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Zeros of higher derivatives of meromorphic functions in the
complex plane

Katsutoshi Yamanoi

Abstract

We prove the Gol’dberg conjecture, which states that the frequency of distinct poles of a
meromorphic function f in the complex plane is governed by the frequency of zeros of the second
derivative f ′′. As a consequence, we prove Mues’ conjecture concerning the defect relation for
the derivatives of meromorphic functions in the complex plane.

1. Introduction

1.1. Main results

The central result of Nevanlinna’s value distribution theory of meromorphic functions is the
defect relation: If f is a non-constant meromorphic function in the plane, then the Nevanlinna
defects δ(a, f), where a ∈ Ĉ, satisfy

0 � δ(a, f) � 1 (1.1)

and ∑
a∈Ĉ

δ(a, f) � 2. (1.2)

These estimates are best possible in the strong sense that there is no relation for the defects
other than (1.1) and (1.2) which is valid for all non-constant meromorphic functions. This
is a consequence of the positive resolution of Nevanlinna’s inverse problem due to Drasin
[9]. On the other hand, meromorphic functions in proper subclasses of all non-constant
meromorphic functions may satisfy another relation for the defects which does not hold for
all non-constant meromorphic functions. In this paper, we consider meromorphic functions
which have primitives, and prove the following conjecture of Mues [23].

Theorem 1.1 (Mues’ conjecture). Let f be a meromorphic function in the complex plane
whose derivative f ′ is non-constant. Then we have∑

a∈Ĉ\{∞}
δ(a, f ′) � 1. (1.3)

The origin of this problem is a work of Hayman [15], who observed that the sum in (1.3) is
bounded above by 3

2 , based on the fact that the derivative f ′ has only multiple poles. Mues [23]
proved the estimate similar to (1.3) but the derivative f ′ is replaced by the second derivative
f ′′, provided all poles of f are simple. Up to now, the best-known upper bound for the sum in
(1.3) is 4

3 , which was proved by Ishizaki [20] and Yang [34] (see also [30]).
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It is known that the Mues conjecture follows from the Gol’dberg conjecture, which states
that the frequency of distinct poles of f is governed by the frequency of zeros of the second
derivative f ′′. In this paper, we prove the Gol’dberg conjecture in more general form as below;
The original Gol’dberg conjecture corresponds to the case k = 2 and A = ∅.

Theorem 1.2. Let f be a transcendental meromorphic function in the complex plane. Let
k � 2 be an integer, and let ε > 0. Let A ⊂ C be a finite set of complex numbers. Then we
have

(k − 1)N̄(r,∞, f) +
∑
a∈A

N1(r, a, f) � N(r, 0, f (k)) + εT (r, f) (1.4)

for all r > e outside a set E ⊂ (e,∞) of logarithmic density 0. Here E depends on f, k, ε and A.

When k = 1, the estimate (1.4) is still valid, but obvious. Thus we exclude this case from
the statement.

A related estimate was proved by Frank and Weissenborn [13] by an elegant Wronskian
method. In particular, they proved the estimate (1.4) with A = ∅, provided all poles of f
are simple. Another related result was established by Langley [22], who proved that if f is
meromorphic of finite order whose second derivative f ′′ has finitely many zeros, then f has
finitely many poles. In the same paper, Langley constructed a counter example to show that
this statement does not hold if f is of infinite order: there exists a meromorphic function of
infinite order such that f ′′ is zero-free while f has infinitely many poles.

1.2. Notation of Nevanlinna theory

General references for Nevanlinna theory are [8, 14, 16, 25, 35]. Let f be a meromorphic
function in the complex plane. Put

C(t) = {z ∈ C; |z| < t}.
We define the spherical characteristic function T (r, f) by

T (r, f) =
1
π

∫ r
1

A(t, f)
dt

t
,

where

A(t, f) =
∫

C(t)

f∗ω
Ĉ
.

Here

ω
Ĉ

=
1

(1 + |w|2)2
√−1

2
dw ∧ dw̄

is the spherical area form on the Riemann sphere Ĉ such that the total area of the Riemann
sphere is π.

Let a ∈ Ĉ. We define the counting function N(r, a, f) by

N(r, a, f) =
∫ r
1

n(t, a, f)
dt

t
,

where n(t, a, f) is the number of solutions to f(z) = a on C(t) counting multiplicity. We also
define the reduced counting function N̄(r, a, f) by

N̄(r, a, f) =
∫ r
1

n̄(t, a, f)
dt

t
,



ZEROS OF HIGHER DERIVATIVES 705

where n̄(t, a, f) is the number of solutions to f(z) = a on C(t) without counting multiplicity.
We put

N1(r, a, f) = N(r, a, f) − N̄(r, a, f).

We define the chordal distance between two points in the complex plane by

[a, b] =
|a− b|√

1 + |a|2√1 + |b|2 .

We extend the chordal distance continuously by

[a,∞] =
1√

1 + |a|2 .

We define the proximity function m(r, a, f) by

m(r, a, f) =
∫2π

0

log
1

[f(r eiθ), a]
dθ

2π
.

The defect δ(a, f) is defined by

δ(a, f) = lim inf
r→∞

m(r, a, f)
T (r, f)

.

By the first main theorem,

T (r, f) = N(r, a, f) +m(r, a, f) −m(1, a, f),

we can write

δ(a, f) = 1 − lim sup
r→∞

N(r, a, f)
T (r, f)

.

1.3. Theorem 1.2 implies Theorem 1.1

We first consider the case that f is rational. In general, if g is a non-constant rational function,
then the defect relation is valid in the stronger form

∑
a∈Ĉ

δ(a, g) � 1. Indeed we have δ(a, g) =
0 for all a �= g(∞). Thus, the estimate of Theorem 1.1 holds if f is a rational function. In the
following, we assume that f is transcendental.

Let a1, a2, . . . , aq be distinct complex numbers. By the second main theorem, we have∑
1�i�q

m(r, ai, f ′) � T (r, f ′) + N̄(r,∞, f ′) −N(r, 0, f ′′) + o(T (r, f ′))

outside a set E of finite linear measure. We apply Theorem 1.2 to the case k = 2 and A = ∅.
Given an arbitrary positive constant ε > 0, we have

N̄(r,∞, f ′) −N(r, 0, f ′′) � εT (r, f)

for all r > e outside a set E′ of logarithmic density 0. Hence, we obtain∑
1�i�q

m(r, ai, f ′) � T (r, f ′) + εT (r, f) + o(T (r, f ′))

for all r > e outside E ∪ E′.
Now by a theorem of Hayman and Miles [17], there exists a subset E′′ ⊂ (e,∞) with

log densE′′ < 1

such that

lim sup
r→∞
r �∈E′′

T (r, f)
T (r, f ′)

< 3e+ 1.
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Since log dens(E ∪ E′ ∪ E′′) < 1, we have∑
1�i�q

δ(ai, f ′) � lim sup
r→∞

r �∈E∪E′∪E′′

∑
1�i�qm(r, ai, f ′)

T (r, f ′)
� 1 + ε(3e+ 1).

Since ε is arbitrary, we obtain ∑
1�i�q

δ(ai, f ′) � 1.

This proves Theorem 1.1.

1.4. Outline of the proof of Theorem 1.2

Let Rd be the set of all rational functions of degree less than or equal to d including the
constant function which is identically equal to ∞. The proof of Theorem 1.2 is based on lower
and upper estimates of the following modification of the proximity function:

m̄d,q(r, f) = sup
(a1,...,aq)∈(Rd)q

∫2π

0

max
1�j�q

log
1

[f(r eiθ), aj(r eiθ)]
dθ

2π
.

A generalization of the first main theorem shows that m̄d,q(r, f) is finite (cf. Remark 2.3).

Theorem 1.3 (Lower estimate of m̄). Let f be a transcendental meromorphic function in
the complex plane. Let k be a positive integer and let ε > 0. Let ν : R>e → N>0 be a function
such that

ν(r) ∼
(

log+ T (r)
log r

)20

. (1.5)

Then we have

2T (r, f) + (k − 1)N̄(r,∞, f) � m̄k−1,ν(r)(r, f) +N(r, 0, f (k)) +N1(r,∞, f) + εT (r, f)

for all r > e outside an exceptional set of logarithmic density zero.

Theorem 1.4 (Upper estimate of m̄). Let f be a transcendental meromorphic function on
the complex plane. Let d and q be positive integers. Let ε > 0. Let B ⊂ Ĉ be a finite set of
points in the Riemann sphere and set p = #B. Then we have

m̄d,q(r, f) +
∑
a∈B

N1(r, a, f) � (2 + ε)T (r, f) +
(p+ q)17

ε4
T (r)4/5(log r)1/5

for all r > 0 outside a set of finite linear measure Ef,d which only depends on f and d.

Theorems 1.3 and 1.4 imply Theorem 1.2. Let A ⊂ C be a finite set of complex numbers.
Given ε > 0, we apply Theorem 1.4 to the case B = A ∪ {∞}, d = k − 1 and q = ν(r), where
ν : R>e → N>0 is a function satisfying (1.5). Then we obtain

m̄k−1,ν(r)(r, f) +N1(r,∞, f) +
∑
a∈A

N1(r, a, f)

� (2 + ε)T (r, f) +
(p+ ν(r))17

ε4
T (r)4/5(log r)1/5
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for all r > 0 outside a set of finite linear measure Ef,k−1, where p = #A+ 1. Combining with
Theorem 1.3, we have

(k − 1)N̄(r,∞, f) +
∑
a∈A

N1(r, a, f)

� N(r, 0, f (k)) + 2εT (r, f) +
(p+ ν(r))17

ε4
T (r)4/5(log r)1/5

outside a set of logarithmic density zero. Since f is transcendental, we have

lim
r→∞

T (r)
log r

= ∞. (1.6)

Thus, by (1.5), we have

lim
r→∞

(p+ ν(r))17T (r)4/5(log r)1/5

T (r)
= 0. (1.7)

This proves our theorem.

1.5. A remark on error terms

We may replace the error term εT (r, f) in Theorem 1.2 by o(T (r, f)). This follows from the
following lemma applied to

S(r) = (k − 1)N̄(r,∞, f) +
∑
a∈A

N1(r, a, f) −N(r, 0, f (k)).

Lemma 1.5. Suppose that S(r), where r > e, is a function such that the logarithmic density
of the ‘exceptional set’

Eε = {r > e; S(r) > εT (r)}
is zero for all ε > 0. Then we have

S(r) � o(T (r))

for all r > e outside some exceptional set of logarithmic density zero.

Proof. Since

lim
r→∞

∫
[e,r]∩Eε(dt/t)

log r
= 0

for all ε > 0, we may take a positive number rn > e, where n � 0, such that∫
[e,r]∩E1/2n

(dt/t)

log r
<

1
2n

is valid for all r � rn. We may assume without loss of generality that these numbers form a
sequence e < r0 < r1 < r2 < · · · which tends to infinity. We set ε(r) = 1/2n if rn � r < rn+1,
and ε(r) = 1 if e � r < r0. Then ε(r) → 0 when r → ∞. Let

E = {r > e; S(r) > ε(r)T (r)}.
Then for r < rn+1, we have [e, r] ∩ E ⊂ [e, r] ∩ E1/2n . Thus, for rn � r < rn+1, we have∫

[e,r]∩E(dt/t)

log r
<

1
2n
.
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Hence, for r � r0, we have ∫
[e,r]∩E(dt/t)

log r
< ε(r).

This shows that the logarithmic density of E is zero. We have

S(r) � ε(r)T (r) = o(T (r))

for all r > e outside E .

1.6. An asymptotic equality in the second main theorem

To derive Theorem 1.2, we apply Theorem 1.3 for k � 2 together with Theorem 1.4. If we apply
Theorem 1.3 for k = 1, then we obtain a reversion of the second main theorem. Together with
a uniform version of the second main theorem, we obtain the following asymptotic equality.

Theorem 1.6. Let f be a transcendental meromorphic function on C. Let ν : R>e → N>0

satisfies (1.5). Then we have

m̄0,ν(r)(r, f) +
∑
a∈Ĉ

N1(r, a, f) = 2T (r, f) + o(T (r, f)), (1.8)

where r → ∞ outside a set of logarithmic density 0.

Here, by definition, we note

m̄0,q(r, f) = sup
(a1,...,aq)∈Ĉq

∫2π

0

max
1�j�q

log
1

[f(r eiθ), aj ]
dθ

2π
.

Proof. We consider the case k = 1 in Theorem 1.3. Using

N1(r,∞, f) +N(r, 0, f ′) =
∑
a∈Ĉ

N1(r, a, f)

and Lemma 1.5, we obtain

2T (r, f) � m̄0,ν(r)(r, f) +
∑
a∈Ĉ

N1(r, a, f) + o(T (r, f)), (1.9)

where r → ∞ outside a set of logarithmic density 0.
On the other hand, a uniform version of Nevanlinna’s second main theorem asserts that for

a1, . . . , aq ∈ Ĉ, we have
∫2π

0

max
1�j�q

log
1

[f(r eiθ), aj ]
dθ

2π
+
∑
a∈Ĉ

N1(r, a, f) � 2T (r, f) + 3 log T (r, f) + 2 log q (1.10)

for all r > 1 outside an exceptional set E of finite linear measure which only depends on f . We
prove this statement in the final section. Thus outside E, we obtain

m̄0,ν(r)(r, f) +
∑
a∈Ĉ

N1(r, a, f) � 2T (r, f) + 3 log T (r, f) + 2 log ν(r). (1.11)

By (1.5), we have

3 log T (r, f) + 2 log ν(r) = o(T (r, f)).

Thus, by (1.9) and (1.11), we obtain (1.8).
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For other investigations of asymptotic equalities in the second main theorem, we refer the
reader to [31, Chapter 4 and 11].

1.7. Contents of the paper

In Section 2, we prove some general estimates in Nevanlinna theory. In particular, we show
that m̄d,q(r, f) is finite.

In Section 3, we prove Theorem 1.3. The proof is based on an estimate of the oscillation of
meromorphic functions on small arcs of the circle |z| = r (cf. Proposition 3.1). This is achieved
by Poisson–Jensen’s formula. Once we obtain this estimate, the proof of Theorem 1.3 goes as
follows. We equi-divide the circle |z| = r into ν(r) small arcs c1, . . . , cν(r), where the oscillation
of log |f (k)| is small. From each arc ci, we chose a polynomial ai(z) of degree at most k − 1 to
be the first k leading term of the Taylor expansion of f at one of the end points of the arc
ci. Since f(z) − ai(z) is recovered from integrating f (k)(z) and the oscillation of log |f (k)(z)| is
small on the arc ci, the term log(1/|f(z) − ai(z)|) is bounded from below by log(1/|f (k)(z)|)
on the arc ci with small errors. Together with some technical computation, we obtain a lower
bound of

ν(r)∑
i=1

∫
ci

log
1

[f(z), ai(z)]
dθ

2π
,

which is trivially bounded from above by m̄k−1,ν(r)(r, f). This produces Theorem 1.3.
In Sections 4–8, we prove Theorem 1.4. In Section 4, we introduce a uniform second main

theorem for rational target functions (cf. Theorem 4.1), from which Theorem 1.4 is easily
deduced, and its local version (cf. Proposition 4.3). Theorem 4.1 is a generalization of a second
main theorem for rational target functions obtained in [33]. Crucial improvements are uniform
controls of both error terms and exceptional sets over all possible rational functions of degree
at most d, and polynomial dependence of error terms with respect to the number of rational
functions. This polynomial dependence plays crucial role in the estimate (1.7). Proposition 4.3
treats a local value distribution of f over a topological disc or an annulus Ω on the punctured
sphereX(a1, . . . , aq) where the values of rational functions a1, . . . , aq are all distinct. We do this
under the additional assumption that the boundary ∂Ω is short with respect to the hyperbolic
length of X(a1, . . . , aq).

In Section 5, we derive Theorem 4.1 from Proposition 4.3. The derivation is based on
hyperbolic geometry, namely thick–thin decomposition of the punctured sphere X(a1, . . . , aq).
A rough outline of the derivation is as follows; On the thin parts of X(a1, . . . , aq), which
consist of annuli or punctured discs with short boundaries, we may apply Proposition 4.3 to
obtain a local version of Theorem 4.1 over the thin parts. On the thick parts of X(a1, . . . , aq),
we apply Proposition 4.3 over all embedded hyperbolic discs with a fixed small hyperbolic
radius and average the resulting estimates. This produces a local version of Theorem 4.1 over
the thick parts. Summing these estimates for the thin parts and the thick parts, we derive
Theorem 4.1.

In Sections 6–8, we prove Proposition 4.3. In Section 6, we perturb f quasiconformally and
construct a quasimeromorphic function g over Ω, where Ω is a topological disc or an annulus
on X(a1, . . . , aq) with short boundary. We do this under an additional assumption that the
q-pointed sphere (Ĉ, a1(x), . . . , aq(x)) is 1

220 -thick (see Definition 6.1) for some x ∈ Ω. The
procedure is as follows. We consider the rational functions a1, . . . , aq as a holomorphic motion
of q points {a1(x), . . . , aq(x)} over Ω. We try to extend this motion to a holomorphic motion
of whole sphere. It is well known that this extension problem has a topological obstruction
if Ω is not simply connected. In Proposition 6.2(1), we show that this obstruction vanishes if
(Ĉ, a1(x), . . . , aq(x)) is 1

220 -thick and ∂Ω is sufficiently short. Thus the motion extends to a
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holomorphic motion φ̂ : Ω × Ĉ → Ĉ of whole sphere. We perturb f by

φ̂(z, g(z)) = f(z)

to obtain a quasimeromorphic function g(z) on Ω. The role of the motion φ̂ is to convert
the rational target functions into constants, at the price of replacing f by quasimeromorphic
function g. Indeed two equations f(z) = ai(z) and g(z) = ai(x) are equivalent over Ω, where
ai(x) are constants. The shortness of ∂Ω implies that the perturbation is small so that the
order functions of f and g are close (cf. Proposition 6.2(3)).

In Section 7, we recall Ahlfors’ theory of covering surfaces in the form where the constants
‘h’ (cf. [25]) in the theory are controlled explicitly. Here an important feature is the polynomial
dependence of the constants h with respect to the number of the target points, which implies
the above-mentioned polynomial dependence of error terms in Theorem 4.1 with respect to
the number of rational target functions. As already noted by Ahlfors [1], this theory can
be applied not only for meromorphic functions but also for quasimeromorphic functions. We
apply the theory to the quasimeromorphic function g to obtain Proposition 7.2, which is a
main conclusion of Sections 6 and 7 towards the proof of Proposition 4.3.

In Section 8, we complete the proof of Proposition 4.3 to conclude the proof of Theorem
4.1, using Proposition 7.2. The main difficulty arises from the fact that Proposition 7.2 only
treats the case when (Ĉ, a1(x), . . . , aq(x)) is 1

220 -thick. Thus the main issue is to decompose the
general case into 1

220 -thick cases. We use a similar trick as in [32, 33] based on combinatorial
arguments of trees.

In Section 9, we prove the estimate (1.10), which is used in the proof of Theorem 1.6.

2. General estimates in Nevanlinna theory

If f(z) and a(z) are distinct meromorphic functions on C, we set

m(r, a, f) =
∫2π

0

log
1

[f(r eiθ), a(r eiθ)]
dθ

2π
.

Let f = g/h be a reduced representation, that is, g and h are entire functions with no
common zero. Let a = b/c be a reduced representation. We denote by n(t, a, f) the number of
solutions of gc− hb = 0 on C(t) with counting multiplicity. We put

N(r, a, f) =
∫ r
1

n(t, a, f)
dt

t
.

We also define N̄(r, a, f) by

N̄(r, a, f) =
∫ r
1

n̄(t, a, f)
dt

t
,

where n̄(t, a, f) is the number of solutions of gc− hb = 0 on C(t) without counting multiplicity.
We put

N1(r, a, f) = N(r, a, f) − N̄(r, a, f).

Lemma 2.1. Let δ > 0 and r > δ. Then

1
π

∫ r
δ

(∫
C(t)

f∗ω
Ĉ

)
dt

t
+

1
π

∫ r
δ

(∫
C(t)

a∗ω
Ĉ

)
dt

t

=
∫ r
δ

n(t, a, f)
dt

t
+m(r, a, f) −m(δ, a, f).
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In particular, we have

T (r, f) + T (r, a) = N(r, f, a) +m(r, f, a) −m(1, f, a).

Proof. Let λ(z) = log(1/[f(z), a(z)]2). Then we have

λ(z) = − log |gc− hb|2 + log(|g|2 + |h|2) + log(|b|2 + |c|2),
where f = g/h and a = b/c are reduced representations. Hence, we have

ddc[λ] = −
∑
z∈C

ordz(gc− hb)δz +
1
π
f∗ω

Ĉ
+

1
π
a∗ω

Ĉ

in the sense of currents on C, where δz is the Dirac measure supported on z. Now the derivation
of the estimate is standard (cf. [8, Chapter 1]).

Lemma 2.2. Let a ∈ Rd. Let f be a meromorphic function with f �∈ Rd. Then we have

m(1, f, a) < C,

where C is a positive constant which only depends on d and f .

Proof. Assume that there is a sequence a1(z), a2(z), . . . ∈ Rd such that

m(1, f, an) −→ ∞.

By considering a suitable subsequence, we may assume that a1(z), a2(z), . . . converge locally
uniformly to a(z) ∈ Rd outside a finite set of points in C. We take a constant δ such that

(1) 0 < δ < 1,
(2) a1(z), a2(z), . . . converges to a(z) uniformly on {|z| = δ},
(3) min0�θ�2π[f(δ eiθ), a(δ eiθ)] > 0.

These properties imply that

sup
n
m(δ, f, an) <∞. (2.1)

On the other hand, we shall show

lim
n→∞m(δ, f, an) = ∞. (2.2)

This gives a contradiction, which proves our lemma.
By Lemma 2.1, we have

1
π

∫1

δ

(∫
C(t)

f∗ω
Ĉ

)
dt

t
+

1
π

∫1

δ

(∫
C(t)

a∗ω
Ĉ

)
dt

t

=
∫1

δ

n(t, a, f)
dt

t
+m(1, a, f) −m(δ, a, f).

By the estimates ∫1

δ

n(t, f, an)
dt

t
� 0,

1
π

∫1

δ

(∫
C(t)

a∗ω
Ĉ

)
dt

t
� −d log δ,
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we have

m(δ, f, an) � m(1, f, an) − 1
π

∫1

δ

(∫
C(t)

f∗ω
Ĉ

)
dt

t
+ d log δ.

This shows (2.2).

For a meromorphic function with f �∈ Rd, we set

Cf,d = sup
a∈Rd

m(1, f, a). (2.3)

Remark 2.3. We show that m̄d,q(r, f) is finite for f �∈ Rd. For a ∈ Rd, we have

m(r, a, f) = m(1, a(rz), f(rz)) � Cf(rz),d.

Thus, for (a1, . . . , aq) ∈ (Rd)q, we have
∫2π

0

max
1�j�q

log
1

[f(r eiθ), aj(r eiθ)]
dθ

2π
�

q∑
j=1

m(r, aj , f) � qCf(rz),d.

Hence m̄d,q(r, f) � qCf(rz),d. In particular, m̄d,q(r, f) <∞.

Next we prove the following lemma:

Lemma 2.4. Let f be a meromorphic function with f �∈ Rd. For a1, a2, a3, a4 ∈ Rd − {∞}
with a1a4 − a2a3 �≡ 0, we have

T

(
r,
a1f − a2

a3f − a4

)
� T (r, f) + 2Cf,2d + 8d log r.

Before proving this lemma, we shall recall the Nevanlinna theory for holomorphic curves
F : C → P

k into the projective space [27, p. 101]. The case k = 1 reduces to the theory
of meromorphic functions. Let [X1 : · · · : Xk+1] be homogeneous coordinate of P

k. Let F :
C → P

k be a holomorphic curve with a reduced representation [g1 : · · · : gk+1]. By definition,
g1, . . . , gk+1 are entire functions with no common zero. We set

T (r, F ) =
∫ r
1

∫
C(t)

ddc log

(
k+1∑
i=1

|gi|2
)
dt

t
. (2.4)

Let H ⊂ P
k be a hyperplane defined by {X1 = 0}. We set

N(r, F,H) = N(r, 0, g1).

We define the Weil function λH : P
k\H → R for H by

λH =
1
2

log

(
1 +

k+1∑
i=2

|Xi|2
|X1|2

)
. (2.5)

We set

m(r, F,H) =
1
2π

∫2π

0

λH(F (r eiθ)) dθ.

Then we have the first main theorem

T (r, F ) = N(r, F,H) +m(r, F,H) −m(1, r, F ). (2.6)
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Proof of Lemma 2.4. By Lemma 2.1, we have

T

(
r,
a1f − a2

a3f − a4

)
= N

(
r,
a1f − a2

a3f − a4
, 0
)

+m

(
r,
a1f − a2

a3f − a4
, 0
)
−m

(
1,
a1f − a2

a3f − a4
, 0
)
.

Since N(r, (a1f − a2)/(a3f − a4), 0) � N(r, f, a2/a1) + 2d log r, we have

T

(
r,
a1f − a2

a3f − a4

)
� N(r, f, a2/a1) +m

(
r,
a1f − a2

a3f − a4
, 0
)
−m

(
1,
a1f − a2

a3f − a4
, 0
)

+ 2d log r. (2.7)

We estimate the proximity functions on the right-hand side. Let a, b, c, d ∈ C with ad− bc �= 0.
Set

Λ(a, b, c, d) =
1
2

log
(

1 +
|c|2 + |d|2
|a|2 + |b|2

)
.

Then we have

Λ(a, b, c, d) − log
1

[w, d/c]
� log

1
[(aw − b)/(cw − d), 0]

� Λ(a, b, c, d) + log
1

[w, b/a]
. (2.8)

Indeed we have

Λ(a, b, c, d) − log
1[

w, dc
] =

1
2

log
(

1 +
(|c|2 + |d|2)
(|a|2 + |b|2)

)( |cw − d|2
(1 + |w|2)(|c|2 + |d|2)

)
� 1

2
log
(

1 +
|cw − d|2

(|a|2 + |b|2)(1 + |w|2)
)
.

Since |aw − b|2 � (|a|2 + |b|2)(1 + |w|2), we have

Λ(a, b, c, d) − log
1

[w, d/c]
� 1

2
log
(

1 +
|cw − d|2
|aw − b|2

)
= log

1
[0, (aw − b)/(cw − d)]

.

This shows the left half of (2.8).
We have

Λ(a, b, c, d) + log
1

[w, b/a]
=

1
2

log
(

1 +
(|c|2 + |d|2)
(|a|2 + |b|2)

)(
(1 + |w|2)(|a|2 + |b|2)

|aw − b|2
)

� 1
2

log
(

1 +
(|c|2 + |d|2)(1 + |w|2)

|aw − b|2
)
.

