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Riemann mappings of invariant components of Kleinian groups

Hiroshige Shiga

Abstract

In this paper, we shall investigate complex analytic properties of Riemann mappings of simply
connected invariant components of Kleinian groups. In particular, we consider the growth of the
derivatives of Riemann mappings to understand Kleinian groups that are quasi-Fuchsian groups,
regular b-groups and Kleinian groups with bounded geometry.

1. Introduction and results

Let G be a finitely generated Kleinian group, namely G is a finitely generated discrete subgroup
of PSL(2, C). Then, G acts properly discontinuously on the hyperbolic 3-space H

3 and we have
a hyperbolic 3-manifold (or orbifold) NG = H

3/G.
Every g ∈ PSL(2, C) is regarded as a Möbius transformation on ∂H

3 = Ĉ. Hence, G acts on
the Riemann sphere Ĉ. The region of discontinuity ΩG of G is the maximal open subset of
Ĉ where the action of G is properly discontinuous. Throughout this paper, we assume that
ΩG �= ∅. In general, ΩG is an open set with fractal boundary ΛG, the limit set of G.

In some cases, properties of ΩG, G and NG may have deep interaction. For example, if ΩG

is a union of two topological disks U1 and U2, both of which are invariant under the action of
G, then G is a quasi-Fuchsian group and NG ∪ (ΩG/G) is homeomorphic to [0, 1] × S, where
S = U1/G. Conversely, if NG ∪ (ΩG/G) is homeomorphic to [0, 1] × S, then ΩG is a union of
two quasi-disks (cf. [10]). In this paper, we consider such interactions between them from the
view of geometric function theory.

We state our main results here. We explain the terminology of the results in Section 2. We
begin with the following result by McMullen [12].

Proposition 1.1. Let G be a finitely generated non-elementary Kleinian group with an
invariant component Ω0; then the following conditions are equivalent.

(1) The invariant component Ω0 is a John domain.
(2) The Kleinian group G is geometrically finite and every parabolic element stabilizes a

round disk in Ω0.
Furthermore, if Ω0 is simply connected, then Ω0 is a John domain if and only if it is a quasi-disk.
Hence, G is a quasi-Fuchsian group.

At first, we note that the above result is improved as follows.

Theorem 1.1. Let G be a finitely generated non-elementary Kleinian group with an
invariant component Ω0. Then, the following conditions are equivalent:

(1) Ω0 is a Hölder domain;
(2) Ω0 is a John domain;
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(3) G is geometrically finite and every parabolic element stabilizes a round disk in Ω0.
Furthermore, if Ω0 is simply connected, then Ω0 is a Hölder domain if and only if it is a
quasi-disk. Hence, G is a quasi-Fuchsian group.

Remark 1.1. Every John domain is a Hölder domain, but the converse is not true in
general.

Next, we assume that Ω0 is simply connected but the Kleinian group G is not quasi-Fuchsian.
The Riemann mapping theorem guarantees us the existence of a conformal mapping ϕ of the
unit disk D onto Ω0. Then, we get a result on the growth of the derivative of the conformal
mapping ϕ when G is geometrically finite, namely a regular b-group.

Theorem 1.2. Let G be a regular b-group having the simply connected invariant
component Ω0 with ∂Ω0 ⊂ C and let ϕ be a conformal mapping from the unit disk D onto Ω0.
Then there exists a constant A > 0, depending only on ϕ, such that

|ϕ′(z)| � A

(1 − |z|)| log (1 − |z|)|2 (1.1)

holds for any z near ∂D.

Remark 1.2. (1) As for a conformal mapping ϕ from D onto a quasi-disk, a much stronger
estimate than (1.1),

|ϕ′(z)| � A

(1 − |z|)κ
,

holds for any z ∈ D, where A > 0 and 0 < κ < 1 are constants independent of z (cf. [17]). We
also note a weaker inequality,

|ϕ′(z)| � A

(1 − |z|)3 ,

which is obtained by the Koebe distortion theorem; this is an estimate for arbitrary conformal
mappings on the unit disk. Moreover, it is a sharp estimate because the Koebe function k(z) =
z(1 − z)−2 attains the equality. Thus, the above theorem implies that the estimate (1.1) is
worse than that of a quasi-disk but much better than a general one.

(2) Gehring and Pommerenke [9] showed that if ‖Sϕ‖ � 2, then ϕ satisfies the same
inequality as that of Theorem 1.2, where Sϕ is the Shwarzian derivative of ϕ and

‖Sϕ‖ = sup
z∈D

(1 − |z|)2|Sϕ(z)|.

In Theorem 1.2, the conformal mapping ϕ : D → Ω0 represents a boundary point of the
Teichmüller space of a Riemann surface of finite type, with ‖Sϕ‖ > 2. Hence, Theorem 1.2
says that our conformal mapping ϕ still has the same growth of the derivative as that of
Gehring–Pommerenke’s theorem when ‖Sϕ‖ > 2.

