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Let ’ : R ! S be a K-quasiconformal mapping of a hyperbolic Riemann surface R to another
S. It is important to see how the hyperbolic structure is changed by ’. S. Wolpert (1979, The
length spectrum as moduli for compact Riemann surfaces. Ann. of Math. 109, 323–351)
shows that the length of a closed geodesic is quasi-invariant. Recently, A. Basmajian (2000,
Quasiconformal mappings and geodesics in the hyperbolic plane, in The Tradition of Ahlfors
and Bers, Contemp. Math. 256, 1–4) gives a variational formula of distances between geodesics
in the upper half-plane. In this article, we improve and generalize Basmajian’s result. We also
generalize Wolpert’s formula for loxodromic transformations.

Keywords: Quasiconformal mapping; Riemann surfaces; Hyperbolic geometry

AMS 2000 Mathematics Subject Classifications: Primary 30F40

1. Introduction and results

On the theory of Teichmüller space of a hyperbolic Riemann surface, it is an
important problem to see how the hyperbolic structure changes by a quasiconformal
mapping. For a K-quasiconformal mapping ’ : R ! S of a hyperbolic Riemann
surface R to S, S. Wolpert [7] shows his famous formula on the hyperbolic length
of a closed geodesic, i.e., an inequality

1

K
‘ðcÞ � ‘ð’�ðcÞÞ � K‘ðcÞ ð1:1Þ

holds for every closed geodesic c on R, where ‘ð�Þ means the hyperbolic length and ’�ðcÞ
is the closed geodesic on S homotopic to ’ðcÞ.
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Recently, A. Basmajian [3] has considerd the hyperbolic distance dHðL1,L2Þ between
geodesics L1,L2 on the upper half-plane H and showed the following result.

PROPOSITION 1.1 Let � be a K-quasiconformal self-mapping of H. Then, an inequality

1

K
dHðL1,L2Þ � CK � dHð½�ðL1Þ�, ½�ðL2Þ�Þ � KdHðL1,L2Þ þ CK , ð1:2Þ

holds for every pair of closed geodesics L1,L2 on H, where ½�ðLÞ� denotes the geodesic
with the same end points as �ðLÞ and CK is a constant depending only on K.

While the above inequality (1.2) makes sense if dHðL1,L2Þ is large, it implies nothing
when dHðL1,L2Þ is small enough. In fact, Basmajian also shows that (1.2) cannot be
improved to the ‘‘bilipschitz continuous’’ one, that is, the right-hand side of (1.2) is
not replaced by AKdHðL1,L2Þ for any constant AK depending only on K .

In this article, we shall give an estimate of dHð½’ðL1Þ�, ½’ðL2Þ�Þ when dHðL1,L2Þ

is bounded above and show that the estimate is Hölder continuous. We consider the
problem on hyperbolic Riemann surfaces rather than the upper half-plane. For
a hyperbolic Riemann surface R, let dRðc1, c2Þ denote the hyperbolic distance between
geodesics c1, c2 on R. We improve Proposition 1.1 as follows.

THEOREM 1.1 Let R,S be the hyperbolic Riemann surfaces and let ’ be a K-quasiconfor-
mal mapping from R onto S. Take a constant M > 0. Then, for any pair of geodesics c1, c2
on R which are possibly not closed curves, an inequality

AK,M
�1dRðc1, c2Þ

K
� dSð’�ðc1Þ, ’�ðc2ÞÞ � AK ,MdRðc1, c2Þ

1=K
ð1:3Þ

holds, if dRðc1, c2Þ � M, where AK ,M is a constant depending only on K and M. In parti-
cular, for any K-quasiconformal self-mapping � of H and for any geodesics L1,L2 with
dHðL1,L2Þ � M,

AK,M
�1dHðL1,L2Þ

K
� dHð½�ðL1Þ�, ½�ðL2Þ�Þ � AK,MdHðL1,L2Þ

1=K : ð1:4Þ

Next, we shall consider the same problem on the hyperbolic 3-space H3. Let L1,L2 be
geodesics in H

3 and � : H3
! H

3 K-quasiconformal self-mapping of H3. It is known
that � is extended to @H3 as a K-quasiconformal homeomorphism (cf. [6]). We
denote by ½�ðLjÞ� ðj ¼ 1, 2Þ the geodesics in H

3 with the same end points as �ðLjÞ.
In contrast to the case of H, we cannot obtain any estimate similar to (1.4) in H

3.
Indeed, for any K>1, it is seen that there exists a K-quasiconformal self-mapping �
of H3 and geodesics L1,L2 on H

3, such that

d
H

3 ð½�ðL1Þ�, ½�ðL2Þ�Þ ¼ 0

while

d
H

3ðL1,L2Þ > 0:

Here, we may show the following estimate which is similar to (1.2).
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THEOREM 1.2 Let � be a K-quasiconformal self-mapping of H
3 and L1,L2 two

geodesics in H
3. Then, there exists a constant CK > 1 depending only on K and an abso-

lute constant A > 0, such that

1

AK
d
H

3ðL1,L2Þ � CK � d
H

3 ð½�ðL1Þ�, ½�ðL2Þ�Þ

� AKd
H

3ðL1,L2Þ þ CK : ð1:5Þ

Finally, we shall consider a generalization of Wolpert’s formula (1.1). It is well-
known that a closed geodesic c on a hyperbolic Riemann surface R corresponds to
a conjugacy class ½g� of a hyperbolic transformation g in a Fuchsian group �R, which
uniformizes R on the unit disk �. The hyperbolic length ‘ðcÞ of c is given by

‘ðcÞ ¼ j log �gj,

where �g is the multiplier of g.
Every K-quasiconformal mapping ’ from a hyperbolic Riemann surface R to

another S is lifted to a K-quasiconformal mapping � : � ! � so that �S : ¼
��R�

�1 is a Fuchsian group uniformizing S. Then � � g ���1 determines the geodesic
’�ðcÞ. Hence, the inequality (1.1) is regarded as a variation of the multipliers of hyper-
bolic transformations, via a K-quasiconformal mapping �. From this point of view, we
generalize Wolpert’s formula as follows;

THEOREM 1.3 Let g be a loxodromic Möbius transformation with the multiplier �g
and � : ĈC ! ĈC a K-quasiconformal mapping. Suppose that g� ¼ � � g ���1 is a
Möbius transformation with the multiplier �g� . Then, an inequality

ðK þ 1Þj log �g � log �g� j � ðK � 1Þj log �g þ log �g� j ð1:6Þ

holds, where a branch of log �g� is taken as 0 � j arg �g � arg �g� j < �.

Remark 1.1
(1) If g is loxodromic and g� is a Möbius transformation, then g� is also loxodromic.
(2) When both g and g� are hyperbolic, it is easy to see that the inequality (1.6) means

Wolpert’s formula (1.1).

2. Proof of Theorems 1.1

Proof If c1 \ c2 6¼ 6 0, then ’�ðc1Þ \ ’�ðc2Þ 6¼ 6 0 and we have nothing to prove. Hence,
we assume c1 \ c2 ¼ 6 0.

Let �R be a Fuchsian group acting on the unit disk � with R ¼ �=�R and let
� : � ! � be a lift of ’ to the universal covering � of R. Then �S :¼ ��R�

�1 is
also a Fuchsian group uniformizing S. We denote by �R : � ! R (resp. �S : � ! S)
the canonical projection onto R (resp. S). There exists geodesics L1,L2 on � such
that �RðLjÞ ¼ cj ð j ¼ 1, 2Þ and

d�ðL1,L2Þ ¼ dRðc1, c2Þ:

The hyperbolic length and quasiconformal mappings 125
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Take geodesics ½�ðL1Þ� and ½�ðL2Þ� on � with the same end points as �ðL1Þ and �ðL2Þ,
respectively.

If dRðc1, c2Þ ¼ 0, then d�ðL1,L2Þ ¼ 0 and L1,L2 have an end point in common.
Therefore, �ðL1Þ,�ðL2Þ also have an end point in common, and we obtain dSð’�ðc1Þ,
’�ðc2ÞÞ ¼ 0.

When dRðc1, c2Þ > 0, we may assume that L1 lies on the imaginary axis and
L2 \ @� ¼ f�,�g for some � with Re � > 0. Let � > 0 denote the intersection of L2

and the real axis in �. Then

dRðc1, c2Þ ¼ d�ðL1,L2Þ ¼ log
1þ �

1� �
:

We may also assume that � fixes �
ffiffiffiffiffiffiffi
�1

p
and 1. Then we show that the mapping

� is Hölder continuous as follows.

LEMMA 2.1 There exists a constant AK depending only on K such that for every
z1, z2 2 �

A�1
K jz1 � z2j

K � j�ðz1Þ ��ðz2Þj � AK jz1 � z2j
1=K : ð2:1Þ

Proof of Lemma 2.1 Let FK denote the family of K-quasiconformal self-mappings
of � fixing �

ffiffiffiffiffiffiffi
�1

p
and 1. Since the family FK is normal and compact (cf. [4]), we

verify that there exists a constant xðKÞ depending only on K , such that

jhð0Þj � xðKÞ < 1

for any h 2 FK.
Next, consider the set MK of Möbius transformations g fixing � with

jg�1ð0Þj � xðKÞ:

It is easily seen that there exists a constant BK depending only on K such that for every
z1, z2 2 � and for every g 2 MK,