Since |cw − d|2 � (|c|2 + |d|2)(1 + |w|2), we have

Λ(a, b, c, d) + log
1

[w, b/a]
� 1

2
log
(

1 +
|cw − d|2
|aw − b|2

)
= log

1
[0, (aw − b)/(cw − d)]

.

This shows the right half of (2.8).
Now by (2.7) and (2.8), we have

T

(
r,
a1f − a2

a3f − a4

)
� N(r, f, a2/a1) +m(r, f, a2/a1) +m(1, f, a4/a3)

+
∫2π

0

Λ(a1, a2, a3, a4)(r eiθ)
dθ

2π

−
∫2π

0

Λ(a1, a2, a3, a4)(eiθ)
dθ

2π
+ 2 d log r.
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By Lemmas 2.1 and 2.2, we have

N(r, f, a2/a1) +m(r, f, a2/a1) � T (r, f) + Cf,2d + 2d log r.

Hence, we obtain

T

(
r,
a1f − a2

a3f − a4

)
� T (r, f) + 2Cf,2d +

∫2π

0

Λ(a1, a2, a3, a4)(r eiθ)
dθ

2π

−
∫2π

0

Λ(a1, a2, a3, a4)(eiθ)
dθ

2π
+ 4d log r.

Finally, we claim∫2π

0

Λ(a1, a2, a3, a4)(r eiθ)
dθ

2π
−

∫2π

0

Λ(a1, a2, a3, a4)(eiθ)
dθ

2π
� 4d log r. (2.9)

Indeed we have

Λ(a1, a2, a3, a4) =
1
2

log

(
1 +

∣∣∣∣a2

a1

∣∣∣∣2 +
∣∣∣∣a3

a1

∣∣∣∣2 +
∣∣∣∣a4

a1

∣∣∣∣2
)

− 1
2

log

(
1 +

∣∣∣∣a2

a1

∣∣∣∣2
)
.

We define F1 : C → P
3 and F2 : C → P

1 by

F1(z) = [a1 : a2 : a3 : a4], F2(z) = [a1 : a2].

Let H ⊂ P
3 be defined by {X1 = 0} where [X1 : X2 : X3 : X4] is a homogeneous coordinate of

P
3. Let H ′ ⊂ P

1 be defined by {Y1 = 0} where [Y1 : Y2] is a homogeneous coordinate of P
1.

Then by the first main theorem (2.6), we have

m(r, F1,H) −m(1, F1,H) +N(r, F1,H) � 4d log r,
m(r, F2,H

′) −m(1, F2,H
′) +N(r, F2,H

′) � 0.

By N(r, F2,H
′) � N(r, F1,H) and∫2π

0

Λ(a1, a2, a3, a4)(r eiθ)
dθ

2π
−

∫2π

0

Λ(a1, a2, a3, a4)(eiθ)
dθ

2π
= m(r, F1,H) −m(1, F1,H) −m(r, F2,H

′) +m(1, F2,H
′),

we obtain (2.9).

3. Proof of Theorem 1.3

3.1. Beginning of the proof of Theorem 1.3

The first step in our proof of Theorem 1.3 is the estimate of oscillation of meromorphic functions
on circles centred at the origin. For a meromorphic function f , we put

v(r, f, θ) = sup
τ∈[0,2π]

(
sup

t∈[τ,τ+θ]

log |f(reit)| − inf
t∈[τ,τ+θ]

log |f(reit)|
)
,

λ(r) = min

{
1,
(

log+ T (r)
log r

)−1
}
.

Proposition 3.1. Let f be a transcendental meromorphic function in the complex plane.
Let ε > 0. Then we have

v(r, f, λ(r)20) � εT (r)

for all r > e outside a set of logarithmic density zero.
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To prove this proposition, we begin with the following lemma:

Lemma 3.2. Let f be a transcendental meromorphic function in the complex plane. Let
1 < σ < e. Then we have∫σr

r

v(t, f, (log σ)10)
t

dt < 508(log σ)2(T (σ3r, f) + c)

for r > 1, where c is a positive constant which only depends on f .

Proof. We apply the Poisson–Jensen formula (cf. [25]). Let P (z, θ) be the Poisson kernel
for the unit disk:

P (z, θ) =
1
2π

1 − |z|2
| eiθ − z|2 .

Let g(z, a) be the Green function on the unit disk:

g(z, a) = log
∣∣∣∣1 − āz

z − a

∣∣∣∣ .
Suppose that a1, . . . , aμ are the zeros and that b1, . . . , bν are the poles of f(z) in |z| < ρ, where
we put ρ = σ2r. We apply the Poisson–Jensen formula to obtain

log |f(z)| =
∫2π

0

log |f(ρ eiθ)|P
(
z

ρ
, θ

)
dθ

2π
−

μ∑
k=1

g

(
z

ρ
,
ak
ρ

)
+

ν∑
k=1

g

(
z

ρ
,
bk
ρ

)
(3.1)

for |z| < ρ. In the following, we shall estimate the oscillation of log |f | in terms of the oscillations
of the Poisson kernel and the Green functions.

For 0 < t < 1, we put

α(t, θ, τ) = sup
τ0∈[0,2π]

(
sup

x∈[τ0,τ0+τ ]

P (t eix, θ) − inf
x∈[τ0,τ0+τ ]

P (t eix, θ)

)
and

β(t, a, τ) = sup
τ0∈[0,2π]

(
sup

x∈[τ0,τ0+τ ]

g(t eix, a) − inf
x∈[τ0,τ0+τ ]

g(t eix, a)

)
.

Set α(t, τ) = α(t, 0, τ). Since P (z, θ) = P (z e−iθ, 0), we have

α(t, θ, τ) = α(t, τ). (3.2)

Now by (3.1) and (3.2), for 0 < t < ρ, we have

v(t, f, τ) � α

(
t

ρ
, τ

) ∫2π

0

| log |f(ρ eiθ)|| dθ
2π

+
μ∑
k=1

β

(
t

ρ
,
ak
ρ
, τ

)
+

ν∑
k=1

β

(
t

ρ
,
bk
ρ
, τ

)
.

Using the first main theorem, we obtain

v(t, f, τ) � α

(
t

ρ
, τ

)
(2T (ρ, f) + c) +

μ∑
k=1

β

(
t

ρ
,
ak
ρ
, τ

)
+

ν∑
k=1

β

(
t

ρ
,
bk
ρ
, τ

)
,

where c is a positive constant which only depends on f . After dividing this estimate by t, we
integrate the resulting estimate from ρ/σ2 to ρ/σ to obtain

∫ρ/σ
ρ/σ2

v(t, f, τ)
dt

t
� (2T (ρ, f) + c)α̃(τ) + (μ+ ν)β̃(τ),
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where we put

α̃(τ) =
∫1/σ

1/σ2
α(t, τ)

dt

t

and

β̃(τ) = sup
|a|�1

∫1/σ

1/σ2
β(t, a, τ)

dt

t
.

Using the definition of the counting function and the first main theorem, we have

μ+ ν = n(ρ,∞, f) + n(ρ, 0, f)

� 1
log σ

(N(σρ,∞, f) +N(σρ, 0, f))

� 2
log σ

(T (σρ, f) + c), (3.3)

where c is a positive constant which only depends on f . Thus, we obtain∫σr
r

v(t, f, τ)
dt

t
� 1 + log σ

log σ
(2T (σρ, f) + c)(α̃(τ) + β̃(τ)). (3.4)

Claim 1. We have

α̃(τ) � 27τ
(log σ)2

.

Proof of Claim. Since
∂

∂θ
P (t eiθ, 0) = − t(1 + t)(1 − t) sin θ

π|1 − t eiθ|4 ,

we have ∣∣∣∣ ∂∂θP (t eiθ, 0)
∣∣∣∣ � 2

π(1 − t)3
.

Hence, we obtain

α(t, τ) � 2τ
π(1 − t)3

� τ

(1 − t)3
.

Thus, we have

α̃(τ) =
∫1/σ

1/σ2
α(t, τ)

dt

t
� τσ3

(σ − 1)3
log σ.

Since log σ � σ − 1 and σ3 < 27, we complete the proof of the claim.

Claim 2.

β̃(τ) � 10τ
(log σ)7

+ 90(log σ)3.

Proof of Claim. We denote δ = (log σ)4. For |a| < 1, we set

I(a) = [|a| − δ, |a| + δ] ∩ [1/σ2, 1/σ],

J(a) = [1/σ2, 1/σ]\[|a| − δ, |a| + δ].

Then we have ∫1/σ

1/σ2
β(t, a, τ)

dt

t
� σ2

∫
I(a)

β(t, a, τ) dt+
∫
J(a)

β(t, a, τ)
dt

t
. (3.5)
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First, we estimate the first term on the right-hand side of (3.5). Since we have

β(t, a, τ) � max
θ∈[0,2π]

g(t eiθ, a) = log
1 − t|a|
|t− |a|| � log

1
|t− |a|| ,

we obtain ∫
I(a)

β(t, a, τ) dt � 2
∫ δ
0

log
1
x
dx = 2(log σ)4 + 8(log σ)4 log

1
log σ

.

Since log(1/log σ) � (1/log σ), we obtain∫
I(a)

β(t, a, τ) dt � 2(log σ)4 + 8(log σ)3. (3.6)

Next we estimate the second term on the right-hand side of (3.5). Since

β(t, a, τ) = β(t, |a|, τ),
it is enough to consider the case 0 < a < 1. Since

∂g

∂θ
(t eiθ, a) =

at sin θ
|1 − at eiθ|2 − at sin θ

|a− t eiθ|2 ,

we have ∣∣∣∣∂g∂θ (t eiθ, a)
∣∣∣∣ � 1

(1 − at)2
+

1
(a− t)2

� 1
(1 − t)2

+
1

(a− t)2
.

Hence, we obtain

β(t, a, τ) � τ

(1 − t)2
+

τ

(a− t)2
.

Hence, on t ∈ J(a), we have

β(t, a, τ) � σ2τ

(σ − 1)2
+

τ

(log σ)8
.

Since log σ � σ − 1, we obtain

β(t, a, τ) � σ2τ

(log σ)2
+

τ

(log σ)8
.

Thus, we obtain ∫
J(a)

β(t, a, τ)
dt

t
� σ2τ

log σ
+

τ

(log σ)7
. (3.7)

From (3.5)–(3.7), we complete the proof of our claim.

Now Lemma 3.2 is an obvious consequence of (3.4) and the claims above. (Recall that
ρ = σ2r.)

In order to deal with the term T (σ3r), we need a growth lemma.

Lemma 3.3. Let g(r) be a continuous, non-decreasing function in [r0,∞) with g(r0) � 2,
where r0 > 1. Suppose that

lim
r→∞ g(r) = ∞.

Given a fixed positive constant s > 1, we put

ϕ(r) =
1

(log g(r))s
.



718 KATSUTOSHI YAMANOI

Set

E = {r � r0; g(e3ϕ(r)r) � 2g(r)}.
Then we have ∫

E∩[r0,∞]

dt

t
<∞.

Proof. Suppose that E is bounded, then our lemma is trivial. Thus in the following, we
assume that E is unbounded.

We define a sequence of positive numbers r1, r2, . . . by the following inductive rule:

r1 = inf E,

ri+1 = inf(E ∩ [e3ϕ(ri)ri,∞)).

Since E is a closed set, we have ri ∈ E. Hence we have

g(ri+1) � g(e3ϕ(ri)ri) � 2g(ri).

Thus, we obtain
g(rn) � 2n. (3.8)

This shows that lim rn = ∞. By the construction of the sequence {rn}, we have

E ⊂
∞⋃
n=1

[rn, e3ϕ(rn)rn].

Using (3.8), we obtain
∫e3ϕ(rn)rn

rn

dt

t
= 3ϕ(rn) =

3
(log g(rn))s

� 3
(n log 2)s

.

Thus, we conclude
∫
E∩[r0,∞]

dt

t
�

∞∑
n=1

∫e3ϕ(rn)rn

rn

dt

t
� 3

(log 2)s

∞∑
n=1

1
ns

<∞.

This proves our lemma.

Corollary 3.4. Let f be a transcendental meromorphic function in the complex plane.
We have

T (e3λ(r)2r) � 3T (r)

for all r > e outside a set E ⊂ [e,∞) of finite logarithmic measure
∫
E

(dt/t) <∞.

Proof. For r > 1, the function T (r)/ log r is a continuous, non-decreasing function. Since f
is transcendental, we have limr→∞ T (r)/ log r = ∞. We apply Lemma 3.3 to obtain

T (e3λ(r)2r)
log(e3λ(r)2r)

< 2
T (r)
log r

for all r > e outside a set of finite logarithmic measure. Hence we obtain

T (e3λ(r)2r) < 2
(

1 +
3λ(r)2

log r

)
T (r)

for all r > e outside a set of finite logarithmic measure. Since limr→∞(λ(r)2/log r) = 0, we
complete the proof of our corollary.
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Lemma 3.5. Let F ⊂ R>e be a measurable set. Let ϕ : [e,∞) → (0,∞) be a positive,
continuous and non-increasing function. Assume that the set

Eε =

{
r � e;

∫
F∩[r,eϕ(r)r]

dt

t
> εϕ(r)

}
.

has finite logarithmic measure for every ε > 0. Then the logarithmic density of F is zero.

Proof. We fix an arbitrary small positive constant ε > 0. Set G = [e,∞)\Eε. Since ϕ is
continuous, G is a closed set. Since Eε has finite logarithmic measure, G is unbounded.

We define a sequence of positive numbers {rn} by the following inductive rule:

r0 = e,

ri+1 =

{
eϕ(ri)ri ri ∈ G,

inf[ri,∞) ∩G ri �∈ G.

Since G is unbounded, this sequence is infinite.
We claim that

lim
i→∞

ri = ∞.

To see this, assume contrary: there exists a positive constant α such that rn < α for all n. Then
we have

ri+2 � eϕ(α)ri. (3.9)

Indeed this is obvious if ri ∈ G, since ϕ is non-increasing function. Suppose that ri �∈ G. Then
since G is closed, we conclude ri+1 ∈ G. Hence ri+2 = eϕ(ri+1)ri+1. This shows that (3.9) also
holds for ri �∈ G. Since eϕ(α) > 1, (3.9) contradicts the boundedness assumption rn < α. Hence,
we conclude that the sequence {rn} tends to infinity.

Now given R > e, there is a non-negative integer n(R) such that

rn(R) � R < rn(R)+1.

We put

A = {i ∈ Z�0; ri ∈ G and i � n(R) − 1},
B = {i ∈ Z�0; ri �∈ G and i � n(R) − 1}.

For i ∈ A, we have ∫
[ri,ri+1]∩F

dt

t
� εϕ(ri) = ε

∫
[ri,ri+1]

dt

t
.

For i ∈ B, we have ∫
[ri,ri+1]

dt

t
=

∫
[ri,ri+1]∩Eε

dt

t
.

Hence, we have
∫
[e,R]∩F

dt

t
=
n(R)−1∑
i=0

∫
[ri,ri+1]∩F

dt

t
+

∫
[rn(R),R]∩F

dt

t

=
∑
i∈A

∫
[ri,ri+1]∩F

dt

t
+
∑
i∈B

∫
[ri,ri+1]∩F

dt

t
+

∫
[rn(R),R]∩F

dt

t

� ε

∫R
e

dt

t
+

∫
[e,rn(R)]∩Eε

dt

t
+

∫R
rn(R)

dt

t
.
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If rn(R) ∈ G, then
∫R
rn(R)

dt

t
� ϕ(rn(R)).

If rn(R) �∈ G, then
∫R
rn(R)

dt

t
=

∫
[rn(R),R]∩Eε

dt

t
.

Hence, we have ∫
[e,R]∩F

dt

t
� ε logR+

∫
[e,R]∩Eε

dt

t
+ ϕ(rn(R)).

Thus, we obtain

lim
R→∞

1
logR

∫
[e,R]∩F

dt

t
� ε+ lim

R→∞
1

logR

(∫
[e,R]∩Eε

dt

t
+ ϕ(rn(R))

)
= ε.

Since ε > 0 is arbitrary, we complete the proof of our lemma.

Proof of Proposition 3.1. We apply Lemma 3.2 for σ = eλ(r)2 to obtain

∫eλ(r)2r

r

v(t, f, λ(r)20)
t

dt < 508λ(r)4(T (e3λ(r)2r, f) + c).

By Corollary 3.4, we obtain

∫eλ(r)2r

r

v(t, f, λ(r)20)
t

dt < 508λ(r)4(3T (r, f) + c)

outside a set of finite logarithmic measure.
Now given positive constants ε > 0 and ε′ > 0, we have

∫eλ(r)2r

r

v(t, f, λ(r)20)
t

dt � εε′λ(r)2T (r, f)

outside a set Eε,ε′ of finite logarithmic measure. Set

Fε = {r � e; v(r, f, λ(r)20) > εT (r, f)}.
Then we have

∫
[r,eλ(r)2r]∩Fε

dt

t
�

∫eλ(r)2r

r

v(t, f, λ(t)20)
εT (t, f)t

dt � 1
εT (r, f)

∫eλ(r)2r

r

v(t, f, λ(t)20)
t

dt � ε′λ(r)2

for all r outside Eε,ε′ . Thus, by Lemma 3.5, we establish Proposition 3.1.

3.2. Proof of Theorem 1.3

Lemma 3.6. Let f be a transcendental meromorphic function in the complex plane, and
let k be a positive integer. Put

uk = (k + 1) log+ |f | + log |1/f (k)|.
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Then given a positive integer q, we have
∫2π

0

uk(r eiθ)
dθ

2π
� m̄k−1,q(r, f) + (k − 1)m(r,∞, f)

+ v(r, f, 2π/q) + v(r, f (k), 2π/q) + k log(2πr) + 2kq log 3

for all r > 1.

Proof. If f has a pole on the circle |z| = r, then v(r, f, 2π/q) is infinite. So the estimate is
trivial. In the following, we show the estimate for r with the property that f does not have a
pole on the circle |z| = r. We fix such r and work on the circle |z| = r.

Set σl = 2πl/q. For l = 0, 1, . . . , q − 1, we put

Il = [σl, σl+1].

We define a polynomial al(z) of degree less than k by

al(z) =
k−1∑
j=0

1
j!
f (j)(r eiσl)(z − r eiσl)j .

Then we have

f (j)(r eiσl) − a
(j)
l (r eiσl) = 0

for 0 � j � k − 1. Thus, we have

f(r eiθ) − al(r eiθ) =
∫θ
σl

∫θ1
σl

· · ·
∫θk−1

σl

f (k)(r eiθk) d(r eiθk) · · · d(r eiθ2)d(r eiθ1).

Thus, for θ ∈ Il, we have

|f(r eiθ) − al(r eiθ)| � eτl(2πr)k,

where we put

τl = max
s∈Il

log |f (k)(r eis)|.

Since we have

log
1

|f (k)(r eiθ)| � −τl + v(r, f (k), 2π/q)

for θ ∈ Il, we obtain

log
1

|f (k)(r eiθ)| � log
1

|f(r eiθ) − al(r eiθ)| + v(r, f (k), 2π/q) + k log(2πr)

for θ ∈ Il. Hence, we obtain
∫2π

0

log
1

|f (k)(r eiθ)|
dθ

2π

�
q−1∑
l=0

∫σl+1

σl

log
1

|f(r eiθ) − al(r eiθ)|
dθ

2π
+ v(r, f (k), 2π/q) + k log(2πr).

Thus, using ∫2π

0

log+ |f(r eiθ)| dθ
2π

� m(r,∞, f),
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we have
∫2π

0

uk(r eiθ)
dθ

2π
�

q−1∑
l=0

∫σl+1

σl

(
log

1
|f(r eiθ) − al(r eiθ)| + 2 log+ |f(r eiθ)|

)
dθ

2π

+ (k − 1)m(r,∞, f) + v(r, f (k), 2π/q) + k log(2πr). (3.10)

We estimate the right-hand side of (3.10).

Claim 1. Let a(z) be a polynomial of degree less than k. Then we have

log+ |a(r eiσl)|
q

�
∫σl+1

σl

log+ |a(r eiθ)| dθ
2π

+ 2k log 3.

Proof. It is enough to prove this claim assuming a(z) �= 0. We consider the following
function:

U(a(z)) =
log |a(eiσ0)|

q
−

∫σ1

σ0

log |a(eiθ)| dθ
2π
.

Then we have

U(λa(z)) = U(a(z)) (3.11)

for non-zero λ. If

a(z) = α0(z − α1) · · · (z − αk′) (k′ < k),

then we have

U(a(z)) = U(z − α1) + · · · + U(z − αk′). (3.12)

Now we observe that

U(z − α) � 2 log 3. (3.13)

Indeed if |α| � 2, then we have

log |eiσ0 − α|
q

� log 3
q

and

−
∫σ1

σ0

log |eiθ − α| dθ
2π

= − log+ |α| +
∫
[0,2π]\[σ0,σ1]

log |eiθ − α| dθ
2π

< log 3.

This shows (3.13).
Next we consider the other case |α| > 2. By (3.11), we have

U(z − α) = U(z/α− 1).

Using

log 1
2 < log |eiθ/α− 1| < log 3

2

we obtain (3.13). Thus, we have proved (3.13).
Combining (3.12) and (3.13), we obtain

U(a(z)) < 2k log 3.
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Now for a polynomial a(z) �= 0 of degree less than k, we consider the polynomial b(z) =
a(r eiσlz). Then we have

log |a(r eiσl)|
q

−
∫σl+1

σl

log |a(r eiθ)| dθ
2π

=
log |b(eiσ0)|

q
−

∫σ1

σ0

log |b(eiθ)| dθ
2π
.

Hence, we have

log |a(r eiσl)|
q

�
∫σl+1

σl

log |a(r eiθ)| dθ
2π

+ 2k log 3

�
∫σl+1

σl

log+ |a(r eiθ)| dθ
2π

+ 2k log 3.

Our claim is an obvious consequence of this estimate. �

Claim 2. Let a and b be two points in C. Then we have

log
1

|a− b| + log+ |a| + log+ |b| � log
1

[a, b]
.

Proof. Since

[a, b] =
|a− b|√

1 + |a|2√1 + |b|2 ,

we obtain

log
1

[a, b]
= log

1
|a− b| + log

√
1 + |a|2 + log

√
1 + |b|2

� log
1

|a− b| + log+ |a| + log+ |b|.

We go back to the proof of Lemma 3.6. For θ ∈ Il, we have

log+ |f(r eiθ)| � log+ |f(r eiσl)| + v(r, f, 2π/q)

= log+ |al(r eiσl)| + v(r, f, 2π/q).

Hence, we obtain∫σl+1

σl

(
log

1
|f(r eiθ) − al(r eiθ)| + 2 log+ |f(r eiθ)|

)
dθ

2π

�
∫σl+1

σl

(
log

1
|f(r eiθ) − al(r eiθ)| + log+ |f(r eiθ)| + log+ |al(r eiσl)|

)
dθ

2π

+
v(r, f, 2π/q)

q
.

We use the two claims above to obtain∫σl+1

σl

(
log

1
|f(r eiθ) − al(r eiθ)| + 2 log+ |f(r eiθ)|

)
dθ

2π

�
∫σl+1

σl

log
1

[f(r eiθ), al(r eiθ)]
dθ

2π
+
v(r, f, 2π/q)

q
+ 2k log 3.

Combining this estimate with (3.10), we obtain
∫2π

0

uk(r eiθ)
dθ

2π
�

q−1∑
l=0

∫σl+1

σl

log
1

[f(r eiθ), al(r eiθ)]
dθ

2π
+ (k − 1)m(r,∞, f)

+ v(r, f, 2π/q) + v(r, f (k), 2π/q) + k log(2πr) + 2kq log 3.
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Now since
q−1∑
l=0

∫σl+1

σl

log
1

[f(r eiθ), al(r eiθ)]
dθ

2π
� m̄k−1,q(r, f),

we complete the proof of Lemma 3.6.

Lemma 3.7.∫2π

0

uk(r eiθ)
dθ

2π
= (k + 1)T (r, f) −N(r, 0, f (k)) − kN1(r,∞, f) +O(1).

Proof. Put
ũk = (k + 1) log |f | + log |1/f (k)|.

Then we have∫2π

0

ũk(reiθ)
dθ

2π
= (k + 1)

∫2π

0

log |f(reiθ)| dθ
2π

+
∫2π

0

log
∣∣∣∣ 1
f (k)(r eiθ)

∣∣∣∣ dθ2π .
By the first main theorem, we have∫2π

0

log |f(r eiθ)| dθ
2π

−
∫2π

0

log |f(eiθ)| dθ
2π

= N(r, 0, f) −N(r,∞, f),
∫2π

0

log
∣∣∣∣ 1
f (k)(r eiθ)

∣∣∣∣ dθ2π −
∫2π

0

log
∣∣∣∣ 1
f (k)(eiθ)

∣∣∣∣ dθ2π = N(r,∞, f (k)) −N(r, 0, f (k)).

Combining these estimates with

N(r,∞, f (k)) = N(r,∞, f) + kN̄(r,∞, f),

we obtain∫2π

0

ũk(r eiθ)
dθ

2π
−

∫2π

0

ũk(eiθ)
dθ

2π
= (k + 1)(N(r, 0, f) −N(r,∞, f)) +N(r,∞, f (k))

−N(r, 0, f (k))

= (k + 1)N(r, 0, f) −N(r, 0, f (k)) − kN1(r,∞, f). (3.14)

We note that
uk = ũk + (k + 1) log+ |1/f |. (3.15)

By the first main theorem, we have∫2π

0

log+ |1/f(r eiθ)| dθ
2π

+N(r, 0, f) = T (r, f) +O(1). (3.16)

Now by (3.14)–(3.16), we obtain∫2π

0

uk(r eiθ)
dθ

2π
= (k + 1)T (r, f) −N(r, 0, f (k)) − kN1(r,∞, f) +O(1).

Thus Lemma 3.7 is proved.

By Lemmas 3.6 and 3.7, we obtain

(k + 1)T (r, f) −N(r, 0, f (k)) − kN1(r,∞, f) � m̄k−1,q(r, f) + (k − 1)m(r,∞, f)

+ v(r, f, 2π/q) + v(r, f (k), 2π/q)
+ k log(2πr) + 2kq log 3 + C
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where C is a positive constant which only depends on f . By the first main theorem, we have

T (r, f) = m(r,∞, f) + N̄(r,∞, f) +N1(r,∞, f) +O(1).

Hence, we obtain

2T (r, f) + (k − 1)N̄(r,∞, f) � m̄k−1,q(r, f) +N(r, 0, f (k)) +N1(r,∞, f)

+ v(r, f, 2π/q) + v(r, f (k), 2π/q) + k log(2πr)
+ 2kq log 3 + C. (3.17)

Proof of Theorem 1.3. Let f be a transcendental meromorphic function and let ε > 0. By
Proposition 3.1, we have

v(r, f, λ(r)20) <
ε

21
T (r, f)

outside some exceptional set of logarithmic density zero. For r sufficiently large, we have
2π/ν(r) < 7λ(r)20. Hence, we have

v(r, f, 2π/ν(r)) <
ε

3
T (r, f) (3.18)

for all r > e outside a set E1 of logarithmic density zero. Again by Proposition 3.1, we have

v(r, f (k), λ̃(r)20) <
ε

42(k + 2)
T (r, f (k))

for all r > e outside some set E2 of logarithmic density zero, where we set

λ̃(r) = min

{
1,
(

log+ T (r, f (k))
log r

)−1
}
.