Corollary 1.1. Let G be a regular b-group with the simply connected invariant
component Ω0. Then the limit set of G is locally connected. Furthermore, the conformal
mapping ϕ has a continuous extension to ∂D, which is denoted by the same letter ϕ, and
if ΛG ⊂ C, then an inequality

|ϕ(eiθ1) − ϕ(eiθ2)| � A

| log (θ1 − θ2)|
(1.2)

holds for any θ1, θ2 ∈ [0, 2π], where A > 0 is a constant independent of θ1 and θ2.
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Remark 1.3. (1) Abikoff [1] shows that the limit set of G is locally connected if G is a
regular b-group. However, his proof is different from ours. Also, he does not give any estimate
for a Riemann mapping.

(2) Anderson and Maskit [2] give a condition of the local connectivity of the limit sets in
terms of a structure subgroup of the Kleinian group. McMullen [13] shows that the limit set
of a once punctured torus group is locally connected.

The exponent 2 of | log (1 − |z|)| in (1.1) is crucial. Actually, we may show the following.

Theorem 1.3. Let G be a finitely generated Kleinian group having a simply connected
invariant component Ω0 with ∂Ω0 ⊂ C and let ϕ be a conformal mapping of the unit disk D
onto Ω0. Suppose that Ω0/G has no punctures. Then, the following conditions are equivalent.

(1) There exist constants α > 0, A > 0 and a point ζ0 ∈ Ω0 such that, for any z ∈ ϕ−1(Gζ0) \
ϕ−1(∞),

|ϕ′(z)| � A

(1 − |z|)| log (1 − |z|)|2+α
(1.3)

holds.
(2) The Kleinian group G is a quasi-Fuchsian group.
(3) There exist constants A > 0 and 0 < κ < 1 such that

|ϕ′(z)| � A

(1 − |z|)κ
(1.4)

holds for any z near ∂D.

Remark 1.4. This theorem implies that a much weaker estimate (1.3) gives a stronger one
(1.4) if the domain is invariant under the action of G.

Finally, we shall consider the regularity of ϕ when G is a Kleinian group with bounded
geometry.

Theorem 1.4. Let G be a finitely generated Kleinian group having a simply connected
invariant component Ω0 with ∂Ω0 ⊂ C and let ϕ be a conformal mapping of the unit disk D
onto Ω0. Suppose that G has bounded geometry. Then, there exist constants A > 0 and α > 0
such that

|ϕ′(z)| � A

(1 − |z|)| log (1 − |z|)|α (1.5)

holds for any z near ∂D.

Acknowledgement. The author thanks the anonymous referee of an earlier version of this
paper for giving him an idea of the proof of Theorem 1.1 that is much simpler than the
original one.

2. Notation and terminology

2.1. John and Hölder domains

Definition 2.1 (cf. [16]). A domain D in Ĉ is called a John domain if there is a point
x0 ∈ D and a constant c > 0 such that, for any x ∈ D, there exists a path p : [0, 1] → D from
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x0 to x such that
d(p(t), ∂D) > cd(p(t), x) (2.1)

for all t ∈ [0, 1], where d(·, ·) stands for the spherical distance.

Definition 2.2. A domain D in Ĉ is called a Hölder domain if there exist a point x0 ∈ D
and constants c1, c2 > 0 such that

kD(x0, x) � c1 log
δD(x0)
δD(x)

+ c2, (2.2)

for any x ∈ D, where δD(x) = d(x, ∂D) and kD(·, ·) is the quasi-hyperbolic distance on D, that
is, we have

kD(x1, x2) = inf
γ

∫
γ

ds(x)
δD(x)

,

where the infimum is taken over all curves γ joining x1 and x2 in D, and ds is the spherical
metric.

Remark 2.1. It is easily seen that a John domain is a Hölder domain; however, the converse
is not true [18].

Remark 2.2. In the definition of Hölder domains, usually the Euclidean distance is used
instead of the spherical distance. Becker and Pommerenke [4] show that if such a Hölder domain
is simply connected, then it is characterized by the Hölder continuity of the Riemann mapping.
Also, Smith and Stegenga [19, Corollary 1] show that such Hölder domains are bounded. Thus,
any Hölder domain defined by using the Euclidean distance satisfies (2.2).

2.2. Kleinian groups and hyperbolic geometry

Here, we shall explain some fundamental facts on Kleinian groups and hyperbolic geometry.
For more details, see [11], for example.

Let G be a Kleinian group; we denote by ΩG and ΛG the region of discontinuity and the
limit set of G, respectively. We call a Kleinian group non-elementary if the limit set contains
more than two points. From now on, we assume that a Kleinian group is non-elementary. A
connected component of ΩG is called a component of G. A component Ω of G is called invariant
if GΩ = Ω.

By the Poincaré extension, any g ∈ G is regarded as an isometry of the upper half-plane
H

3 = {(x, y, t) ∈ R
3 | t > 0} with the hyperbolic metric

ds2 =
dx2 + dy2 + dt2

t2
.

