set

x(rt) = > o(F) + > ot (F),
FET(g1(B).Q(r1)) FEP(g=1(B).Q(rt)

where g is the quasiconformal perturbation of f defined by (6.1). Then for each distinct i, j €
{1,2,...,q — 1}, we have

(q—2) Jm/Q T <r, f-a ,Q(t)) dt

0 aj; — a4

m/2 rr 67 7,8 3/4
x(u,t) 2°dq 1 1/4
< S dudt T — 1 .
J, ] s R (v ) o (73)

for r > 4.
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7.2. Derivation of Proposition 7.2 from Theorem 7.1.

We set ¢ = 4, (2),4;(«) to simplify the notation. We consider the quasimeromorphic function
@ ogon €. The main issue in our derivation is to derive

m/2
<q—2>J T(r,p 0 9, 0(t)) dt
0
m/2 rr 66 7.8 3/4
x(u,t) 2% dq 1 1/4
< = Zdudt T — 1 A4
jo j D dudt+ ST (4 ) (o) (7.4)

for 7 > 4. Once (7.4) is established, Proposition 6.2(3) immediately implies (7.3). If g is
constant, then (7.4) is obvious. Thus in the following, we assume that ¢ is non-constant.
We first derive the following non-integrated version of (7.4) from Theorem 7.1:

IQ(M)(S" °0g)'we
™

(¢—2) < x(r,1) + 2% =(g(89(r, 1))). (7.5)

Let F be a connected component of g=*(B) N Q(r,t). We consider the restriction of ¢ o g on
F' as a covering surface

poglr: F — o(B). (7.6)

If F is compactly contained in Q(r,t), that is, F' € Z(g~*(B),Q(r,t)), then the covering (7.6)
does not have a relative boundary. Hence, by the Hurwitz formula and (7.2), we have

R !

Next we consider the case F' € P(g~1(B),2(r,t)). Note that

¢(B) = B(s;p(ai(2)), ., plaq(x)))
and
{0,1} c{p(ar(2)), - .-, plag(x))}.
Hence we may apply Theorem 7.1(2) to the covering (7.6), combined with (7.2), to obtain

Jpleog)we

(0= TN < 0 (F) + 2 (900 1) N ).

Since
> J (pog) we =J (0 g)*we,
FET(g~1(B).Q(rt))UP(g~1(B).Q(r) " 97 BINYUrY)
we conclude
fg—l(B)mQ(r,t) (pog)we
Ap(B))
> o(F) + > o (F) + 28¢" = (g(09(r, 1))).

FeI(g—'(B),W) FeP(g—'(B),W)

By Theorem 7.1(1), we have

(q—2)

/N

fg(r,t)(‘P °g) we P fg—l(B)mQ(r,t) (pog) we
™ b A(e(B))
Thus, we obtain (7.5).

+ KC(@ o g(9Q(r,t))).
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Now taking the integral of both sides of (7.5), we obtain
m/2 m/2 ¢
(q—Q)J T(nwogﬂ(t))dKJ J X) g gy
0 0 1 u
m/2 o op
+ 24oq4J J l=(9(0(u, 1)) du dt.
0 1 u

We need to estimate the second term on the right-hand side. Let k and [ be distinct elements
from Z. We put vk1 = @a, (2),a;(z) to simplify the notation. We claim that

m/2 oy, (.t 26 7,2 3/4
J J &(or1 0 9(0u, 1)) dudt < 204 T(TJF 1 ) (log 1)1/ (17)
0 1 U m T(r)

for r > ~4. This estimate completes the derivation of (7.4), hence (7.3).
It remains to show (7.7). We set

p(z) _ |(<pk:,l o g)z(z)| + ‘(‘pk,l o g)i(z)‘

1+ |pri0g(2)?

Then we have

le(prt 0 9(00r 1)) < LQ( YLz

j p2<z>|dz|2<f<gj (0 09) we
Q(r,t) Q(r,t)

Hence, by Proposition 6.2(3), we have for r > 4

" du
[ ] NP <m0 g.0m/2)
1 JQ(u,m/2) u

<K T (r cr(f,ak, ar, aq), 2(m))

230dq7r 1 3/4
2T —— ) (logr)/4
— <+2T<r>> (log)

232dq? 1
< T — .
5T (74 )
Thus, we may apply Lemma 5.5 to

to obtain (7.7). U

7.3. Proof of Theorem 7.1 (1)

First we recall isoperimetric inequalities on the sphere. Let v be a simple closed curve on the
Riemann sphere C. Then v divides C into two parts D1 and Ds. The following inequalities are
well known:

Le(v), (7.8)
la(7)?. (7.9)

min{A(D1), A(D2)} <
min{A(Dy), A(D2)} <

Equality holds if and only if v is a great circle.
We start the proof of Theorem 7.1(1). We decompose F' into the sheets G1,...,G,, as in
[25, p. 323]. Namely G, is the part of C where the covering p : F' — C has at least j preimages

<Ly

2
1

2m
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with counting multiplicities. Then we have
n
A(F) = AGy),
j=1

A(p~'(B)) _ \~A(G;NB)
A(B) -2 AB)

(a(OF) > zn:e@(ac;j).

Hence it is enough to show

A(G;)  A(GjNnB)
- < La(0G;). .
‘ - A(B) < Le(0GH) (7.10)
Let D; be one of G or C— G which has smaller area. Then by (7.8), we have
A(D;) < 3£6(0G;).
Thus, by Lemma 7.3, we obtain

‘Au%)_A@bﬂngzﬂpﬂgeam%)

’7'(' A(B)
If D; = Gy, this is what we want to show. If D; = C- Gj, by
A(G;) A(D;)  A(G; N B) A(D;NB)
229 g , S e AAL2
v T A(B) A(B)

we obtain (7.10). Hence we conclude the proof of Theorem 7.1(1).

LEMMA 7.3. Let 2 and B be the same as in Theorem 7.1. Then we have

A(B) > 1.

Proof.  'We remark that Ai(%; bi,...,by) is contained in some hemisphere for i =1,...,q.
This is immediate from the definition if b; = 0 or i = q. For the other disks, this follows from
the fact that A;(£:b1,...,bg) N {0,00} = 0.