By Nevanlinna’s Lemma of the logarithmic derivative, we have

T (r, f (k)) � (k + 2)T (r, f)

for all r > e outside a set E3 of finite linear measure. Hence, we obtain

v(r, f (k), λ̃(r)20) <
ε

42
T (r, f)

for r > e outside the set E2 ∪ E3 of logarithmic density zero. We find a positive constant r0
such that λ(r)20 < 2λ̃(r)20 for r > r0 outside E3. Hence, we have

v(r, f (k), λ(r)20) <
ε

21
T (r, f)

for r > r0 outside E2 ∪ E3. Hence, we have

v(r, f (k), 2π/ν(r)) <
ε

3
T (r, f) (3.19)

for r > e outside an exceptional set E4 of logarithmic density zero.
Since f is transcendental, we find a positive constant r1 such that

k log(2πr) + 2kν(r) log 3 + C <
ε

3
T (r, f) (3.20)

for r > r1.
Now we put

E = [e, r1] ∪ E1 ∪ E4.

Then E has logarithmic density zero. By (3.18)–(3.20), we have

v

(
r, f,

2π
ν(r)

)
+ v

(
r, f (k),

2π
ν(r)

)
+ k log(2πr) + 2kν(r) log 3 + C < εT (r, f)

for all r > e outside E. Combining this estimate with (3.17), we complete the proof of
Theorem 1.3.
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4. General form of Theorem 1.4 and its local version

4.1. Introduction

In the rest of this paper, we shall prove Theorem 1.4 in the following general form.

Theorem 4.1. Let f be a transcendental meromorphic function in the plane and let d be a
positive integer. Then there exists a set Ef,d ⊂ R>0 of finite linear measure with the following
property: Given an arbitrary q-tuple of distinct a1, . . . , aq ∈ Rd and an arbitrary ε > 0, we
have ∫2π

0

max
1�j�q

log
1

[f(r eiθ), aj(r eiθ)]
dθ

2π
+
∑

1�j�q
N1(r, aj , f)

� (2 + ε)T (r, f) +
q17

ε4
T (r)4/5(log r)1/5

for all r > 0 outside Ef,d.

Derivation of Theorem 1.4 from Theorem 4.1 Let a1, . . . , ap be distinct points in the Riemann
sphere. Let b1, . . . , bq ∈ Rd. We apply Theorem 4.1 to the subset

{a1, . . . , ap, b1, . . . , bq} ⊂ Rd.

Then we obtain, for arbitrary ε > 0,∫2π

0

max
1�j�q

log
1

[f(r eiθ), bj(r eiθ)]
dθ

2π
+
∑

1�i�p
N1(r, ai, f)

� (2 + ε)T (r, f) +
(p+ q)17

ε4
T (r)4/5(log r)1/5

for all r > 0 outside Ef,d. Taking the supremum for (b1, . . . , bq) on the left-hand side, we obtain

m̄d,q(r, f) +
∑

1�i�p
N1(r, ai, f) � (2 + ε)T (r, f) +

(p+ q)17

ε4
T (r)4/5(log r)1/5

for all r > 0 outside Ef,d, as desired.

We introduce a local version of Theorem 4.1. Some notation are needed.

Definition 4.2. We denote by γd a constant such that γd > e so that the following
estimates hold for all r > γd:

(1) log r � T (r),
(2) T (r, cr(f, ai, aj , ak)) � 2T (r) for all distinct ai, aj , ak ∈ Rd.

Here cr denotes the cross-ratio:

cr(w1, w2, w3, w4) =
(w1 − w2)(w3 − w4)
(w1 − w4)(w3 − w2)

.

Note that by (1.6), (1) is valid for all sufficiently large r. By Lemma 2.4, (2) is true for all
sufficiently large r. Thus γd exists.

For distinct a1, . . . , aq ∈ Rd, where d � 1 and q � 3, we set

X(a1, . . . , aq) = {z ∈ C − {0, 1}; ai(z) �= aj(z) for i �= j}.
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Then X(a1, . . . , aq) is a p-punctured sphere with 3 � p � 2d× q(q − 1)/2 + 3. Hence,
X(a1, . . . , aq) is hyperbolic. For the hyperbolic area of X(a1, . . . , aq), we have
(cf. [12, p. 233])

Ahyp(X(a1, . . . , aq)) =
π

2
(p− 2) � 2dq2. (4.1)

Here and what follows, we always normalize the hyperbolic metrics so that its curvature is
equal to −4. Thus the hyperbolic metric on the unit disk is |dz|/(1 − |z|2). For a curve γ on
X(a1, . . . , aq), we denote by �X(a1,...,aq)(γ) its hyperbolic length.

Let Ω ⊂ C be an open set. We set

T (r, f,Ω) =
1
π

∫ r
1

A(t, f,Ω)
dt

t
,

where

A(t, f,Ω) =
∫

C(t)∩Ω

f∗ω
Ĉ
.

Let a(z) be a meromorphic function on the plane which is distinct from f(z). Let f = g/h and
a = b/c be reduced representations. We put

N̄(r, a, f,Ω) =
∫ r
1

n̄(t, a, f,Ω)
dt

t
,

where n̄(t, a, f,Ω) is the number of solutions of gc− hb = 0 on C(t) ∩ Ω ignoring multiplicity.

Proposition 4.3. Let f be a transcendental meromorphic function in the complex plane
and let a1, . . . , aq ∈ Rd be distinct with aq ≡ ∞, where d � 1 and q � 3. Let x ∈ X(a1, . . . , aq)
be a point and let Ω ⊂ X(a1, . . . , aq) be a neighbourhood of x which is a topological disk or
an annulus with �X(a1,...,aq)(∂Ω) < 1/(225q). Let 0 < m < 2−3, and let Ω∗ � Ω be a relatively

compact domain such that each connected component of Ω − Ω∗ is an annulus of modulus
greater than or equal to m. For each 1 � i � q − 2, we take i♦ ∈ {i+ 1, . . . , q − 1} such that

|ai♦(x) − ai(x)| � |aj(x) − ai(x)|

for all j ∈ {i+ 1, . . . , q − 1}. Then we have

q−2∑
i=1

T

(
r,

f − ai
ai♦ − ai

,Ω∗
)

�
q∑
i=1

N̄(r, f, ai,Ω) + 270 dq
9

m2
T

(
r +

1
T (r)

)3/4

(log r)1/4 (4.2)

for all r > γd.

Outline of the proof of Theorem 4.1. In the next section, we derive Theorem 4.1 from
Proposition 4.3. Sections 6–8 are devoted to the proof of Proposition 4.3. In Section 6, we
perturb f quasiconformally and construct a quasimeromorphic function g over Ω, under
an additional assumption that the q-pointed sphere (Ĉ, a1(x), . . . , aq(x)) is 1

220 -thick (see
Definition 6.1). In Section 7, we apply Ahlfors’ theory of covering surfaces to g. For our purpose,
we need good control of the constants ’h’ (cf. [25]), here an important feature is polynomial
dependence of h with respect to the number of the targets. In Section 8, we finish the proof of
Theorem 4.1, using a similar trick as in [32, 33] based on combinatorial arguments of trees to
handle the case that the q-pointed sphere (Ĉ, a1(x), . . . , aq(x)) is not 1

220 -thick.
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5. Derivation of Theorem 4.1 from Proposition 4.3

In this section, we shall derive Theorem 4.1 from Proposition 4.3. We first introduce a smooth
(1, 1)-form on the plane, which plays important role in the derivation. Let a1, . . . , ak ∈ Rd −
{∞} be distinct rational functions, which are not identically equal to ∞. We define a non-
negative, smooth (1, 1)-form κ(f, a1, . . . , ak) by

κ(f, a1, . . . , ak) = ddc log
(

1
|f(z) − a1(z)|2 + · · · + 1

|f(z) − ak(z)|2
)

outside the singular set which consists of zeros and common poles of f − a1, . . . , f − ak. We
remark that κ(f, a1, . . . , ak) extends to the whole plane as a smooth (1, 1)-form. To see this,
we take a meromorphic function h and entire functions g1, . . . , gk without common zeros such
that

1
f − a1

= hg1, . . . ,
1

f − ak
= hgk.

Then we have

κ(f, a1, . . . , ak) = ddc log(|g1(z)|2 + · · · + |gk(z)|2) + ddc log |h(z)|2
= ddc log(|g1(z)|2 + · · · + |gk(z)|2)

outside the zeros and poles of h. Now the function log(|g1(z)|2 + · · · + |gk(z)|2) is a C∞ subhar-
monic function. Hence ddc log(|g1(z)|2 + · · · + |gk(z)|2) is a non-negative, smooth (1, 1)-form
on the whole plane, which proves our claim. For an open set U ⊂ C, we set

T (r, κ(f, a1, . . . , ak), U) =
∫ r
1

(∫
C(t)∩U

κ(f, a1, . . . , ak)

)
dt

t
.

The derivation consists of three steps. The first step is to derive Proposition 5.1 from
Proposition 4.3. The issue is to show that

q−2∑
i=1

T

(
r,

f − ai
ai♦ − ai

,Ω(t)
)

is comparable with T (r, κ(f, a1, . . . , ak),Ω(t)) modulo a small error, where Ω∗ ⊂ Ω(t) ⊂ Ω is
defined by (5.2) (cf. Lemma 5.2). A non-integrated version of this estimate is first proved (cf.
Lemma 5.4), where the error term depends on the length of cr(f, aα, aβ , aγ)(∂(Ω(t) ∩ C(r))),
then we apply length-area method to show this length is relatively small (cf. Lemma 5.5).

In the second step, we globalize Proposition 5.1 to show Proposition 5.7, which works on
C(r) while Proposition 5.1 works on Ω. The derivation is based on thick–thin decomposition of
the punctured sphere X(a1, . . . , aq). On the thin parts of X(a1, . . . , aq), which consist of annuli
or punctured discs with short boundaries, we may apply Proposition 5.1. On the thick parts of
X(a1, . . . , aq), we apply Proposition 5.1 over all embedded hyperbolic discs with a fixed small
hyperbolic radius and average the resulting estimates. Summing these estimates for the thin
parts and the thick parts, we establish Proposition 5.7.

In the final step, we estimate T (r, κ(f, a1, . . . , ak)) from below by
∫2π

0

max
1�i�q

log
1

[f(r eiθ), ai(r eiθ)]
dθ

2π
+

q∑
i=1

N(r, f, ai) − 2T (r, f)

with a small error (cf. Lemma 5.10). This and Proposition 5.7 yield Theorem 4.1.

5.1. The first step

We derive the following proposition from Proposition 4.3.
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Proposition 5.1. Let f, a1, . . . , aq be the same as in Proposition 4.3. Let Ω ⊂
X(a1, . . . , aq) be a topological disk or an annulus with �X(a1,...,aq)(∂Ω) < 1/(225q). Let 0 <
m < 2−3 be given, and let Ω∗ � Ω be a relatively compact domain such that each connected
component of Ω − Ω∗ is an annulus of modulus greater than or equal to m. Then we have

T (r, κ(f, a1, . . . , aq−1),Ω∗) �
q∑
i=1

N̄(r, f, ai,Ω) + 273 dq
9

m2
T

(
r +

1
T (r)

)3/4

(log r)1/4 (5.1)

for all r > γd.

To derive this proposition from Proposition 4.3, the most important task is to compare the
left-hand sides of (4.2) and (5.1). This is contained in Lemma 5.2.

Let {Ai}ki=1 be the set of connected components of Ω − Ω∗. Here, k = 1 if Ω is a topological
disk and k = 2 if Ω is an annulus. Let μi be the modulus of the annulus Ai. Then μi � m. Let
hi : {1 < |z| < e2πμi} → Ai be a standard conformal map with hi(|z| = 1) ⊂ ∂Ω∗. For 0 < t <
m, we set

Ω(t) = Ω∗ ∪
⋃
i

hi({1 < |z| < e2πt}). (5.2)

Then Ω(t) is a domain with Ω∗ � Ω(t) � Ω. For r > 0, we set Ω(r, t) = Ω(t) ∩ C(r).
Now we claim the key estimate in our derivation.

Lemma 5.2. Let x ∈ X(a1, . . . , aq) and Ω∗ � Ω be the same as in Proposition 4.3. For each
1 � i � q − 2, we take i• ∈ {i+ 1, . . . , q − 1} such that

3
4 |ai•(x) − ai(x)| � |aj(x) − ai(x)|

for all j ∈ {i+ 1, . . . , q − 1}. Then we have

∫m
0

∣∣∣∣∣
q−2∑
i=1

T

(
r,

f − ai
ai• − ai

,Ω(t)
)
− T (r, κ(f, a1, . . . , aq−1),Ω(t))

∣∣∣∣∣ dt
� 215q5T

(
r +

1
2T (r)

)3/4

(log r)1/4 (5.3)

for r > γd.

This lemma is stronger than what we need in our derivation, since the assumption for i• is
weaker than that for i♦. We shall apply Lemma 5.2 in Section 8 in this stronger form.

The proof of Lemma 5.2 is rather lengthy. We first remark that by the definition of i•, we
have

|cr(aj(x), ai(x), ai•(x), aq(x))| � 3
4

for all j ∈ {i+ 1, . . . , q}. The next lemma immediately implies

|cr(aj(z), ai(z), ai•(z), aq(z))| � 1
2 (5.4)

for all z ∈ Ω and j ∈ {i+ 1, . . . , q}.

Lemma 5.3. Let Ω ⊂ X(a1, . . . , aq) be a topological disk or an annulus with
�X(a1,...,aq)(∂Ω) < 2−25. Then, for z, w ∈ Ω, we have

[cr(ai(z), aj(z), ak(z), al(z)), cr(ai(w), aj(w), ak(w), al(w))] < 2−22,

where i, j, k and l are distinct elements in {1, . . . , q}.
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Proof. Let ϕ : X → Ĉ be a map defined by ϕ(z) = cr(ai(z), aj(z), ak(z), al(z)), where X =
X(a1, . . . , aq). We remark that ϕ omits 0, 1 and ∞. We setXΩ = X̃/Im(π1(Ω) → π1(X)), where
X̃ denotes the universal covering of X. Namely, XΩ → X is the covering space corresponding
to τ(π1(Ω)) ⊂ π1(X), where τ : π1(Ω) → π1(X) is the induced group homomorphism (cf. [28,
p. 71]). Then Ω ⊂ XΩ. Note that XΩ is an annulus when Ω ⊂ X is an essential annulus,
otherwise XΩ = X̃. We denote by ψ : XΩ → Ĉ\{0, 1,∞} the composition of the covering map
XΩ → X and ϕ : X → Ĉ\{0, 1,∞}. We consider two cases, whether lift b : XΩ → D of ψ to the
universal cover D → Ĉ\{0, 1,∞} exists or not.

If the lift b : XΩ → D exists, then we have dD(b(z), b(w)) < 2−26, where dD is the hyperbolic
distance function on D. Hence, we have

d
Ĉ\{0,1,∞}(ϕ(z), ϕ(w)) < 2−26,

where d
Ĉ\{0,1,∞} is the hyperbolic distance function on Ĉ\{0, 1,∞}. By [6, p. 267], we have

dspherical(x, y) < 5d
Ĉ\{0,1,∞}(x, y) (5.5)

for x, y ∈ Ĉ\{0, 1,∞}, where dspherical is the spherical distance function on Ĉ with respect to
the line element |dz|/(1 + |z|2). Hence, we obtain our estimate.

We next consider the case when the lift b : XΩ → D does not exist. In this case, XΩ is
an annulus. For each ξ ∈ Ω, there exists a loop γ ⊂ XΩ passing through ξ such that γ is
homotopically non-trivial and �X(γ) < 2−25. We remark that

(i) the image ψ(γ) does not lift to the covering D → Ĉ\{0, 1,∞},
(ii) �

Ĉ
(ψ(γ)) < 2−22, by (5.5), where �

Ĉ
denotes the length function with respect to the

spherical line element |dz|/(1 + |z|2).
Hence, we have dspherical(ψ(ξ), {0, 1,∞}) < 2−23 for all ξ ∈ Ω. Hence, ϕ(Ω) is contained in the
2−23-neighbourhood of one of 0, 1 and ∞. We establish our estimate.

Next we prove the following non-integrated version of (5.3).

Lemma 5.4. We have∣∣∣∣∣
∫
Ω(r,t)

κ(f, a1, . . . , aq−1) −
q−2∑
i=1

1
π

∫
Ω(r,t)

cr(f, ai, ai• , aq)∗ωĈ

∣∣∣∣∣
� 210q2

∑
α,β,γ

�
Ĉ
(cr(f, aα, aβ , aγ)(∂Ω(r, t))).

Here the summation is taken over all distinct triples (α, β, γ) in the set {1, 2, . . . , q}.

Proof. To prove the lemma, it is enough to show∣∣∣∣∣
∫
Ω(r,t)

κ(f, ai, . . . , aq−1) −
∫
Ω(r,t)

κ(f, ai+1, . . . , aq−1) − 1
π

∫
Ω(r,t)

cr(f, ai, ai• , aq)∗ωĈ

∣∣∣∣∣
� 210q

∑
α,β,γ

�
Ĉ
(cr(f, aα, aβ , aγ)(∂Ω(r, t))). (5.6)

Here, we remark κ(f, aq−1) = 0.
We have outside the singular set

ddc log

⎛⎝q−1∑
j=i

∣∣∣∣ 1
f − aj

∣∣∣∣2
⎞⎠ = κ(f, ai, . . . , aq−1),
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ddc log

⎛⎝ q−1∑
j=i+1

∣∣∣∣ 1
f − aj

∣∣∣∣2
⎞⎠ = κ(f, ai+1, . . . , aq−1),

ddc log

(
1 +

∣∣∣∣ai• − ai
f − ai

∣∣∣∣2
)

=
1
π

cr(f, ai, ai• , aq)∗ωĈ
.

Hence denoting

G =

∑q−1
j=i |1/(f − aj)|2

(1 + |(ai• − ai)/(f − ai)|2)(
∑q−1
j=i+1 |1/(f − aj)|2)

,

we have outside the singular set

ddc logG = κ(f, ai, . . . , aq−1) − κ(f, ai+1, . . . , aq−1) − 1
π

cr(f, ai, ai• , aq)∗ωĈ
. (5.7)

Set

G1 =
1

1 + |(ai• − ai)/(f − ai)|2 , G2 =
1

(|f − ai|2 + |ai• − ai|2)/(|f − ai• |2) ,

G3 =
1

1 +
∑q−1
j=i+1,j �=i• |(f − ai•)/(f − aj)|2

.

Then we have

G =
1

1 + |(ai• − ai)/(f − ai)|2 +
1/(|f − ai|2 + |ai• − ai|2)∑q−1

j=i+1 |1/(f − aj)|2
= G1 +G2G3.

Since G1 � 1, G2 � 2, G3 � 1, we have

G � 3.

Claim. If z ∈ Ω, then

G(z) � 1
26q

.

Proof of Claim. We consider two cases.
Case 1: |cr(f(z), ai(z), ai•(z), aq(z))| � 1

4 . Note that G1(z) = [0, cr(f(z), ai(z), ai•(z),
aq(z))]2. Thus we have G � G1 � 1

17 .
Case 2: |cr(f(z), ai(z), ai•(z), aq(z))| � 1

4 . Since

cr(f(z), ai(z), aq(z), ai•(z)) =
cr(f(z), ai(z), ai•(z), aq(z))

cr(f(z), ai(z), ai•(z), aq(z)) − 1
,

we have |cr(f(z), ai(z), aq(z), ai•(z))| � 1
3 . Since

cr(f(z), aq(z), ai(z), ai•(z)) =
1

1 − cr(f(z), ai(z), ai•(z), aq(z))
,

we have |cr(f(z), aq(z), ai(z), ai•(z))| � 4
3 . Hence

G2(z) =
1

|cr(f(z), ai(z), aq(z), ai•(z))|2 + |cr(f(z), aq(z), ai(z), ai•(z))|2 � 9
17
.

By (5.4), we have |cr(as(z), ai(z), ai•(z), aq(z))| > 1
2 for all s = i+ 1, . . . , q − 1. Thus, we have

for s = i+ 1, . . . , q − 1 and s �= i•,

|cr(f(z), ai•(z), aq(z), as(z))|
=
∣∣∣∣ cr(f(z), ai(z), ai•(z), aq(z)) − 1
cr(f(z), ai(z), ai•(z), aq(z)) − cr(as(z), ai(z), ai•(z), aq(z))

∣∣∣∣ � 5.
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Hence, we obtain

G3(z) =
1

1 +
∑q−1
s=i+1,s �=i• |cr(f(z), ai•(z), aq(z), as(z))|2

� 1
1 + 25q

.

Thus, we have

G � G2G3 � 1
2 + 50q

.

On combining these two cases, we obtain

G � min
{

1
17
,

1
2 + 50q

}
>

1
26q

.

Now logG is a smooth function on Ω. Hence, we have∫
Ω(r,t)

ddc logG =
∫
∂Ω(r,t)

dc logG =
∫
∂Ω(r,t)

dcG

G
.

Thus by the claim above, we have∣∣∣∣∣
∫
Ω(r,t)

ddc logG

∣∣∣∣∣ � 26q

∫
∂Ω(r,t)

|dcG|.

Hence, by (5.7), we have∣∣∣∣∣
∫
Ω(r,t)

(
κ(f, ai, . . . , aq−1) − κ(f, ai+1, . . . , aq−1) − 1

π
cr(f, ai, ai• , aq)∗ωĈ

)∣∣∣∣∣ � 26q

∫
∂Ω(r,t)

|dcG|.

Since |dc|z|2| � 2|z||dz|, we have

|dcG1| � 2|(ai• − ai)/(f − ai)||((ai• − ai)/(f − ai))′|
(1 + |(ai• − ai)/(f − ai)|2)2 |dz| � |((ai• − ai)/(f − ai))′|

1 + |(ai• − ai)/(f − ai)|2 |dz|.

Hence, we obtain ∫
∂Ω(r,t)

|dcG1| � �
Ĉ

(cr(f, ai, ai• , aq)(∂Ω(r, t))) .

For w ∈ C, we have

|w|2 + |1 − w|2 � |w|2 + (1 − |w|)2 � 1 + |w|2
3

.

Hence, we have

|dcG2| �

2|(f − ai)/(f − ai•)‖((f − ai)/(f − ai•))′| + 2|(ai• − ai)/(f − ai•)‖
((ai• − ai)/(f − ai•))′|

(|(f − ai)/(f − ai•)|2 + |(ai• − ai)/(f − ai•)|2)2 |dz|

� 9|((f − ai)/(f − ai•))′|
1 + |(f − ai)/(f − ai•)|2 |dz| + 9|((ai• − ai)/(f − ai•))′|

1 + |(ai• − ai)/(f − ai•)|2 |dz|

Hence,∫
∂Ω(r,t)

|dcG2| � 9�
Ĉ
(cr(f, ai, aq, ai•)(∂Ω(r, t))) + 9�

Ĉ
(cr(f, aq, ai, ai•)(∂Ω(r, t))).

Also we have

|dcG3| �
∑q−1
j=i+1,j �=i• 2|(f − ai•)/(f − aj)||((f − ai•)/(f − aj))′|

(1 +
∑q−1
j=i+1,j �=i• |(f − ai•)/(f − aj)|2)2

|dz|

�
q−1∑

j=i+1,j �=i•

|((f − ai•)/(f − aj))′|
1 + |(f − ai•)/(f − aj)|2 |dz|,
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hence ∫
∂Ω(r,t)

|dcG3| �
q−1∑

j=i+1,j �=i•
�
Ĉ
(cr(f, ai• , aq, aj)(∂Ω(r, t))).

Hence, we have∫
∂Ω(r,t)

|dcG| =
∫
∂Ω(r,t)

|dcG1 +G2d
cG3 +G3d

cG2| � 9
∑
α,β,γ

�
Ĉ
(cr(f, aα, aβ , aγ)(∂Ω(r, t))).

This proves (5.6). We conclude the proof of Lemma 5.4.

Now we integrate both sides of the estimate of Lemma 5.4 to obtain
∫m
0

∣∣∣∣∣
q−2∑
i=1

T

(
r,

f − ai
ai• − ai

,Ω(t)
)
− T (r, κ(f, a1, . . . , aq−1),Ω(t))

∣∣∣∣∣ dt
� 210q2

∑
α,β,γ

∫m
0

∫ r
1

�
Ĉ
(cr(f, aα, aβ , aγ)(∂Ω(u, t)))

du

u
dt. (5.8)

To estimate the right-hand side, we need the following

Lemma 5.5. Let ρ(z)|dz| be a conformal metric on Ω. Set A(r, t) =
∫
Ω(r,t)

ρ2(z)|dz|2 and

�(r, t) =
∫
∂Ω(r,t)

ρ(z)|dz|. Let Λ, Λ̃ : R�1 → R>0 be functions with

Λ(r) � max
{∫ r

1

A(u,m)
du

u
, log r

}
,

Λ̃(r) � max
{

Λ(r),Λ
(
r +

1
Λ(r)

)}
.

Then we have ∫m
0

∫ r
1

�(u, t)
u

du dt � 22Λ̃(r)3/4(log r)1/4

for r > e.

Proof. Set

γ1(r, t) = ∂Ω(r, t) ∩ ∂C(r), γ2(r, t) = ∂Ω(r, t)\γ1(r, t),

�1(r, t) =
∫
γ1(r,t)

ρ(z)| dz|, �2(r, t) =
∫
γ2(r,t)

ρ(z)| dz|.

Using the Schwarz inequality, we have

�1(r, t)2 � 2πr
d

dr
A(r, t).

We define r1 ∈ [1, r] according to three cases: (i) if A(1, t) > 1, then r1 = 1, (ii) if A(r, t) < 1,
then r1 = r, (iii) otherwise, we may take r1 ∈ [1, r] such that A(r1, t) = 1. Then we have∫ r

1

�1(u, t)
du

u
=

∫ r1
1

�1(u, t)
du

u
+

∫ r
r1

�1(u, t)
du

u

�
√

2π
∫ r1
1

√
u
dA

du
(u, t)

du

u
+
√

2π
∫ r
r1

√
u
dA

du
(u, t)

du

u
.
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We have ∫ r1
1

√
u
dA

du
(u, t)

du

u
�
(∫ r1

1

du

u

)1/2(∫ r1
1

d

du
A(u, t) du

)1/2

� (log r)1/2 � log r,
∫ r
r1

√
u
dA

du
(u, t)

du

u
=

∫ r
r1

√
(dA/du)(u, t)

A(u, t)

√
A(u, t)
u

du

�
(∫ r

r1

(dA/du)(u, t)
A(u, t)

du

)1/2(∫ r
r1

A(u, t)
u

du

)1/2

� (log+A(r, t))1/2
(∫ r

1

A(u, t)
u

du

)1/2

.