It is known that G acts properly discontinuously on H
3. Hence, we have a hyperbolic 3-manifold

(orbifold) NG = H
3/G. The convex hull C(G) of G is the minimal convex set in H

3 that contains
all geodesics connecting two points of ΛG.

Now, we define some classes of Kleinian groups.

Definition 2.3. A Kleinian group G is called geometrically finite if the quotient of
ε-neighborhood Cε(G) of C(G) via G has finite volume for any ε > 0. A geometrically finite
Kleinian group G is called convex co-compact if it contains no parabolic transformations. A
geometrically finite Kleinian group is called a regular b-group if it has only one simply connected
invariant component.
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Definition 2.4. A Kleinian group G is said to have bounded geometry if there exists an
ε > 0 such that the injectivity radius with respect to the hyperbolic metric at any point of NG

is greater than ε.

Finally in this section, we give a mapping that plays an important role in the proof of
our theorems. For any point z ∈ ΩG and for any ε � 0, we define the nearest point projection
Πε(z) ∈ ∂Cε(G), where we set C0(G) := C(G). Namely, Πε(z) is the point in H

3 where a horoball
inflated at z first touches Cε(G). From the construction, it is easily seen that

Πε(g(z)) = g(Πε(z)), (2.3)

for every z ∈ ΩG and for every g ∈ G.
Here, we present an important theorem on the nearest point projection (cf. [7, 14]).

Theorem 2.1. For ε > 0, the map Πε is (cosh ε)-quasi-conformal and (4 cosh ε)-Lipschitz,
and the inverse Π−1

ε : ∂Cε(G) → Ω0 is (1/ sinh ε)-Lipschitz.

3. Proof of Theorem 1.1

Suppose that Ω0 is a Hölder domain. It is known that the Hausdorff dimension of the boundary
of a Hölder domain is less than 2. Therefore, from a theorem of Bishop and Jones [6], we see
that G is geometrically finite. Furthermore, from a theorem of Beardon and Maskit [3] on
geometrically finite Kleinian groups we may find a round disk satisfying the condition in (3).

Indeed, let p0 be a parabolic fixed point on ΛG and let Gp0 be the stabilized subgroup of p0

in G. We find that Gp0 is either cyclic or rank 2.
If Gp0 is cyclic, then there exist two round disks U1 and U2 in ΩG such that ∂U1 ∩ ∂U2 = {p0}

and Gp0(Uj) = Uj (j = 1, 2) (see [3]). If U1 or U2 is contained in Ω0, then the condition (3) is
satisfied. If U1 ∪ U2 is not contained in Ω0, then Ω0 lies in Ĉ \ (U1 ∪ U2). Namely, Ω0 is in the
region between two tangent disks. Then it is easy to find points in Ω0 that violate (2.2), which
is a contradiction.

Suppose that Gp0 is rank 2. We may assume that p0 = ∞ and Gp0 is generated by g1 : z �→
z + 1 and g2 : z �→ z + c (c /∈ R). Since Ω0 is invariant under the action of Gp0 , we see that
zn = gn

1 (z) (z ∈ Ω0;n = 1, 2, . . .) does not satisfy (2.2).
Thus, we have shown that (1) implies (3). Other implications follow, by Proposition 1.1.
When Ω0 is simply connected, it follows from a classification of Kleinian groups that G is

either a quasi-Fuchsian group or a regular b-group. We may assume that Ω0 is a bounded
domain because both a quasi-Fuchsian group and a regular b-group have a component other
than Ω0.

If G is a regular b-group, then it contains an accidental parabolic transformation, say g0.
Therefore, we may take a simple closed curve c passing through the fixed point p0 of g0 such
that g0(c) = c, c \ {p0} ⊂ Ω0 and each component of Ĉ \ c contains a point of ΛG. Thus, the
limit set ΛG, which is the boundary of Ω0, is tangent at p0. Hence, we may also see that the
condition (2.2) does not hold and we have a contradiction.

4. Proof of Theorem 1.2 and Corollary 1.1

First, we shall prove Theorem 1.2. Let G be a regular b-group with the simply connected
invariant component Ω0. Since G has a component other than Ω0, we may assume that Ω0 is
a bounded domain. Thus, we may use the Euclidean distance to measure δΩ0(·) instead of the
spherical distance.
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We use the ball model B3 = {x ∈ R
3 | |x| < 1} as the hyperbolic 3-space H

3. We may assume
that (0, 0, 0) := 0 ∈ ∂C(G), 0 ∈ Ω0 and Π(0) = 0, where Π(z) := Π0(z)(z ∈ Ω0). Hence, we have

Π(g(0)) = g(Π(0)) = g(0) (4.1)

from (2.3).
First we observe the following fact, which is seen in the proof of [5, Lemma 8]. For the

convenience of the reader, we shall give a proof of this fact.

Lemma 4.1. For any ε � 0, there exists a constant A = Aε,G > 1 depending on G and ε
such that

A−1δΩ0(z) � 1 − |Πε(z)| � AδΩ0(z) (4.2)

for every z ∈ Ω0.

