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Abstract

One hundred years after the introduction of the Bernstein polynomial
basis, we survey the historical development and current state of theory,
algorithms, and applications associated with this remarkable method
of representing polynomials over finite domains. Originally introduced
by Sergei Natanovich Bernstein to facilitate a constructive proof of the
Weierstrass approximation theorem, the leisurely convergence rate of
Bernstein polynomial approximations to continuous functions caused
them to languish in obscurity, pending the advent of digital computers.
With the desire to exploit the power of computers for geometric design
applications, however, the Bernstein form began to enjoy widespread
use as a versatile means of intuitively constructing and manipulating
geometric shapes, spurring further development of basic theory, simple
and efficient recursive algorithms, recognition of its excellent numerical
stability properties, and an increasing diversification of its repertoire
of applications. This survey provides a brief historical perspective on
the evolution of the Bernstein polynomial basis, and a synopsis of the
current state of associated algorithms and applications.
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1 Introduction

At their inception, it is extremely difficult to predict the subsequent evolution
and ultimate significance of novel mathematical ideas. Concepts that at first
seem destined to revolutionize the scientific landscape — such as Hamilton’s
quaternions — may gradually lapse into relative obscurity [41]. On the other
hand, methods introduced to facilitate theoretical proofs of seemingly limited
scope and practical interest may eventually flourish into useful tools that gain
widespread acceptance in diverse practical computations.

The latter category undoubtedly includes the Bernstein polynomial basis,
introduced 100 years ago [10] as a means to constructively prove the ability of
polynomials to approximate any continuous function, to any desired accuracy,
over a prescribed interval. Their slow convergence rate, and the lack of digital
computers to efficiently construct them, caused the Bernstein polynomials to
lie dormant in the theory rather than practice of approximation for the better
part of a century.1 Ultimately, the Bernstein basis found its true vocation not
in approximation of functions by polynomials, but in exploiting computers to
interactively design (vector–valued) polynomial functions — i.e., parametric

curves and surfaces. In this context, it became apparent that the Bernstein
coefficients of a polynomial provide valuable insight into its behavior over a
given finite interval, yielding many useful properties and elegant algorithms
that are now being increasingly adopted in other application domains.

The centennial anniversary of the introduction of the Bernstein basis is
an opportune juncture at which to survey and assess the attractive features
and algorithms associated with this remarkable representation of polynomials
over finite domains, and its diverse practical applications. It seems probable
that Bernstein would be amazed to witness the widespread interest — albeit
in rather different contexts — that a simple but powerful idea in the paper
[10] has elicited, one hundred years after its first appearance.

The intent of this paper is: (1) to provide a historical retrospective on the
introduction and evolution of the Bernstein basis as a practical computational
tool; (2) to succinctly survey, as a guide to the uninitiated, the key properties
and algorithms associated with it; and (3) to briefly enumerate the current
variety of applications in which it has found use. The plan for the remainder
of the paper is as follows. The academic career of Sergei Natanovich Bernstein

1“In theory, there is no difference between theory and practice. In practice, there is.”
Attributed to Yogi Berra.
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is briefly summarized in Section 2, followed by a discussion of his constructive
proof of the Weierstrass approximation theorem in Section 3. Section 4 then
describes the contributions of the French engineers Pierre Bézier and Paul de
Faget de Casteljau, in promoting the use of the Bernstein basis in the context
of computer–aided design for the automotive industry during the 1960s and
1970s. Some characteristic features of the Bernstein basis, upon which many
useful properties and elegant algorithms are based, are identified in Section 5,
while Section 6 describes a fundamental feature of the Bernstein form, that
was not fully appreciated until the 1980s: its numerical stability with respect
to coefficient perturbations or floating–point round–off errors. A synopsis of
alternative approaches and interpretations is presented in Section 7 — the
shift operator ; the theory of “blossoming” or polar forms; connections with
probability theory; and methods based on generating functions and discrete
convolutions. Section 8 addresses the central role of the Bernstein form as a
cornerstone of computer–aided geometric design, while Section 9 summarizes
its applications as a basic computational tool in other scientific/engineering
fields. Finally, Section 10 assesses the current status and future prospects of
the Bernstein representation of polynomials over finite domains.

2 Sergei Natanovich Bernstein

Sergei Natanovich Bernstein2 (Figure 1) was born March 5, 1880 in Odessa,
Ukraine. After graduating from high school in 1898, he travelled to Paris to
study mathematics at the Sorbonne, where he also developed an interest in
engineering, and enrolled in the École d’Électrotechnique Supérieure. During
the 1902–03 academic year, he visited Göttingen and worked under the super-
vision of David Hilbert. This led to his Sorbonne 1904 doctoral dissertation,
Sur la nature analytique des solutions des équations aux dérivées partielles

du second ordre, concerned with the solution of Hilbert’s 19th Problem. The
dissertation was enthusiastically approved by a distinguished committee of
mathematicians — comprising Émile Picard (chair), Jacques Hadamard, and
Henri Poincaré. Bernstein then returned to Russia in 1905, after attending
the International Congress of Mathematicians in Heidelberg.

Unfortunately, the academic profession in Russia did not recognize foreign
degrees as valid credentials for a university position. Despite the enthusiastic
reception of his Sorbonne dissertation, Bernstein was obliged to embark upon

2Alternative transliterations of his name use Sergey and Bernshtein or Bernshteyn.
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a second doctoral program in order to qualify for a research position in Russia.
After spending some time in Saint Petersburg, he moved to Kharkov in 1908,
where he began teaching and working on his new doctoral research program.
Bernstein was apparently offered a position at Harvard University soon after
moving to Kharkov, but for unknown reasons did not pursue it.