Hence, we have∫ r
1

�1(u, t)
du

u
�

√
2π(log+A(r, t))1/2

(∫ r
1

A(u, t)
u

du

)1/2

+
√

2π log r.

Let r < R < er. Since A(r, t) is increasing, we have

A(r, t) log
R

r
= A(r, t)

∫R
r

du

u
�

∫R
1

A(u, t)
du

u
.

Hence, using log x � 2
√
x, we obtain

logA(r, t) � − log log
R

r
+ log

(∫R
1

A(u, t)
du

u

)

� − log log
R

r
+ 2

(∫R
1

A(u, t)
du

u

)1/2

.

The last term is non-negative, hence

log+A(r, t) � − log log
R

r
+ 2

(∫R
1

A(u, t)
du

u

)1/2

.

Thus, by
√
x+ y � √

x+
√
y, we obtain

∫ r
1

�1(u, t)
du

u
�

√
2π

√
− log log

R

r

(∫R
1

A(u, t)
du

u

)1/2

+ 2
√
π

(∫R
1

A(u, t)
du

u

)3/4

+
√

2π log r.

Hence, we conclude
∫m
0

∫ r
1

�1(u, t)
du

u
dt �

√
2π
8

√
− log log

R

r

(∫R
1

A(u,m)
du

u

)1/2

+
√
π

4
(log r)1/4

(∫R
1

A(u,m)
du

u

)3/4

+
√

2π
8

log r.

We set R = r + 1/Λ(r). Since (log 2)x < log(1 + x) for 0 < x < 1, we have

− log log
R

r
= − log log

(
1 +

1
rΛ(r)

)
< log

rΛ(r)
log 2

< log (2rΛ(r)) < 2 log r + log Λ(r)

� 2(Λ(r))1/2(log r)1/2 + 2Λ(r)1/2 � 4Λ(r)1/2(log r)1/2.
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Hence, we have ∫m
0

∫ r
1

�1(u, t)
du

u
dt � 3

√
2π + 2

√
π

8
Λ̃(r)3/4(log r)1/4.

Next, using the Schwarz inequality, we have

�2(r, t)2 � 2
d

dt
A(r, t).

We have
∫m
0

�2(r, t) dt �
√

2
∫m
0

√
dA

dt
(r, t) dt

�
√

2
(∫m

0

dt

)1/2(∫m
0

d

dt
A(r, t) dt

)1/2

�
√

2A(r,m)1/2.

Since ∫ r
1

(A(u,m))1/2
du

u
�
√

log r
(∫ r

1

A(u,m)
du

u

)1/2

,

we obtain
∫m
0

∫ r
1

�2(u, t)
du

u
dt �

√
2
√

log r
(∫ r

1

A(u,m)
du

u

)1/2

�
√

2Λ̃(r)3/4(log r)1/4.

Since 3
√

2π + 2
√
π < 24, we obtain our estimate.

Applying Lemma 5.5 to the case Λ(r) = 2πT (r) and Λ̃(r) = 2πT (r + 1/2T (r)) for r > γd,
we obtain

Corollary 5.6. For r > γd, we have

∫m
0

∫ r
1

�
Ĉ
(cr(f, ai, aj , ak)(∂Ω(u, t)))

du

u
dt � 25 T

(
r +

1
2T (r)

)3/4

(log r)1/4. (5.9)

Now we obtain (5.3) by substituting (5.9) to (5.8). Thus, we have proved Lemma 5.2.
Derivation of Proposition 5.1 from Proposition 4.3. Let Ω∗ � Ω ⊂ X(a1, . . . , aq) be the

same as in Proposition 5.1. We take a point x ∈ Ω and chose i♦ for each 1 � i � q − 2 as
in Proposition 4.3. The estimate (5.3) implies for r > γd

T (r, κ(f, a1, . . . , aq−1),Ω∗)

�
q−2∑
i=1

T

(
r,

f − ai
ai♦ − ai

,Ω(m/2)
)

+
216q5

m
T

(
r +

1
2T (r)

)3/4

(log r)1/4.

On the other hand, Proposition 4.3 applied to Ω(m/2) � Ω implies

q−2∑
i=1

T

(
r,

f − ai
ai♦ − ai

,Ω(m/2)
)

�
q∑
i=1

N̄(r, f, ai,Ω) + 272 dq
9

m2
T

(
r +

1
T (r)

)3/4

(log r)1/4

for r > γd. This proves Proposition 5.1.
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5.2. The second step

In Proposition 5.1, we treat a local value distribution of f over a topological disk or an annulus
whose boundary is short. In this step, we consider global value distribution. We shall derive
the following proposition from Proposition 5.1.

Proposition 5.7. Let f, a1, . . . , aq be the same as in Proposition 4.3. Given ε > 0, we
have

(1 − ε)T (r, κ(f, a1, . . . , aq−1)) �
q∑
i=1

N̄(r, f, ai) + 2153 d
2q13

ε4
T

(
r +

1
T (r)

)3/4

(log r)1/4 (5.10)

for all r > γd.

To derive this proposition from Proposition 5.1, we use thick–thin decomposition of
the punctured sphere X = X(a1, . . . , aq) (cf. [7, Theorem 4.4.6]): For δ < arcsinh(1)/2, let
A1, . . . , Ak be the connected components of X<δ, where X<δ denote the subset of X with
hyperbolic injectivity radius less than δ. Here the hyperbolic injectivity radius at a point
x ∈ X is the radius of the largest embedded hyperbolic ball centred at x. Then each Ai is
either a horoball neighbourhood of a cusp or a collar neighbourhood of a closed geodesic of
length less than 2δ. The number k satisfies the bound k � 2p− 3, where p is the number of
the punctures of X. Since p � dq2, we have

k < 2dq2. (5.11)

Lemma 5.8. Let δ < 1
4 and let A be a connected component of X<δ. Let C be a boundary

circle of A. Then

�X(C) � 4δ. (5.12)

Proof. Let � : XC → X be the covering space corresponding to 〈C〉 ⊂ π1(X). Then XC

is an annulus or a punctured disk. We identify XC with A(R) = {z; 1 < |z| < R} and A with
{z; s < |z| < R/s}, where 1 < s <

√
R. When A is a cusp neighbourhood, then R = ∞. The

hyperbolic metric on A(R) is given by

π/logR
2 sin(π log |z|/logR)

|dz|
|z| .

We note that this metric converges to the hyperbolic metric of the punctured disk whenR→ ∞.
For 1 < r < R, we denote by Cr the circle |z| = r in A(R) and by η(r) the hyperbolic length
of Cr. Then we have

η(r) = π
π/logR

sin(π log r/logR)
.

We may take s < t <
√
R such that η(t) = 2δ. We claim that

log
t

s
< π. (5.13)

To show this, we take a point a ∈ Cs and a closed essential loop γ ⊂ A(R) passing through a
such that the hyperbolic length satisfies �(γ) = 2δ. If γ and Ct do not intersect, then �(γ) > 2δ,
which is a contradiction. Hence, γ and Ct intersect. This shows

dist(Cs, Ct) < δ,
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where dist(Cs, Ct) is the hyperbolic distance of Cs and Ct. On the other hand, we have

dist(Cs, Ct) =
1
2

∫ t
s

π/logR
sin(π log x/logR)

dx

x

=
1
2π

∫ t
s

η(x)
dx

x

>
1
2π
η(t) log

t

s
.

This shows (5.13).
Now by (5.13), we have

sin
(
π log t
logR

)
� sin

(
π log s
logR

)
+
π log(t/s)

logR
� sin

(
π log s
logR

)
+

π2

logR
.

Since η(t) < 1
2 , we have

π2

logR
<

1
2

sin
(
π log t
logR

)
.

Thus,

sin
(
π log t
logR

)
� 2 sin

(
π log s
logR

)
.

Hence, we obtain
�X(C) = η(s) � 2η(t) = 4δ.

For x ∈ X, we denote by ρ(x) the hyperbolic injectivity radius at x.

Corollary 5.9. Let δ and A be the same as in Lemma 5.8. For δ < δ′ < 1
4 , let A′ be the

connected component of X<δ′ such that A ⊂ A′. Let B be a connected component of A′ − Ā.
Then B is an annulus whose modulus μ satisfies

μ >
δ′ − δ

4δ′
. (5.14)

Proof. Let � : A(R) → X be the covering as in the proof of Lemma 5.8. We identify A with
{z; s < |z| < R/s}, where 1 < s <

√
R. Then A′ corresponds to {z; e−2πμs < |z| < e2πμR/s}.

We may assume without loss of generality that B corresponds to {z; e−2πμs < |z| < s}. Then
using the notation in the proof of Lemma 5.8, we have

dist(Ce−2πμs, Cs) =
1
2

∫s
e−2πμs

π/logR
sin(π log x/logR)

dx

x

=
1
2π

∫s
e−2πμs

η(x)
dx

x

< mη(e−2πμs).

By Lemma 5.8, we have η(e−2πμs) < 4δ′. Hence, we have

μ >
dist(Ce−2πμs, Cs)

4δ′
.

On the other hand, we obviously have |ρ(x) − ρ(x′)| � dist(x, x′) for all x, x′ ∈ X. Hence,
we have

dist(∂X<δ, ∂X<δ′) � δ′ − δ. (5.15)

Hence, we obtain (5.14).
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For δ > 0 and δ′ > δ, we set

X�δ = {x ∈ X; ρ(x) � δ}, X[δ,δ′) = {x ∈ X; δ � ρ(x) < δ′}.
Derivation of Proposition 5.7 from Proposition 5.1. It is enough to consider the case ε < 1,

for otherwise the estimate (5.10) is obvious. We take a large integer L such that
5
ε
< L <

8
ε
. (5.16)

Set σ = 1/(229q). Since X[σ+j(σ/L),σ+(j+1)(σ/L)) for j = 0, 1, . . . , L− 1 are disjoint, we have
L−1∑
j=0

(T (r, κ,X[σ+j(σ/L),σ+(j+1)(σ/L))) +
q∑
t=1

N̄(r, f, at,X[σ+j(σ/L),σ+(j+1)(σ/L))))

� T (r, κ) +
q∑
t=1

N̄(r, f, at).

Here κ = κ(f, a1, . . . , aq−1). We choose 0 � j � L− 1 which minimizes

T (r, κ,X[σ+j(σ/L),σ+(j+1)(σ/L))) +
q∑
t=1

N̄(r, f, at,X[σ+j(σ/L),σ+(j+1)(σ/L))),

and set τ = σ + j(σ/L), τ ′ = σ + (j + 1)(σ/L). Then we have

T (r, κ,X[τ,τ ′)) +
q∑
t=1

N̄(r, f, at,X[τ,τ ′)) <
1
L

(T (r, κ) +
q∑
t=1

N̄(r, f, at)). (5.17)

In the following, we shall prove the following two estimates for r > γd:

T (r, κ,X<τ ) �
q∑
t=1

N̄(r, f, at,X<τ ′) + 280d2q11L2T

(
r +

1
T (r)

)3/4

(log r)1/4, (5.18)

(
1 − 3

L

)
T (r, κ,X�τ ′) �

q∑
i=1

N̄(r, f, ai,X�τ ) + 2140d2q13L4T

(
r +

1
T (r)

)3/4

(log r)1/4.

(5.19)

These two estimates imply (5.10). Indeed combined with (5.17), we obtain(
1 − 4

L

)
T (r, κ) �

(
1 +

1
L

) q∑
i=1

N̄(r, f, ai) + 2141d2q13L4T

(
r +

1
T (r)

)3/4

(log r)1/4

for r > γd. Hence by 1 − 5/L < (1 − 4/L)/(1 + 1/L) and (5.16), we obtain (5.10).
Now it remains to prove (5.18) and (5.19). We first prove (5.18).
Let A1, . . . , Ak be the connected components of X<τ . Then each Ai is either a horoball

neighbourhood of a cusp or a collar neighbourhood of a geodesic of length less than 2τ . Let A′
i

be the connected component of X<τ ′ such that Ai ⊂ A′
i. Let μ be the modulus of a connected

component of A′
i −Ai. Then by (5.14), we have

μ � τ ′ − τ

4τ ′
>

1
8L
.

We first assume that Ai is a collar neighbourhood of a geodesic. By (5.12), we may apply
Proposition 5.1 for Ω = A′

i and Ω∗ = Ai to obtain

T (r, κ,Ai) �
q∑
i=1

N̄ (r, f, ai, A′
i) + 279dq9L2T

(
r +

1
T (r)

)3/4

(log r)1/4.

If Ai is a horoball neighbourhood of a cusp, this estimate is still true by a limiting argument;
First we take a small constant 0 < δ < τ , and remove Ai ∩X<δ from Ai to obtain an annulus
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Bi. Next, we remove a small horoball neighbourhood from A′
i to obtain an annulus B′

i so that
Bi is relatively compact in B′

i and two connected components of B′
i − B̄i are annuli of the same

modulus μ. Then we apply Proposition 5.1 for Ω = B′
i, Ω∗ = Bi and finally let δ → 0.

Thus, by (5.11), we obtain (5.18).
Next we prove (5.19). For x ∈ X, we denote by D(x) the hyperbolic 1/(230qL)-ball centered

at x. Then, for x ∈ X�τ , D(x) is an embedded ball. Let D∗(x) ⊂ D(x) be the hyperbolic
ball centred at x such that the modulus of the annulus D(x) −D∗(x) is equal to 1/(8L). For
x ∈ X�τ , the hyperbolic areas of D(x) and D∗(x) are constants independent of x. We denote
these constants by

α = Ahyp(D(x)), α∗ = Ahyp(D∗(x)).

For x ∈ X�τ , we apply Proposition 5.1 for Ω = D(x) and Ω∗ = D∗(x) to obtain

T (r, κ,D∗(x)) �
q∑
i=1

N̄(r, f, ai,D(x)) + 279dq9L2T

(
r +

1
T (r)

)3/4

(log r)1/4 (5.20)

for r > γd. We set

Y =
{
z ∈ X; dist(z,X�τ ′) <

1
230qL

}
.

We integrate both sides of (5.20) over Y with respect to the hyperbolic area of X. Then by
(4.1), we obtain

∫
Y

T (r, κ,D∗(y)) dAhyp(y)

�
∫
Y

q∑
i=1

N̄(r, f, ai,D(y)) dAhyp(y) + 280d2q11L2T

(
r +

1
T (r)

)3/4

(log r)1/4. (5.21)

We note that D∗(x) is contained in Y for x ∈ X�τ ′ . Hence, for x ∈ X�τ ′ , we have
∫
{y∈Y ; x∈D∗(y)}

dAhyp(y) = Ahyp(D∗(x)) = α∗.

We set κ = κ̃(x) dx ∧ dx̄. Then κ̃(x) is a non-negative, smooth function. By Fubini’s theorem,
we have

∫
Y

T (r, κ,D∗(y)) dAhyp(y) =
∫
Y

∫ r
1

∫
D∗(y)∩C(t)

κ̃(x) dx ∧ dx̄
dt

t
dAhyp(y)

=
∫ r
1

∫
x∈C(t)

(∫
{y∈Y ; x∈D∗(y)}

dAhyp(y)

)
κ̃(x) dx ∧ dx̄

dt

t

�
∫ r
1

∫
x∈C(t)∩X�τ′

(∫
{y∈Y ;x∈D∗(y)}

dAhyp(y)

)
κ̃(x) dx ∧ dx̄

dt

t

= α∗T (r, κ,X�τ ′). (5.22)

Next by (5.15), D(x) is contained in X�τ for x ∈ Y . Hence, for x ∈ X<τ , we have
∫
{y∈Y ; x∈D(y)}

dAhyp(y) = 0.
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Hence, by Fubini’s theorem, we have
∫
Y

q∑
i=1

N̄(r, f, ai,D(y)) dAhyp(y) =
∫
Y

∫ r
1

∫
D(y)∩C(t)

dν
dt

t
dAhyp(y)

=
∫ r
1

∫
x∈C(t)

∫
{y∈Y ; x∈D(y)}

dAhyp(y) dν
dt

t

=
∫ r
1

∫
x∈C(t)∩X�τ

∫
{y∈Y ; x∈D(y)}

dAhyp(y) dν
dt

t

� α

q∑
i=1

N̄(r, f, ai,X�τ ). (5.23)

Here, ν is a measure such that ν(A) =
∑q
i=1 #{z ∈ A; f(z) = ai(z)}. Hence, by (5.21)–(5.23),

we obtain

α∗T (r, κ,X�τ ′) � α

q∑
i=1

N̄(r, f, ai,X�τ ) + 280d2q11L2T

(
r +

1
T (r)

)3/4

(log r)1/4.

Now to conclude the proof of (5.19), what we need to prove is as follows:

α � 1
260q2L2

, α∗ �
(

1 − 3
L

)
α.

The first estimate follows from the fact that the area of the hyperbolic r-ball is greater than
πr2. For the second estimate, we note that Ahyp−D(D(r)) = πr2/(1 − r2) for 0 � r < 1. Hence,
for 0 � r < 1

2 , we have

Ahyp−D(D(e−1/Lr)) =
πe−2/Lr2

1 − e−2/Lr2
� e−3/L πr2

1 − r2
= e−3/LAhyp−D(D(r)).

Thus, we have Ahyp−D(D(e−1/Lr)) � (1 − 3/L)Ahyp−D(D(r)) for 0 � r < 1
2 . This shows the

second estimate.

5.3. The final step

We derive Theorem 4.1 from Proposition 5.7. We need the following lemma:

Lemma 5.10. Let a1, a2 . . . , aq ∈ Rd be distinct with a1 ≡ 0 and aq ≡ ∞. Then we have

∫2π

0

max
1�j�q

log
1

[f(r eiθ), aj(r eiθ)]
dθ

2π
+

q∑
j=1

N(r, f, aj) − 2T (r, f)

� T (r, κ(f, a1, . . . , aq−1)) + dq2 log r + q(Cf,d + 1). (5.24)

Here, we recall the constant Cf,d from (2.3).
Proposition 5.7 and Lemma 5.10 imply Theorem 4.1. We take a positive constant γ′d > γd

such that the following two estimates are valid for all r > γ′d:

d log r + Cf,d + 1 < T (r)3/4(log r)1/4, (5.25)

2180d2T (r)3/4(log r)1/4 < T (r)4/5(log r)1/5.

We set

E =
{
r > 1;T

(
r +

1
T (r)

)
> 2T (r)

}
.
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Then by Borel’s growth lemma [25, p. 245], E has finite linear measure. We set

Ef,d = {r; 0 < r < γ′d} ∪ E.

We note that Ef,d only depends on f and d.
By Lemma 2.1 and (5.25), we have

m(r, f, ai) +N(r, f, ai) � T (r, f) + T (r)3/4(log r)1/4 � 2T (r, f) (5.26)

for r > γ′d. Thus, the estimate of Theorem 4.1 is obvious if ε � 2q or q � 2. In the following,
we assume that ε < 2q and q � 3.

We first consider the special case that a1 = 0 and aq = ∞. By (5.24) and (5.25), we have

∫2π

0

max
1�j�q

log
1

[f(r eiθ), aj(r eiθ)]
dθ

2π
+

q∑
j=1

N(r, f, aj) − 2T (r, f)

� T (r, κ(f, a1, . . . , aq−1)) + q2T (r, f)3/4(log r)1/4

for r > γ′d. We apply Proposition 5.7, where ε is replaced by ε/4q, to obtain

∫2π

0

max
1�j�q

log
1

[f(r eiθ), aj(r eiθ)]
dθ

2π
+

q∑
j=1

N(r, f, aj) − 2T (r, f)

�
(

1 +
ε

2q

) q∑
i=1

N̄(r, f, ai) + 2162 d
2q17

ε4
T

(
r +

1
T (r)

)3/4

(log r)1/4

for r > γ′d. Here, we remark that 1/(1 − ε/4q) < 1 + ε/2q < 2. Hence by (5.26), we have

∫2π

0

max
1�j�q

log
1

[f(r eiθ), aj(r eiθ)]
dθ

2π
+

q∑
j=1

N1(r, f, aj)

� (2 + ε)T (r, f) +
q17

217ε4
T (r)4/5(log r)1/5

for all r > 0 outside Ef,d.
For the general case, we add two constant functions 0 and ∞ to the set {a1, . . . , aq}, if

necessary, to reduce to the special case above. Note that in this reduction, the number q is at
most replaced by q + 2, which is smaller than 2q.

Proof of Lemma 5.10. We need some estimates involving chordal distance.

Claim. For w, a1, . . . , ak ∈ C, we set

Λ(w, a1, . . . , ak) =
1
2

log

(
1 +

k∑
i=1

|w|2
|w − ai|2

)
+ log

1
[w, 0]

+ log
1

[w,∞]
.

Then we have:

Λ(w, a1, . . . , ak) �
k∑
i=1

log
1

[w, ai]
+ log

1
[w, 0]

+ log
1

[w,∞]
+ k, (5.27)

max
{

log
1

[w, a1]
, . . . , log

1
[w, ak]

, log
1

[w, 0]
, log

1
[w,∞]

}
� Λ(w, a1, . . . , ak) + 2. (5.28)



742 KATSUTOSHI YAMANOI

Proof. We first prove (5.27). We have

Λ(w, a1, . . . , ak) � max
1�i�k

{
1
2

log
(

1 +
|w|2

|w − ai|2
)}

+ log
1

[w, 0]
+ log

1
[w,∞]

+
log k

2

� max
1�i�k

{
log

1
[w, ai]

+
log 2

2

}
+ log

1
[w, 0]

+ log
1

[w,∞]
+

log k
2

�
∑

1�i�k
log

1
[w, ai]

+ log
1

[w, 0]
+ log

1
[w,∞]

+
log 2k

2
.

Since log 2k < 2k, we obtain (5.27).
To prove (5.28), we first show

log
1

[w, a]
� 1

2
log
(

1 +
|w|2

|w − a|2
)

+ log
1

[w, 0]
+ log

1
[w,∞]

+ 2 (5.29)

for w, a ∈ C. Indeed since |w| � |a|/2 or |w − a| � |a|/2, we have

|w − a|2 + |w|2 � 1
4 |a|2.

Hence, if |a| � 1, we have( |w − a|2 + |w|2
1 + |a|2

)(
1 +

1
|w|2

)
� |a|2

4(1 + |a|2) � 1
8
.

If |a| � 1, we have ( |w − a|2 + |w|2
1 + |a|2

)(
1 +

1
|w|2

)
� |w|2

2

(
1 +

1
|w|2

)
� 1

2
.

Thus, we obtain ( |w − a|2 + |w|2
1 + |a|2

)(
1 +

1
|w|2

)
� 1

8
>

1
e4
.

By this estimate, we have

2 log
1

[w, a]
= log

(1 + |w|2)(1 + |a|2)
|w − a|2

= log
(

1 +
|w|2

|w − a|2
)

+ log(1 + |w|2) + log
(

1 + |a|2
|w − a|2 + |w|2

)
� log

(
1 +

|w|2
|w − a|2

)
+ log(1 + |w|2) + log

(
1 +

1
|w|2

)
+ 4

= log
(

1 +
|w|2

|w − a|2
)

+ 2 log
1

[w,∞]
+ 2 log

1
[w, 0]

+ 4.

This proves (5.29).
Now by (5.29), we have

log
1

[w, ai]
� 1

2
log
(

1 +
|w|2

|w − ai|2
)

+ log
1

[w, 0]
+ log

1
[w,∞]

+ 2

� Λ(w, a1, . . . , ak) + 2.

This proves (5.28).

Now we prove Lemma 5.10. Define a holomorphic curve F : C → P
q−2 by

F (z) =
[

1
f − a1

: · · · :
1

f − aq−1

]
.
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Using the notation from (2.4), we have

T (r, κ(f, a1, . . . , aq−1)) = T (r, F ).

Thus, by (2.6), we have

T (r, κ(f, a1, . . . , aq−1)) = N(r, F,H) +m(r, F,H) −m(1, F,H). (5.30)

We shall estimate the right-hand side of (5.30). By the definition of the Weil function λH (cf.
(2.5)), we have

λH ◦ F (z) = Λ(f(z), a2(z), . . . , aq−1(z)) − log
1

[f(z), 0]
− log

1
[f(z),∞]

.

Thus, we have

m(r, F,H) =
∫2π

0

Λ(f(r eiθ), a2(r eiθ), . . . , aq−1(r eiθ))
dθ

2π
−m(r, f, 0) −m(r, f,∞).

Hence, by (5.27), we have

m(1, F,H) � (q − 2)Cf,d + q − 2. (5.31)

By (5.28), we have∫2π

0

max
1�j�q

log
1

[f(r eiθ), aj(r eiθ)]
dθ

2π
� m(r, F,H) +m(r, f, 0) +m(r, f,∞) + 2. (5.32)

By (5.30)–(5.32), we obtain

N(r, F,H) +
∫2π

0

max
1�i�q

log
1

[f(r eiθ), ai(r eiθ)]
dθ

2π
−m(r, f, 0) −m(r, f,∞)

� T (r, κ(f, a1, . . . , aq−1)) + (q − 2)Cf,d + q. (5.33)

Next we claim
q−1∑
i=2

N(r, f, ai) � N(r, F,H) + dq2 log r. (5.34)

To show this, we take reduced representations f = g/h and ai = bi/ci, where bi and ci are
polynomials of degree less than or equal to d. Since

F (z) =
[

c1
c1g − b1h

: · · · :
cq−1

cq−1g − bq−1h

]
,

we have

N(r, F,H) =
∫ r
1

∑
z∈C(t)

max
2�i�q−1

{
0, ordz

c1
c1g − b1h

cig − bih

ci

}
dt

t
. (5.35)

Hence, we have

N(r, F,H) �
∫ r
1

∑
z∈C(t)

max
2�i�q−1

{
0, ordz

cig − bih

c1g − b1h

}
dt

t
−
q−1∑
i=2

N(r, ci, 0). (5.36)

Since min{ordz(cig − bih), ordz(cjg − bjh)} � ordz(bicj − bjci), we have
q−1∑
i=2

ordz(cig − bih) � max
2�i�q−1

{ordz(cig − bih)} +
∑

2�i<j�q−1

ordz(bicj − bjci)

� max
2�i�q−1

{
0, ordz

cig − bih

c1g − b1h

}
+

∑
1�i<j�q−1

ordz(bicj − bjci).
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Combined with (5.36), we obtain
q−1∑
i=2

N(r, f, ai) � N(r, F,H) +
∑

1�i<j�q−1

N(r, bicj − bjci, 0) +
q−1∑
i=2

N(r, ci, 0).

This shows (5.34).
Now by (5.33), (5.34) and

m(r, f, 0) +N(r, f, 0) +m(r, f,∞) +N(r, f,∞) � 2T (r, f) + 2Cf,d,

we obtain (5.24).