We consider the annulus R; = Ai(%; b1,...,bq) — Ai(s;b1,...,by). Then, for the modulus of
R;, we have
log 2 1

27 - A
Let T" be the set of all closed curves in R; which separate the two boundary circles of R;. Then
we have

MOd(RZ) 2

inf—yer f@(’}/)Q 1
A(R;)  ~ Mod(R;)’

Hence, by (7.9), we have

1. 9
R. > N >
AlR:) = 4m wnelf“g(cw) -

Since A(R;) = A(Ai(3:b1,...,bg)) — A(Ai(s;b1,...,by)), we have
%A(AZ(%, bl, ey bq)) > A(AZ(S, bl, ey bq))

A(Az(s, bl, ey bq))

DO =



762 KATSUTOSHI YAMANOI

Since the disks Ai(%; bi,...,bq), 1 < i< g, are disjoint, we have

This proves our lemma. ]

7.4. Minimal spanning tree

We recall the set = = {b1,...,bs—1}. We denote by I'nin the minimal spanning tree for Z. By
definition, a spanning tree I' is a collection of line segments with end points in = such that I’
contains a path connecting every pair of points b;,b; € Z, and such that I' contains no closed
path. The minimal spanning tree is a spanning tree for which the total Euclidean length of line
segments is minimal. We collect elementary properties of I'y;y.

LEMMA 7.4. Let ¢q,...,¢, € 2 be distinct points. Then one of the longest segments in
C1C3,C2C3, ..., Cn_1Cn,CnCy IS not contained in T'yiy.

Proof. Assume contrary that all longest segments are contained in I'y,;,. We may assume
without loss of generality that ¢,c7 is a longest segment. Then ¢,¢7 is contained in I'y,;,. We
remove the segment ¢, ¢; from I'yy;,. The resulting graph consists of two connected components
I' and I': one, say I, contains ¢; and the other, say I/, contains ¢,,. Now let ¢, 1 < ¢ < n, be the
largest number such that ¢; is contained in I'. Then ¢; 1 is contained in I'. Hence the segment
CiCi+1 is not contained in I'},i,. Thus, we have ¢;¢;11 < ¢,¢1.

Now we add the line segment ¢;¢;11 to I' UTY. Then we obtain a new spanning tree for =.
Since €;¢;11 < ¢pc1, the total length of this new spanning tree is strictly smaller than I'yy,.
This is a contradiction. Thus we have proved our lemma. ]

LEMMA 7.5.  Let a,b,c,d € = be distinct four points such that the line segments ab and cd
are contained in I'y,;,. Then ab and cd do not intersect.

Proof. Assume contrary that ab and cd intersect. Then at least one of the four angles Zacb,
Zebd, Zbda and Zdac is greater than or equal to /2. We may assume that Zacb > m/2. Then
we have a¢ < ab and cb < ab. By Lemma 7.4, the segment ab is not contained in 'y, which
is a contradiction. Thus, we have proved our lemma. |

For a line segment ab contained in I'i,, we set

K.;={2€C—{a,b}; Zzab < /6 and Lzba < 7/6}.

LEMMA 7.6. Let cd be a 7]1.116 segment contained in 'y, which is different from ab. Then
K does not intersect with cd.

Proof. 'We prove our lemma in two cases.



ZEROS OF HIGHER DERIVATIVES 763

Case 1: #{a,b,c,d} = 3. In this case, we may assume without loss of generality that a = c.
For the sake of contradiction, we assume that the segment cd intersect with K. Then since
Z/bed < /6, we have bd < max{cb,cd}. Thus, by Lemma 7.4, the longer segment of cb and cd
is not contained in I'},;,, which is a contradiction. Thus, we have proved our lemma in the case
#{a,b,c,d} = 3.

Case 2: #{a,b,c,d} = 4. We first prove that ¢,d ¢ K. Indeed, if ¢ € K5, then we have
ac < ab and bc < ab. Hence by Lemma 7.4, the segment ab is not contained in I',, which is
a contradiction. Thus, ¢ € K. By the same argument, d & K.

Now assume contrary that K_; intersect with cd. Then the segment cd intersects the
boundary OK; of K.z at two points P and Q. By Lemma 7.5, the segments PQ and ab
do not intersect. We may assume without loss of generality that ¢, P, @ and d lie on the line in
this order, and the segments aP and bQ are contained on the boundary 0K=5.

Now we have ZaPc < m/3. Hence, we have

ac < max{aP,cP} < max{ab,cd}.

By the same argument, we have bd < max{ab, cd}. Thus, by Lemma 7.4, the longer segment
of ab and cd is not contained in I'y;,, which is a contradiction. Thus we have completed the
proof of our Lemma. |

LEMMA 7.7. Let b;,b;,b;, € E be distinct. Assume that the segment b;by, is contained in
Tmin. Then A;(1/v/2;b1, ..., by) does not intersect with b;by.

Proof. Assume contrary that A;(1/v/2;by,...,b,) intersect with b;bx. Then since b;b; > o;
and b;by > 0;, we have Zb;b;b, > 7/2. Hence, we have b;b; < b;by and b;by < b;by. Thus, by
Lemma 7.4, the segment b;b;, is not contained in I'yi,, which is a contradiction. Thus, we have
proved our lemma. |

7.5. Ahlfors regularity

We recall B = B(s;bi,...,by). Let aq, ..., aq—2 be the line segments of B Ny Take b € E

such that [b — by—1]| = maxce=\ (b, _,}|c — bg—1], and set
ag-1=BN{z;z2=0b+t(b—by_1),t > 0}. (7.11)

We cut B by these line segments aq,...,®s—1 to obtain a simply connected bordered surface
B’. Then 9B’ contains the line segments

/817617 .. '7ﬁq7175¢/1717

where §; and /3] are two copies of a;. We have

OB' =31 UB U UBg_1UB,_; UIB.

LEMMA 7.8 (Ahlfors regularity). Assume that (@, bi,...,by) is e-thick, where 0 < e < 1.
Let v be a cross cut of B, which divides OB’ into two parts o1 and 3. Then we have
215q3

min{ﬂg(al),ﬁg(ag)} < -

=(7). (7.12)

Proof.  For all distinct b, ¢ € Z, we have £¢(pp,.(0B)) < gm and £a(pp,c(;)) < 7. Hence, we
obtain

(=(0B') < 3n¢®. (7.13)
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Let P,@Q € 0B’ be the end points of v. We set A;(r) = A;(r;b1,...,b,). We prove (7.12) in two

cases whether one of P or @ is contained in Ai(%o) for some ¢ = 1,...,q or not.