Figure 1: Sergei Natanovich Bernstein (1880–1968). Photograph reproduced
from the Russian Academy of Sciences website — see http://www.ras.ru.

The subject of Bernstein’s Kharkov dissertation was a problem posed by
Charles–Jean de La Vallée Poussin in 1908 — namely, can a piecewise–linear
function be approximated over a finite interval by a polynomial of degree n,
with an O(1/n) approximation error? Bernstein’s affirmative solution to this
problem was awarded a prize in 1911 from the Académie Royale des Sciences,

des Lettres et des Beaux Arts of Belgium, and appeared in 1912 as Sur l’ordre

de la meilleure approximation des fonctions continues par les polynomes de

degré donné (On the best approximation of continuous functions by means
of polynomials of a given degree) in the Mémoires des l’Académie royale de

Belgique. Subsequently he defended his doctoral dissertation, O nailuchshem

priblizhenii nepreryvnykh funktsy posredstvom mnogochlenov dannoi stepeni,
based upon this work, at Kharkov University in 1913, and he was appointed
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professor of mathematics at Kharkov University in 1920.
The short paper Démonstration du théorème de Weierstrass fondée sur le

calcul des probabilités [10], that first introduces the Bernstein basis, appeared
in the Communications of the Kharkov Mathematical Society in 1912 — see
Figure 2. In this paper, Bernstein proposes an “extremely simple” proof of
the Weierstrass theorem based on probability theory.

During the 1920s Bernstein worked on constructive function theory (i.e.,
approximation theory) and on probability theory. The widespread acclaim for
his achievements resulted in many honors, including elections to the Russian
Academy of Sciences, the Paris Academy of Sciences, the USSR Academy of
Sciences, and Director of the Kharkov Mathematical Institute. However, in
1930 political considerations began to intrude upon academic life in Kharkov.
As a result, Bernstein was removed as Director of the Mathematical Institute,
and he departed for Leningrad in 1932 — having narrowly escaped a political
purge in Kharkov. In Leningrad, Bernstein served as Head of the Department
of Probability Theory and Mathematical Statistics in the USSR Academy of
Sciences, and also gave lectures at Leningrad University. During the Second
World War he managed to escape to Kazakhstan before the siege of the city
(which lasted from September 1941 to January 1944) but his son — who had
remained in Leningrad — was killed while attempting to escape.

Bernstein decided against returning to Leningrad, and instead moved to
the University of Moscow, where he embarked on a seven–year project editing
the complete works of Pafnuti Lvovich Chebyshev (between 1944 and 1951).
However, he was dismissed from his position in 1947, and instead he became
Head of the Department of Constructive Function Theory within the Steklov
Mathematical Institute, Russian Academy of Sciences, where he remained
until his retirement in 1957. Bernstein died on October 26, 1968 in Moscow.

The most authoritative scientific biography of Bernstein was written in
1955 by Naum Ilyich Akhiezer, who became professor at Kharkov University
soon after Bernstein left. This has been translated from Russian into German
[4], but as yet there is apparently no translation into English. A brief synopsis
of his academic career and accomplishments, in English, may be found in the
recent History of Approximation Theory by Karl–Georg Steffens [195] — see
also the Dictionary of Scientific Biography article [222].

The Sobranie sochinenii (collected works) of Bernstein were published in
four volumes between 1952 and 1964. His intellectual achievements, during a
period of unprecedented upheaval and uncertainty — both World Wars and
the Russian Revolution — are remarkable for their fundamental insights and
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Figure 2: The 1912 paper [10] in which the Bernstein basis was introduced.
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continuing impact in areas remote from their original contexts.

3 Weierstrass approximation theorem

Polynomials are widely used in computational models of scientific/engineering
problems, because of their finite evaluation schemes; closure under addition,
multiplication, differentiation, integration, and composition; and their ability
to approximate functions that have no closed–form expressions.3 It was the
need to formulate “well–behaved” polynomial approximations that motivated
the introduction of the Bernstein basis.

3.1 Existence arguments

In 1885 Karl Weierstrass published a proof [213] of what subsequently became
known as his approximation theorem. This states that, given any continuous
function f(x) on an interval [ a, b ] and a tolerance ǫ > 0, a polynomial pn(x)
of sufficiently high degree n exists, such that

|f(x) − pn(x)| ≤ ǫ for all x ∈ [ a, b ] .

In other words, polynomials can uniformly approximate any function that is
merely continuous over a closed interval. This represents a significant advance
over using the Taylor series expansion to generate polynomial approximations
of a function in two important respects: (a) the function need not be analytic
(nor differentiable); and (b) whereas the interval [ a, b ] can be freely specified,
the Taylor series must be confined within its radius of convergence — which
can be difficult to compute. Pinkus [155] describes in detail the contributions
of Weierstrass to approximation theory. As a point of departure for his proof,
Weierstrass invokes an integral representation for the function,

f(x) = lim
k→0

1√
πk

∫ +∞

−∞

f(t) exp

[

− (t− x)2

k2

]

dt ,

which may be regarded as its convolution with a Dirac delta function. Other
authors developed alternative proofs of the approximation theorem, including
arguments based on Fourier series [203], but for the most part these proofs
were (a) existential, rather than constructive, in nature; and (b) relied heavily
on analytic limit arguments, rather than concrete algebraic processes.

