1.1. Hyperbolic geometry. Let

$$\varphi_a(z) = \frac{a-z}{1-\overline{a}z}$$

for $a, z \in \mathbb{D}$, be the disc automorphism. Then $\varphi_a^{-1} = \varphi_a$. A hyperbolic segment between two points $a, b \in \mathbb{D}$, can be parametrized by

$$\langle a,b\rangle = \{\varphi_a(\varphi_a(b)t) : 0 \le t \le 1\}.$$

The hyperbolic midpoint of $\langle a, b \rangle$, denoted by $\zeta = \varphi_a(\varphi_a(b)t)$, satisfies

$$|\varphi_a(\zeta)| = |\varphi_b(\zeta)|$$

We wish to calculate a formula for ζ . By choosing a = 0, we obtain $\varphi_a(z) = -z$, $\zeta = bt$ and

$$|b|t = \left|\frac{b-bt}{1-|b|^2t}\right| = |b|\frac{1-t}{1-|b|^2t}.$$

This implies that

$$t = \frac{1 - \sqrt{1 - |b|^2}}{|b|^2} = \frac{1}{1 + \sqrt{1 - |b|^2}}$$
(1.1)

In the general case, map the segment $\langle a, b \rangle$ by φ_a , so that points a, ζ, b map to points $0, \varphi_a(\zeta), \varphi_a(b)$. Since the automorphism preserves hyperbolic distances, $\varphi_a(\zeta)$ is the midpoint of $[0, \varphi_a(b)]$ and we obtain by (1.1) that

$$\varphi_a(\zeta) = \varphi_a(b)t,$$

that is,

$$\zeta = \varphi_a \left(\varphi_a(b) t \right), \quad t = \frac{1}{1 + \sqrt{1 - |\varphi_a(b)|^2}},$$

that is,

$$\zeta = \varphi_a \left(\frac{\varphi_a(b)}{1 + \sqrt{1 - |\varphi_a(b)|^2}} \right). \tag{1.2}$$

Since ζ is the midpoint of a and b, formula (1.3) should remain the same, when points a and b are exchanged. By considering the mapping of $\langle a, b \rangle$ to both $[0, \varphi_a(b)]$ and $[0, \varphi_a(b)]$ and noting that $|\varphi_a(b)| = |\varphi_b(a)|$, this is really the case. Therefore

$$\zeta = \varphi_a \left(\frac{\varphi_a(b)}{1 + \sqrt{1 - |\varphi_a(b)|^2}} \right)_1 = \varphi_b \left(\frac{\varphi_b(a)}{1 + \sqrt{1 - |\varphi_b(a)|^2}} \right). \tag{1.3}$$

We have

$$\zeta = \frac{a(1-\overline{a}b) - t(a-b)}{1-\overline{a}b - \overline{a}t(a-b)}, \quad t = \frac{1}{1+\sqrt{1-|\varphi_a(b)|^2}}.$$

Let $\Delta(a, r) = D(C, S)$, where $a, C \in (0, 1)$.