Case 1: One of P or @ is contained in Ai(%) for some ¢ = 1,...,q. In this case, we assume
that P € A;({5). The proof is divided into two cases.

Subcase 1-1: i # q. Let b; € = be a point with [b; — b;| = Cerﬂn\iﬁ }|c — b;|. If v is not contained

in A;(3), then a subarc of v connects dA;({) and dA;(3). Hence, we have

Cructia (i (7)) = 2,

where ©; ; = ¢y, 5,. In general, for an arc 7/ contained in the disk {|z| < 3}, we have
le(v') = $lpucia(v)- (7.14)
Hence, we have
t=(7) > belpig() > Ex 3 = &
Thus, by (7.13), we obtain the estimate (7.12).
Next we assume that v is contained in A;(3). Let o1 be the part of B’ which is contained
in A;(3). Then by Euclidean geometry and Lemmas 7.6 and 7.7, we have
CBuctid(01) < 6lmuciia(7y)-
Hence, by (7.14), we have
le(pi(01)) < FLe(wig (7). (7.15)

CrAaiM 1. 65(0'1) < (5(]2/4)6((‘:(@17](01))

Proof of Claim 1. Let b,,b; € = be distinct. It is enough to show the estimate
Pee() 1+]pis(2) _ 5

Lt lese()? lof ()] 4
for z € A;(3). We prove in two cases.
Case (i) s = 4. In this case, we have [b; — b;| < |by — bs|. Hence, for |z — b;| < |bj — b;]/2, we
have

P62 1+ i (2))? |y — by b; — bi|*> + |z — b;[?

2 7 = X 2 2

L+ lps ()P e ;(2)] [0 =il [br = bs|* + |z = b
51b; —bi| 5
< - < -
41by —bs] 4

Case (ii) s # 4. In this case, we have |z — bs| > |b; — b;|/2. Hence for |z — b;| < |b; — b;|/2,
we have

o T4l ()P 1 b — b A ]z — bl
L+ s t(2)* lgg ;(2)] bj = bi|  [be — bs| + [z — bs[?/[br — bs]
516, —b| 5
<2 <2
8lz—bs| 4

This proves our claim. ]

Now by (7.15) and claim above, we have

5¢> 75¢>
l=(01) < T%(%J(U)) < Tfa(’ﬂ

This shows our estimate (7.12).
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Subcase 1-2: i = q. Let b; € = be a point with |b; — by—1] = maxce=\(p,_,}|c — bg—1|- If 7 is
not contained in Ay(1), then as in Subcase 1-1, we have

le(pg-1;(7)) > 2 x 2 = 2.

Thus, by (7.13), we obtain the estimate (7.12).
Next we assume that ~ is contained in A4(3). Let o1 be the part of B’ which is contained
in Ay(3). Then as in Subcase 1-1, we have

le(Pg-1.4(01)) < Fle(0g-1,5(7))- (7.16)
CLAIM 2. 65(0'1) < 10(]26@(@(1_17]‘(0'1)).
Proof of Claim 2. Let by, b; € = be distinct. It is enough to show the estimate

e (2 1+ lpg15(2)°
L+ pse(2)? lpg_1,;(2)]

< 10

for z € Ay(3). We have
|90/st(2)| 1+ |§0q71,j(2)|2 _ |by — by % |bj — bq71|2 + |z — bq*1|2
L+ |ese(2)? log1,;(2)] |bj — bg—1] [be — bs[? + [z — bs[?
o ol = but P 20— by 4 212~ b
|z — bs|?
<4+6|bj bo-1] < 10. O
|z — bs|?

Hence, by (7.16) and the claim above, we have
l=(01) < 10¢°Cp(pg-1,4(01)) < T5g*l=(v).

This shows our estimate (7.12).
Case 2: Both P and Q are not contained in [J_; A;(15). Since 9B C J{_; Ai(5), P and Q

are contained in the line segments 31,31, ..., 8,1, 8,1
Subcase 2-1: Both P and @ are contained in one of the same line segment in
B, 81, 7551,1,@;71. In this case, we may assume that P and @) are contained in ;. We

first observe that for all ¢ € =,
LPcQ < g (7.17)
This is obvious if i = ¢ — 1. We consider the case i # ¢ — 1. Let ab € T'yin be the line segment

containing «;, where a,b € Z. The estimate (7.17) is obviously true if ¢ is equal to a or b. Let
¢ € Z be different from a and b. Then, by Lemma 7.4, we have

ZPcQ < ZLach < g

Thus, we have proved (7.17).
By (7.17), we have
T
Zpe,a(P)0pea(Q) < 5
for all distinct ¢,d € E.

Cram 3. Let ¢,n € C\{0} be distinct. Assume Z{0n < 7/2. Then we have
—
le(Cn) < 5[(#7]-
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Proof of Claim 3. Set y(t) =t¢ + (1 —t)n, 0 < ¢t < 1. Then we have

1 / 1
— 1Y (1)] J 1
0 :J — 7 dt=|C—- ——dt
T TE AN S E T
Since Z(0n < 7/2, we have

(B = 2[¢1> + (1= )%[n]* + 2t (1 — )RCA

> [+ (1—1)%nf

for 0 <t < 1. Hence, we obtain

1
_ 1
E@(CW) <[¢—n| L 1+ 2C2+ (1—0)2n? dt.

(7.18)
By an elementary calculus, we have

f | . axctan (VICF TP+ TGPT)

o L¢P+ (1 —1)%n? VISP + 02 + [¢[2[n?

By another elementary calculus, we have

arctan x 1

s
T S 21+ 22

Hence, we obtain

! 1 s 1
2|2 S5 :
o 1+22[C1* + (1 —1)n| 21+ [CPVI+ P
Thus, by (7.18), we obtain

la(Cn) < g

I¢ —nl .
IFP T 2o

This proves our claim. ]

Thus, we have
le(¢e,a(PQ)) < g[%,d(P),%,d(Q)] < g%(apc,d(v)),
where ¢, d € Z are distinct. Hence, we have
(=(PQ) < 3=(v).

which proves (7.12).
Subcase 2-2: P and Q are contained in two different line segments in £y, 41, ..., B4—1, ;1.
We assume that P is contained in ;. In this case, we shall prove

€
l= —.
=) > 5110
First we consider the case i = ¢ — 1. Let b € = be the point appears in (7.11) and set
K ={z€ C— {b}; £zbP < 7/6}.