3Many of these attributes carry over to rational functions (i.e., ratios of polynomials).
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3.2 Bernstein’s constructive proof

Steffens [195] notes that the Russian school of approximation theory, which
originated in the 1850s from Chebyshev’s interest in the design and analysis
of mechanical linkages, regarded such existential arguments as rather suspect,
and instead emphasized approaches compatible with practical computations
(what we now consider algorithms), that can be directly applied to scientific
or technical problems. Correspondingly, the distinctive feature of Bernstein’s
proof of the Weierstrass theorem, compared to its predecessors, is its explicit
construction — employing only basic algebraic operations — of a sequence of
polynomials pn(x) approaching the given function f(x) more closely at every
point of the interval x ∈ [ a, b ] as the degree n increases.

Since the change of variables specified by t = (x − a)/(b − a) maps x ∈
[ a, b ] to t ∈ [ 0, 1 ] without changing the max norm of any function, we can
restrict our attention to continuous functions f(t) on t ∈ [ 0, 1 ] without loss
of generality. The Bernstein basis of degree n on t ∈ [ 0, 1 ] is defined by

bnk(t) :=

(
n

k

)

(1 − t)n−ktk , k = 0, . . . , n , (1)

and in terms of it the Bernstein polynomial4 associated with any continuous
function f(t) is specified as

pn(t) :=

n∑

k=0

f(k/n) bnk(t) . (2)

Although pn(t) is nominally of degree n, its actual degree may be less than n
(see Section 5.1 below). The uniform convergence of (2) to f(t), as n→ ∞, is
predicated on two fundamental properties of the basis functions (1) — they
are non–negative on t ∈ [ 0, 1 ]; and they form a partition of unity, i.e.,

n∑

k=0

bnk(t) = 1 . (3)

Hence, the value of pn(t), being a sum of sampled values of f(t) at the n+ 1
uniformly–spaced ordinates t = k/n weighted by the basis functions bnk(t),

4A number of generalizations of the basic Bernstein polynomial approximation (2), that
preserve and extend its key properties, have been proposed — see [153, 185, 186, 192, 193].
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amounts to a convex combination — i.e., a weighted sum, with non–negative
weights that sum to unity — of those sampled values.

It should be noted that, in general, the polynomial approximant (2) does
not interpolate the sampled values, i.e., pn(k/n) 6= f(k/n). Since the basis
functions (1) satisfy

bnk(0) =

{

1 if k = 0,

0 if k > 0,
bnk(1) =

{

0 if k < n,

1 if k = n,
(4)

we always have pn(0) = f(0) and pn(1) = f(1), but the intermediate values
f(k/n) for 0 < k < n are not interpolated. Moreover (2) does not incorporate
the “polynomial reproduction” property — i.e., pn(t) 6≡ f(t) when f(t) is a
polynomial of degree ≤ n, except in the trivial cases n = 0 and 1.

Specifically, when f(t) = c, the fact that pn(t) = c for all n follows from
the partition–of–unity property (3). Similarly, when f(t) = at+ b, we have

pn(t) = a

n∑

k=0

k

n

(
n

k

)

(1 − t)n−ktk + b .

Noting that the k = 0 term of the sum vanishes, and that

k

n

(
n

k

)

=

(
n− 1

k − 1

)

, (5)

a shift of the summation index yields

pn(t) = at
n−1∑

k=0

(
n− 1

k

)

(1 − t)n−1−ktk + b ,

and by the partition–of–unity property for the basis of degree n− 1, this is
simply at+ b. The ability to exactly reproduce linear (or constant) functions
is called the linear precision property of the Bernstein approximation.

The relation (2) may be regarded as defining an operator that maps any
continuous function f(t) on [ 0, 1 ] to a polynomial pn(t) of degree ≤ n. This
operator is linear, in the sense that if it maps another continuous function g(t)
into the polynomial qn(t) of degree ≤ n, then the combination λ f(t)+µ g(t)
is mapped into λ pn(t) + µ qn(t). Moreover, as a consequence of the fact that
the functions (1) are non–negative on [ 0, 1 ] this operator is monotone — i.e.,
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pn(t) ≥ qn(t) when f(t) ≥ g(t) for t ∈ [ 0, 1 ]. Equivalently, one may say that
it is a positive operator — i.e., pn(t) ≥ 0 when f(t) ≥ 0 for t ∈ [ 0, 1 ].

The conventional modern form of Bernstein’s proof is based on Korovkin’s
theorem [125] for positive linear operators: if a polynomial approximant pn(t)
to a continuous function f(t) over t ∈ [ 0, 1 ] is specified by a positive linear
operator, its uniform convergence to any continuous function is guaranteed
as n → ∞, if one can demonstrate such convergence in the “simple” cases
f(t) = 1, t, t2. Since the first two cases are covered by the linear precision
property, it is only necessary to consider f(t) = t2, in which case we have

pn(t) =

n∑

k=0

(
k

n

)2(
n

k

)

(1 − t)n−ktk .

Noting that the k = 0 term vanishes, using the relation (5) again, and shifting
the summation index, we obtain

pn(t) = t

n−1∑

k=0

k + 1

n

(
n− 1

k

)

(1 − t)n−1−ktk = t

(
n− 1

n
t+

1

n

)

,

where the final expression follows from the linear precision property. Thus,
when f(t) = t2 the approximant pn(t) is the quadratic polynomial

pn(t) = t2 +
(1 − t)t

n
,

and the approximation error is

| f(t) − pn(t) | =
(1 − t)t

n
.