Proof. For ζ ∈ ΛG, we denote by Lζ the line segment connecting 0 ∈ B3 and ζ. Since C(G)
is closed and convex, we see that Lζ ⊂ C(G) ⊂ Cε(G).

For z ∈ Ω0, we take ζ0 ∈ ΛG such that

d(z, ζ0) = δΩ0(z).

For ε � 0, let Hε
z be the horoball at z defining Πε(z) and let Rε

z be the radius of Hε
z . Then,

Lζ0 ∩ IntHε
z = ∅. Therefore, we have

Rε
z � A1δΩ0(z)

for some constant A1 > 0. Hence, we have

1 − |Πε(z)| � 2Rε
z � 2A1δΩ0(z). (4.3)

On the other hand, let B0
z denote an open hemi-ball in B3 centered at z with radius δΩ0(z).

Then, ∂C(G) lies outside of B0
z . In particular Π0(z) lies outside of B0

z .
Indeed, if p ∈ ∂C(G), then there exists a geodesic L in B3 such that L � p and L ⊂ C(G).

The end points of L are in ΛG. Thus, the geodesic L lies outside of B0
z and so does p.

For ε > 0, take another hemi-ball Bε
z centered at z such that Bε

z ⊂ B0
z and dB3(∂B0

z , ∂Bε
z) =

ε. Then, ∂Cε(G) lies outside of Bε
z because ∂C(G) lies outside of B0

z . Also, it is not hard to
see that there exists a constant c > 0 independent of z ∈ Ω0(G) such that the radius of Bε

z is
greater than cδΩ0(z).

Therefore, IntHε
z does not intersect Lζ0 and lies beyond the hemi-ball Bε

z . From this
observation, we have

1 − |Πε(z)| � A2δΩ0(z), (4.4)

for some constant A2 > 0 not depending on z ∈ Ω0. Hence, we obtain the desired inequality
(4.2).

Now, we consider a finitely generated Kleinian group H and a finite generating set Σ
of H and we fix it. For each h ∈ H, we denote by |h| the minimal word length of h with
respect to Σ.

We define

α(H) = sup
{

k | sup
h∈H

|h|k
exp{dB3(0, h(0))} < ∞

}
, (4.5)

where dB3(·, ·) is the hyperbolic distance on B3. It is easily seen that α(H) does not depend
on a finite generating set Σ. Then, Floyd [8] shows the following.
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Proposition 4.1. Let H be a geometrically finite Kleinian group. Then, α(H) � 2.

Since G is geometrically finite, it follows from Proposition 4.1 that there exists a constant
A1 > 0 such that

2 log |g| − A1 � dB3(0, g(0)) (4.6)

for any g ∈ G.
Combining (4.2) and (4.6) together with (4.1), we see that an inequality

|g|2 � A2δΩ0(g(0))−1 (4.7)

holds for some constant A2 > 0 not depending on g ∈ G. On the other hand, it is not hard to
see that

dΩ0(0, g(0)) � A3|g|

holds for some constant A3 > 0 independent of g ∈ G, where dΩ0(·, ·) is the hyperbolic distance
in Ω0. Hence we have

dΩ0(0, g(0))2 � A4δΩ0(g(0))−1. (4.8)

Here we claim that in (4.8) g(0) is replaced by any z in Ω0.

Lemma 4.2. There exists a constant A5 > 0 such that

dΩ0(0, z)2 � A5δΩ0(z)−1 (4.9)

holds for any z ∈ Ω0.

Proof. First we assume that Ω0/G is compact. Then we may take a compact fundamental
region ω ⊂ Ω0 for G in Ω0 and we consider ω̃ = Π(ω). We may assume that ω contains the
origin.

Since the hyperbolic diameter |ω̃| of ω̃ is finite, we obtain

dB3(0, g(0)) � 2|ω̃| + dB3(p, g(p))

for any p ∈ ω̃ and for any g ∈ G. Hence, from (4.6) we may find a constant B such that

2 log |g| − B � dB3(p, g(p))

holds for any p ∈ ω̃ and for any g ∈ G. Since the constant B does not depend on p ∈ ω̃, by the
same proof as that of (4.8) we may take a constant A5 > 0 such that

dΩ0(0, g(w))2 � A5δΩ0(g(w))−1 (4.10)

holds for any w ∈ ω and for any g ∈ G. Since Ω0 =
⋃

g∈G g(ω), we obtain the desired inequality.
If Ω0/G is non-compact, it has only finitely many punctures. For simplicity, we assume that

Ω0/G has only one puncture. Let ζ ∈ ∂Ω0 be a fixed point of a parabolic transformation g0 ∈ G
which represents the puncture of Ω0/G. We may take g0 as a generator of the stabilizer of ζ
in G.