(7.19)

Since K NTin = 0, we have
v¢Z K. (7.20)

CLAIM 4. There exists ¢ € Z — {b} such that

€
= <P <10 (7.21)
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Proof of Claim 4. 'We order Z — {b} = {c1,...,¢q—2} such that
e = b < - < feqz — .

By the assumption made in Case 2, we have

ler — bl
10
Case (i) |P — b| < |e1 — b|. In this case, we set ¢ = ¢;.
Case (ii) |P — b| = |cq—2 — b|. In this case, we set ¢ = ¢4_.
Case (iii) |1 —b] < |P —b| < |eg—2 — b|. In this case, we take j such that |¢;_1 —b] < |P —
b| < |ej — b|. Since (C, by, ..., b,) is e-thick, we have
|¢j—1 —b]
|ej =0l
We set ¢ = ¢;j. Then we have € < |y o(P)| < 1. Thus, we have proved Claim 4. O

[P —b| < 10/cq—2 — bl

> €.

Now by Claim 4, we may take ¢ such that (7.21) holds. Then by (7.20), the arc v intersects
with 0K . Hence, we have
> =

20
In general, for an arc v/ contained in the disk {|z| < 11}, we have

Leuctia(Po,c(7))

g(fj (71) = ﬁglﬂuclid (’Y/)
Hence, we obtain (7.19).

Next we consider the case i # ¢ — 1. Let ab be the line segment which contains «;. Then, by
Lemma 7.6, v ¢ K. Let w € 0K_; be the first point where v and K5 intersect. We may
assume without loss of generality that ZwbP = 7/6. By Claim 4, we may take ¢ such that
(7.21) holds. Here, we remark that Claim 4 is proved for the case i = ¢ — 1, but the proof
shows that the same statement is valid for ¢ # ¢ — 1. By the same argument as in the previous
case, we obtain (7.19).

Now by (7.13) and (7.19), we conclude the proof of Lemma 7.8. We note 73207 < 21°.

COROLLARY 7.9. Assume that (@, b1,...,bq) is e-thick, where 0 < e < 1. Let y be a loop
cut or a cross cut of B’, which divides B’ into two parts. Then one of them D satisfies the
following two estimates:

215q3

(=(DNaB") < l=(7),

l=(7).

IS
217q3
IS

A(D) <

Proof. We first remark that every Jordan domain D C B satisfies
A(D) < 2£4(0D). (7.22)

When (s(0D) > /2, this is obvious. If (s(0D) < 7/2, then OD is contained in some
hemisphere. Hence D C C is contained in some hemisphere; otherwise, C — D should be
contained in some hemisphere, which is impossible by 0,1, 00 € C — D. Hence (7.22) is proved.

Now if v is a loop cut, then we take D such that D € B’. Then by (7.22), the second estimate
holds. The first one is trivial.

If 7 is a cross cut, then we take D such that ¢=(D N dB’) is shorter. Then by Lemma 7.8, the
first estimate holds. Now D is bounded by the closed curve v U (D N dB’). Hence by (7.22),
we obtain the second estimate. Ul
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7.6. Proof of Theorem 7.1(2)

First we prove ‘Covering theorem 2’ [25, p. 329] in our particular situation. In the following,
area and length are always measured using wa and (=, respectively.

LEMMA 7.10. Assume that (C, b1,...,by) is e-thick, where 0 < e < 1. Let G be a covering
surface of B'. Let S be the mean sheet number and let L be the length of the relative boundary.
For a line segment (3 € {f1, 1, ..., Bq-1,B,_1} in B', let S(3) be the mean sheet number over
(3. Then we have
218q3

IS —S(B)] < .

L.

Proof. 'We decompose G into the sheets G1, ..., G, as in [25, p. 323]. Thus, G; C B’ is the
part where the covering G has at least j preimages. Let S; be the mean sheet number, S;(5)
be the mean sheet number over 3, and L; be the length of the relative boundary of the jth
sheet Gj. Then we have

S=>3"8; SB)=>_S;(B), L= L;
j=1 i=1 i=1

We shall show

91843
155 = S5 (B)l < —

for all 7 =1,...,n, which will establish our lemma.

We apply Corollary 7.9. Since each G is divided by loop cuts and cross cuts of total length
L;, one of G or B’ — G, which we write Dj, satisfies the two estimates of Corollary 7.9.
Hence, by Lemma 7.3 and ¢=(83) > 1, we obtain

AD;) (L=(Djnp)| _2"%¢°
— < L;. 7.24
A(B") =(0) e 7 ( )
If D; = Gy, this is what we need to prove.
If D; = B’ — G, then we have

L (7.23)

AG)) _  ADy)
A(B') A(B')’
=(G;np) _, {=(D;npP)
t=(5) =(B)
Thus, by (7.24), we obtain the estimate (7.23). O

LEMMA 7.11. Assume that ((@, bi,...,by) is e-thick, where 0 < e < 1. Let F' be a covering
surface of B. Let S be the mean sheet number and let L be the length of the relative boundary.
For a line segment « from {o...,a4-1}, let S(a) be the mean sheet number over « with
respect to f=. Then we have
91843

1S — S(a)| < L.