Since for each t ∈ [ 0, 1 ] this decreases in proportion to 1/n as n increases,
pn(t) converges uniformly to f(t). The maximum error is 1/4n, and occurs
at t = 1

2
. More generally, the asymptotic formula

lim
n→∞

n [ f(t) − pn(t) ] = 1
2
(1 − t)t f ′′(t) (6)

of Voronovskaya [206] holds for t ∈ (0, 1) when f ′′(t) 6= 0. Complete details on
these proofs can be found in standard introductory texts [42, 46, 156, 169] on
approximation theory. Stark [194] traces the history of Bernstein polynomial
approximations, from their introduction in 1912 up to the publication of the
classical treatise by Lorentz [135] in the mid–1950s.
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3.3 Properties of the approximant

The Bernstein polynomial approximant (2) to a given function f(t) is always
“at least as smooth” as f(t). If f(t) has Cr rather than just C0 continuity,
all derivatives of pn(t) up to order r converge uniformly to the corresponding
derivatives of f(t). A simple demonstration of this convergence may be found
in [88]. Similarly, if bounds on the derivatives of f(t) of each order over [ 0, 1 ]
are known, the corresponding derivatives of pn(t) also satisfy those bounds
— this implies, for example, that when f(t) is monotone or convex, pn(t) is
correspondingly monotone or convex (see [46] for complete details).

Unfortunately, the slow rate of convergence observed in the case5 f(t) = t2

above is typical of Bernstein polynomial approximation. It can be shown [46]
that | f(t)− pn(t) | diminishes in proportion to n−1 at any point where f ′′(t)
is defined and non–vanishing (see Figure 3). This may be compared with, for
example, the fast n−4 convergence rate [47] of the cubic spline interpolating
n+1 equidistant values of a function with at least four–fold differentiability.
The spline increases its interpolatory ability by introducing junctures (knots)
between individual cubic segments, rather than increasing the degree. On the
other hand, attempting to interpolate more points with a single polynomial
by increasing its degree can incur wildly divergent behavior [67].

Figure 3: Bernstein polynomial approximations pn(t) of degree n = 10, 30,
100, 300, 1000 to a continuous piecewise–linear function f(t), defined by (2).

In view of these considerations, the Bernstein polynomial approximants
(2) remained — prior to the advent of digital computers — very much part of

5To approximate f(t) = t2 with a maximum error of 10−4 over t ∈ [ 0, 1 ] the degree of
the Bernstein polynomial (2) must be increased to n = 2500.
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the theory rather practice of approximations. Notwithstanding their simple
construction and orderly convergence properties, it is impractical to employ
polynomials with degrees running to hundreds or thousands in “real–world”
problems. The eventual widespread adoption of the basis (1) was motivated
not by the approximations (2) of a given function f(t), but by a replacement
of the values f(k/n) with freely–specified coefficients ck for k = 0, . . . , n that
can be used to intuitively manipulate the behavior of the polynomial

p(t) =

n∑

k=0

ckb
n
k(t) , t ∈ [ 0, 1 ] . (7)

Following past practice [83, 84] we call expression (2) a Bernstein polynomial,
while (7) is called a polynomial in Bernstein form. Whereas the former refers
to a polynomial approximation of a given function f(t), the latter denotes a
polynomial with arbitrary coefficients in the Bernstein basis. Compared to
the familiar monomial or power form of a polynomial,

p(t) =
n∑

k=0

akt
k , (8)

we shall see that the Bernstein form (7) offers many advantages if one wishes
to analyze or manipulate polynomials over a finite interval.

4 De Casteljau and Bézier

As noted in Section 3, the orderly convergence of the Bernstein approximation
(2) to a continuous function f(t) as n→ ∞ comes at a severe price: as seen in
Figure 3, it proceeds at a very leisurely pace. Philip J. Davis, in his 1963 book
Interpolation and Approximation [46], remarked on the slow convergence of
Bernstein approximations as follows:

This fact seems to have precluded any numerical application

of Bernstein polynomials from having been made. Perhaps they

will find application when the properties of the approximant

in the large are of more importance than the closeness of the

approximation.

Coincidentally, two engineers employed in the French automotive industry,
Paul de Faget de Casteljau of Citroën and Pierre Étienne Bézier of Renault,
became interested in such an application in the early 1960s.
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4.1 A new application emerges

De Casteljau and Bézier were not concerned with the approximation of given
functions, but rather with formulating novel mathematical tools that would
allow designers to intuitively construct and manipulate complex shapes, such
as automobile bodies, using digital computers. This problem was especially
critical for “free–form” shapes, that do not admit exact specification through
a few simple geometric parameters — centers, axes, angles, dimensions, etc.
The motivation was to circumvent the subjective, laborious, and expensive
process of sculpting clay models to specify the desired shape.

Although a parametric curve or surface (a vector–valued function of one
or two variables) is an infinitude of points, its computer representation must
employ just a finite data set. The mapping from the finite set of input values
to a continuous locus is achieved by interpreting those values as coefficients
for certain basis functions in the parametric variables. The coefficients must
furnish natural “shape handles” that permit intuitive creation or modification
of the curve or surface geometry, to satisfy prescribed aesthetic or functional
requirements. The choice of basis is thus fundamental to a successful design
scheme. Ultimately, the work of de Casteljau and Bézier lead to adoption of
the Bernstein form, typified by what is now called a Bézier curve,

r(t) =

n∑

k=0

pk b
n
k(t) , t ∈ [ 0, 1 ] , (9)

with control points p0, . . . ,pn as a propitious design scheme. By connecting
the control points we obtain the control polygon, which can be used to analyze
and manipulate the curve shape in a simple and natural manner.