There exists a horodisk Dζ ⊂ Ω0 such that g0(Dζ) = Dζ and ∂Dζ ∩ ΛG = {ζ}. We may take
Dζ so small that g(Dζ) ∩ Dζ = ∅ for any g ∈ G\ < g0 >. We also take a horodisk D′

ζ in Dζ

such that the radius of D′
ζ is one-third of that of Dζ , g0(D′

ζ) = D′
ζ and ∂D′

ζ ∩ ΛG = {ζ}. Let
ω ⊂ Ω0 be a fundamental region for G in Ω0. We may take ω so natural that ω0 := ω \ (D′

ζ ∩ ω)
is compact. We may also assume that D′

ζ ∩ ω is bounded by two smooth arcs in D′
ζ , say α1

and α2, such that g0(α1) = α2 and both arcs end at ζ non-tangentially in D′
ζ .
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Since ω0 is compact, it follows from the above argument that there exists a constant A0 > 0
such that, for any w ∈

⋃
g∈G g(ω0), we find that

dΩ0(0, g(w))2 � A0δΩ0(g(w))−1

holds.
Let a be the center of Dζ . We may assume that the line segment [a, ζ) is contained in ω.

Consider Iζ := [a, ζ) ∩ D′
ζ . For any z ∈ Iζ , we have δΩ0(z) � δΩ0(a). Since Dζ ⊂ Ω0, we have

dΩ0(0, z) � dΩ0(0, a) + dΩ0(a, z) � dΩ0(0, a) + dDζ
(a, z).

Obviously, dDζ
(a, z) � −3 log |z − ζ| = −3 log δΩ0(z) for z ∈ Iζ . On the other hand,

dΩ0(0, a)2 � A0δΩ0(a)−1 because a ∈ ω0.
Combining these inequalities, we see that there exists a constant A′

0 > 0 such that

dΩ0(0, z)2 � A′
0δΩ0(z)−1 (4.11)

holds for any z ∈ Iζ .
Next, we take any point z in D′

ζ . Let D(z) ⊂ D′
ζ be a horodisk such that ∂D(z) � z, ζ.

Consider b = ∂D(z) ∩ Iζ and take a horodisk D0(z) centered at b that touches ΛG at ζ. Then,
we see that there exists an absolute constant C > 0 not depending on z such that

|z − ζ| � CδD0(z)(z)1/2.

The hyperbolic distance dD0(z)(b, z) in D0(z) is not less than dΩ0(b, z) and it is comparable to
− log δD0(z)(z). Hence, we have

δΩ0(z) � |z − ζ| � C ′ exp
(
−

dD0(z)(b, z)
2

)
� C ′ exp

(
−dΩ0(b, z)

2

)

and

dΩ0(b, z)2 � C ′

δΩ0(z)
for some constant C ′ > 0.

Since b ∈ Iζ , we have

dΩ0(0, b)2 � A′
0δΩ0(b)

−1

from the previous argument. Noting that δΩ0(z) � C ′′δΩ0(b) for some constant C ′′, we obtain

dΩ0(0, z)2 � A5δΩ0(z)−1 (4.12)

for any z ∈ D′
ζ , where the constant A5 does not depend on z.

The argument above uses a Euclidean geometric model. Thus, the inequality (4.12) holds
for any z ∈ g(D′

ζ) (g ∈ G) with the same constant A5. Hence, the proof is completed.

Now, we proceed to the proof of the theorem. Let ϕ : D → Ω0 be a conformal mapping from
the unit disk D onto Ω0 with ϕ(0) = 0. It follows from Lemma 4.2 that, for any z ∈ D, we
have that

dD(0, z)2 = dΩ0(0, ϕ(z))2 � A5δΩ0(ϕ(z))−1 (4.13)

holds. Here, we use the Koebe distortion theorem, that is,
1

1 − |z|2 � |ϕ′(z)|
δΩ0(ϕ(z))

� 4
1 − |z|2 . (4.14)

Noting that dD(0, |z|) = log (1 + |z|)(1 − |z|), from (4.13) and (4.14), we have

|ϕ′(z)| � A

(1 − |z|)| log (1 − |z|)|2 .

Thus, the proof of the theorem is completed.
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Next, we shall prove Corollary 1.1. For any r ∈ [0, 1) and θ ∈ [0, 2π], we have

ϕ(reiθ) =
∫ r

0

ϕ′(teiθ) dt.

Hence, from (1.1), we have

|ϕ(Reiθ) − ϕ(reiθ)| �
∫R

r

|ϕ′(teiθ)| dt

� A

∫R

r

1
1 − t

· 1
(log (1 − t))2

dt

= A

(
1

log (1 − R)
− 1

log (1 − r)

)
.

Therefore, we see that the radial limit ϕ(eiθ) := limr→1 ϕ(reiθ) of ϕ exists at eiθ ∈ ∂D. Also,
we verify that the convergence is uniform on ∂D. Hence, the conformal mapping ϕ has a
continuous extension on D ∪ ∂D and it implies that ϕ(∂D) = ΛG is locally connected.