Proof. By deforming F slightly, if necessary, so that S, S(«), L change arbitrary small, we
may assume without loss of generality that the relative boundary of F' has no arcs of positive
length above ay,...,aq—1 and that F' has no brunch points above a1,...,0q—1. Let {aj};»”:l
be the cross cuts of I over ayq,. .., aq—1. By these cross cuts, F' is divided in Gy, ..., Gy. Then
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each G is a covering surface of B’. Let S; be the mean sheet number and let L; be the length
of the relative boundary of this covering. Then we have

k k
s-35 I-Y L
i=1 i=1

Let 8 and /' be the line segments in 9B’ that are two copies of . Let S;(3) and S;(3') be
defined as in Lemma 7.10. Then we have
91943
28; = Si(B) = Si(B")] < Li,

€

hence
219q3
€

L.

k
28 — Z(Sim +S:(8))| <

Now each o; is contained in {0G;}%_; exactly two times. Hence, we have

k

> (8i(B) + Si(B3)) = 25(av).

i=1

This concludes the proof. ]

Now we prove Theorem 7.1(2). We follow the proof due to Téki [29], who simplified the
original proof of Ahlfors [1]. As in the proof of Lemma 7.11, we may assume without loss of

generality that the relative boundary of F' has no arcs of positive length above a1,..., 041
and that I has no brunch points above a1, ...,a, 1. Let {0;}72; be the cross cuts of F' over
ai,...,aq—1. Given o, which lies over ay, we set
ﬁ: (O’ )
Moj) = —
( ]) ZE (ak)
We have
0< A(oy) < 1. (7.25)
We consider two cases.
Case 1: There exists o; which does not divide F'. In this case, we may assume that o,...,0p,
satisfies

(1) F— (o144 0y,) is connected,
(2) every o5, n+1<j<m,divide F — (61 +--- + 0y,).

We have
n—1<o"(F). (7.26)
We remark that o;, n+1<j<m, divide F—(o1+---+0,) into m—n-+1 part
Go, ..., Gm—pn. We may assume that the boundary of Gy contains o,,. Among G1,...,Gn_n,
there exists at least one part whose boundary contains only one cross-cut except o1, ..., 0,. We
denote this part G and the cross-cut g,,11. Also among Ga, ..., Gy, —p, there exists at least one
part whose boundary contains only one cross-cut except o1, ...,0,,0,41. We denote this part
G and the cross-cut 0,12, and so on. Thus, we have Go, G1,...,Gm—_rn and 0,11, 0p42,« - -, Oy

Now each Gy, is a covering surface of B’. The boundary of G} contains o, . Let Sk be the
mean sheet number and let L; be the length of the relative boundary. By Lemma 7.10, we

have
18 3

)\<Jn+k) < Sk +

Ly.
3
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Hence, we have

m—n 218q3
Monsr) < S+ L. (7.27)
k=0 <
On the other hand, by Lemma 7.11, we have
m 91844
(g—1)S < Aoj) + L. (7.28)
=1 c
Using (7.27), we obtain
n—1
218 (4 1 o3
(G205 < S Ao) + 24+ )
i=1 c
By (7.25), we obtain
218 4 3
(g—2)S<n—1+ (q;_q)L.

Thus, by (7.26), we obtain our result.
Case 2: All o; divide F. In this case, 0, 1 < j < m, divide F into m + 1 part Gy, ..., Gn.
Among them, there exists at least one part whose boundary contains only one cross-cut. We

denote this part G7 and the cross-cut o1. Also among Go,...,G,,, there exists at least one
part whose boundary contains only one cross-cut except o1. We denote this part G5 and the
cross-cut oy, and so on. Thus, we have G1,...,G,, and o1,...,0,,.
By Lemma 7.10, we have s s
Mog) < Sk + L.
Hence, we have
A < S L
PIITARD SLREE) oi
k=1 k=1 k=1
9183
<s+=—1r.

By (7.28), we obtain
2"%(¢" +¢%)
€

(g—2)S < L.

Since o7 (F) > 0, we obtain our estimate.

8. Proof of Proposition 4.3

We shall derive Proposition 4.3 from Proposition 7.2 to conclude the proof of Theorem 4.1.
Since Proposition 7.2 only treats the case when (C,a;1(x), ..., a,(z)) is Fso-thick, we need to
decompose the general case into z35-thick cases. We use a similar trick as in [32, 33] based on
combinatorial arguments of trees.

8.1. Combinatorial lemma

A g-tail of a tree I' is a map 0 : {1,...,q} — vert(T'), where vert(T") is the set of the vertices
of T. For v € vert(T'), we set

P ={ie{l,...,q};0(i) = v},
Pl = {v' € vert(T';); v and v" are adjacent},
P, =P"UP
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We say that (', 0) is stable if #P, > 3 for all v € vert(T).
Assume (T",0) is stable. For each 7 € P,, we define a subset S¥ C {1,...,¢} as follows. If

T € P, then we set SY = {r}. For 7 € P}, we remove the edge {v,7} from I' to obtain two

connected components I', and I'-, where I', contains v and I'; contains 7. We set
Sv={ie{l,...,q};0(i) € vert(T';)}.
We define a map ¢, : P, — {1,...,q} by
ty(7) = max SY.
For each v € vert(T'), we have q € 1,(P,). Let j € 1,(P,)\{¢} be the largest element. We set
Lo(Py)" = 1o (Po)\{j, a}-

ExaMPLE. (1) vert(T') = {v}, 0:{1,2,3} — {v}. The set of edges of I' is empty. In this

case, we have P! = {1,2,3} and P = (), hence P, = {1,2,3}. Thus, (T, 9) is stable. We have
St={1}, S5=1{2}, S={3}

and

Thus, ¢, (P,) = {1}.

(2) vert(T') = {vy,v2} and 9 :{1,2,3,4} — {v1,v2} where 9(1) = vy, 0(2) = vy, I(3) = vy
and 9(4) = vy. The set of edges of T consists of one edge which joins v; and vy. In this case,
we have

P =A{12}, P ={v}, Py ={1,2,0},
Py =1{3,4}, P, ={wn}, P, ={3,4un}
Thus (T, 0) is stable. We have
Sit={1}, St ={2}, S = {34},
Sy? ={3}, Sy>={4}, S;2=1{1,2}.
Hence,

L'Ul(l) =1, Lyy (2) =2, Ly ('U2) =4,
29 (3) =3, Ly (4) =4, Lyg (Ul) =2

Thus, ty, (Py,)" = {1} and ¢,,(P,,)" = {2}.

LeEMMA 8.1.  Assume (I',0) is stable. Then we have the disjoint union

{1,...,q—2}= U LU(PU)/'

vevert(T)

Proof.  The inclusion U, ¢yery(ry to(Po)" € {1,...,q — 2} is obvious. We prove that for each
ie{l,...,q— 2}, there is a unique v € vert(I') such that i € ¢,(P,)". Set d(q) = v, and 9(i) =
v’. Then there exists a unique path joining v, and v’:

Vo = V0, U1, .-, 0p =V . (8.1)
We set k = min{s; i € ¢y, (P,.)}. We remark that
i€ Ly, (Py,). (8.2)
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This follows by ¢ —1 € 1y, (P,,) f k=0.If k> 1, by ¢ € 1y, ,(Po,_,
and ty,_, (Vk) € by, (P, ). Hence, we obtain (8.2).