4.2 Paul de Faget de Casteljau

One must bear in mind that, in the early 1960s, digital computers were still
in their infancy, and the goal of exploiting them for shape design would have
seemed far–fetched. De Casteljau, for example, described [56] the reaction
at Citroën to this goal as follows:

. . . the designers were astonished and scandalized. Was it

some kind of joke? It was considered nonsense to represent a car

body mathematically. It was enough to please the eye, the word

accuracy had no meaning . . .
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Citroën’s first attempts at digital shape representation employed a Burroughs
E101 computer [56] featuring 128 program steps, a 220–word memory, and a
5 kW power consumption! Nevertheless, de Casteljau’s “insane” persistence
in pursuing this idea led to the increasing adoption of computer–aided design
and manufacturing methods within Citroën from 1963 onward.

De Casteljau’s approach is based on the use of “pilot points” called poles

to define curves and surfaces, a term motivated by the syllabic repetition in
the phrase “interpolation of polynomials with polar forms” (see Section 7.2).
Although there is no explicit reference to the Bernstein polynomial basis, key
features of de Casteljau’s courbes et surfaces à pôles are unmistakably linked
to it, e.g., the use of barycentric coordinates over intervals and triangles, and
the non–negativity and partition–of–unity properties of the basis functions
associated with the poles (subsequently identified as Bézier/B–spline control
points). However, de Casteljau’s ideas were recorded only in Citroën internal
documents [51], and remained long unknown to the outside world.

Wolfgang Böhm [27] was instrumental in ensuring that proper credit was
attributed for the eponymous de Casteljau algorithm, the most fundamental
scheme associated with courbes à pôles (now commonly called Bézier curves),
although it had appeared somewhat earlier [127] in a relatively obscure venue.
For a parameter value τ ∈ (0, 1) this algorithm evaluates and subdivides the
Bézier curve (9), i.e., it computes the curve point r(τ) and the control points
defining the “left” and “right” subsegments t ∈ [ 0, τ ] and t ∈ [ τ, 1 ] of r(t) as
individual Bézier curves, over the parameter interval [ 0, 1 ]. Setting p0

j = pj

for j = 0 . . . , n, the algorithm computes a triangular array of points

p0
0 p0

1 p0
2 · · p0

n

p1
1 p1

2 · · p1
n

p2
2 · · p2

n

· · ·

pn
n

(10)

defined for j = r, . . . , n and r = 1, . . . , n by the linear interpolations

pr
j = (1 − τ)pr−1

j−1 + τ pr−1
j . (11)
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Beginning with the original control polygon, the algorithm (11) computes a
sequence of new polygons for r = 1, . . . , n, each with one vertex less than its
predecessor — an example of a “corner–cutting” scheme (see Figure 4).

Figure 4: An excerpt from de Casteljau’s 1963 SA Citroën notes, showing his
algorithm applied to a cubic with poles A,B,C,D. Here λ, µ are barycentric
coordinates for the curve parameter domain — i.e., 1− t and t for t ∈ [ 0, 1 ].

The vertices of the r–th polygon are points on the legs of the (r − 1)–th
polygon that divide them in the ratio τ : 1−τ (see Figure 5). The final entry
in (10) is the curve point that corresponds to the parameter value τ , i.e., pn

n =
r(τ). Furthermore, the entries p0

0,p
1
1,p

2
2, . . . ,p

n
n and pn

n,p
n−1
n ,pn−2

n , . . . ,p0
n

on the left– and right–hand sides of (10) are control points for the left and
right subsegments t ∈ [ 0, τ ] and t ∈ [ τ, 1 ] of r(t), considered as individual
Bézier curves over the parameter domain t ∈ [ 0, 1 ]. A retrospective on the
role of the de Casteljau algorithm in CAGD may be found in [22].

A brief biography of de Casteljau (prepared in connection with the award
of an honorary doctorate from the University of Berne in 1997) may be found
in the Preface to Volume 16, Number 7 of Computer Aided Geometric Design,
a special issue dedicated to him. This issue also contains an autobiographical
sketch, written in his characteristically humorous, satirical, and self–effacing
style6 [57]. His approach to curve and surface design using polar forms was

6He concludes with the observation that “My stay at Citroën was not only an adventure
for me, but also an adventure for Citroën.”
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r(τ)

p0

p1

p2

p3

p4

p5

Figure 5: Subdivision of a quintic Bézier curve r(t) at t = 1
2
, showing (left) the

intermediate points (10) generated by the de Casteljau algorithm (11), and
(right) the two individual subsegments, together with their control polygons.

described in books [52, 53] published in the mid–1980s. A further book [54],
on the quaternions, illustrates the breadth of his interests.7

4.3 Pierre Étienne Bézier

Pierre Étienne Bézier joined Renault in 1933, working in the areas of tool
design, production engineering, manufacturing automation, and development
of NC machines, and serving as the Director of Production Engineering from
1946 (during 1941–1942, he was incarcerated in a prisoner–of–war camp, but
even then remained active in his technological interests). His contributions to
CAD/CAM technology, for which he is now best known,8 began in 1960 when
he started work on what eventually became the UNISURF CAD system9 [15].
As with de Casteljau, the aim was to develop a quantitative description of the
geometry of car bodies, that circumvented the inaccuracies and ambiguities
of interpretation associated with paper drawings or sculpted models.