To see the continuity of ϕ on ∂D, we take a curve Γ = Γ1 + Γ2 + Γ3, where Γ1 = {(1 − t)eiθ1

| 0 � t � 1 − ρ}, Γ2 = {ρeiθ | θ1 � θ � θ2} and Γ3 = {teiθ2 | ρ � t � 1} for some ρ < 1. We may
assume that 0 < θ2 − θ1 < 1. Then, Γ is a curve from eiθ1 to eiθ2 . Since ϕ has a continuous
extension on D ∪ ∂D, we have

ϕ(eiθ2) − ϕ(eiθ1) =
∫
Γ

ϕ′(z) dz.

From (1.1), we obtain ∣∣∣∣∣
∫
Γj

ϕ′(z) dz

∣∣∣∣∣ � −A

log (1 − ρ)
(j = 1, 3)

and ∣∣∣∣
∫
Γ2

ϕ′(z) dz

∣∣∣∣ � A(θ2 − θ1)
(1 − ρ)(log (1 − ρ))2

.

Thus, we have

|ϕ(eiθ2) − ϕ(eiθ1)| � −2A

log (1 − ρ)
+

A(θ2 − θ1)
(1 − ρ)(log (1 − ρ))2

.

Here, we take ρ < 1 as 1 − ρ = θ2 − θ1 > 0. Then, for some constant A′ > 0, we have

|ϕ(eiθ2) − ϕ(eiθ1)| � A′

| log (θ2 − θ1)|
,

as desired.

5. Proof of Theorem 1.3

In the proof of Theorem 1.3 we use a similar argument to the one in the previous section. The
statement that (3) implies (1) is obvious. If G is a quasi-Fuchsian group, then Ω0 is a quasi-disk
and ϕ : D → Ω0 has a quasi-conformal extension to C. Thus, a theorem of geometric function
theory yields that (2) implies (3). Therefore, we will show that (1) implies (2).

Suppose that (1.3) holds for some ζ0 ∈ Ω0. Since it is supposed that ∂Ω0 = ΛG is compact,
we may use the Euclidean distance to define δΩ0(·) instead of the spherical distance. Then, from
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the Koebe distortion theorem, we have

δΩ0(ϕ(z)) � A0(1 − |z|2)|ϕ′(z)|

� AA0

| log (1 − |z|)|2+α
,

for any z ∈ ϕ−1(Gζ0). (Actually, the Koebe distortion theorem is a statement for univalent
holomorphic functions. In our case, Ω0 may contain the point at infinity and hence ϕ may have
a pole in D. Nevertheless, taking compositions of ϕ and Möbius transformations, we verify
that the above estimate holds for some A0 > 0.)

Noting that ϕ(z) = g(ζ0) for some g ∈ G, from Lemma 4.1 we see that

1 − |Π(g(ζ0))| � A′

| log (1 − |ϕ−1 ◦ g ◦ ϕ(z0)|)|2+α
,

where z0 = ϕ−1(ζ0). We may assume that Π(ζ0) = 0 ∈ B3. Hence, we have

1 − |g(0)| � A′

| log (1 − |ϕ−1 ◦ g ◦ ϕ(z0)|)|2+α
.

On the other hand, Γ := ϕ−1Gϕ is a Fuchsian group without parabolic transformation
because D/Γ = Ω0/G has no punctures. Then, it is known that the hyperbolic distance
dD(z0, γ(z0)) (γ ∈ Γ) in D is comparable to the minimum word length |γ| of γ with respect to
a system of generators of Γ (cf. [8]). Namely, there exists a constant C > 0 such that

C−1|γ| � dD(z0, γ(z0)) = log
1 + |γ(z0)|
1 − |γ(z0)|

� C|γ|

holds for any γ ∈ Γ. Since G � g �→ ϕ−1 ◦ g ◦ ϕ ∈ Γ is an isomorphism, we may consider |g| =
|γ| for g = ϕ ◦ γ ◦ ϕ−1. Noting that

dB3(0, g(0)) = log
1 + |g(0)|
1 − |g(0)| ,

we conclude that α(G) � 2 + α > 2.
Here, we use the following characterization of convex co-compact Kleinian groups which has

been recently obtained by Yamaguchi [20].

Proposition 5.1. Let G be a finitely generated non-elementary Kleinian group. Then, the
following conditions are equivalent:

(1) G is convex co-compact;
(2) α(G) > 2;
(3) α(G) = ∞.

From the proposition above, we verify that G is a convex co-compact Kleinian group with a
simply connected invariant component. Thus, it must be a quasi-Fuchsian group.

6. Proof of Theorem 1.4

In the proof of Theorem 1.4, we use model manifolds constructed by Minsky [14] for Kleinian
groups with bounded geometry. In the proof, we use letters such as A,B, . . . , a, b, . . . and
α, β, . . . for constants but the same letter may not be the same constant if it is used in a
different equation.

Let G be a finitely generated Kleinian group with bounded geometry with a simply connected
invariant component Ω0 and denote the Riemann surface Ω0/G by S. We may assume that G
is not a quasi-Fuchsian group. Therefore, G is a geometrically infinite Kleinian group or, more
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precisely, G is a totally degenerate group. That is, Ω0 = ΩG. Then, there exists an end e of
NG = B3/G such that e does not correspond to the conformal boundary Ω0/G. The end e is
called the degenerate end of NG.