6. Holomorphic motion and quasiconformal perturbation

6.1. Introduction

We begin the proof of Proposition 4.3. Our goal of this section is to perturb f quasiconformally
and construct a quasimeromorphic function g over Ω which has appropriate properties to show
Proposition 4.3. Our main tool is holomorphic motion, which we introduce below.

A holomorphic motion of a set A ⊂ Ĉ over a connected complex manifold with base point
(Y, y) is a mapping φ : Y ×A→ Ĉ, given by (λ, z) �→ φλ(z) = φ(λ, z), such that:

(1) For each fixed z ∈ A, φλ(z) is a holomorphic function of λ,
(2) For each fixed λ ∈ Y , φλ(z) is an injective function of z,
(3) The injection is the identity at the base point, that is, φy(z) = z.

A fundamental result is that if φ is a holomorphic motion of the whole sphere Ĉ, then for each
fixed λ ∈ Y , φλ(z) is a quasiconformal map of z.

Given a Riemann sphere with finitely many punctures S with #(Ĉ − S) � 3, we call a
Beltrami coefficient μ on S harmonic if

μ(z) =
ψ(z)
�S(z)2

where ψ(z) dz2 is a holomorphic quadratic differential on S and �S(z)|dz| is the Poincaré line
element in S.

Definition 6.1 (ε-thick). Let 0 < ε < 1. A q-pointed sphere (Ĉ, b1, . . . , bq) is called ε-
thick if there is no annulus A ⊂ Ĉ\{b1, . . . , bq} with Mod(A) � −(1/2π) log ε such that each
connected component of Ĉ\A contains at least two elements of {b1, . . . , bq}.

Let a1, . . . , aq ∈ Rd, where d � 1 and q � 3, be distinct with aq ≡ ∞ and let x ∈
X(a1, . . . , aq). Over X(a1, . . . , aq), we consider {a1(λ), . . . , aq(λ)} as a holomorphic motion φ of
q-points {a1(x), . . . , aq(x)} ⊂ Ĉ. Namely the map φ : X(a1, . . . , aq) × {a1(x), . . . , aq(x)} → Ĉ

is defined by

φ(λ, ai(x)) = ai(λ).

Proposition 6.2. Let f and x ∈ Ω ⊂ X(a1, . . . , aq) be the same as in Proposition 4.3.
Assume that (Ĉ, a1(x), . . . , aq(x)) is 1

220 -thick.

(1) There exists a holomorphic motion φ̂ : Ω × Ĉ → Ĉ which agrees with φ on their common
domain of definition, such that for each λ ∈ Ω the Beltrami coefficient μφ̂λ is harmonic on

Ĉ − {a1(x), . . . , aq(x)} and satisfies ||μφ̂λ ||∞ < 1
50 .
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(2) We define a map g : Ω → Ĉ by

φ̂(λ, g(λ)) = f(λ). (6.1)

Then g is quasimeromorphic with |gz̄| � 1
50 |gz| and real-analytic on the inverse image of

Ĉ\{a1(x), . . . , aq(x)}.
(3) Let Ω∗ � Ω be the same as in Proposition 4.3. We recall the notation Ω(t) from (5.2).

We have ∫m
0

∣∣∣∣T (r, f − ai
aj − ai

,Ω(t)
)
− T

(
r,

g − ai(x)
aj(x) − ai(x)

,Ω(t)
)∣∣∣∣ dt

� 229 dq2T

(
1 +

1
2T (r)

)3/4

(log r)1/4,

for r > γd, where i and j are distinct elements in {1, . . . , q − 1}.

The role of the motion φ̂ in the proof of Proposition 4.3 is to convert the rational
target functions a1, . . . , aq into constants a1(x), . . . , aq(x), at the price of replacing f by a
quasimeromorphic function g. Indeed the two equations f(z) = ai(z) and g(z) = ai(x) are
equivalent over Ω as the definition (6.1) shows. Thus

n̄(g, ai(x),Ω(r, t)) = n̄(f, ai,Ω(r, t)), (6.2)

where we recall Ω(r, t) = Ω(t) ∩ C(r). Proposition 6.2(3) claims that the order functions of f
and g are close. In the next section, we apply Ahlfors’ theory to the quasimeromorphic function
g with the constant targets a1(x), . . . , aq(x). The conclusion is Proposition 7.2, which is a main
result of Sections 6 and 7.

We remark that Proposition 6.2 is trivial if q = 3. Indeed the desired motion is given by a
holomorphic map φ̂ : Ω × Ĉ → Ĉ defined by

cr(φ̂(λ, z), a1(λ), a2(λ), a3(λ)) = cr(z, a1(x), a2(x), a3(x)).

Here, μφ̂λ = 0. The map g defined by (6.1) is meromorphic and satisfies

cr(f(z), a1(z), a2(z), a3(z)) = cr(g(z), a1(x), a2(x), a3(x)).

Thus the left-hand side of the estimate of Proposition 6.2(3) is equal to 0. Hence to prove
Proposition 6.2, it is enough to consider the case q � 4.

Teichmüller space. We review some facts from Teichmüller theory which is needed in the
proof of Proposition 6.2. For details of the theory, we refer the reader to [2, 18, 19, 24]. Let S
be a q-punctured sphere, where q � 4. The Teichmüller space T (S) of S is the set of Teichmüller
classes [ϕ] of quasiconformal mappings

ϕ : S → ϕ(S) ⊂ Ĉ,

where, by definition, two such quasiconformal maps ϕ and ϕ′ belong to the same Teichmüller
class if and only if there exists a conformal map h : ϕ(S) → ϕ′(S) such that the self-mapping
(ϕ′)−1 ◦ h ◦ ϕ of S is isotopic to the identity modulo the punctures Ĉ − S. Let S∗ be the
complex conjugate of S. Let Q(S∗) be the space of holomorphic quadratic differentials on S∗

with at worst simple poles at the punctures of S∗. We have the Bers embedding β : T (S) →
Q(S∗), which preserves the base points, that is, β([idS ]) = 0. For each ψ ∈ Q(S∗), we define a
harmonic Beltrami differential μ[ψ] on S by

μ[ψ](z) = −1
2
ψ(z̄)
�S(z)2

,
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where �S(z)|dz| is the Poincaré line element in S. We consider Q(S∗) as a Banach space with
a Nehari norm

||ψ||∞ = sup
z∈S

|μ[ψ](z)|.

For δ > 0, we set B(δ) = {ψ ∈ Q(S∗); ||ψ||∞ < δ}. A fundamental result about the Bers
embedding is

B(1) ⊂ β(T (S)) ⊂ B(3). (6.3)

For the Carathéodory distance cB(3) on B(3), we have (cf. [10])

cB(3)(0, y) = dΔ(0, ||y||∞/3). (6.4)

To see this, we remark that for each z ∈ S, the map y �→ μ[y](z) is holomorphic. This gives a
holomorphic map μ[·](z) : B(3) → Δ(3). Hence by the definition of the Carathéodory distance,
we have

cB(3)(0, y) � sup
z∈S

dΔ(0, μ[y](z)/3) = dΔ(0, ||y||∞/3).

On the other hand, there is a holomorphic map Δ → B(3) defined by t �→ (3/||y||∞)ty. Thus,
by the distance decreasing property, we have

dΔ(0, ||y||∞/3) � cB(3)(0, y).

Thus, we obtain (6.4).
Universal holomorphic motion. Let E = {b1, . . . , bq−3, 0, 1,∞} ⊂ Ĉ be a set of distinct q-

points in the Riemann sphere. Every t ∈ T (Ĉ − E) is a Teichmüller class [ϕ] of a quasiconformal
mapping ϕ of Ĉ − E into Ĉ. Replacing ϕ by a composition h ◦ ϕ with a suitable Möbius
transformation h, we may assume without loss of generality that ϕ is normalized in the sense
that ϕ fixes 0, 1 and ∞.

The universal holomorphic motion Φ : T (Ĉ −E) × E → Ĉ of E over (T (Ĉ − E), [id
Ĉ−E ]) is

defined by

Φ([ϕ], e) = ϕ(e),

where ϕ is a normalized quasiconformal map. The universal holomorphic motion is well
defined. Indeed if ϕ and ϕ′ are two normalized quasiconformal maps which belong to the
same Teichmüller class, then there exists a conformal map h of ϕ(Ĉ − E) into ϕ′(Ĉ − E) such
that (ϕ′)−1 ◦ h ◦ ϕ is isotopic to the identity modulo E. The map h is the identity, for h must
be a Möbius transform which fixes 0, 1 and ∞. Thus, we conclude (ϕ′)|E = ϕ|E , which means
that the map Φ is well-defined. Note that the universal holomorphic motion is normalized in
the sense that 0, 1,∞ ∈ E are the fixed points of the map Φ(t, ·) for every t ∈ T (Ĉ − E).

We extend the universal holomorphic motion Φ to a holomorphic motion Φ̂ : B(1) × Ĉ → Ĉ

of whole sphere over (B(1), 0). Here, we identify T (Ĉ − E) with its image β(T (Ĉ − E)) under
the Bers embedding and consider B(1) ⊂ T (Ĉ −E). The motion is defined by

Φ̂(t, z) = wμ[t](z)

for t ∈ B(1), where wμ[t] is the normalized quasiconformal mapping whose Beltrami coefficient
is μ[t]. By the Ahlfors–Weill theorem, we have [wμ[t]] = t, hence Φ̂(t, e) = Φ(t, e) for all (t, e) ∈
B(1) ×E. Since μ[t] depends holomorphically on t, the map t �→ wμ[t](z) is holomorphic for
each fixed z ∈ C. Thus, Φ̂ is a holomorphic motion of whole sphere.

We remark that the map t �→ μ[t](z) is holomorphic for each z and the map (t, z) �→ μ[t](z)
is real analytic on B(1) × (Ĉ − E). Hence, by the following lemma, the map Φ̂ : B(1) × Ĉ → Ĉ

is real analytic on B(1) × (Ĉ − E).
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Lemma 6.3. LetM be a complex manifold. Let νt(z) = ν(t, z) be a complex valued function
on M × C with |ν(t, z)| < 1 such that

(1) for each t ∈M, νt is a measurable function on C and ess.sup
z∈C

|νt(z)| < 1,

(2) for each z, the mapping M → Δ given by t �→ ν(t, z) is holomorphic,
(3) there exists a domain D ⊂ C such that ν is real analytic on M ×D.

Then the normalized quasiconformal map wνt(z) is real analytic on M ×D.

Proof. We first construct a local solution W (t, z) = Wt(z) of

∂

∂z̄
W (t, z) = ν(t, z)

∂

∂z
W (t, z) (6.5)

on a neighbourhood of (t0, z0) ∈M ×D which is injective in z, holomorphic in t, and real
analytic in (t, z). This is achieved by the Cauchy–Kowalevski theorem. We write as

ν(t, z) =
∑
α,i,j

cα,i,j(t− t0)α(z − z0)i(z̄ − z̄0)j ,

where α is multi-index. We set

η(t, ζ, ξ) =
∑
α,i,j

cα,i,j(t− t0)α(ζ − z0)i(ξ − z̄0)j .

Then η(t, ζ, ξ) is analytic on a neighbourhood of (t0, z0, z̄0) ∈M × C × C. We consider the
following differential equation with initial data:

∂

∂ξ
U(t, ζ, ξ) = η(t, ζ, ξ)

∂

∂ζ
U(t, ζ, ξ), U(t, ζ, z̄0) = ζ. (6.6)

By the Cauchy–Kowalevski theorem, this equation has a unique analytic solution U(t, ζ, ξ) on
a neighbourhood of (t0, z0, z̄0). The initial data give

∂

∂ζ
U(t, ζ, z̄0) = 1. (6.7)

We set W (t, z) = U(t, z, z̄). Then W (t, z) is real analytic on a neighbourhood of (t0, z0), and
holomorphic in t. We note that

∂

∂z
W (t, z) =

∂

∂ζ
U(t, z, z̄),

∂

∂z̄
W (t, z) =

∂

∂ξ
U(t, z, z̄).

Hence, by (6.6), we conclude that W (t, z) is a local solution of (6.5). Also, by (6.7), we
obtain (∂/∂z)W (t, z0) = 1. This shows that W (t, z) is injective in z on a possibly smaller
neighbourhood of (t0, z0). Thus, we have constructed the desired local solution W (t, z) of (6.5).

Next, we set h(t, z) = ht(z) = wνt ◦W−1
t (z). Then h is holomorphic in z, since wνt and

Wt have the same complex dilatation. We claim that h is holomorphic in t (cf. [18, p.242]).
To show this, we take a small constant � > 0 such that Wt(z) is defined on the closed disk
{z; |z − z0| � �}. Let Γt be the image under Wt of the circle z = z0 + � eiθ, where 0 � θ � 2π.
Then Γt is a smooth Jordan curve, for Wt is real analytic. We note that, by the initial condition
in (6.6), W (t, z0) = z0. Hence z0 lies in the domain interior to Γt. We apply Cauchy’s formula
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to the holomorphic function ht(z). Then if z is close enough to z0, we have

ht(z) =
1

2πi

∫
Γt

ht(ζ)
ζ − z

dζ

=
1

2πi

∫2π

0

ht ◦Wt(z0 + � eiθ)
Wt(z0 + �eiθ) − z

∂Wt(z0 + � eiθ)
∂θ

dθ

=
1

2πi

∫2π

0

wνt(z0 + � eiθ)
Wt(z0 + �eiθ) − z

∂Wt(z0 + � eiθ)
∂θ

dθ.

Since the functions wνt(z0 + � eiθ), Wt(z0 + � eiθ), ∂Wt(z0 + � eiθ)/∂θ are holomorphic in t and
continuous in (t, θ), we conclude that the map t �→ ht(z) is holomorphic. Hence by Hartogs’
theorem, h is holomorphic in (t, z). Hence wνt(z) is real analytic on M ×D. �

6.2. Proof of Proposition 6.2(1)

We prove more general statement.

Lemma 6.4. Let Ω be a neighbourhood of x ∈ X(a1, . . . , aq). Assume that one of the
following condition is true:

(1) Ω is a topological disk with �X(a1,...,aq)(∂Ω) < 1
75 , or

(2) Ω is an annulus with �X(a1,...,aq)(∂Ω) < ε/(25q) and (Ĉ, a1(x), . . . , aq(x)) is ε-thick,
where 0 < ε < 1.

Then there exists a holomorphic motion φ̂ : Ω × Ĉ → Ĉ which agrees with φ on their common
domain of definition, such that for each λ ∈ Ω the Beltrami coefficient μφ̂λ is harmonic on

Ĉ − {a1(x), . . . , aq(x)} and satisfies ||μφ̂λ ||∞ < 1
50 .

We follow the proof of Bers–Royden’s 1
3 -extension theorem [4]. To normalize the motion φ,

we set αi(z) = cr(ai(z), aq−2(z), aq−1(z), aq(z)) for i = 1, . . . , q. Then αq−2 = 0, αq−1 = 1 and
αq = ∞. Set E = {α1(x), . . . , αq−3(x), 0, 1,∞}. We denote by ϕ the holomorphic motion

{α1(z), . . . , αq−3(z), 0, 1,∞}
of E over (X,x), where we write X = X(a1, . . . , aq) to simplify the notation.

We denote by M0,q the complex manifold of ordered (q − 3)-tuples of distinct complex
numbers (c1, . . . , cq−3) none of which equals 0 or 1. Using the universal holomorphic motion
Φ, we may define a holomorphic map p : T (Ĉ − E) → M0,q by

t �→ (Φ(t, α1(x)), . . . ,Φ(t, αq−3(x))).

The map p is a universal covering map [4, p. 268].
We consider the motion ϕ as a holomorphic map ϕ : X → M0,q defined by

ϕ(z) = (α1(z), . . . , αq−3(z)). (6.8)

The key lemma to prove Lemma 6.4 is as follows:

Lemma 6.5. Assume that Ω satisfies the assumption of Lemma 6.4. Then there exists a
lifting ϕ̃ : Ω → T (Ĉ − E) of ϕ over Ω which preserves the base points ϕ̃(x) = [id]. Moreover,
we have ϕ̃(Ω) ⊂ B( 1

50 ).

If we assume this lemma, we may prove Lemma 6.4 as follows. We first remark that over
Ω, the motion ϕ is the pull-back of the universal motion Φ by ϕ̃. Namely for (λ, e) ∈ Ω × E,



ZEROS OF HIGHER DERIVATIVES 749

we have

ϕ(λ, e) = Φ(ϕ̃(λ), e).

We define a holomorphic motion ϕ̂ : Ω × Ĉ → Ĉ of the whole sphere by

ϕ̂(λ, z) = Φ̂(ϕ̃(λ), z) (6.9)

for (λ, z) ∈ Ω × Ĉ. Then ϕ̂ is an extension of ϕ. The Beltrami coefficient satisfies μϕ̂λ = μ[ϕ̃(λ)]
for each λ ∈ Ω. Hence, by ϕ̃(Ω) ⊂ B( 1

50 ), we obtain ||μϕ̂λ ||∞ < 1
50 for each λ ∈ Ω.

Now the holomorphic motion φ̂ : Ω × Ĉ → Ĉ defined by

cr(φ̂(λ, z), aq−2(λ), aq−1(λ), aq(λ)) = ϕ̂(λ, cr(z, aq−2(x), aq−1(x), aq(x))) (6.10)

has the desired properties. Thus we have derived Lemma 6.4 from Lemma 6.5.
It remains to prove Lemma 6.5. For y ∈ M0,q, we set

Bδ(y) = {w ∈ M0,q; dM0,q (y, w) < δ},
where dM0,q is the Kobayashi–Teichmüller distance on M0,q.

Lemma 6.6. Let y = (y1, . . . , yq−3) ∈ M0,q be a point such that (Ĉ, y1, . . . , yq−3, 0, 1,∞)
is ε-thick, where 0 < ε < 1. Then Bε/(50q)(y) has an injective lift to the universal covering

p : T (Ĉ − E) → M0,q.

Proof. Note that M0,q is a domain of C
q−3. Using the point y ∈ M0,q, we define a domain

P (y) ⊂ C
q−3 by the following rule: b = (b1, . . . , bq−3) ∈ P (y) if and only if

�
(
bi
yi

)
> 0, �

(
bi − 1
yi − 1

)
> 0, �

(
bi − bj
yi − yj

)
> 0

for 1 � i � q − 3 and 1 � j � q − 3 with j �= i. Then by the definition, we immediately conclude
that

P (y) ⊂ M0,q.

Next, we remark that P (y) is convex. Indeed if b = (b1, . . . , bq−3) and c = (c1, . . . , cq−3) ∈ P (y),
we have

(tb1 + (1 − t)c1, . . . , tbq−3 + (1 − t)cq−3) ∈ P (y)

for 0 � t � 1. This follows from:

�
(
tbi + (1 − t)ci

yi

)
= t�

(
bi
yi

)
+ (1 − t)�

(
ci
yi

)
> 0,

�
(
tbi + (1 − t)ci − 1

yi − 1

)
= t�

(
bi − 1
yi − 1

)
+ (1 − t)�

(
ci − 1
yi − 1

)
> 0,

�
(
tbi + (1 − t)ci − tbj − (1 − t)cj

yi − yj

)
= t�

(
bi − bj
yi − yj

)
+ (1 − t)�

(
ci − cj
yi − yj

)
> 0.

Now P (y) is convex, hence simply connected. Thus there exists an injective lift P (y) ⊂ T (Ĉ −
E) to the universal covering p : T (Ĉ − E) → M0,q.

We finish the proof by showing Bε/50q(y) ⊂ P (y). For distinct i, j, k and l in {1, . . . , q}, we
define a holomorphic map η[i, j, k, l] : M0,q → C − {0, 1} by

η[i, j, k, l]((b1, . . . , bq−3)) = cr(bi, bj , bk, bl),

where (b1, . . . , bq−3) ∈ M0,q and we set bq−2 = 0, bq−1 = 1, bq = ∞.
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Claim. Let b = (b1, . . . , bq−3) ∈ Bε/(50q)(y). Then we have∣∣∣∣arg
η[i, j, k, l](b)
η[i, j, k, l](y)

∣∣∣∣ < π

4

for all distinct i, j, k and l in {1, . . . , q}.

Proof. We assume without loss of generality that |η[i, j, k, l](y)| � 1, for otherwise we
replace η[i, j, k, l] by η[i, j, k, l]−1 = η[i, l, k, j]. We first prove that if ε � |η[i, j, k, l](y)| � 1,
then ∣∣∣∣arg

η[i, j, k, l](b)
η[i, j, k, l](y)

∣∣∣∣ < π

4q
. (6.11)

To show this, we take a hyperbolic geodesic γ connecting η[i, j, k, l](y) and η[i, j, k, l](b) in
Ĉ\{0, 1,∞}. Then by the distance decreasing property, we have �

Ĉ\{0,1,∞}(γ) < ε/(50q). We
apply (5.5) to obtain

�
Ĉ
(γ) <

ε

10q
.

This shows that γ ⊂ {|z| � 2}. Hence, we obtain

|η[i, j, k, l](y) − η[i, j, k, l](b)| � �Euclid(γ) � 5�
Ĉ
(γ) <

ε

2q
,

where �Euclid(γ) =
∫
γ
|dz|. Thus, | arg(η[i, j, k, l](b)/η[i, j, k, l](y))| < π/2 and sin(| arg

(η[i, j, k, l](b)/η[i, j, k, l](y))|) < 1/2q. Hence, we obtain (6.11).
Next we consider the general case. We order all numbers in

{|cr(y1, yj , yk, yl)|, . . . , |cr(yq, yj , yk, yl)|}
that is greater than or equal to |cr(yi, yj , yk, yl)| and less than or equal to 1 in the form

|cr(yi1 , yj , yk, yl)| � |cr(yi2 , yj , yk, yl)| � · · · � |cr(yis , yj , yk, yl)| = 1,

where i1 = i, is = k and s � q. Since (Ĉ, y1, . . . , yq) is ε-thick, we conclude that

ε � |cr(yit , yj , yk, yl)|
|cr(yit+1 , yj , yk, yl)|

� 1 (6.12)

for t = 1, . . . , s− 1; otherwise, the annulus

{z; |cr(yit+1 , yj , yk, yl)|ε < |z| < |cr(yit+1 , yj , yk, yl)|}
separates the q-points

cr(y1, yj , yk, yl), cr(y2, yj , yk, yl), . . . , cr(yq, yj , yk, yl),

which is a contradiction. Since

cr(yit , yj , yit+1 , yl) =
cr(yit , yj , yk, yl)

cr(yit+1 , yj , yk, yl)
,

we have

η[it, j, it+1, l] =
η[it, j, k, l]
η[it+1, j, k, l]

. (6.13)

Thus by (6.12) and (6.13), we conclude for t = 1, . . . , s− 1,

ε � |η[it, j, it+1, l](y)| � 1,

hence by (6.11) ∣∣∣∣arg
η[it, j, it+1, l](b)
η[it, j, it+1, l](y)

∣∣∣∣ < π

4q
. (6.14)
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Using (6.13) again, we obtain∣∣∣∣arg
η[it, j, k, l](b)
η[it, j, k, l](y)

− arg
η[it+1, j, k, l](b)
η[it+1, j, k, l](y)

∣∣∣∣ < π

4q
.

Summing both sides of this estimate for t = 1, . . . , s− 2 and (6.14) for t = s− 1, we establish
our claim.

Now we go back to the proof of Lemma 6.6. Let b = (b1, . . . , bq−3) ∈ Bε/(50q)(y). We have

η[i, q − 2, q − 1, q](b) = bi, η[i, q − 1, q − 2, q](b) = 1 − bi, η[j, i, q − 2, q](b) =
bi − bj
bi

.

Hence, by the claim above, we have∣∣∣∣arg
(
bi
yi

)∣∣∣∣ < π

4
,

∣∣∣∣arg
(

1 − bi
1 − yi

)∣∣∣∣ < π

4
,

∣∣∣∣arg
(

yi
yi − yj

bi − bj
bi

)∣∣∣∣ < π

4
,

where 1 � i � q − 3, 1 � j � q − 3 and i �= j. Thus, we conclude (b1, . . . , bq−3) ∈ P (y), hence
Bε/(50q)(y) ⊂ P (y). This concludes the proof of Lemma 6.6.

Proof of Lemma 6.5. We set XΩ = X̃/Im(π1(Ω) → π1(X)), where X̃ is the universal
covering of X. Then Ω ⊂ XΩ. Note that XΩ is an annulus when Ω ⊂ X is an essential annulus;
otherwise, XΩ is a disk.

We show that there is a lift ϕ̃ : Ω → T (Ĉ − E) of ϕ over Ω. Let b : XΩ → M0,q be the
composition of the covering map XΩ → X and ϕ. Then it is enough to show the existence of a
lift b̃ : XΩ → T (Ĉ − E) of b with b̃(x) = [id]. If XΩ is a disk, this is obvious. Assume that XΩ

is an annulus. There exists an essential loop γ in XΩ passing through x with �XΩ(γ) < ε/(25q).
Then by the distance decreasing property, we have b(γ) ⊂ Bε/(50q)(ϕ(x)). Hence, by Lemma 6.6,
we conclude the existence of the lift b̃ : XΩ → T (Ĉ − E) with b̃(x) = [id].

Next we show ||β ◦ b̃(y)||∞ < 1
50 for all y ∈ Ω, where β : T (Ĉ − E) → Q((Ĉ − E)∗) is the

Bers embedding. Since the hyperbolic length of the boundary of Ω ⊂ XΩ is less than 1
75 , we

have
cXΩ(x, y) < 1

150 (6.15)

for y ∈ Ω, where cXΩ is the Carathéodory distance on XΩ. We note that the image of the map
β ◦ b̃ : XΩ → Q((Ĉ −E)∗) is contained in B(3) (cf. (6.3)). Thus using (6.4), we have for y ∈ Ω

cXΩ(x, y) � cB(3)(0, β ◦ b̃(y)) = dΔ(0, ||β ◦ b̃(y)||∞/3) � ||β ◦ b̃(y)||∞/3.
Thus by (6.15), we have ||β ◦ b̃(y)||∞ < 1

50 . Hence, we conclude b̃(Ω) ⊂ B( 1
50 ).

6.3. Proof of Proposition 6.2(2)

Set f̃ = cr(f, aq−2, aq−1, aq) and g̃ = cr(g, aq−2(x), aq−1(x), aq(x)). Then by (6.1) and (6.10),
we have

ϕ̂(λ, g̃(λ)) = f̃(λ).

Hence, by (6.9), we have
f̃(λ) = Φ̂(ϕ̃(λ), g̃(λ)). (6.16)

Let Ψ : B(1) × Ĉ → Ĉ be defined by

Φ̂(y,Ψ(y, z)) = z

for each (y, z) ∈ B(1) × Ĉ. Then we have

g̃(λ) = Ψ(ϕ̃(λ), f̃(λ)). (6.17)
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Since the Jacobian of Φ̂ does not vanish (cf. [24, p. 37]), Ψ is real analytic outside Ψ−1(E).
Hence g is real-analytic on the inverse image of Ĉ − {a1(x), . . . , aq(x)}.