7At a 1991 conference in Norway, de Casteljau expressed great interest in a talk by the
author on curves and surfaces in geometrical optics [80]. This was followed by a sequence
of elaborate written correspondences, with elegantly drawn multi–colored figures, in which
de Casteljau expounded on the properties of reflected and refracted wavefronts.

8Bézier’s contributions to numerical control and manufacturing automation are at least
as significant as his methods for geometric design, but beyond the scope of this review.

9See also Chapter 1 of [74] for Bézier’s account of the origins of the UNISURF system.
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Initially [11, 12] Bézier’s scheme for curve design, like that of de Casteljau,
did not explicitly invoke the Bernstein basis. Instead, he used basis functions
fn

1 (t), . . . , fn
n (t) characterized by the fact that fn

k (t) increases from 0 to 1 over
the interval t ∈ [ 0, 1 ] and has vanishing derivatives to order k − 1 at t = 0,
and to order n− k at t = 1. He showed that fn

k (t) can be expressed as

fn
k (t) =

(−1)k

(k − 1)!
tk

dk−1

dtk−1

(1 − t)n − 1

t
=

n∑

j=k

(−1)j+k

(
n

j

)(
j − 1

k − 1

)

tj

for k = 1, . . . , n and mischievously attributed this apparently–unknown basis
to a fictitious mathematician, Onésime Durand [132]. Bézier specified a curve
by an initial point p0 and n vectors a1, . . . , an through the expression

r(t) = p0 +
n∑

k=1

akf
n
k (t) , (12)

with the property that r′(0) = n a1, r′(1) = n an, r′′(0) = n(n− 1)(a2 − a1),
r′′(1) = n(n−1)(an−an−1), etc., and r(1) = p0 +a1 + · · ·+an (see Figure 6).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p0

a1

a2
a3

r(t) f31(t)

f32(t)

f33(t)

Figure 6: Left: the Bézier point/vector specification of a cubic curve. Right:
the basis functions f 3

1 (t), f 3
2 (t), f 3

3 (t) associated with the vectors a1 a2, a3.

Forrest [90] observed that the expression (12) is actually equivalent to a
Bernstein–form polynomial. In particular, one can verify that

fn
k (t) − fn

k+1(t) = bnk(t) , k = 1, . . . , n− 1 ,
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while 1 − fn
1 (t) = bn0 (t) and fn

n (t) = bnn(t), from which one infers that

1 − fn
k (t) =

k−1∑

j=0

bnj (t) and fn
k (t) =

n∑

j=k

bnj (t)

for k = 1, . . . , n, the partition–of–unity property (3) being invoked to obtain
the latter expression. Thus, substituting for fn

k (t), one finds that the Bézier
form (12) is equivalent to the familiar control–point form (9), if we take

pk = p0 +
k∑

j=1

aj , k = 1, . . . , n .

Hence, the vectors a1, . . . , an in (12) represent the control polygon legs, i.e.,
ak = pk−pk−1 for k = 1, . . . , n. The control–point form (9) is now universally
preferred over the initial–point/vector form (12).

Bézier published his ideas extensively [11, 12, 13, 14, 15, 16, 17, 18] during
the 1960s and 1970s, and the representation (9) is now conventionally known
as a Bézier curve — although it is closer in spirit to de Casteljau’s formulation
than Bézier’s original formulation. Bézier curves are now a firmly established
and indispensible tool in computer graphics, engineering design, animation,
path planning, and related fields. For example, scalable computer fonts such
as PostScript employ Bézier curves to describe the character shapes.

Bézier retired, after a 42–year career with Renault, in 1975. In addition
to degrees in mechanical engineering (1930) and electrical engineering (1931),
he received a doctorate in mathematics from the University of Paris (1977).
He was also awarded an honorary doctorate from the Technical University of
Berlin, and from 1968 to 1979 served as Professor of Production Engineering
at the Conservatoire National des Arts et Métiers. Bézier remained active in
retirement through correspondence, publications, and presentations until his
death in 1999. Correspondence of Christophe Rabut with Bézier, describing
the origins of his curve design ideas, shortly before he passed away, may be
found in [163]. Finally, a detailed biography of Bézier by Pierre–Jean Laurent
and Paul Sablonnière [132] observes that “His art of living consisted in doing
everything seriously without ever taking himself too seriously.”

New ideas establish a firm foothold only if they are taken up and further
developed by others. Among many publications that played a key role in this
regard, some noteworthy examples are the papers of Forrest [90]; Gordon and
Riesenfeld [106]; Lane and Riesenfeld [130]; and Chang and Wu [37].
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5 Bernstein basis properties

Figure 7 illustrates the basis functions (1) for n = 7. The attractive features
of the Bernstein form (7) stem from certain intrinsic properties of these basis
functions, and consequent relations among the coefficients c0, . . . , cn and the
behavior of the graph of p(t) over [ 0, 1 ].

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

t

bn
k(t)

Figure 7: The Bernstein basis functions (1) of degree 7 on t ∈ [ 0, 1 ].

5.1 Basic properties and algorithms

We now briefly describe some of the key properties and algorithms associated
with the Bernstein form.10

1. symmetry. The basis functions bnk(t) and bnn−k(t) are mirror images of
each other about the interval mid–point t = 1

2
— i.e., bnn−k(1−t) ≡ bnk(t).