From a theorem of Thurston, we may find a sequence {γi}∞i=1 of simple closed curves in S
such that their geodesic representatives in NG exit the end e and the sequence converges to a
lamination in the space of measured laminations on S. The support λe ⊂ S of the lamination
is called the ending lamination of NG.

The ending lamination λe is a geodesic lamination on S. It is known that there exists a
holomorphic quadratic differential Φe on S such that the vertical foliation Φe,v is equivalent
to λe.

Now, we construct the model manifold MG for G. The model manifold MG is topologically
S × R but it has a metric dsG called the model metric. The model metric dsG on S × {t} is
defined by

ds2
G = e|2t|dx2 + e−2tdy2 + dt2, (6.1)

where dx is the measure in the horizontal direction and dy in the vertical direction of Φe.
Note that when t = 0 the metric equals the metric induced by Φe. Hence S × {0} is identified
with S as a Riemann surfaces, and D × {0}, in the universal covering M̃G(= D × R) of MG,
is identified with the unit disk D. Then, Minsky establishes the following theorem.

Theorem 6.1 (Minsky). There exists a homeomorphism f : MG → NG such that the
mapping f and its lift f̃ : M̃G → B3 to the universal coverings are quasi-isometric.

Actually, f̃(·, t) (t � 0) are induced from natural mappings from S = D/Γ onto ∂C|t|(G),
where Cε(G) (ε � 0) is the ε-neighborhood of C(G).

Let ϕ : D → Ω0 be a Riemann map. We may assume that Ω0 � 0, that ∂C(G) � 0 and that
Π(0) = 0. Consider Γ := ϕGϕ−1. We define an isomorphism ρ : Γ → G by ρ(γ) = ϕ−1γϕ for
γ ∈ Γ. By taking a conjugation of ϕ via a Möbius transformation, we see that both f̃(·,−ε)
and Πε ◦ ϕ induce the same ρ.

Since G has bounded geometry, it contains no parabolic elements. Thus, S = Ω0/G = D/Γ
is a compact Riemann surface and we may take a fundamental region ω � 0 for Γ bounded by
finitely many geodesic arcs that are projected to simple closed curves on S.

Since ω is a convex polygon with finitely many sides, it is not hard to see that we may take
a constant θ ∈ (0, π/2) such that, for any γ ∈ Γ \ {id}, there exist a ray rγ from the origin and
a geodesic �γ containing a side eγ of γ(ω) such that eγ ∩ rγ �= ∅ and the intersection angle of
eγ and rγ is in (θ, π/2).

Let zγ be the point of eγ ∩ rγ . Since θ is independent of γ, it follows that there exists a
constant d > 0 not depending on γ such that

dD(0, zγ) � dD(0, �γ) + d. (6.2)

Now, we consider the mapping Πε : Ω0 → ∂Cε(G) defined in Section 2. Since both Πε ◦ ϕ
and f̃(·,−ε) are continuous mappings with the same isomorphism ρ for ε � 0, they must be
uniformly close to each other on D with respect to the hyperbolic metrics on D and B3. Indeed,
since ω̄ is compact, there exists a constant C > 0 such that

dB3(f̃(z,−ε),Πε ◦ ϕ(z)) � C

for any z ∈ ω̄. Therefore, for any g ∈ G, we have

dB3(f̃(g(z),−ε),Πε ◦ ϕ(g(z)) = dB3(ρ(g)(f̃(z,−ε)), ρ(g)(Πε ◦ ϕ(z)))
= dB3(f̃(z,−ε),Πε ◦ ϕ(z)) � C.
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Thus, we have ∣∣∣dB3(0, f̃(zγ ,−ε)) − dB3(0,Πε ◦ ϕ(zγ))
∣∣∣ < δ

for a given ε > 0. On the other hand, from Lemma 4.1 we have

A−1δΩ0(ϕ(zγ)) � 1 − ‖Πε ◦ ϕ(zγ)‖ � AδΩ0(ϕ(zγ))

for some constant A > 0 independent of γ ∈ Γ. Noting that dB3(0, p) = log (1 + ‖p‖)/(1 − ‖p‖),
we conclude that

A−1δΩ0(ϕ(zγ)) � 1 − ‖f̃(zγ , ε)‖ � AδΩ0(ϕ(zγ)). (6.3)

Let Φ̃e denote a lift of Φe on D and let Lγ be the |Φ̃e|-geodesic passing through zγ that has
the same end points as �γ . From the same argument as in [14, Lemma 7.3] we see that there
exist constants a, α > 0 not depending on γ such that

diamE f̃(Hγ) � ad|Φ̃e|(0, Lγ)−α, (6.4)

where diamE is the Euclidean diameter and Hγ is the component of M̃G = D × R − Lγ × R

not containing (0, 0). Noting that (zγ , 0) ∈ ∂Hγ and ∂f̃(Hγ) ∩ ∂B3 �= ∅, we have

1 − ‖f̃(zγ , 0)‖ � diamE f̃(Hγ). (6.5)

Since f̃ : MG → B3 is a quasi-isometry, we have

dB3(0, f̃(zγ , ε)) � KdB3(0, f̃(zγ , 0)) + δ′ (6.6)

for some constants K, δ′ > 0. Combining inequalities (6.3) to (6.6), we have

δΩ0(ϕ(zγ)) � ad|Φ̃e|(0, Lγ)−α.