BK jgðz1Þ � gðz2Þj � jz1 � z2j: ð2:2Þ

Now, take g 2 MK for each h 2 FK so that g � hð0Þ ¼ 0. Since g � h is still a K-quasi-
conformal mapping, from Mori’s theorem (cf. [1]) we have

jg � hðz1Þ � g � hðz2Þj � 16jz1 � z2j
1=K ð2:3Þ

Hence, from (2.2) and (2.3) we conclude that

jhðz1Þ � hðz2Þj � 16BK jz1 � z2j
1=K :

Since �,��1 2 FK, we complete the proof of the lemma. g
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By using Lemma 2.1 for z1 ¼ �
ffiffiffiffiffiffiffi
�1

p
and z2 ¼ �, ���, we have

A�1
K j

ffiffiffiffiffiffiffi
�1

p
� �jK � j

ffiffiffiffiffiffiffi
�1

p
��ð�Þj

A�1
K j

ffiffiffiffiffiffiffi
�1

p
� �jK � j

ffiffiffiffiffiffiffi
�1

p
þ�ð ���Þj:

Let a 2 @� be the point satisfying Re a > 0 and

A�1
K j

ffiffiffiffiffiffiffi
�1

p
� �jK ¼ j

ffiffiffiffiffiffiffi
�1

p
� aj: ð2:4Þ

Let L(a) denote the geodesic on � with end points a and �aa. Then from the above
inequalities, we see that

log
1þ b

1� b
¼ d�ð½�ðL1Þ�,LðaÞÞ � d�ð½�ðL1Þ�, ½�ðL2Þ�Þ,

where b is the intersection of L(a) and the real axis in �. The distance
d�ð½�ðL1Þ�, ½�ðL2Þ�Þ is not equal to dSð’�ðc1Þ, ’�ðc2ÞÞ in general. However, we may
show the following.

LEMMA 2.2

log
1þ b

1� b
� dSð’�ðc1Þ, ’�ðc2ÞÞ:

Proof of Lemma 2.2 There exists a geodesic L0
2 in �, such that �RðL

0
2Þ ¼ c2 and

d�ð½�ðL1Þ�, ½�ðL0
2Þ�Þ ¼ dSð’�ðc1Þ, ’�ðc2ÞÞ. By taking a conjugation of �R, if it is

necessary, we may assume that L1 \ @� ¼ f�
ffiffiffiffiffiffiffi
�1

p
,

ffiffiffiffiffiffiffi
�1

p
g and L0

2 \ @� ¼ f�0,�0g for
some �0 with Re �0 > 0. Since d�ðL1,L2Þ � d�ðL1,L

0
2Þ, we verify that

j
ffiffiffiffiffiffiffi
�1

p
� �j � j

ffiffiffiffiffiffiffi
�1

p
� �0j:

Therefore, by the same argument as above, we have

log
1þ b

1� b
� d�ð½�ðL1Þ�, ½�ðL0

2Þ�Þ

as desired. g

Now, we put

�ð�Þ ¼ �=2� arg� 2 ð0,�=2Þ

�ðaÞ ¼ �=2� arg a 2 ð0,�=2Þ:

Then

j
ffiffiffiffiffiffiffi
�1

p
� �j ¼ 2 sin

�ð�Þ

2

j
ffiffiffiffiffiffiffi
�1

p
� aj ¼ 2 sin

�ðaÞ

2
:

Hence, from (2.4) we have

sin
�ðaÞ

2
¼ 2K�1A�1

K sin
�ð�Þ

2
: ð2:5Þ
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On the other hand, we see that

� ¼ tan
�ð�Þ

2

b ¼ tan
�ðaÞ

2
:

By using (2.5) and the Taylor expansion;

log
1þ x

1� x
¼ 2 xþ

x3

3
þ
x5

5
þ � � �

� �
ðjxj < 1Þ,

we have

dSð’�ðc1Þ, ’�ðc2ÞÞ � log
1þ b

1� b
� 2b

¼ 2 tan
�ðaÞ

2
� 2 sin

�ðaÞ

2

¼ 2KA�1
K sinK

�ð�Þ

2

� 2K
ffiffiffi
2

p
A�1

K tanK
�ð�Þ

2
¼ 2K

ffiffiffi
2

p
A�1

K �K :

Since dRðc1, c2Þ ¼ dDðL1,L2Þ � M, there exists a constant CMð< 1Þ depending only
on M such that 0 � � < CM < 1. Therefore, we conclude that

dSð’�ðc1Þ, ’�ðc2ÞÞ � 2K
ffiffiffi
2

p
A�1

K �K

� A�1
K ,M log

1þ �

1� �

� �K

¼ A�1
K ,MdRðc1, c2Þ

K

for some AK,M .
By using Lemma 2.1 or Proposition 1.1, we see that there exists a constant DM

depending only on M, such that

dSð’�ðc1Þ, ’�ðc2ÞÞ � DM :

Hence, we can apply the same argument as above for ’�1 and we obtain

dRðc1, c2Þ � A�1
K,MdSð’�ðc1Þ, ’�ðc2ÞÞ

K :

The proof of Theorem 1.1 is completed. g
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3. Proofs of Theorems 1.2 and 1.3

Since Theorems 1.2 and 1.3 are shown by the same method, we will prove them in the
same section.