Next we show the uniqueness. First, we take a vertex w outside the path (8.1). Then for
T € P, with ¢ € S¥, we have i € S¥. Hence i & t,,(Py). Next, we consider the vertices in
the path (8.1). Obviously, i & i, (P,,) for s < k. For s > k, by i € 1y, ,(Po,_,), we have i =
max ¢y, (Py,)\{q}. Hence i & v, (P,.)". This shows the uniqueness. O

), we have ¢, _, (vg) >

8.2. Construction of a tree

LEMMA 8.2. Forz € X(ai,...,aq), there exists a stable, g-tailed tree (I',0) such that the
following conditions hold.

(1) For all v € vert(T"), the marked sphere (C, {a,, () (2)}rep,) is 5-thick,

(2) If v and v’ are adjacent, then there exists an annulus A with modulus greater than
(1/27)1og(2%°) such that {a,, () (%)}rep,\{o} Is contained in one component of C— A and
{a.,, () (z)}rep,\{v} is contained in the other component.

Proof. Starting from the g-tailed tree (T!*, 91)) defined by vert(T!*) = {pt}, we consider
the following algorithm:
1: If a g-tailed tree (T'¥, 9I*]) satisfies the condition (1), then output (T'*], %), Otherwise
go to the next step.
2: Find v € vert(I'*]) such that the marked sphere (C, {a, ) (@)}, ppu) is not S-thick.
Thus there exists an annulus A with Mod(A) > (1/27)log22° that separates P to
(quk])’ and (Pv[k])”. We construct a new g-tailed tree (IF+1 glk+11) by replacing v with
two new vertices v’ and v” such that PE[I,CH] = (Pi’“])' U {v"} and PUU,C,H] = (ng})” U
{v’}. Return to the previous step.

Note that each (F[k],a[k}) is stable. Hence, the above procedure terminates at most in g-steps
and yields the desired stable, g-tailed tree (T, ). |

We summarize the conclusion of Proposition 7.2 applied to {ai}iav( p,) as the set of rational
functions. For each v € vert(I'), we apply Proposition 6.2 to obtain a holomorphic motion
év : Q x € — C which extends {aitic,(p,). Let gy : Q2 — C be the quasimeromorphic function
defined by

Pu(N; gv) = fo-

For v € vert(I',) and 7 € P,, we define A? C C as follows: Let s < -
If v, (7) # g, then we set

A: = {Z c C; |Z - aLU(T)(x)| < Sp:},

where p? = mine,, (p,)\{vo(r),q} [@i(2) = a,, (7 (2)].
When ¢,(7) = g, let j be the maximal element in ¢, (P,)\{q}. We set

A? ={2€C; |z—a;(x)] > Ry/s},
where R, = max;e,, (p,)\{q} |@i(2) — a;(z)|. We set

Bv:(@_ U 717)—’
P,

TE

Xo(r,t) = > o(F) + > ot (F).

FeZ(gy ' (By),Q(rt)) FeP(gy " (By),Q(r,t))
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Then, by Proposition 7.2, we have

(#P, — 2) Jm/z T (r, / _‘Z ,Q(t)) dt

0 a; = Qi
m/2 pr 67 7,8 3/4
Xo(u,t) 257 dg 1 1/4
< S dudt T — 1 .
L L » wdt + - 7+ ) (logr) (8.3)

for r > ~4, where ¢ and j are distinct elements in ¢, (P,)\{q}.
So far we have assumed s < %. In what follows, we take s so that 1—16 <s< %. Then we
have the following lemma:

LEMMA 8.3. Forwv € vert(I',) and 7 € P,, we have a;(x) € AY for all i € S?.

Proof. The assertion is obvious if 7 € P;*. In the following, we assume that 7 € P;’. It is
enough to show

C\AYL NC\AY =0 (8.4)
for adjacent vertices v and v’. Indeed (8.4) implies A, D Az' for all n € P,/\{v}. We take the
path joining v and 9(4):

v =g, U1,...,0, = O0(i).
Then we have
AP DA DDA DAY 3 a(w)
as desired.

We prove (8.4). We note that Sy, U S}j/ ={1,2,...,q} is a disjoint union. Hence, we may
assume without loss of generality ¢ € SY'. Thus, v, (v) = ¢. Set 1,(v') = j. We take k € 1,(P,)
such that p = |ag(2) — a;(x)|. Then by s > =, we have
AY D {z € Cler(z, aj(z), an(@), aq(2))| < &1} (8.5)

We note that j is the largest element in ¢, (Py)\{q}. We take [ € 1,/(P,) such that R, =

|a;(z) — a;(z)]. Then by s > 1, we have

AV 5 {z € C;ler(z,a(x), i(x), ag(z))| > 16}. (8.6)

By Lemma 8.2, there exists an annulus A with modulus greater than (1/2m)log(22°) such that
{ar(x),aq(x)} is contained in one component of C — A and {a;(z),a;(x)} is contained in the
other component. Hence by Teichmiiller’s extremal problem [2, p. 30], we have

ler(ai(@), a;(), ar(@), aq(2))] < 515 (8.7)
By (8.5)—(8.7), we obtain (8.4). O
We apply the following distortion estimate of quasiconformal mappings [3, p. 81] to prove a

generalization of (8.4): For a quasiconformal map ¢ : C — C fixing 0 and 1 with K, < %7 we
have

[0(2)] < 42151, 2] < 1. (8.8)

LEMMA 8.4. For adjacent vertices v and v’, and for all A € €, we have

$u (X, C\AY) Ny (A, C\AY ) = 0. (8.9)
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Proof. 'We keep the notation in the proof of (8.4). Let A € Q. We denote ¢, »(2) = ¢y (A, 2).
By Proposition 6.2, we have K(Z)M < %. We apply (8.8) to a quasiconformal map
-1 1
Pa;(@).an(@) © Pux © Pa,(n),ak(2)
where we recall the notation from (7.1). Note that this map fixes 0 and 1. Then we obtain
Syn({z € C; fer(z,a;(N), ar(N), ag(V)] <277}
C {z € C;er(z, a5(2), a(x), ag(x))] <27}

Hence, we obtain

Gua(C\AY) C {z € Cs lex(z,a5(N), an(N), ag(A))] > 277 (8.10)
Similarly, we have
Sur A(C\AY) C {2 € Cslex(z,a;(\), ar(A), ag (V)] < 27} (8.11)
By Lemma 5.3 and (8.7), we have
er(m(3), a5 (), ax (V) agO0)| < 577 (8.12)
By (8.10)—(8.12), we establish our lemma. O

8.3. Final reduction

For 7 € P,, we set

a(rt)y== > oF)= > o'(F)

FeD] | FeDl |

where
DzI;,T = I(g;l(Aﬁ),Q(T, t), D’L}/'),T = P(g;1<A:)v Q(r,t)).