By (6.1), we have

∂f

∂λ̄
(λ) = φ̂λ̄(λ, g(λ)) + φ̂z(λ, g(λ))

∂g

∂λ̄
(λ) + φ̂z̄(λ, g(λ))

∂ḡ

∂λ̄
(λ).

Since f(λ) is holomorphic, we have (∂f/∂λ̄)(λ) = 0. Since φ̂ is holomorphic in λ, we have
φ̂λ̄(λ, g(λ)) = 0. Hence, we obtain

φ̂z(λ, g(λ))
∂g

∂λ̄
(λ) + φ̂z̄(λ, g(λ))

∂ḡ

∂λ̄
(λ) = 0.

Hence, we have ∣∣∣∣gλ̄(λ)
gλ(λ)

∣∣∣∣ = ∣∣∣∣gλ̄(λ)
ḡλ̄(λ)

∣∣∣∣ =
∣∣∣∣∣ φ̂z̄(λ, g(λ))

φ̂z(λ, g(λ))

∣∣∣∣∣ < 1
50
.

This shows Proposition 6.2(2).

6.4. Proof of Proposition 6.2(3)

We may assume without loss of generality that i = q − 2 and j = q − 1. Thus with the previous
notation f̃ = (f, aq−2, aq−1, aq) and g̃ = (g, aq−2(x), aq−1(x), aq(x)), we are going to prove

∫m
0

|T (r, f̃ ,Ω(t)) − T (r, g̃,Ω(t))| dt � 229 dq2T

(
1 +

1
2T (r)

)3/4

(log r)1/4 (6.18)

for r > γd. Here, f̃ and g̃ satisfy (6.16) as well as (6.17).
For (y, z) ∈ B( 1

50 ) × Ĉ, we set

H(y, z) =
∫

Ĉ

η(z, Φ̂(y, w))ω
Ĉ
[w] −

∫
Ĉ

η(∞, Φ̂(y, w))ω
Ĉ
[w],

where
η(z, z′) = − log[z, z′]2

for z, z′ ∈ Ĉ. By the Hölder continuity of the quasiconformal map Φ̂(y, ·), the two integrals in
the definition of H(y, z) are bounded. See the remark after Lemma 6.8.

The key lemma in the proof of Proposition 6.2(3) is as follows:

Lemma 6.7. (1) On (B( 1
50 ) × Ĉ) − Ψ−1(E), H is smooth and satisfies

ddcH = p∗2ωĈ
− Ψ∗ω

Ĉ
, (6.19)

where p2 : B( 1
50 ) × Ĉ → Ĉ is the second projection.

(2) Let (y, z) ∈ (B( 1
50 ) × Ĉ) − Ψ−1(E) and let v = (v1, v2) ∈ T(y,z)(B( 1

50 ) × Ĉ) be a tangent
vector. Then we have

|dcH(v)| � 224(||v1||T (Ĉ−E) + ||v2||Ĉ),

where ||v1||T (Ĉ−E) is the infinitesimal Kobayashi metric on T (Ĉ − E) and ||v2||Ĉ is the spherical

line element on Ĉ.

Derivation of Proposition 6.2(3) from Lemma 6.7. We consider the holomorphic map (ϕ̃, f̃) :
Ω → B( 1

50 ) × Ĉ and the composite function H(ϕ̃(λ), f̃(λ)) defined over λ ∈ Ω. By Lemma
6.7(1), H(ϕ̃(λ), f̃(λ)) is smooth outside (ϕ̃, f̃)−1(Ψ−1(E)). Here, (ϕ̃, f̃)−1(Ψ−1(E)) is the set
of λ with Φ̂(ϕ̃(λ), E) = f̃(λ), which is a discrete set on Ω. We denote by Ωε(t) a subdomain of
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Ω(t) ⊂ C obtained by deleting ε-neighbourhood, in the Euclidean distance, of the points where
H(ϕ̃(λ), f̃(λ)) is not smooth.

Now by (6.17) and (6.19), we have

ddcH(ϕ̃, f̃) = f̃∗ω
Ĉ
− g̃∗ω

Ĉ
,

hence

lim
ε→0

∫
Ωε(r,t)

ddcH(ϕ̃, f̃) =
∫
Ω(r,t)

f̃∗ω
Ĉ
−

∫
Ω(r,t)

g̃∗ω
Ĉ
.

Using Stokes’ formula and Lemma 6.7(2), we obtain∣∣∣∣∣ limε→0

∫
Ωε(r,t)

ddcH(ϕ̃, f̃)

∣∣∣∣∣ =
∣∣∣∣∣ limε→0

∫
∂Ωε(r,t)

dcH(ϕ̃, f̃)

∣∣∣∣∣
� lim
ε→0

224(�T (Ĉ−E)(ϕ̃(∂Ωε(r, t))) + �
Ĉ
(f̃(∂Ωε(r, t))))

= 224(�T (Ĉ−E)(ϕ̃(∂Ω(r, t))) + �
Ĉ
(f̃(∂Ω(r, t)))),

where �T (Ĉ−E) is the length function with respect to the infinitesimal metric || · ||T (Ĉ−E). Since

�T (Ĉ−E)(ϕ̃(∂Ω(r, t))) � �X(∂Ω(r, t)),

we obtain ∣∣∣∣∣
∫
Ω(r,t)

g̃∗ω
Ĉ
−

∫
Ω(r,t)

f̃∗ω
Ĉ

∣∣∣∣∣ � 224(�X(∂Ω(r, t)) + �
Ĉ
(f̃(∂Ω(r, t)))).

Taking the integral of both sides, we have∫m
0

|T (r, g̃,Ω(t)) − T (r, f̃ ,Ω(t))| dt � 224

∫m
0

∫ r
1

(�X(∂Ω(u, t)) + �
Ĉ
(f̃(∂Ω(u, t))))

du

u
dt.

To estimate the right-hand side, we remark that∫m
0

∫ r
1

�X(∂Ω(u, t))
du

u
dt � 24 dq2 log r.

Indeed, by (4.1), we may apply Lemma 5.5 to the case Λ(r) = 2dq2 log r to obtain this estimate.
By Corollary 5.6, we obtain the estimate (6.18). Thus, we have derived Proposition 6.2(3) from
Lemma 6.7.

It remains to prove Lemma 6.7. We begin with the following lemma:

Lemma 6.8. Let ψ : Ĉ → Ĉ be a K-quasiconformal map which fixes 0, 1 and ∞. Suppose
that K < 2. Then, for each z ∈ Ĉ, we have∫

Ĉ

1
[z, ψ(w)]

ω
Ĉ
[w] < π + 214π

K

2 −K
.

Remark 6.9. Since KΦ̂(y,·) <
51
49 for y ∈ B( 1

50 ), we conclude∫
Ĉ

1
[z, Φ̂(y, w)]

ω
Ĉ
[w] < 218 (6.20)

for (y, z) ∈ B( 1
50 ) × Ĉ. Hence, we have∫

Ĉ

η(z, Φ̂(y, w))ω
Ĉ
[w] � 2

∫
Ĉ

1
[z, Φ̂(y, w)]

ω
Ĉ
[w] < 219.

Thus the integrals in the definition of H(y, z) is bounded.
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Proof of Lemma 6.8. We consider the inverse map ψ−1 : Ĉ → Ĉ, which is a quasi-conformal
map fixing 0, 1 and ∞ and satisfying Kψ−1 = Kψ. We set

ϕ(r) =
∫
ψ−1(Dz(r))

ω
Ĉ
,

where Dz(r) = {w ∈ Ĉ; [w, z] < r}. Then we have∫
Ĉ

1
[z, ψ(w)]

ω
Ĉ
[w] =

∫1

0

1
r
dϕ(r).

Since [ψ−1(z), ψ−1(w)] � 128[z, w]1/K (cf. [5, Lemma 4.1]), we have

ψ−1(Dz(r)) ⊂ Dψ−1(z)(128r1/K).

Hence, we have

ϕ(r) �
∫
Dψ−1(z)(128r

1/K)

ω
Ĉ

= 214πr2/K .

Since K < 2, we obtain∫
Ĉ

1
[z, ψ(w)]

ω
Ĉ
[w] =

∫1

0

1
r
dϕ(r)

= lim
δ→0

∫1

δ

1
r
dϕ(r)

= lim
δ→0

([
1
r
ϕ(r)

]1
δ

+
∫1

δ

1
r2
ϕ(r) dr

)

� lim
δ→0

(
ϕ(1) − ϕ(δ)

δ
+ 214π

∫1

δ

r
2
K−2 dr

)
= π + 214π

K

2 −K
lim
δ→0

[r2/K−1]1δ

= π + 214π
K

2 −K
.

Next we show that H is Lipschitz continuous.

Lemma 6.10. For (y, z), (y′, z′) ∈ B( 1
50 ) × Ĉ, we have

|H(y, z) −H(y′, z′)| � 224([z, z′] + dB(1)(y, y′)).

Proof. First we show the estimate

|η(z, w) − η(z′, w′)| � 2
(

1
[z, w]

+
1

[z′, w′]

)
× ([z, z′] + [w,w′]). (6.21)

Indeed, since log x � x− 1, we have

η(z, w) − η(z′, w′) = 2 log
[z′, w′]
[z, w]

� 2
[z′, w′] − [z, w]

[z, w]
.

Using [z′, w′] � [z, w] + [z, z′] + [w,w′], we obtain

η(z, w) − η(z′, w′) � 2
[z, z′] + [w,w′]

[z, w]
� 2

(
1

[z, w]
+

1
[z′, w′]

)
× ([z, z′] + [w,w′]).

Similarly, we have

η(z′, w′) − η(z, w) � 2
(

1
[z, w]

+
1

[z′, w′]

)
× ([z, z′] + [w,w′]).
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Thus, we obtain (6.21).
We have

|H(y, z) −H(y′, z′)| �
∫

Ĉ

|η(z, Φ̂(y, w)) − η(z′, Φ̂(y′, w))| ω
Ĉ
[w]

+
∫

Ĉ

|η(∞, Φ̂(y, w)) − η(∞, Φ̂(y′, w))| ω
Ĉ
[w].

By (6.21), we have

|η(z, Φ̂(y, w)) − η(z′, Φ̂(y′, w))| � 2

(
1

[z, Φ̂(y, w)]
+

1
[z′, Φ̂(y′, w)]

)
× ([z, z′] + [Φ̂(y, w), Φ̂(y′, w)]).

Since Φ̂ is holomorphic in y ∈ B(1), using (5.5), we have

[Φ̂(y, w), Φ̂(y′, w)] � 5dB(1)(y, y′).

Hence, we obtain

|η(z, Φ̂(y, w)) − η(z′, Φ̂(y′, w))| � 10

(
1

[z, Φ̂(y, w)]
+

1
[z′, Φ̂(y′, w)]

)
× ([z, z′] + dB(1)(y, y′)).

Thus, we have

|H(y, z) −H(y′, z′)| � 10I([z, z′] + dB(1)(y, y′)), (6.22)

where

I =
∫

Ĉ

( 1
[z, Φ̂(y, w)]

+
1

[z′, Φ̂(y′, w)]
+

1
[∞, Φ̂(y, w)]

+
1

[∞, Φ̂(y′, w)]

)
ω

Ĉ
[w].

By (6.20), we have

I < 220.

Thus, by (6.22), we have

|H(y, z) −H(y′, z′)| � 224([z, z′] + dB(1)(y, y′)).

Proof of Lemma 6.7. We first show (1). By Lemma 6.10, H is continuous on B( 1
50 ) × Ĉ.

Note that p∗2ωĈ
− Ψ∗ω

Ĉ
is smooth on B(1) × Ĉ outside Ψ−1(E). Hence it is enough to show

(6.19) as currents of degree 2 on B( 1
50 ) × Ĉ.

For (y, z) ∈ B( 1
50 ) × Ĉ and w ∈ Ĉ, we set

hw(y, z) = log(1 + |z|2) − log |z − Φ̂(y, w)|2.
Then we have

H(y, z) =
∫

Ĉ

hw(y, z)ω
Ĉ
[w].

By the Poincaré–Lelong formula [26, p. 171], we have for each w ∈ C,

ddchw =
1
π
p∗2ωĈ

− δ(z−Φ̂(y,w)=0) (6.23)

as (1,1)-currents on B( 1
50 ) × Ĉ.
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Now let η be a test form. We have
∫
B(1/50)×Ĉ

Hddcη =
∫

Ĉ

(∫
B(1/50)×Ĉ

hwdd
cη

)
ω

Ĉ
[w],

∫
B(1/50)×Ĉ

Ψ∗ω
Ĉ
∧ η =

∫
w∈Ĉ

(∫
Ψ−1(w)

η

)
ω

Ĉ
[w]

=
∫
w∈Ĉ

(∫
(z−Φ̂(y,w)=0)

η

)
ω

Ĉ
[w].

Hence, by (6.23), we have
∫
B(1/50)×Ĉ

Hddcη =
∫

Ĉ

(∫
B(1/50)×Ĉ

1
π
p∗2ωĈ

∧ η −
∫
(z−Φ̂(y,w)=0)

η

)
ω

Ĉ
[w]

=
∫
B(1/50)×Ĉ

p∗2ωĈ
∧ η −

∫
B(1/50)×Ĉ

Ψ∗ω
Ĉ
∧ η.

This shows (6.19) as currents. We complete the proof of Lemma 6.7(1).
Next we show Lemma 6.7(2). Let γ = (γ1, γ2) : (−1, 1) → B( 1

50 ) × Ĉ be an arc such that
γ(0) = (y, z) and γ̇(0) = −Jv. Since dcH(v) = (1/4π) dH(−Jv), we have

|dcH(v)| =
1
4π

|dH(−Jv)|

=
1
4π

∣∣∣∣limt→0

H(γ(t)) −H(γ(0))
t

∣∣∣∣
� 222

(
lim
t→0

dB(1)(γ1(t), y) + [γ2(t), z]
|t|

)
(by Lemma 6.10)

� 222(|| − Jv1||B(1) + || − Jv2||Ĉ),

where || · ||B(1) is the infinitesimal Kobayashi metric on B(1). For the last estimate, see [21,
p. 95, Lemma 3.5.33]. Using || − Jv1||B(1) = ||v1||B(1) and || − Jv2||Ĉ = ||v2||Ĉ, we obtain

|dcH(v)| � 222(||v1||B(1) + ||v2||Ĉ). (6.24)

Next we show

||v1||B(1) � 4||v1||T (Ĉ−E). (6.25)

To show this, we first claim that

{w ∈ T (Ĉ − E); dT (Ĉ−E)([id], w) < log
√

2} ⊂ B(1), (6.26)

where dT (Ĉ−E) is the Kobayashi–Teichmüller distance on T (Ĉ − E). Indeed using (6.4), we
have

dT (Ĉ−E)([id], w) � cB(3)(0, w) = dΔ(0, ||w||∞/3).

Hence, if dT (Ĉ−E)([id], w) < log
√

2 = dΔ(0, 1/3), then ||w||∞ < 1. Thus, w ∈ B(1).
Now we set t = ||v1||T (Ĉ−E). There exists a holomorphic map f : Δ → T (Ĉ − E) with

f(0) = y, f∗

(
t

(
∂

∂z

)
0

)
= v1.

Since dΔ(0, 47/149) = 1
2 log 98

51 , we have

f

(
Δ
(

47
149

))
⊂
{
w ∈ T (Ĉ − E); dT (Ĉ−E)(y, w) <

1
2

log
98
51

}
.
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Since

dT (Ĉ−E)([id], y) � dB(1)(0, y) < dΔ(0, 1
50 ) = 1

2 log 51
49 ,

we conclude from (6.26)

f

(
Δ
(

47
149

))
⊂ B(1).

Thus, we have

||v1||B(1) �
∥∥∥∥t( ∂

∂z

)
0

∥∥∥∥
Δ(47/149)

=
149
47

t � 4||v1||T (Ĉ−E).

This shows (6.25). Hence, by (6.24) and (6.25), we establish Lemma 6.7(2).

7. Application of Ahlfors’ theory of covering surfaces

7.1. Introduction

We have constructed a quasimeromorphic function g over the domain Ω ⊂ X(a1, . . . , aq) which
is described in Proposition 6.2. In this section, we apply Ahlfors’ theory of covering surfaces
to the quasimeromorphic function g to prove Proposition 7.2.

Base surface. Let {b1, . . . , bq} ⊂ Ĉ be a finite set of distinct points with bq = ∞. Set Ξ =
{b1, . . . , bq−1}, which is a set of distinct points in C. For s > 0 and i = 1, . . . , q, we define a
disk Δi(s; b1, . . . , bq) around the point bi as follows; for i = 1, . . . , q − 1, we set

Δi(s; b1, . . . , bq) = {z ∈ C; |z − bi| < s�i},
where �i = minc∈Ξ\{bi} min|c− bi|. For i = q, we set

Δq(s; b1, . . . , bq) =
{
z ∈ C; |z − bq−1| > R

s

}
,

where R = maxc∈Ξ\{bq−1} max|c− bq−1|. Given a constant s < 1
10 , we remove q disks

Δi(s; b1, . . . , bq) from the Riemann sphere to define the base surface

B(s; b1, . . . , bq) = Ĉ −
q⋃
i=1

Δi(s; b1, . . . , bq).

For an arc γ ⊂ Ĉ, we set

�Ξ(γ) =
∑

(b,c)∈Ξ×Ξ\diagonal

�
Ĉ
(ϕb,c(γ)),

where the map ϕb,c is defined by

ϕb,c(z) =
z − b

c− b
. (7.1)

For a subset D ⊂ Ĉ, we denote by A(D) the area of D with respect to the spherical area form
ω

Ĉ
, that is,

A(D) =
∫
D

ω
Ĉ
.

Notation from topology. If a domain D is bounded by a finite number of simple closed
curves, we denote by �(D) the negative of the Euler characteristic of D. Since B(s; b1, . . . , bq)
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is a sphere with q-holes, we have

�(B(s; b1, . . . , bq)) = q − 2. (7.2)

We set �+(D) = max{�(D), 0}.
We formulate the main results of Ahlfors’ theory in the following form where the constants

‘h’ (cf. [25]) in the theory are controlled explicitly. The first statement should be compared
with ‘Covering theorem 1’ [25, p. 328] and the second statement should be compared with
‘Main theorem’ [25, p. 332].

Theorem 7.1. Assume that {0, 1} ⊂ Ξ and set B = B(s; b1, . . . , bq), where s < 1
10 and

q � 3.
(1) Let F be a finite covering surface of the Riemann sphere with a covering map p : F → Ĉ.

Then we have ∣∣∣∣A(F )
π

− A(p−1(B))
A(B)

∣∣∣∣ � �
Ĉ
(∂F ).

(2) Assume that (Ĉ, b1, . . . , bq) is ε-thick, where 0 < ε < 1. Let F be a finite covering surface
of B with relative boundary ∂′F . Then we have

(q − 2)
A(F )
A(B)

� �+(F ) +
219q4

ε
�Ξ(∂′F ).

Here, area and length on a covering surface is measured using the pull back metric on the
base surface.

To state the main result of this section, we need to introduce the following notation. Let
D and G be two open sets in C. We define two subsets I(D,G) and P(D,G) of the set of
connected components of D ∩G in the following manner. Let D′ be a connected component of
D ∩G, then D′ is contained in I(D,G) if and only if D′ is compactly contained in G, otherwise
D′ is contained in P(D,G).

Proposition 7.2. Let f be a transcendental meromorphic function in the complex plane
and let a1, . . . , aq ∈ Rd be distinct with aq ≡ ∞, where d � 1 and q � 3. Assume that x ∈ Ω
and Ω∗ � Ω are the same as in Proposition 4.3. Assume (Ĉ, a1(x), . . . , aq(x)) is 1

220 -thick. Set
B = B(s; a1(x), . . . , aq(x)), where s < 1

10 . Set

χ(r, t) =
∑

F∈I(g−1(B),Ω(r,t))

�(F ) +
∑

F∈P(g−1(B),Ω(r,t))

�+(F ),

where g is the quasiconformal perturbation of f defined by (6.1). Then for each distinct i, j ∈
{1, 2, . . . , q − 1}, we have

(q − 2)
∫m/2
0

T

(
r,
f − ai
aj − ai

,Ω(t)
)
dt

�
∫m/2
0

∫ r
1

χ(u, t)
u

du dt+
267dq8

m
T

(
r +

1
T (r)

)3/4

(log r)1/4 (7.3)

for r > γd.
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7.2. Derivation of Proposition 7.2 from Theorem 7.1.

We set ϕ = ϕai(x),aj(x) to simplify the notation. We consider the quasimeromorphic function
ϕ ◦ g on Ω. The main issue in our derivation is to derive

(q − 2)
∫m/2
0

T (r, ϕ ◦ g,Ω(t)) dt

�
∫m/2
0

∫ r
1

χ(u, t)
u

du dt+
266 dq8

m
T

(
r +

1
T (r)

)3/4

(log r)1/4 (7.4)

for r > γd. Once (7.4) is established, Proposition 6.2(3) immediately implies (7.3). If g is
constant, then (7.4) is obvious. Thus in the following, we assume that g is non-constant.

We first derive the following non-integrated version of (7.4) from Theorem 7.1:

(q − 2)

∫
Ω(r,t)

(ϕ ◦ g)∗ω
Ĉ

π
� χ(r, t) + 240q4�Ξ(g(∂Ω(r, t))). (7.5)

Let F be a connected component of g−1(B) ∩ Ω(r, t). We consider the restriction of ϕ ◦ g on
F as a covering surface

ϕ ◦ g|F : F → ϕ(B). (7.6)

If F is compactly contained in Ω(r, t), that is, F ∈ I(g−1(B),Ω(r, t)), then the covering (7.6)
does not have a relative boundary. Hence, by the Hurwitz formula and (7.2), we have

(q − 2)

∫
F

(ϕ ◦ g)∗ω
Ĉ

A(ϕ(B))
� �(F ).

Next we consider the case F ∈ P(g−1(B),Ω(r, t)). Note that

ϕ(B) = B(s;ϕ(a1(x)), . . . , ϕ(aq(x)))

and

{0, 1} ⊂ {ϕ(a1(x)), . . . , ϕ(aq(x))}.
Hence we may apply Theorem 7.1(2) to the covering (7.6), combined with (7.2), to obtain

(q − 2)

∫
F

(ϕ ◦ g)∗ω
Ĉ

A(ϕ(B))
� �+(F ) + 239q4�Ξ(g(∂Ω(r, t) ∩ F̄ )).

Since ∑
F∈I(g−1(B),Ω(r,t))∪P(g−1(B),Ω(r,t))

∫
F

(ϕ ◦ g)∗ω
Ĉ

=
∫
g−1(B)∩Ω(r,t)

(ϕ ◦ g)∗ω
Ĉ
,

we conclude

(q − 2)

∫
g−1(B)∩Ω(r,t)

(ϕ ◦ g)∗ω
Ĉ

A(ϕ(B))

�
∑

F∈I(g−1(B),W )

�(F ) +
∑

F∈P(g−1(B),W )

�+(F ) + 239q4�Ξ(g(∂Ω(r, t))).

By Theorem 7.1(1), we have∫
Ω(r,t)

(ϕ ◦ g)∗ω
Ĉ

π
�

∫
g−1(B)∩Ω(r,t)

(ϕ ◦ g)∗ω
Ĉ

A(ϕ(B))
+ �

Ĉ
(ϕ ◦ g(∂Ω(r, t))).

Thus, we obtain (7.5).
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Now taking the integral of both sides of (7.5), we obtain

(q − 2)
∫m/2
0

T (r, ϕ ◦ g,Ω(t)) dt �
∫m/2
0

∫ r
1

χ(u, t)
u

du dt

+ 240q4
∫m/2
0

∫ r
1

�Ξ(g(∂Ω(u, t)))
u

du dt.

We need to estimate the second term on the right-hand side. Let k and l be distinct elements
from Ξ. We put ϕk,l = ϕak(x),al(x) to simplify the notation. We claim that

∫m/2
0

∫ r
1

�
Ĉ
(ϕk,l ◦ g(∂Ω(u, t)))

u
du dt � 226 dq2

m
T

(
r +

1
T (r)

)3/4

(log r)1/4 (7.7)

for r > γd. This estimate completes the derivation of (7.4), hence (7.3).
It remains to show (7.7). We set

ρ(z) =
|(ϕk,l ◦ g)z(z)| + |(ϕk,l ◦ g)z̄(z)|

1 + |ϕk,l ◦ g(z)|2 .

Then we have

�
Ĉ
(ϕk,l ◦ g(∂Ω(r, t))) �

∫
∂Ω(r,t)

ρ(z)|dz|,
∫
Ω(r,t)

ρ2(z)|dz|2 � Kg

∫
Ω(r,t)

(ϕk,l ◦ g)∗ωĈ
.

Hence, by Proposition 6.2(3), we have for r > γd∫ r
1

∫
Ω(u,m/2)

ρ2(z)|dz|2 du
u

� πKgT (r, ϕk,l ◦ g,Ω(m/2))

� πKgT (r, cr(f, ak, al, aq),Ω(m))

+
230 dq2πKg

m
T

(
r +

1
2T (r)

)3/4

(log r)1/4

� 232dq2

m
T

(
r +

1
2T (r)

)
.

Thus, we may apply Lemma 5.5 to

Λ(r) =
232 dq2

m
T

(
r +

1
2T (r)

)
, Λ̃(r) =

232 dq2

m
T

(
r +

1
T (r)

)
to obtain (7.7).

7.3. Proof of Theorem 7.1 (1)

First we recall isoperimetric inequalities on the sphere. Let γ be a simple closed curve on the
Riemann sphere Ĉ. Then γ divides Ĉ into two parts D1 and D2. The following inequalities are
well known:

min{A(D1), A(D2)} � 1
2�Ĉ(γ), (7.8)

min{A(D1), A(D2)} � 1
2π
�
Ĉ
(γ)2. (7.9)

Equality holds if and only if γ is a great circle.
We start the proof of Theorem 7.1(1). We decompose F into the sheets G1, . . . , Gn as in

[25, p. 323]. Namely Gj is the part of Ĉ where the covering p : F → Ĉ has at least j preimages
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with counting multiplicities. Then we have

A(F ) =
n∑
j=1

A(Gj),

A(p−1(B))
A(B)

=
n∑
j=1

A(Gj ∩B)
A(B)

,

�
Ĉ
(∂F ) �

n∑
j=1

�
Ĉ
(∂Gj).

Hence it is enough to show ∣∣∣∣A(Gj)
π

− A(Gj ∩B)
A(B)

∣∣∣∣ � �
Ĉ
(∂Gj). (7.10)

Let Dj be one of Gj or Ĉ −Gj which has smaller area. Then by (7.8), we have

A(Dj) � 1
2�Ĉ(∂Gj).