Proof of Theorem 1.2 It is known that a K-quasiconformal self-mapping � of H3 is
extended to @H3 as a K-quasiconformal mapping (cf. [6]). We use the same letter �
for the extended mapping. We may assume that � is normalized, that is, it fixes 0, 1
and 1.

Let � be the Beltrami coefficient of �. Then

K ¼
1þ k�k1
1� k�k1

:

For each t 2 �, put

�t ¼ t �
�

k�k1
:

Let wt be the quasiconformal automorphism of ĈC fixing 0, 1,1 with the Beltrami
coefficient �t. Then, w0 ¼ id and wk�k1 ¼ �.

We may assume that L1 is the geodesic connecting 0 and 1, and L2 connects 1 and
some z0 2 Cnf0, 1g. Let L2ðtÞ denote the geodesic connecting 1 and zt :¼ wtðz0Þ for
t 2 �. Then, there exists a Möbius transformation gt and �t 2 C n f�1, 0g, such that
gtð0Þ ¼ �1, var gtð1Þ ¼ 1, var gtð1Þ ¼ ��t and gtðztÞ ¼ �t. Since every Möbius trans-
formation acts isometrically on H

3, we verify that for each t 2 �

d
H

3ðL1,L2ðtÞÞ ¼ log j�tj
�� ��: ð3:1Þ

It follows from a theorem of Ahlfors–Bers [2] that zt ¼ wtðz0Þ depends holomorphi-
cally on t 2 �. Thus, �t also depends holomorphically on t. Here, we note the following
theorem of Bohr–Landau.

PROPOSITION 3.1 ([5] Theorem VI.19) Let f ðzÞ ¼ a0 þ a1zþ � � � be holomorphic and
f ðzÞ 6¼ 0, 1 in �. Then

jf ðzÞj � exp
A logðja0j þ 2Þ

1� r

� �
, jzj ¼ r < 1

where A> 0 is a constant.

Since �t 6¼ �1, 0, we may apply Proposition 3.1 to f ðtÞ ¼ �2
t and we have

j�k�k1j
2 � exp

A logðj�0j
2 þ 2Þ

1� k�k1

� �
: ð3:2Þ

From (3.1), (3.2), we obtain

d
H

3 ð½�ðL1Þ�, ½�ðL2Þ�Þ � AKðd
H

3 ðL1,L2Þ þ log 3Þ:
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Thus, we complete the proof of Theorem 1.2. g

Remark 3.1 Applying the same argument as above to hyperbolic distances of
geodesics on H, we obtain an estimate which is similar to (1.2).
Proof of Theorem 1.3 Let � be the Beltrami coefficient of �. Since g� ¼ � � g ���1 is
a Möbius transformation, we see that

�ðgðzÞÞ
g0ðzÞ

g0ðzÞ
¼ �ðzÞ ð3:3Þ

holds a.e. on ĈC. For each t 2 �, put

�t ¼ t �
�

k�k1
:

Let wt be the quasiconformal automorphism of ĈC fixing 0, 1,1 with the Beltrami coef-
ficient �t. Since �t satisfies the same equation as (3.3), we see that gt ¼ wt � g � w

�1
t is

still a loxodromic Möbius transformation (Remark 1.2 (1)). It follows from a theorem
of Ahlfors–Bers [2] that wt depends holomorphically on t 2 �. Thus, gt also depends
holomorphically on t 2 � and g0 ¼ g since w0 ¼ id.

We may consider the multiplier of a loxodromic transformation as the derivative at
the attractive fixed point of the transformation. Hence, the multiplier �ðtÞ of gt is
a holomorphic function on � and �ðtÞ 2 �� ¼ fz 2 C j 0 < jzj < 1g for every t 2 �.
Furthermore, since there exists a Möbius transformation � such that � ¼ � � wk�k1 ,
we verify that �ðk�k1Þ ¼ �g� . Therefore, it follows from the Schwarz lemma that

d�� ð�, �g�Þ � d�ð0, k�k1Þ ¼ log
1þ k�k1
1� k�k1

: ð3:4Þ

By using the universal covering map H 3 z� exp
ffiffiffiffiffiffiffi
�1

p
z 2 �� of ��, we have

d�� ð�, �g�Þ ¼ dHð�
ffiffiffiffiffiffiffi
�1

p
log �, �

ffiffiffiffiffiffiffi
�1

p
log �g�Þ: ð3:5Þ

Hence, we obtain (1.6) from (3.4) and (3.5). g
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