It is evident that D! is a finite set. We remark that DI _ is also finite, since Q(r,t) is

v, T v, T

bounded by a finite number of analytic arcs and g, is real analytic outside the inverse image
of {ai(z)}ic., (p,)-
By changing s slightly if necessary, we assume that
Forallvand T € P,,ifg, : Q — Cis non-constant, then g, does not have branch
points over JA?.

LEMMA 8.5.
Xo(r,t) < Z al(r,t) (8.13)
TEP,
If v and v’ are adjacent, then
Xolrt) < —al (nt)+ > al(rt). (8.14)
TeEP,\{v'}

Lemma 8.5 implies Proposition 4.3. Set v, = 9(q). By (8.13), we have
X, (75 1) < Z ae(r,t).
TEP,,
For v € vert I';\{v, }, we denote by v~ the vertex with ¢ € SY_. By (8.14), we have

Xu(r,t) < fozz_(r, t) + Z al(r,t).
TEP,\{v—}
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Taking summation over all v € vert(I';;), we obtain
Yooty < YD D al(n). (8.15)
vevert(T) vevert(ly) TEP

Since —o(D) < 1 for D € D

v,

> 2o

vevert(ly) TEP™

<= > > D < DY algean(@), Q(r ).

vevert(l'y) TEP DeD! vevert(ly) TEP
Since (gy, ar(x), Q(r, t)) = n(f, ar, Q(r,t)) (cf. (6.2)), we obtain

Z Z 7" t) Z Z gvaa‘r Z fvalv )
i=1

vevert(l,) TEP vevert(Dy) TEP

Hence by (8.15), we have

we have

Z Xo (7, t) Zﬁ frai, Q(r,t)). (8.16)
i=1

vevert(T)

Next we apply Proposition 7.2. For each i € ,(P,)’, we take 7 € P, such that i = ¢,(7).
By i < %, we have i® ¢ SU. Hence, we may take 7/ € P, with 7/ # 7 such that i® € SY,. Let
j =max t,(P,)\{¢}. Then j # i. By |a;o (x) — ai(z)| < |a;j(z) — a;(«)| and Lemma 8.3, we have
q & S%. Seti® =1,(7'). Then i < i* < q. Hence applying (8.3) to i,i* and taking average over

i € 1y(P,)’, we obtain
m/2 o
J T (7", f—a ,Q(t)) dt
i€ty (Py) "0 die T

m/2 67 7.8 3/4
Xv( t) 27" dg 1 1/4
< dudt T — 1
L L U + m r T(r) (logr)

for r > ~4. Thus, by Lemma 8.1 and (8.16), we have

9=2 'm/2 f_ai
> | < 1‘_ai,Q(t)>dt

=1

m/2
< Z[ N(f,a;,Q(t))dt

i=170

267 dg® 1 3/4
T - 1 1/4
B (4 ) o

for r > 4.
Finally, we show the following estimate to conclude the proof.

m/2 —
J T <r, f-a ,Q(t)> dt
0 a;o — a;

m/2 f — 1 3/4
< J T (r, L ,Q(t)) dt + 2257 (r + > (logr)t/4. (8.17)

0 a;e — a; T(r)

For the proof, we set

K= "{(fv ai7a'7,'<>7ai’)'
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Then by Lemma 5.2, we have
J T (n Joa Q(t)) T (r, S Q(t)) — T(r, k, Q(t))’ dt
0

a;o — a; a;e — ;0
3/4
< 29T (T + 72T( )> (log 7“)1/4

for r > ~4. By the definition of i* and Lemma 8.3, we have
tlaie (2) — ai(@)] < lage (z) — as(@)].

Hence, by Lemma 5.2, we have

f T (n f‘“;,ﬂ(t)) 4T (r, f_aiO,Q(t)) —T(r, /-;,Q(t))’ dt

a;e — a;e — ;0
3/4
< 225T - 1 1/4
(r+2757)  oen

for r > ~4. This shows (8.17), and concludes the derivation of Proposition 4.3.

8.4. End of the proof

We prove Lemma 8.5 to finish the proof of Theorem 1.2. First we show (8.13). Let W be a
connected component of Q(r;t). We remark that

ot (W) =o0. (8.18)

Indeed by oo & €(¢), each connected component of C\W has non-trivial intersection with
C\Q(t). Hence by C\Q(t) € C\WW, we conclude o(W) < o((t)). This proves (8.18).
We need one lemma from [33, Lemma 1].

LEMMA B8.6. Assume that a finite number of disjoint simple closed curves v; (i=1,...,p)
divide C into connected domains Dy, ... yDpy1. Let (W — C be a covering map W1th no
branch pomts over the boundaries of D; (1 <i<p+1). Put A= Up+1 (¢ Y(Dy), W), B=
UPE P(¢ Y (Dy), W). Then we have

otW) = Y e(A)+ > 0" (B

AcA BeB

Now to prove (8.13), we remark that the estimate is trivial if g, is constant, since both sides
are 0 by (8.18). When g, is non-constant, by Lemma 8.6 and (8.18), we obtain (8.13).
Next we prove (8.14). We remark that

go(D) ¢ AU for D € D}, , (8.19)

Indeed assume contrary that there exists D € D, . such that g,(D) C A},. Then there
exists z € D such that g,/(2) = a, ,()(z), which says f( ) =a,,,(v)(2). Since 1, (v) € 1,(Py),
we have g,(z) = a, ,(v)(z). Since ¢y (v) # 1,(v"), we have a, ,( U)( x) ¢ AY,. This contradicts
gu(D) C AY,. Thus, (8.19) is proved.