Thus, by Lemma 7.3, we obtain∣∣∣∣A(Dj)
π

− A(Dj ∩B)
A(B)

∣∣∣∣ � 2A(Dj) � �
Ĉ
(∂Gj).

If Dj = Gj , this is what we want to show. If Dj = Ĉ −Gj , by

A(Gj)
π

= 1 − A(Dj)
π

,
A(Gj ∩B)
A(B)

= 1 − A(Dj ∩B)
A(B)

,

we obtain (7.10). Hence we conclude the proof of Theorem 7.1(1).

Lemma 7.3. Let Ξ and B be the same as in Theorem 7.1. Then we have

A(B) > 1.

Proof. We remark that Δi( 1
5 ; b1, . . . , bq) is contained in some hemisphere for i = 1, . . . , q.

This is immediate from the definition if bi = 0 or i = q. For the other disks, this follows from
the fact that Δi( 1

5 ; b1, . . . , bq) ∩ {0,∞} = ∅.
We consider the annulus Ri = Δi( 1

5 ; b1, . . . , bq) − Δi(s; b1, . . . , bq). Then, for the modulus of
Ri, we have

Mod(Ri) � log 2
2π

>
1
4π
.

Let Γ be the set of all closed curves in Ri which separate the two boundary circles of Ri. Then
we have

infγ∈Γ �Ĉ(γ)2

A(Ri)
� 1

Mod(Ri)
.

Hence, by (7.9), we have

A(Ri) � 1
4π

inf
γ∈Γ

�
Ĉ
(γ)2 � 1

2
A(Δi(s; b1, . . . , bq)).

Since A(Ri) = A(Δi( 1
5 ; b1, . . . , bq)) −A(Δi(s; b1, . . . , bq)), we have

2
3A(Δi( 1

5 ; b1, . . . , bq)) � A(Δi(s; b1, . . . , bq)).



762 KATSUTOSHI YAMANOI

Since the disks Δi( 1
5 ; b1, . . . , bq), 1 � i � q, are disjoint, we have

A(B) = A(Ĉ) −
q∑
i=1

A(Δi(s; b1, . . . , bq))

� A(Ĉ) − 2
3

q∑
i=1

A(Δi( 1
5 ; b1, . . . , bq))

� 1
3
A(Ĉ) =

π

3
> 1.

This proves our lemma.

7.4. Minimal spanning tree

We recall the set Ξ = {b1, . . . , bq−1}. We denote by Γmin the minimal spanning tree for Ξ. By
definition, a spanning tree Γ is a collection of line segments with end points in Ξ such that Γ
contains a path connecting every pair of points bi, bj ∈ Ξ, and such that Γ contains no closed
path. The minimal spanning tree is a spanning tree for which the total Euclidean length of line
segments is minimal. We collect elementary properties of Γmin.

Lemma 7.4. Let c1, . . . , cn ∈ Ξ be distinct points. Then one of the longest segments in
c1c2, c2c3, . . . , cn−1cn, cnc1 is not contained in Γmin.

Proof. Assume contrary that all longest segments are contained in Γmin. We may assume
without loss of generality that cnc1 is a longest segment. Then cnc1 is contained in Γmin. We
remove the segment cnc1 from Γmin. The resulting graph consists of two connected components
Γ and Γ′: one, say Γ, contains c1 and the other, say Γ′, contains cn. Now let i, 1 � i � n, be the
largest number such that ci is contained in Γ. Then ci+1 is contained in Γ′. Hence the segment
cici+1 is not contained in Γmin. Thus, we have cici+1 < cnc1.

Now we add the line segment cici+1 to Γ ∪ Γ′. Then we obtain a new spanning tree for Ξ.
Since cici+1 < cnc1, the total length of this new spanning tree is strictly smaller than Γmin.
This is a contradiction. Thus we have proved our lemma.

Lemma 7.5. Let a, b, c, d ∈ Ξ be distinct four points such that the line segments ab and cd
are contained in Γmin. Then ab and cd do not intersect.

Proof. Assume contrary that ab and cd intersect. Then at least one of the four angles ∠acb,
∠cbd, ∠bda and ∠dac is greater than or equal to π/2. We may assume that ∠acb � π/2. Then
we have ac < ab and cb < ab. By Lemma 7.4, the segment ab is not contained in Γmin, which
is a contradiction. Thus, we have proved our lemma.

For a line segment ab contained in Γmin, we set

Kab = {z ∈ C − {a, b}; ∠zab < π/6 and ∠zba < π/6}.

Lemma 7.6. Let cd be a line segment contained in Γmin which is different from ab. Then
Kab does not intersect with cd.

Proof. We prove our lemma in two cases.
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Case 1: #{a, b, c, d} = 3. In this case, we may assume without loss of generality that a = c.
For the sake of contradiction, we assume that the segment cd intersect with Kab. Then since
∠bcd < π/6, we have bd < max{cb, cd}. Thus, by Lemma 7.4, the longer segment of cb and cd
is not contained in Γmin, which is a contradiction. Thus, we have proved our lemma in the case
#{a, b, c, d} = 3.

Case 2: #{a, b, c, d} = 4. We first prove that c, d �∈ Kab. Indeed, if c ∈ Kab, then we have
ac < ab and bc < ab. Hence by Lemma 7.4, the segment ab is not contained in Γmin, which is
a contradiction. Thus, c �∈ Kab. By the same argument, d �∈ Kab.

Now assume contrary that Kab intersect with cd. Then the segment cd intersects the
boundary ∂Kab of Kab at two points P and Q. By Lemma 7.5, the segments PQ and ab
do not intersect. We may assume without loss of generality that c, P,Q and d lie on the line in
this order, and the segments aP and bQ are contained on the boundary ∂Kab.

Now we have ∠aPc < π/3. Hence, we have

ac < max{aP , cP} < max{ab, cd}.
By the same argument, we have bd < max{ab, cd}. Thus, by Lemma 7.4, the longer segment
of ab and cd is not contained in Γmin, which is a contradiction. Thus we have completed the
proof of our Lemma.

Lemma 7.7. Let bi, bj , bk ∈ Ξ be distinct. Assume that the segment bjbk is contained in
Γmin. Then Δi(1/

√
2; b1, . . . , bq) does not intersect with bjbk.

Proof. Assume contrary that Δi(1/
√

2; b1, . . . , bq) intersect with bjbk. Then since bibj � �i
and bibk � �i, we have ∠bjbibk > π/2. Hence, we have bibj < bjbk and bibk < bjbk. Thus, by
Lemma 7.4, the segment bjbk is not contained in Γmin, which is a contradiction. Thus, we have
proved our lemma.

7.5. Ahlfors regularity

We recall B = B(s; b1, . . . , bq). Let α1, . . . , αq−2 be the line segments of B ∩ Γmin. Take b ∈ Ξ
such that |b− bq−1| = maxc∈Ξ\{bq−1}|c− bq−1|, and set

αq−1 = B ∩ {z; z = b+ t(b− bq−1), t � 0}. (7.11)

We cut B by these line segments α1, . . . , αq−1 to obtain a simply connected bordered surface
B′. Then ∂B′ contains the line segments

β1, β
′
1, . . . , βq−1, β

′
q−1,

where βi and β′
i are two copies of αi. We have

∂B′ = β1 ∪ β′
1 ∪ · · · ∪ βq−1 ∪ β′

q−1 ∪ ∂B.

Lemma 7.8 (Ahlfors regularity). Assume that (Ĉ, b1, . . . , bq) is ε-thick, where 0 < ε < 1.
Let γ be a cross cut of B′, which divides ∂B′ into two parts σ1 and σ2. Then we have

min{�Ξ(σ1), �Ξ(σ2)} � 215q3

ε
�Ξ(γ). (7.12)

Proof. For all distinct b, c ∈ Ξ, we have �
Ĉ
(ϕb,c(∂B)) � qπ and �

Ĉ
(ϕb,c(αi)) � π. Hence, we

obtain

�Ξ(∂B′) � 3πq3. (7.13)
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Let P,Q ∈ ∂B′ be the end points of γ. We set Δi(r) = Δi(r; b1, . . . , bq). We prove (7.12) in two
cases whether one of P or Q is contained in Δi( 1

10 ) for some i = 1, . . . , q or not.
Case 1: One of P or Q is contained in Δi( 1

10 ) for some i = 1, . . . , q. In this case, we assume
that P ∈ Δi( 1

10 ). The proof is divided into two cases.
Subcase 1-1: i �= q. Let bj ∈ Ξ be a point with |bj − bi| = min

c∈Ξ\{bi}
|c− bi|. If γ is not contained

in Δi( 1
2 ), then a subarc of γ connects ∂Δi( 1

10 ) and ∂Δi( 1
2 ). Hence, we have

�Euclid(ϕi,j(γ)) � 2
5 ,

where ϕi,j = ϕbi,bj . In general, for an arc γ′ contained in the disk {|z| < 1
2}, we have

�
Ĉ
(γ′) � 4

5�Euclid(γ′). (7.14)

Hence, we have
�Ξ(γ) > �

Ĉ
(ϕi,j(γ)) > 2

5 × 4
5 = 8

25 .

Thus, by (7.13), we obtain the estimate (7.12).
Next we assume that γ is contained in Δi( 1

2 ). Let σ1 be the part of ∂B′ which is contained
in Δi( 1

2 ). Then by Euclidean geometry and Lemmas 7.6 and 7.7, we have

�Euclid(σ1) < 6�Euclid(γ).

Hence, by (7.14), we have
�
Ĉ
(ϕi,j(σ1)) � 15

2 �Ĉ(ϕi,j(γ)). (7.15)

Claim 1. �Ξ(σ1) � (5q2/4)�
Ĉ
(ϕi,j(σ1)).

Proof of Claim 1. Let bs, bt ∈ Ξ be distinct. It is enough to show the estimate

|ϕ′
s,t(z)|

1 + |ϕs,t(z)|2
1 + |ϕi,j(z)|2

|ϕ′
i,j(z)|

� 5
4

for z ∈ Δi( 1
2 ). We prove in two cases.

Case (i) s = i. In this case, we have |bj − bi| � |bt − bs|. Hence, for |z − bi| � |bj − bi|/2, we
have

|ϕ′
s,t(z)|

1 + |ϕs,t(z)|2
1 + |ϕi,j(z)|2

|ϕ′
i,j(z)|

=
|bt − bs|
|bj − bi| ×

|bj − bi|2 + |z − bi|2
|bt − bs|2 + |z − bs|2

� 5
4
|bj − bi|
|bt − bs| � 5

4
.

Case (ii) s �= i. In this case, we have |z − bs| � |bj − bi|/2. Hence for |z − bi| � |bj − bi|/2,
we have

|ϕ′
s,t(z)|

1 + |ϕs,t(z)|2
1 + |ϕi,j(z)|2

|ϕ′
i,j(z)|

=
1

|bj − bi| ×
|bj − bi|2 + |z − bi|2

|bt − bs| + |z − bs|2/|bt − bs|
� 5

8
|bj − bi|
|z − bs| � 5

4
.

This proves our claim.

Now by (7.15) and claim above, we have

�Ξ(σ1) <
5q2

4
�
Ĉ
(ϕi,j(σ)) � 75q2

8
�Ξ(γ).

This shows our estimate (7.12).
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Subcase 1-2: i = q. Let bj ∈ Ξ be a point with |bj − bq−1| = maxc∈Ξ\{bq−1}|c− bq−1|. If γ is
not contained in Δq( 1

2 ), then as in Subcase 1-1, we have

�
Ĉ
(ϕq−1,j(γ)) > 2

5 × 4
5 = 8

25 .

Thus, by (7.13), we obtain the estimate (7.12).
Next we assume that γ is contained in Δq( 1

2 ). Let σ1 be the part of ∂B′ which is contained
in Δq( 1

2 ). Then as in Subcase 1-1, we have

�
Ĉ
(ϕq−1,j(σ1)) � 15

2 �Ĉ(ϕq−1,j(γ)). (7.16)

Claim 2. �Ξ(σ1) � 10q2�
Ĉ
(ϕq−1,j(σ1)).

Proof of Claim 2. Let bs, bt ∈ Ξ be distinct. It is enough to show the estimate
|ϕ′
s,t(z)|

1 + |ϕs,t(z)|2
1 + |ϕq−1,j(z)|2

|ϕ′
q−1,j(z)|

� 10

for z ∈ Δq( 1
2 ). We have

|ϕ′
s,t(z)|

1 + |ϕs,t(z)|2
1 + |ϕq−1,j(z)|2

|ϕ′
q−1,j(z)|

=
|bt − bs|

|bj − bq−1| ×
|bj − bq−1|2 + |z − bq−1|2

|bt − bs|2 + |z − bs|2

� 2
|bj − bq−1|2 + 2|bs − bq−1|2 + 2|z − bs|2

|z − bs|2

� 4 + 6
|bj − bq−1|2
|z − bs|2 � 10.

Hence, by (7.16) and the claim above, we have

�Ξ(σ1) � 10q2�
Ĉ
(ϕq−1,j(σ1)) � 75q2�Ξ(γ).

This shows our estimate (7.12).
Case 2: Both P and Q are not contained in

⋃q
i=1 Δi( 1

10 ). Since ∂B ⊂ ⋃qi=1 Δi( 1
10 ), P and Q

are contained in the line segments β1, β
′
1, . . . , βq−1, β

′
q−1.

Subcase 2-1: Both P and Q are contained in one of the same line segment in
β1, β

′
1, . . . , βq−1, β

′
q−1. In this case, we may assume that P and Q are contained in βi. We

first observe that for all c ∈ Ξ,

∠PcQ <
π

2
. (7.17)

This is obvious if i = q − 1. We consider the case i �= q − 1. Let ab ∈ Γmin be the line segment
containing αi, where a, b ∈ Ξ. The estimate (7.17) is obviously true if c is equal to a or b. Let
c ∈ Ξ be different from a and b. Then, by Lemma 7.4, we have

∠PcQ < ∠acb < π

2
.

Thus, we have proved (7.17).
By (7.17), we have

∠ϕc,d(P )0ϕc,d(Q) <
π

2
for all distinct c, d ∈ Ξ.

Claim 3. Let ζ, η ∈ C\{0} be distinct. Assume ∠ζ0η < π/2. Then we have

�
Ĉ
(ζη) <

π

2
[ζ, η].
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Proof of Claim 3. Set γ(t) = tζ + (1 − t)η, 0 � t � 1. Then we have

�
Ĉ
(ζη) =

∫1

0

|γ′(t)|
1 + |γ(t)|2 dt = |ζ − η|

∫1

0

1
1 + |γ(t)|2 dt.

Since ∠ζ0η < π/2, we have

|γ(t)|2 = t2|ζ|2 + (1 − t)2|η|2 + 2t(1 − t)�ζη̄
� t2|ζ|2 + (1 − t)2|η|2

for 0 � t � 1. Hence, we obtain

�
Ĉ
(ζη) � |ζ − η|

∫1

0

1
1 + t2|ζ|2 + (1 − t)2|η|2 dt. (7.18)

By an elementary calculus, we have

∫1

0

1
1 + t2|ζ|2 + (1 − t)2|η|2 dt =

arctan
(√|ζ|2 + |η|2 + |ζ|2|η|2

)
√|ζ|2 + |η|2 + |ζ|2|η|2 .

By another elementary calculus, we have
arctanx

x
� π

2
1√

1 + x2
.

Hence, we obtain ∫1

0

1
1 + t2|ζ|2 + (1 − t)2|η|2 dt � π

2
1√

1 + |ζ|2√1 + |η|2 .

Thus, by (7.18), we obtain

�
Ĉ
(ζη) � π

2
|ζ − η|√

1 + |ζ|2√1 + |η|2 =
π

2
[ζ, η].

This proves our claim.

Thus, we have

�
Ĉ
(ϕc,d(PQ)) <

π

2
[ϕc,d(P ), ϕc,d(Q)] <

π

2
�
Ĉ
(ϕc,d(γ)),

where c, d ∈ Ξ are distinct. Hence, we have

�Ξ(PQ) <
π

2
�Ξ(γ),

which proves (7.12).
Subcase 2-2: P and Q are contained in two different line segments in β1, β

′
1, . . . , βq−1, β

′
q−1.

We assume that P is contained in βi. In this case, we shall prove

�Ξ(γ) >
ε

2440
. (7.19)

First we consider the case i = q − 1. Let b ∈ Ξ be the point appears in (7.11) and set

K = {z ∈ C − {b};∠zbP < π/6}.
Since K ∩ Γmin = ∅, we have

γ �⊂ K. (7.20)

Claim 4. There exists c ∈ Ξ − {b} such that
ε

10
� |ϕb,c(P )| � 10. (7.21)
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Proof of Claim 4. We order Ξ − {b} = {c1, . . . , cq−2} such that

|c1 − b| � · · · � |cq−2 − b|.
By the assumption made in Case 2, we have

|c1 − b|
10

� |P − b| � 10|cq−2 − b|.
Case (i) |P − b| � |c1 − b|. In this case, we set c = c1.
Case (ii) |P − b| � |cq−2 − b|. In this case, we set c = cq−2.
Case (iii) |c1 − b| < |P − b| < |cq−2 − b|. In this case, we take j such that |cj−1 − b| � |P −

b| � |cj − b|. Since (Ĉ, b1, . . . , bq) is ε-thick, we have

|cj−1 − b|
|cj − b| � ε.

We set c = cj . Then we have ε � |ϕb,c(P )| � 1. Thus, we have proved Claim 4.

Now by Claim 4, we may take c such that (7.21) holds. Then by (7.20), the arc γ intersects
with ∂K. Hence, we have

�Euclid(ϕb,c(γ)) � ε

20
.

In general, for an arc γ′ contained in the disk {|z| < 11}, we have

�
Ĉ
(γ′) � 1

122�Euclid(γ′).

Hence, we obtain (7.19).
Next we consider the case i �= q − 1. Let ab be the line segment which contains αi. Then, by

Lemma 7.6, γ �⊂ Kab. Let w ∈ ∂Kab be the first point where γ and ∂Kab intersect. We may
assume without loss of generality that ∠wbP = π/6. By Claim 4, we may take c such that
(7.21) holds. Here, we remark that Claim 4 is proved for the case i = q − 1, but the proof
shows that the same statement is valid for i �= q − 1. By the same argument as in the previous
case, we obtain (7.19).

Now by (7.13) and (7.19), we conclude the proof of Lemma 7.8. We note 7320π < 215.

Corollary 7.9. Assume that (Ĉ, b1, . . . , bq) is ε-thick, where 0 < ε < 1. Let γ be a loop
cut or a cross cut of B′, which divides B′ into two parts. Then one of them D satisfies the
following two estimates:

�Ξ(D̄ ∩ ∂B′) <
215q3

ε
�Ξ(γ),

A(D) <
217q3

ε
�Ξ(γ).

Proof. We first remark that every Jordan domain D ⊂ B̄ satisfies

A(D) � 2�
Ĉ
(∂D). (7.22)

When �
Ĉ
(∂D) � π/2, this is obvious. If �

Ĉ
(∂D) < π/2, then ∂D is contained in some

hemisphere. Hence D ⊂ Ĉ is contained in some hemisphere; otherwise, Ĉ − D̄ should be
contained in some hemisphere, which is impossible by 0, 1,∞ ∈ Ĉ − D̄. Hence (7.22) is proved.

Now if γ is a loop cut, then we take D such that D � B′. Then by (7.22), the second estimate
holds. The first one is trivial.

If γ is a cross cut, then we take D such that �Ξ(D̄ ∩ ∂B′) is shorter. Then by Lemma 7.8, the
first estimate holds. Now D is bounded by the closed curve γ ∪ (D̄ ∩ ∂B′). Hence by (7.22),
we obtain the second estimate.
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7.6. Proof of Theorem 7.1(2)

First we prove ‘Covering theorem 2’ [25, p. 329] in our particular situation. In the following,
area and length are always measured using ω

Ĉ
and �Ξ, respectively.

Lemma 7.10. Assume that (Ĉ, b1, . . . , bq) is ε-thick, where 0 < ε < 1. Let G be a covering
surface of B′. Let S be the mean sheet number and let L be the length of the relative boundary.
For a line segment β ∈ {β1, β

′
1, . . . , βq−1, β

′
q−1} in ∂B′, let S(β) be the mean sheet number over

β. Then we have

|S − S(β)| � 218q3

ε
L.

Proof. We decompose G into the sheets G1, . . . , Gn as in [25, p. 323]. Thus, Gj ⊂ B′ is the
part where the covering G has at least j preimages. Let Sj be the mean sheet number, Sj(β)
be the mean sheet number over β, and Lj be the length of the relative boundary of the jth
sheet Gj . Then we have

S =
n∑
j=1

Sj , S(β) =
n∑
j=1

Sj(β), L �
n∑
j=1

Lj .

We shall show

|Sj − Sj(β)| � 218q3

ε
Lj (7.23)

for all j = 1, . . . , n, which will establish our lemma.
We apply Corollary 7.9. Since each Gj is divided by loop cuts and cross cuts of total length

Lj , one of Gj or B′ −Gj , which we write Dj , satisfies the two estimates of Corollary 7.9.
Hence, by Lemma 7.3 and �Ξ(β) > 1, we obtain∣∣∣∣A(Dj)

A(B′)
− �Ξ(D̄j ∩ β)

�Ξ(β)

∣∣∣∣ � 218q3

ε
Lj . (7.24)

If Dj = Gj , this is what we need to prove.
If Dj = B′ −Gj , then we have

A(Gj)
A(B′)

= 1 − A(Dj)
A(B′)

,

�Ξ(Ḡj ∩ β)
�Ξ(β)

= 1 − �Ξ(D̄j ∩ β)
�Ξ(β)

.

Thus, by (7.24), we obtain the estimate (7.23).

Lemma 7.11. Assume that (Ĉ, b1, . . . , bq) is ε-thick, where 0 < ε < 1. Let F be a covering
surface of B. Let S be the mean sheet number and let L be the length of the relative boundary.
For a line segment α from {α1 . . . , αq−1}, let S(α) be the mean sheet number over α with
respect to �Ξ. Then we have

|S − S(α)| � 218q3

ε
L.

Proof. By deforming F slightly, if necessary, so that S, S(α), L change arbitrary small, we
may assume without loss of generality that the relative boundary of F has no arcs of positive
length above α1, . . . , αq−1 and that F has no brunch points above α1, . . . , αq−1. Let {σj}mj=1

be the cross cuts of F over α1, . . . , αq−1. By these cross cuts, F is divided in G1, . . . , Gk. Then
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each Gi is a covering surface of B′. Let Si be the mean sheet number and let Li be the length
of the relative boundary of this covering. Then we have

S =
k∑
i=1

Si, L =
k∑
i=1

Li.

Let β and β′ be the line segments in ∂B′ that are two copies of α. Let Si(β) and Si(β′) be
defined as in Lemma 7.10. Then we have

|2Si − Si(β) − Si(β′)| � 219q3

ε
Li,

hence ∣∣∣∣∣2S −
k∑
i=1

(Si(β) + Si(β′))

∣∣∣∣∣ � 219q3

ε
L.

Now each σj is contained in {∂Gi}ki=1 exactly two times. Hence, we have

k∑
i=1

(Si(β) + Si(β′)) = 2S(α).

This concludes the proof.

Now we prove Theorem 7.1(2). We follow the proof due to Tôki [29], who simplified the
original proof of Ahlfors [1]. As in the proof of Lemma 7.11, we may assume without loss of
generality that the relative boundary of F has no arcs of positive length above α1, . . . , αq−1

and that F has no brunch points above α1, . . . , αq−1. Let {σj}mj=1 be the cross cuts of F over
α1, . . . , αq−1. Given σj , which lies over αk, we set

λ(σj) =
�Ξ(σj)
�Ξ(αk)

.

We have

0 � λ(σj) � 1. (7.25)

We consider two cases.
Case 1: There exists σj which does not divide F . In this case, we may assume that σ1, . . . , σn

satisfies

(1) F − (σ1 + · · · + σn) is connected,
(2) every σj , n+ 1 � j � m, divide F − (σ1 + · · · + σn).

We have

n− 1 � �+(F ). (7.26)

We remark that σj , n+ 1 � j � m, divide F − (σ1 + · · · + σn) into m− n+ 1 part
G0, . . . , Gm−n. We may assume that the boundary of G0 contains σn. Among G1, . . . , Gm−n,
there exists at least one part whose boundary contains only one cross-cut except σ1, . . . , σn. We
denote this part G1 and the cross-cut σn+1. Also among G2, . . . , Gm−n, there exists at least one
part whose boundary contains only one cross-cut except σ1, . . . , σn, σn+1. We denote this part
G2 and the cross-cut σn+2, and so on. Thus, we have G0, G1, . . . , Gm−n and σn+1, σn+2, . . . , σm.

Now each Gk is a covering surface of B′. The boundary of Gk contains σn+k. Let Sk be the
mean sheet number and let Lk be the length of the relative boundary. By Lemma 7.10, we
have

λ(σn+k) � Sk +
218q3

ε
Lk.
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Hence, we have
m−n∑
k=0

λ(σn+k) � S +
218q3

ε
L. (7.27)

On the other hand, by Lemma 7.11, we have

(q − 1)S �
m∑
j=1

λ(σj) +
218q4

ε
L. (7.28)

Using (7.27), we obtain

(q − 2)S �
n−1∑
j=1

λ(σj) +
218(q4 + q3)

ε
L.

By (7.25), we obtain

(q − 2)S � n− 1 +
218(q4 + q3)

ε
L.

Thus, by (7.26), we obtain our result.
Case 2: All σj divide F . In this case, σj , 1 � j � m, divide F into m+ 1 part G0, . . . , Gm.

Among them, there exists at least one part whose boundary contains only one cross-cut. We
denote this part G1 and the cross-cut σ1. Also among G2, . . . , Gm, there exists at least one
part whose boundary contains only one cross-cut except σ1. We denote this part G2 and the
cross-cut σ2, and so on. Thus, we have G1, . . . , Gm and σ1, . . . , σm.

By Lemma 7.10, we have

λ(σk) � Sk +
218q3

ε
Lk.

Hence, we have
m∑
k=1

λ(σk) �
m∑
k=1

Sk +
218q3

ε

m∑
k=1

Lk

� S +
218q3

ε
L.

By (7.28), we obtain

(q − 2)S � 218(q4 + q3)
ε

L.

Since �+(F ) � 0, we obtain our estimate.

8. Proof of Proposition 4.3

We shall derive Proposition 4.3 from Proposition 7.2 to conclude the proof of Theorem 4.1.
Since Proposition 7.2 only treats the case when (Ĉ, a1(x), . . . , aq(x)) is 1

220 -thick, we need to
decompose the general case into 1

220 -thick cases. We use a similar trick as in [32, 33] based on
combinatorial arguments of trees.