2. recursion. The basis of degree n+ 1 may be generated from the basis
of degree n through the recurrence relation

bn+1
k (t) = t bnk−1(t) + (1 − t) bnk(t) (13)

for k = 0, . . . , n + 1 where we define bnk(t) ≡ 0 if k < 0 or k > n, and
initiate the recursion with b00(t) ≡ 1.

10An object–oriented C++ library that implements many basic functions for univariate
Bernstein–form polynomials is described in [204]. See also [9] for a discussion of some of
these functions in the tensor–product multivariate case.
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3. non-negativity. As noted in Section 3, the basis functions (1) satisfy
bnk(t) ≥ 0 for t ∈ [ 0, 1 ]. This property does not hold outside [ 0, 1 ].

4. partition of unity. The property (3) results from the fact that the
basis functions (1) are simply the n+1 terms in the binomial expansion
of [ (1 − t) + t ]n. This property is not restricted to [ 0, 1 ].

5. unimodality. bnk(t) has a single extremum, at t = k/n, on t ∈ [ 0, 1 ].
Also, for any fixed value t∗ there is a corresponding index k such that

bn0 (t∗) ≤ · · · ≤ bnk−1(t∗) ≤ bnk(t∗) ≥ bnk+1(t∗) ≥ · · · ≥ bnn(t∗) ,

i.e., the values bnk(t∗) are unimodal with respect to the index k. Hence,
the control point pk has the greatest influence on the Bézier curve (9)
at t = t∗, while the influence of all the other control points diminishes
monotonically as their indices decrease or increase away from k.

6. lower & upper bounds. Properties 3 and 4 imply that for t ∈ [ 0, 1 ]
the polynomial (7) satisfies [34, 168] the bounds

min
0≤k≤n

ck ≤ p(t) ≤ max
0≤k≤n

ck .

7. end–point values. By virtue of the property (4) of the basis functions,
the polynomial (7) satisfies p(0) = c0 and p(1) = cn.

8. variation-diminishing property. The number N of real roots of p(t)
on t ∈ (0, 1) is less than the number S(c0, . . . , cn) of sign variations in
its Bernstein coefficients by an even amount,11

N = S(c0, . . . , cn) − 2k , (14)

for some integer k ≥ 0. This is an expression of Descartes’ Law of Signs
[205], since the map t ∈ (0, 1) → u ∈ (0,∞) defined by t(u) = u/(1+u)
transforms p(t) into

q(u) = p(t(u)) = (1 + u)−n

n∑

k=0

aku
k , where ak =

(
n

k

)

ck .

The coefficients ck and ak clearly have the same signs, and roots of q(u)
on (0,∞) are in one–to–one correspondence with roots of p(t) on (0, 1).

11When counting the number of sign variations in the sequence of Bernstein coefficients,
zeros are ignored. Also, each root on (0, 1) contributes to N according to its multiplicity.
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9. relation to monomial basis. The Bernstein and monomial (power)
bases of degree n are related [83] by the expressions

tk =

n∑

j=k

(
j

k

)

(
n

k

) bnj (t) , bnk(t) =

n∑

j=k

(−1)j−k

(
n

j

)(
j

k

)

tj (15)

for k = 0, . . . , n. In particular, case k = 0 of the first expression yields
the partition of unity property, while from case k = 1 we obtain

t =
bn1 (t) + 2 bn2(t) + · · ·+ n bnn(t)

n
,

which induces the linear precision property.

10. scaling the independent variable. The change of variables t → rt
maps the interval [ 0, 1 ] to [ 0, r ]. Setting 1− rt = (1− t) + (1− r)t in

bnk(rt) =

(
n

k

)

(1 − rt)n−k(rt)k

and performing a binomial expansion, one can verify that

bnk(rt) =

n∑

j=k

bjk(r) b
n
j (t) , j = 0, . . . , n . (16)

With r = 1
2
, this allows the Bernstein coefficients of (7) on [ 0, 1

2
] — as

generated by mid–point subdivision through the de Casteljau algorithm
— to be expressed in terms of the coefficients on [ 0, 1 ]. See (33)–(34)
below for the generalization of (16) to an arbitrary interval [ t1, t2 ].

11. derivatives. One can verify that the basis functions (1) satisfy

d

dt
bnk(t) = n [ bn−1

k−1(t) − bn−1
k (t) ] (17)

where bn−1
−1 (t) ≡ 0 and bn−1

n (t) ≡ 0. Substituting into the derivative of
(7) and combining terms, we obtain

p′(t) =

n−1∑

k=0

n∆ck b
n−1
k (t) ,

where ∆ck = ck+1 − ck. Further derivatives can be written in terms of
higher–order differences of the Bernstein coefficients.
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12. integrals. By setting n→ n+1 in (17), and adding up and integrating
instances k + 1, . . . , n+ 1 of the resulting equation, we obtain

∫

bnk(t) dt =
1

n + 1

n+1∑

j=k+1

bn+1
j (t) . (18)

Hence, the indefinite integral of (7) may be expressed as

∫

p(t) dt =

n+1∑

k=1

(

1

n + 1

k−1∑

j=0

cj

)

bn+1
k (t) + constant .

Each of the basis functions (1) has the same definite integral, namely
1/(n+ 1), and hence

∫ 1

0

p(t) dt =
1

n+ 1

n∑

k=0

ck .