We prove (8.14) in two cases.

Case 1: g, is constant. In this case, it is enough to show DII),’U =, for we have Xy(
0 and a¥(r,t) =0 by (8.18). Suppose, on contrary, there exists D € D{;/,v- Then by (
gu(D) ¢ AY,. Since g, is constant, we obtain

9,(Q) € C\AY,

t) =
8.19),
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On the other hand, by (8.9), we have

g0 (9, (C\AY) € AY.
Hence, we conclude g,/ (Q2) C Af)', which implies Df,,,” = (). This is a contradiction. Thus, we

have proved (8.14) when g, is constant.
Case 2: g, is non-constant. Given H € Dil,v uD

C. We set

B . we consider the restriction g,|z : H —

1v’

D’LI],T,H = I(g;l(Aﬁ),HL D’LI)D,T,H = 'P(gv_l(Ag), H) T e Py,
fg,H:I(gzjl(Bv)aH)a fsz:,P(gijl(Bv)vH)
We first remark that
D)y =0. (8.20)

To show this, we assume contrary that there exists D € D£7v/7H. By the same reason with (8.19),
we have g,/(D) ¢ AY. On the other hand, we have g,/ (H) C AY, for H € D!, /UDL . This
is a contradiction. Thus we have proved (8.20).

Now let us fix a component H € D{m). We have

oH) > Y > o(D) + > o(D)

Te€P,\{v'} DeD]  4,UDP_ DeD! uD?r

+ Z o(F).

FeF! yUFly

v/ H

Since H is compactly contained in Q(r, t), the boundary OH of H does not meet the boundary
of Q(r,t). By (8.9), we have

(g, (C\AY)) € AL (8.21)
Hence, we have
gu(0H) C A},.

Hence, ;=0 and DY _ ;=0 for 7 € P,\{v'}. By (8.19), g,(H) ¢ AY,. Hence components
D in Df,, y is not simply connected, so o(D) > 0. Thus by (8.20) we obtain

o)z Y S D)+ 3 ol (8.22)
reP,\{v'} DeD! _ FeFl y

Next we fix a component H € Dim‘ By Lemma 8.6 and (8.20), we have

ot(H) = > Yoo+ D oD+ D eE)+ > otk

TeP,\{v'} \DeD! DeDY FeFl , FeFly
(8.23)
Thus, by (8.22) and (8.23), we obtain

Yoo+ Y otH) = Y > D e

HeD], | HeD?, HeD!, UDF reP,\{v'} DeDI

LD DD DR SR ¢2)

HeDF, reP\{v'} DeD}

+ > dToeE)+ D D> of(F). (824)

HeDi,ﬁ qu,)U FeF] y HeDf,‘U FeFly

v
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By (8.21), we have

g, (By)nQrtyc |J HU | H
HeD), ,  HED[

Hence, we have

> STooE)+ D D> ot (F) =xu(nt). (8.25)

HeDi,quf,w FeFl gy He’Df,m FeFry
Again, by (8.21), we have
g '@nnarnc |J Hu |J H foreP\{v}

HeD!, | HeDF, |

Hence, we have

> DO DI R DI DI DR (2)

HEDi,_’UUDf,’v TeP,\{v'} DEDII)‘T,H HE‘DS,’U TeEP,\{v'} DeDf,nH
=— > a¥(rt) (8.26)
TeEP,\{v'}
Thus, by (8.24)—(8.26), we obtain (8.14). O

9. A uniform version of the second main theorem: Proof of (1.10)

We begin with the Gol’dberg—Grinshtein estimate (cf. [8, Theorem 3.2.2]): For 1 < r < p and

0 < a<1, we have
27| 10 00V |V 4B «
Jo J;((r eie)) o SO (T(Pp— r)) B J) 2]

where we set C(a) = 2% + (8 4+ 2*!) sec(ar/2) and recall Cyo = sup, s m(1, f,a). Hence we

have,
Jo (M) 3 <o) (T(pp_ r))a (2T (p, f) +2C10)",

where f# = |f'|/(1+ |f|2). Hence, for a € C, using a rotation of Riemann sphere which takes
a to 0, we obtain

JO% (m)a % < C(a) <r(pp_ T)>a (2T (p, f) +2Cy0)*.

Thus using the concavity of log, we have

r” o 1 do _ r” g 3° 1 do
max log —————— < _
0 1<i<q & [f(re?),a;)2r = | & [f(re?),a; 2w

2 odd 1 fHre®) \*do
<) rartreng e o] e 3 ([f()]) o

0 1<i<q
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27 2m 7 @
<_J' logf#(,rew)%_,'_élog Z J ( f#(Teg) ) do

0 1<i<q?0 [f(re®),a;]) 2m

27 ) de P
<—| log f#(re?)=— +log(T log —F—
JO og [7(r ) 5+ log(T(p) + Cp) + i pe—

1 1
+ —log C(a) + —log g + log 2.
(0% «

Since
2 2w
o dh 0\ 40
—J logf#(re“’)—:2T(r,f)—ZN1(r,a,f>—J log f#(e")o—,
0 2 & 0 2T
ac
we conclude
2
1 de
I, 25 e agae + 20
acC
p
<27T(r, f) +1og(T'(p) + Cro) +log ——
(1) +108(T(p) + C0) + log L
1 1 2 )
—&—flogC(aH—flogq—i—logQ—J 1ng#(ez9)ﬁ.
o o 0 2m
Now let v = % and p =7+ 1/T(r, f). We set
1
E=<3r>1T 7’+>>2T7",f}.
\r> 87 (4 g5 75) > 210

Then by Borel’s growth lemma [25, p. 245], the set E is of finite linear measure, which only
depends on f. There exists ry > 1 such that

1 1
log(2T°(r, f) + Cy,0) + log <1 + rT(r,f)) + - log C(«)
27 L dO
+ log 2 —J logf#(ele)z— < 2logT(r, f)
0 s

for all » > ry. Now we obtain (1.10) for all » > 1 outside the exceptional set E U [1,r] of finite
linear measure, which only depends on f.
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