8.1. Combinatorial lemma

A q-tail of a tree Γ is a map ∂ : {1, . . . , q} → vert(Γ), where vert(Γ) is the set of the vertices
of Γ. For v ∈ vert(Γ), we set

Pmv = {i ∈ {1, . . . , q}; ∂(i) = v},
Pnv = {v′ ∈ vert(Γx); v and v′ are adjacent},
Pv = Pmv ∪ Pnv .
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We say that (Γ, ∂) is stable if #Pv � 3 for all v ∈ vert(Γ).
Assume (Γ, ∂) is stable. For each τ ∈ Pv, we define a subset Svτ ⊂ {1, . . . , q} as follows. If

τ ∈ Pmv , then we set Svτ = {τ}. For τ ∈ Pnv , we remove the edge {v, τ} from Γ to obtain two
connected components Γv and Γτ , where Γv contains v and Γτ contains τ . We set

Svτ = {i ∈ {1, . . . , q}; ∂(i) ∈ vert(Γτ )}.
We define a map ιv : Pv → {1, . . . , q} by

ιv(τ) = maxSvτ .

For each v ∈ vert(Γ), we have q ∈ ιv(Pv). Let j ∈ ιv(Pv)\{q} be the largest element. We set

ιv(Pv)′ = ιv(Pv)\{j, q}.

Example. (1) vert(Γ) = {v}, ∂ : {1, 2, 3} → {v}. The set of edges of Γ is empty. In this
case, we have Pmv = {1, 2, 3} and Pnv = ∅, hence Pv = {1, 2, 3}. Thus, (Γ, ∂) is stable. We have

Sv1 = {1}, Sv2 = {2}, Sv3 = {3}
and

ιv(1) = 1, ιv(2) = 2, ιv(3) = 3.

Thus, ιv(Pv)′ = {1}.
(2) vert(Γ) = {v1, v2} and ∂ : {1, 2, 3, 4} → {v1, v2} where ∂(1) = v1, ∂(2) = v1, ∂(3) = v2

and ∂(4) = v2. The set of edges of Γ consists of one edge which joins v1 and v2. In this case,
we have

Pmv1 = {1, 2}, Pnv1 = {v2}, Pv1 = {1, 2, v2},
Pmv2 = {3, 4}, Pnv2 = {v1}, Pv2 = {3, 4, v1}.

Thus (Γ, ∂) is stable. We have

Sv11 = {1}, Sv12 = {2}, Sv1v2 = {3, 4},
Sv23 = {3}, Sv24 = {4}, Sv2v1 = {1, 2}.

Hence,

ιv1(1) = 1, ιv1(2) = 2, ιv1(v2) = 4,
ιv2(3) = 3, ιv2(4) = 4, ιv2(v1) = 2.

Thus, ιv1(Pv1)
′ = {1} and ιv2(Pv2)

′ = {2}.

Lemma 8.1. Assume (Γ, ∂) is stable. Then we have the disjoint union

{1, . . . , q − 2} =
⋃

v∈vert(Γ)

ιv(Pv)′.

Proof. The inclusion
⋃
v∈vert(Γ) ιv(Pv)

′ ⊂ {1, . . . , q − 2} is obvious. We prove that for each
i ∈ {1, . . . , q − 2}, there is a unique v ∈ vert(Γ) such that i ∈ ιv(Pv)′. Set ∂(q) = vo and ∂(i) =
v′. Then there exists a unique path joining vo and v′:

vo = v0, v1, . . . , vr = v′. (8.1)

We set k = min{s; i ∈ ιvs(Pvs)}. We remark that

i ∈ ιvk(Pvk)
′. (8.2)
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This follows by q − 1 ∈ ιvo(Pvo) if k = 0. If k � 1, by i �∈ ιvk−1(Pvk−1), we have ιvk−1(vk) > i
and ιvk−1(vk) ∈ ιvk(Pvk). Hence, we obtain (8.2).

Next we show the uniqueness. First, we take a vertex w outside the path (8.1). Then for
τ ∈ Pw with q ∈ Swτ , we have i ∈ Swτ . Hence i �∈ ιw(Pw). Next, we consider the vertices in
the path (8.1). Obviously, i �∈ ιvs(Pvs) for s < k. For s > k, by i ∈ ιvs−1(Pvs−1), we have i =
max ιvs(Pvs)\{q}. Hence i �∈ ιvs(Pvs)

′. This shows the uniqueness.

8.2. Construction of a tree

Lemma 8.2. For x ∈ X(a1, . . . , aq), there exists a stable, q-tailed tree (Γ, ∂) such that the
following conditions hold.

(1) For all v ∈ vert(Γ), the marked sphere (Ĉ, {aιv(τ)(x)}τ∈Pv ) is 1
220 -thick,

(2) If v and v′ are adjacent, then there exists an annulus A with modulus greater than
(1/2π) log(220) such that {aιv(τ)(x)}τ∈Pv\{v′} is contained in one component of Ĉ −A and
{aιv′ (τ)(x)}τ∈Pv′\{v} is contained in the other component.

Proof. Starting from the q-tailed tree (Γ[1], ∂[1]) defined by vert(Γ[1]) = {pt}, we consider
the following algorithm:

1: If a q-tailed tree (Γ[k], ∂[k]) satisfies the condition (1), then output (Γ[k], ∂[k]). Otherwise
go to the next step.

2: Find v ∈ vert(Γ[k]) such that the marked sphere (Ĉ, {a
ι
[k]
v (τ)

(x)}
τ∈P [k]

v
) is not 1

220 -thick.

Thus there exists an annulus A with Mod(A) � (1/2π) log 220 that separates P [k]
v to

(P [k]
v )′ and (P [k]

v )′′. We construct a new q-tailed tree (Γ[k+1], ∂[k+1]) by replacing v with
two new vertices v′ and v′′ such that P [k+1]

v′ = (P [k]
v )′ ∪ {v′′} and P

[k+1]
v′′ = (P [k]

v )′′ ∪
{v′}. Return to the previous step.

Note that each (Γ[k], ∂[k]) is stable. Hence, the above procedure terminates at most in q-steps
and yields the desired stable, q-tailed tree (Γ, ∂).

We summarize the conclusion of Proposition 7.2 applied to {ai}i∈ιv(Pv) as the set of rational
functions. For each v ∈ vert(Γ), we apply Proposition 6.2 to obtain a holomorphic motion
φ̂v : Ω × Ĉ → Ĉ which extends {ai}i∈ιv(Pv). Let gv : Ω → Ĉ be the quasimeromorphic function
defined by

φ̂v(λ, gv) = fv.

For v ∈ vert(Γx) and τ ∈ Pv, we define Δv
τ ⊂ Ĉ as follows: Let s < 1

10 .
If ιv(τ) �= q, then we set

Δv
τ = {z ∈ C; |z − aιv(τ)(x)| < sρvτ},

where ρvτ = mini∈ιv(Pv)\{ιv(τ),q} |ai(x) − aιv(τ)(x)|.
When ιv(τ) = q, let j be the maximal element in ιv(Pv)\{q}. We set

Δv
τ = {z ∈ C; |z − aj(x)| > Rv/s},

where Rv = maxi∈ιv(Pv)\{q} |ai(x) − aj(x)|. We set

Bv = Ĉ −
⋃
τ∈Pv

Δv
τ ,

χv(r, t) =
∑

F∈I(g−1
v (Bv),Ω(r,t))

�(F ) +
∑

F∈P(g−1
v (Bv),Ω(r,t))

�+(F ).
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Then, by Proposition 7.2, we have

(#Pv − 2)
∫m/2
0

T

(
r,
f − ai
aj − ai

,Ω(t)
)
dt

�
∫m/2
0

∫ r
1

χv(u, t)
u

du dt+
267 dq8

m
T

(
r +

1
T (r)

)3/4

(log r)1/4 (8.3)

for r > γd, where i and j are distinct elements in ιv(Pv)\{q}.
So far we have assumed s < 1

10 . In what follows, we take s so that 1
16 < s < 1

10 . Then we
have the following lemma:

Lemma 8.3. For v ∈ vert(Γx) and τ ∈ Pv, we have ai(x) ∈ Δv
τ for all i ∈ Svτ .

Proof. The assertion is obvious if τ ∈ Pmv . In the following, we assume that τ ∈ Pnv . It is
enough to show

Ĉ\Δv
v′ ∩ Ĉ\Δv′

v = ∅ (8.4)

for adjacent vertices v and v′. Indeed (8.4) implies Δv
v′ ⊃ Δv′

η for all η ∈ Pv′\{v}. We take the
path joining v and ∂(i):

v = v0, v1, . . . , vr = ∂(i).

Then we have

Δv0
v1 ⊃ Δv1

v2 ⊃ · · · ⊃ Δvr−1
vr ⊃ Δvr

i � ai(x)

as desired.
We prove (8.4). We note that Svv′ ∪ Sv

′
v = {1, 2, . . . , q} is a disjoint union. Hence, we may

assume without loss of generality q ∈ Sv
′
v . Thus, ιv′(v) = q. Set ιv(v′) = j. We take k ∈ ιv(Pv)

such that ρvv′ = |ak(x) − aj(x)|. Then by s > 1
16 , we have

Δv
v′ ⊃ {z ∈ Ĉ; |cr(z, aj(x), ak(x), aq(x))| < 1

16}. (8.5)

We note that j is the largest element in ιv′(Pv′)\{q}. We take l ∈ ιv′(Pv′) such that Rv′ =
|al(x) − aj(x)|. Then by s > 1

16 , we have

Δv′
v ⊃ {z ∈ Ĉ; |cr(z, aj(x), al(x), aq(x))| > 16}. (8.6)

By Lemma 8.2, there exists an annulus A with modulus greater than (1/2π) log(220) such that
{ak(x), aq(x)} is contained in one component of Ĉ −A and {aj(x), al(x)} is contained in the
other component. Hence by Teichmüller’s extremal problem [2, p. 30], we have

|cr(al(x), aj(x), ak(x), aq(x))| < 1
215 . (8.7)

By (8.5)–(8.7), we obtain (8.4).

We apply the following distortion estimate of quasiconformal mappings [3, p. 81] to prove a
generalization of (8.4): For a quasiconformal map ψ : C → C fixing 0 and 1 with Kψ <

51
49 , we

have

|ψ(z)| < 4|z|49/51, |z| < 1. (8.8)

Lemma 8.4. For adjacent vertices v and v′, and for all λ ∈ Ω, we have

φ̂v(λ, Ĉ\Δv
v′) ∩ φ̂v′(λ, Ĉ\Δv′

v ) = ∅. (8.9)
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Proof. We keep the notation in the proof of (8.4). Let λ ∈ Ω. We denote φ̂v,λ(z) = φ̂v(λ, z).
By Proposition 6.2, we have Kφ̂v,λ

< 51
49 . We apply (8.8) to a quasiconformal map

ϕaj(x),ak(x) ◦ φ̂−1
v,λ ◦ ϕ−1

aj(λ),ak(λ),

where we recall the notation from (7.1). Note that this map fixes 0 and 1. Then we obtain

φ̂−1
v,λ({z ∈ Ĉ; |cr(z, aj(λ), ak(λ), aq(λ))| � 2−7})
⊂ {z ∈ Ĉ; |cr(z, aj(x), ak(x), aq(x))| � 2−4}.

Hence, we obtain

φ̂v,λ(Ĉ\Δv
v′) ⊂ {z ∈ Ĉ; |cr(z, aj(λ), ak(λ), aq(λ))| > 2−7}. (8.10)

Similarly, we have

φ̂v′,λ(Ĉ\Δv′
v ) ⊂ {z ∈ Ĉ; |cr(z, aj(λ), al(λ), aq(λ))| < 27}. (8.11)

By Lemma 5.3 and (8.7), we have

|cr(al(λ), aj(λ), ak(λ), aq(λ))| < 1
214

. (8.12)

By (8.10)–(8.12), we establish our lemma.

8.3. Final reduction

For τ ∈ Pv, we set

αvτ (r, t) = −
∑

F∈DIv,τ
�(F ) −

∑
F∈DPv,τ

�+(F ),

where
DI
v,τ = I(g−1

v (Δv
τ ),Ω(r, t)), DP

v,τ = P(g−1
v (Δv

τ ),Ω(r, t)).

It is evident that DI
v,τ is a finite set. We remark that DP

v,τ is also finite, since Ω(r, t) is
bounded by a finite number of analytic arcs and gv is real analytic outside the inverse image
of {ai(x)}i∈ιv(Pv).

By changing s slightly if necessary, we assume that
For all v and τ ∈ Pv, if gv : Ω → Ĉ is non-constant, then gv does not have branch
points over ∂Δv

τ .

Lemma 8.5.

χv(r, t) �
∑
τ∈Pv

αvτ (r, t) (8.13)

If v and v′ are adjacent, then

χv(r, t) � −αv′v (r, t) +
∑

τ∈Pv\{v′}
αvτ (r, t). (8.14)

Lemma 8.5 implies Proposition 4.3. Set vo = ∂(q). By (8.13), we have

χvo(r, t) �
∑
τ∈Pvo

αvoτ (r, t).

For v ∈ vert Γx\{vo}, we denote by v− the vertex with q ∈ Svv− . By (8.14), we have

χv(r, t) � −αv−v (r, t) +
∑

τ∈Pv\{v−}
αvτ (r, t).
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Taking summation over all v ∈ vert(Γx), we obtain∑
v∈vert(Γ)

χv(r, t) �
∑

v∈vert(Γx)

∑
τ∈Pmv

αvτ (r, t). (8.15)

Since −�(D) � 1 for D ∈ DI
v,τ , we have∑

v∈vert(Γx)

∑
τ∈Pmv

αvτ (r, t)

� −
∑

v∈vert(Γx)

∑
τ∈Pmv

∑
D∈DIv,τ

�(D) �
∑

v∈vert(Γx)

∑
τ∈Pmv

n̄(gv, aτ (x),Ω(r, t)).

Since n̄(gv, aτ (x),Ω(r, t)) = n̄(f, aτ ,Ω(r, t)) (cf. (6.2)), we obtain∑
v∈vert(Γx)

∑
τ∈Pmv

αvτ (r, t) �
∑

v∈vert(Γx)

∑
τ∈Pmv

n̄(gv, aτ (x),Ω(r, t)) =
q∑
i=1

n̄(f, ai,Ω(r, t)).

Hence by (8.15), we have ∑
v∈vert(Γ)

χv(r, t) �
q∑
i=1

n̄(f, ai,Ω(r, t)). (8.16)

Next we apply Proposition 7.2. For each i ∈ ιv(Pv)′, we take τ ∈ Pv such that i = ιv(τ).
By i < i♦, we have i♦ �∈ Svτ . Hence, we may take τ ′ ∈ Pv with τ ′ �= τ such that i♦ ∈ Svτ ′ . Let
j = max ιv(Pv)\{q}. Then j �= i. By |ai♦(x) − ai(x)| � |aj(x) − ai(x)| and Lemma 8.3, we have
q �∈ Svτ ′ . Set i� = ιv(τ ′). Then i < i� < q. Hence applying (8.3) to i, i� and taking average over
i ∈ ιv(Pv)′, we obtain∑

i∈ιv(Pv)′

∫m/2
0

T

(
r,

f − ai
ai� − ai

,Ω(t)
)
dt

�
∫m/2
0

∫ r
1

χv(u, t)
u

du dt+
267 dq8

m
T

(
r +

1
T (r)

)3/4

(log r)1/4

for r > γd. Thus, by Lemma 8.1 and (8.16), we have
q−2∑
i=1

∫m/2
0

T

(
r,

f − ai
ai� − ai

,Ω(t)
)
dt

�
q∑
i=1

∫m/2
0

N̄(f, ai,Ω(t)) dt

+
267 dq9

m
T

(
r +

1
T (r)

)3/4

(log r)1/4

for r > γd.
Finally, we show the following estimate to conclude the proof.

∫m/2
0

T

(
r,

f − ai
ai♦ − ai

,Ω(t)
)
dt

�
∫m/2
0

T

(
r,

f − ai
ai� − ai

,Ω(t)
)
dt+ 226T

(
r +

1
T (r)

)3/4

(log r)1/4. (8.17)

For the proof, we set

κ = κ(f, ai, ai♦ , ai�).
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Then by Lemma 5.2, we have∫m
0

∣∣∣∣T (r, f − ai
ai♦ − ai

,Ω(t)
)

+ T

(
r,

f − ai♦

ai� − ai♦
,Ω(t)

)
− T (r, κ,Ω(t))

∣∣∣∣ dt
� 225T

(
r +

1
2T (r)

)3/4

(log r)1/4

for r > γd. By the definition of i� and Lemma 8.3, we have
3
4 |ai�(x) − ai(x)| � |ai♦(x) − ai(x)|.

Hence, by Lemma 5.2, we have∫m
0

∣∣∣∣T (r, f − ai
ai� − ai

,Ω(t)
)

+ T

(
r,

f − ai♦

ai� − ai♦
,Ω(t)

)
− T (r, κ,Ω(t))

∣∣∣∣ dt
� 225T

(
r +

1
2T (r)

)3/4

(log r)1/4

for r > γd. This shows (8.17), and concludes the derivation of Proposition 4.3.

8.4. End of the proof

We prove Lemma 8.5 to finish the proof of Theorem 1.2. First we show (8.13). Let W be a
connected component of Ω(r, t). We remark that

�+(W ) = 0. (8.18)

Indeed by ∞ �∈ Ω(t), each connected component of C\W has non-trivial intersection with
C\Ω(t). Hence by C\Ω(t) ⊂ C\W , we conclude �(W ) � �(Ω(t)). This proves (8.18).

We need one lemma from [33, Lemma 1].

Lemma 8.6. Assume that a finite number of disjoint simple closed curves γi (i = 1, . . . , p)
divide Ĉ into connected domains D1, . . . , Dp+1. Let ζ : W → Ĉ be a covering map with no
branch points over the boundaries of Di (1 � i � p+ 1). Put A =

⋃p+1
i=1 I(ζ−1(Di),W ), B =⋃p+1

i=1 P(ζ−1(Di),W ). Then we have

�+(W ) �
∑
A∈A

�(A) +
∑
B∈B

�+(B).

Now to prove (8.13), we remark that the estimate is trivial if gv is constant, since both sides
are 0 by (8.18). When gv is non-constant, by Lemma 8.6 and (8.18), we obtain (8.13).

Next we prove (8.14). We remark that

gv(D) �⊂ Δv
v′ for D ∈ DI

v′,v (8.19)

Indeed assume contrary that there exists D ∈ DI
v′,v such that gv(D) ⊂ Δv

v′ . Then there
exists z ∈ D such that gv′(z) = aιv′ (v)(x), which says f(z) = aιv′ (v)(z). Since ιv′(v) ∈ ιv(Pv),
we have gv(z) = aιv′ (v)(x). Since ιv′(v) �= ιv(v′), we have aιv′ (v)(x) �∈ Δv

v′ . This contradicts
gv(D) ⊂ Δv

v′ . Thus, (8.19) is proved.
We prove (8.14) in two cases.
Case 1: gv is constant. In this case, it is enough to show DI

v′,v = ∅, for we have χv(r, t) =
0 and αvτ (r, t) = 0 by (8.18). Suppose, on contrary, there exists D ∈ DI

v′,v. Then by (8.19),
gv(D) �⊂ Δv

v′ . Since gv is constant, we obtain

gv(Ω) ⊂ Ĉ\Δv
v′ .
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On the other hand, by (8.9), we have

gv′(g−1
v (Ĉ\Δv

v′)) ⊂ Δv′
v .

Hence, we conclude gv′(Ω) ⊂ Δv′
v , which implies DI

v′,v = ∅. This is a contradiction. Thus, we
have proved (8.14) when gv is constant.

Case 2: gv is non-constant. Given H ∈ DI
v′,v ∪ DP

v′,v, we consider the restriction gv|H : H →
Ĉ. We set

DI
v,τ,H = I(g−1

v (Δv
τ ),H), DP

v,τ,H = P(g−1
v (Δv

τ ),H) τ ∈ Pv,

FI
v,H = I(g−1

v (Bv),H), FP
v,H = P(g−1

v (Bv),H).

We first remark that

DI
v,v′,H = ∅. (8.20)

To show this, we assume contrary that there existsD ∈ DI
v,v′,H . By the same reason with (8.19),

we have gv′(D) �⊂ Δv′
v . On the other hand, we have gv′(H) ⊂ Δv′

v , for H ∈ DI
v′,v ∪ DP

v′,v. This
is a contradiction. Thus we have proved (8.20).

Now let us fix a component H ∈ DI
v′,v. We have

�(H) �
∑

τ∈Pv\{v′}

∑
D∈DIv,τ,H∪DPv,τ,H

�(D) +
∑

D∈DI
v,v′,H∪DP

v,v′,H

�(D)

+
∑

F∈FIv,H∪FPv,H
�(F ).

Since H is compactly contained in Ω(r, t), the boundary ∂H of H does not meet the boundary
of Ω(r, t). By (8.9), we have

gv(g−1
v′ (Ĉ\Δv′

v )) ⊂ Δv
v′ . (8.21)

Hence, we have

gv(∂H) ⊂ Δv
v′ .

Hence, FP
v,H = ∅ and DP

v,τ,H = ∅ for τ ∈ Pv\{v′}. By (8.19), gv(H) �⊂ Δv
v′ . Hence components

D in DP
v,v′,H is not simply connected, so �(D) � 0. Thus by (8.20) we obtain

�(H) �
∑

τ∈Pv\{v′}

∑
D∈DIv,τ,H

�(D) +
∑

F∈FIv,H
�(F ). (8.22)

Next we fix a component H ∈ DP
v′,v. By Lemma 8.6 and (8.20), we have

�+(H) �
∑

τ∈Pv\{v′}

⎛⎝ ∑
D∈DIv,τ,H

�(D) +
∑

D∈DPv,τ,H
�+(D)

⎞⎠+
∑

F∈FIv,H
�(F ) +

∑
F∈FPv,H

�+(F ).

(8.23)
Thus, by (8.22) and (8.23), we obtain∑
H∈DI

v′,v

�(H) +
∑

H∈DP
v′,v

�+(H) �
∑

H∈DI
v′,v∪DP

v′,v

∑
τ∈Pv\{v′}

∑
D∈DIv,τ,H

�(D)

+
∑

H∈DP
v′,v

∑
τ∈Pv\{v′}

∑
D∈DPv,τ,H

�+(D)

+
∑

H∈DI
v′,v∪DP

v′,v

∑
F∈FIv,H

�(F ) +
∑

H∈DP
v′,v

∑
F∈FPv,H

�+(F ). (8.24)
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By (8.21), we have

g−1
v (Bv) ∩ Ω(r, t) ⊂

⋃
H∈DI

v′,v

H ∪
⋃

H∈DP
v′,v

H.

Hence, we have ∑
H∈DI

v′,v∪DP
v′,v

∑
F∈FIv,H

�(F ) +
∑

H∈DP
v′,v

∑
F∈FPv,H

�+(F ) = χv(r, t). (8.25)

Again, by (8.21), we have

g−1
v (Δv

τ ) ∩ Ω(r, t) ⊂
⋃

H∈DI
v′,v

H ∪
⋃

H∈DP
v′,v

H for τ ∈ Pv\{v′}.

Hence, we have ∑
H∈DI

v′,v∪DP
v′,v

∑
τ∈Pv\{v′}

∑
D∈DIv,τ,H

�(D) +
∑

H∈DP
v′,v

∑
τ∈Pv\{v′}

∑
D∈DPv,τ,H

�+(D)

= −
∑

τ∈Pv\{v′}
αvτ (r, t). (8.26)

Thus, by (8.24)–(8.26), we obtain (8.14).

9. A uniform version of the second main theorem: Proof of (1.10)

We begin with the Gol’dberg–Grinshtein estimate (cf. [8, Theorem 3.2.2]): For 1 < r < ρ and
0 < α < 1, we have

∫2π

0

∣∣∣∣f ′(r eiθ)f(r eiθ)

∣∣∣∣α dθ2π � C(α)
(

ρ

r(ρ− r)

)α
(2T (ρ, f) + 2Cf,0)α,

where we set C(α) = 2α + (8 + 2α+1) sec(απ/2) and recall Cf,0 = supa∈Ĉ
m(1, f, a). Hence we

have, ∫2π

0

(
f#(r eiθ)

[f(r eiθ), 0]

)α
dθ

2π
� C(α)

(
ρ

r(ρ− r)

)α
(2T (ρ, f) + 2Cf,0)α,

where f# = |f ′|/(1 + |f |2). Hence, for a ∈ Ĉ, using a rotation of Riemann sphere which takes
a to 0, we obtain

∫2π

0

(
f#(r eiθ)

[f(r eiθ), a]

)α
dθ

2π
� C(α)

(
ρ

r(ρ− r)

)α
(2T (ρ, f) + 2Cf,0)α.

Thus using the concavity of log, we have
∫2π

0

max
1�i�q

log
1

[f(r eiθ), ai]
dθ

2π
�

∫2π

0

log
∑

1�i�q

1
[f(r eiθ), ai]

dθ

2π

= −
∫2π

0

log f#(r eiθ)
dθ

2π
+

1
α

∫2π

0

log

⎛⎝ ∑
1�i�q

f#(r eiθ)
[f(r eiθ), ai]

⎞⎠α

dθ

2π

� −
∫2π

0

log f#(r eiθ)
dθ

2π
+

1
α

∫2π

0

log
∑

1�i�q

(
f#(r eiθ)

[f(r eiθ), ai]

)α
dθ

2π
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� −
∫2π

0

log f#(r eiθ)
dθ

2π
+

1
α

log
∑

1�i�q

∫2π

0

(
f#(r eiθ)

[f(r eiθ), ai]

)α
dθ

2π

� −
∫2π

0

log f#(r eiθ)
dθ

2π
+ log(T (ρ) + Cf,0) + log

ρ

r(ρ− r)

+
1
α

logC(α) +
1
α

log q + log 2.

Since

−
∫2π

0

log f#(r eiθ)
dθ

2π
= 2T (r, f) −

∑
a∈Ĉ

N1(r, a, f) −
∫2π

0

log f#(eiθ)
dθ

2π
,

we conclude ∫2π

0

max
1�i�q

log
1

[f(r eiθ), ai]
dθ

2π
+
∑
a∈Ĉ

N1(r, a, f)

� 2T (r, f) + log(T (ρ) + Cf,0) + log
ρ

r(ρ− r)

+
1
α

logC(α) +
1
α

log q + log 2 −
∫2π

0

log f#(eiθ)
dθ

2π
.

Now let α = 1
2 and ρ = r + 1/T (r, f). We set

E =
{
r > 1;T

(
r +

1
T (r, f)

)
> 2T (r, f)

}
.

Then by Borel’s growth lemma [25, p. 245], the set E is of finite linear measure, which only
depends on f . There exists r0 > 1 such that

log(2T (r, f) + Cf,0) + log
(

1 +
1

rT (r, f)

)
+

1
α

logC(α)

+ log 2 −
∫2π

0

log f#(eiθ)
dθ

2π
< 2 log T (r, f)

for all r > r0. Now we obtain (1.10) for all r > 1 outside the exceptional set E ∪ [1, r0] of finite
linear measure, which only depends on f .
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