On the other hand, it is known that the identity on D is a quasi-isometry with respect to
the |Φ̃e| metric and the hyperbolic metric. Hence

δΩ0(ϕ(zγ)) � ad|Φ̃e|(0, Lγ)−α � bdD(0, Lγ)−α

and

dD(0, Lγ) � cdD(0, �γ)

hold. Using (6.2), we conclude that

dD(0, zγ)α � AδΩ0(ϕ(zγ))−1 (6.7)

holds for some A,α > 0 independent of γ ∈ Γ. Since ϕ is a conformal mapping from D onto
Ω0, it follows that (6.7) implies

dΩ0(0, ϕ(zγ))α � AδΩ0(ϕ(zγ))−1. (6.8)

Thus, we get an inequality similar to (4.10). Since ϕ(ω) is compact in Ω0, the same argument
as that in the proof of Lemma 4.2 yields

dΩ0(0, z)α � AδΩ0(z)−1 (6.9)

for any z ∈ Ω0. Here, we note that we may use the Euclidean distance to measure δΩ0(·) for
the same reason as in the previous sections.

By using the Koebe distortion theorem as in the proof of Theorem 1.2, we obtain the desired
inequality as follows:

|ϕ′(z)| � A

(1 − |z|)| log (1 − |z|)|α .
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Remark 6.1. Minsky [14] shows that the limit set of a Kleinian group with bounded
geometry is locally connected and Miyachi [15] estimates the modulus of continuity of the
Cannon–Thurston map for such a group. In our situation, Miyachi’s estimate is nothing but
the modulus of continuity of the Riemann map ϕ on ∂D. Actually, he does not consider the
derivative of the Riemann map but he proves that

|ϕ(eiθ1) − ϕ(eiθ2)| � A

| log (θ1 − θ2)|α

for some α > 0.
While we have a similar result for a regular b-group Corollary 1.1 from the growth of the

derivative of the Riemann map (Theorem 1.2), our theorem, Theorem 1.4, does not cover
Miyachi’s result because we only show that the exponent α is positive. In order to obtain
Miyachi’s result from our argument, it is necessary to show that α > 1.
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4. J. Becker and C. Pommerenke, ‘Hölder continuity of conformal mappings and non-quasiconformal Jordan
curves’, Comment. Math. Helv. 57 (1982) 221–225.

5. C. Bishop, ‘Divergence groups have the Bowen property’, Ann. of Math. (2) 154 (2001) 205–217.
6. C. Bishop and P. Jones, ‘Hausdorff dimension and Kleinian groups’, Acta Math. 179 (1997) 1–39.
7. B. D. A. Epstein and A. Marden, ‘Convex hulls in hyperbolic space, a theorem of Sullivan, and measured

pleated surfaces’, London Math. Soc. Lecture Note Ser. 111 (1987) 114–253.
8. W. J. Floyd, ‘Group completions and limit sets of Kleinian groups’, Invent. Math. 57 (1980) 205–218.
9. F. W. Gehring and C. Pommerenke, ‘On the Nehari univalence criterion and quasicircles’, Comment.

Math. Helv. 59 (1984) 226–242.
10. B. Maskit, ‘On boundaries of Teichmüller spaces and on Kleinian groups: II’, Ann. of Math. (2) 91 (1970)

607–639.
11. K. Matsuzaki and M. Taniguchi, Hyperbolic manifolds and Kleinian groups (Clarendon Press, Oxford,

1998).
12. C. T. McMullen, ‘Kleinian groups and John domains’, Topology 37 (1998) 485–496.
13. C. McMullen, ‘Local connectivity, Kleinian groups, and geodesics on the blowup of the torus’, Invent.

Math. 146 (2001) 35–91.
14. Y. Minsky, ‘On rigidity, limit set, and end invariants of hyperbolic 3-manifolds’, J. Amer. Math. Soc. 7

(1994) 539–588.
15. H. Miyachi, ‘Moduli of continuity of Cannon–Thurston maps, in “Spaces of Kleinian groups”’, Lond.

Math. Soc. Lecture Note Ser. 329 (2005) 121–149.
16. R. Näkki and J. Väisälä, ‘John disks’, Expo. Math. 9 (1991) 3–43.
17. C. Pommerenke, Boundary behaviour of conformal maps (Springer, Berlin, 1992).
18. W. Smith and D. A. Stegenga, ‘A geometric characterization of Hölder domains’, J. London Math. Soc.
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