13. degree elevation. A polynomial p(t) of true degree n can be expressed
in the Bernstein basis of degree n+ r, for all r > 0 — i.e., one can find
coefficients12 cn+r

0 , . . . , cn+r
n+r such that (7) can be written as

p(t) =

n+r∑

k=0

cn+r
k bn+r

k (t) .

By multiplying (1) with 1 = (1 − t) + t, one can verify that

bnk(t) =

(

1 − k

n+ 1

)

bn+1
k (t) +

k + 1

n+ 1
bn+1
k+1(t) , k = 0, . . . , n ,

and hence by substituting into (7) we obtain

cn+1
k =

k

n + 1
cnk−1 +

(

1 − k

n+ 1

)

cnk , k = 1, . . . , n ,

while cn+1
0 = cn0 , cn+1

n+1 = cnn. This defines a unit degree elevation, which
can be applied repeatedly. The outcome of an r–fold degree elevation
may be determined by multiplying (1) with 1 = [ (1− t)+ t ]r to obtain

bnk(t) =
k+r∑

j=k

(
n
k

)(
r

j−k

)

(
n+r

j

) bn+r
j (t) , k = 0, . . . , n , (19)

12If it is necessary to specify the degree of the Bernstein basis, it appears as a superscript
on the coefficients (if no superscript appears, the basis has the default degree n).
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and substituting into (7) then gives [84]:

cn+r
k =

min(n,k)
∑

j=max(0,k−r)

(
r

k−j

)(
n
j

)

(
n+r

k

) cnj , k = 0, . . . , n+ r .

14. degree reduction. The true degree of a polynomial in Bernstein form
is not immediately apparent from its coefficients. The conditions for (7)
to be of true degree n−r (with r ≥ 1) are that the power coefficients in
(8) must satisfy an = · · · = an−r+1 = 0 6= an−r. These can be expressed
in terms of the Bernstein coefficients by noting from (8) and (15) that

ak =
k∑

j=0

(−1)k−j

(
n

k

)(
k

j

)

cj , k = 0, . . . , n .

When these conditions hold, the coefficients in the basis of degree n−r
can be expressed [84] in terms of those in the degree–n basis as

cn−r
k =

k∑

j=0

(−1)k−j

(
k−j+r−1

r−1

)(
n
j

)

(
n−r

k

) cnj , k = 0, . . . , n− r .

The term degree reduction is also commonly invoked in a looser sense, to
connote best approximation (according to a specified error measure) of
a given polynomial of degree n on [ 0, 1 ] by polynomials of lower degree:
see [31, 64, 65, 128, 202, 212]. An interesting fact [136] in this context is
that the polynomial q(t) of degree < n that best approximates (7) — in
these sense of the L2 norm on [ 0, 1 ] — can be identified by minimizing
the sum of squared differences of Bernstein coefficients of p(t) and q(t),
when the degree of the latter is elevated to n.

15. arithmetic operations. To add or subtract two polynomials f(t), g(t)
of equal degree, one simply adds or subtracts their respective Bernstein
coefficients. If they are of unequal degree, the degrees must be matched
through a degree elevation before adding/subtracting the coefficients. If
f(t) and g(t) are degree m and n with Bernstein coefficients a0, . . . , am

and b0, . . . , bn their product f(t)g(t) has [84] the Bernstein coefficients

ck =

min(m,k)
∑

j=max(0,k−n)

(
m
j

)(
n

k−j

)

(
m+n

k

) ajbk−j , k = 0, . . . , m+ n .
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In the division f(t)/g(t), the goal is to find the quotient and remainder

polynomials q(t) and r(t) such that f(t) = q(t) g(t)+r(t) with deg(q) =
m−n and deg(r) = n−1. Since the long division process for the power
form invokes obvious degree reductions at each step, it does not readily
translate to the Bernstein basis. Nevertheless, the Bernstein coefficients
q0, . . . , qm−n and r0, . . . , rn−1 of q(t) and r(t) can be determined by
comparing like terms in f(t) = q(t) g(t)+r(t), and solving the resulting
system of m+ 1 linear equations specified [84] for k = 0, . . . , m by

min(m−n,k)
∑

j=max(0,k−n)

(
m−n

j

)(
n

k−j

)

(
m
k

) bk−j qj +

min(n−1,k)
∑

j=max(0,k−m+n−1)

(
m−n+1

k−j

)(
n−1

j

)

(
m
k

) rj = ak .

Minimair [146] describes a more sophisticated division algorithm, with
quadratic worst–case cost dependence on the degrees, compared to the
cubic worst–case cost of solving the above linear system. See also Busé
and Goldman [33], who discuss both division and gcd algorithms.

16. composition. For polynomials f(t) and g(u) of degree m and n with
Bernstein coefficients a0, . . . , am and b0, . . . .bn the composition problem
is concerned with computing the Bernstein coefficients c0, . . . , cmn of the
polynomial p(u) = f(g(u)) defined by substituting t = g(u) in f(t). An
elegant recursive algorithm addressing this problem has been described
by DeRose [59]. This populates a three–dimensional array of values ak

i,j

by first setting a0
i,0 = ai for i = 0, . . . , m. Then the expression

ak
i,j =

1
(

kn
j

)

min(j,kn−n)
∑

l=max(0,j−n)

(
kn−n

l

)(
n

j−l

)
[ (1 − bj−l) a

k−1
i,l + bj−l a

k−1
i+1,l ]

is used for k = 1, . . . , m, i = 0, . . . , m − k, and j = 0, . . . , kn. Finally,
the Bernstein coefficients c0, . . . , cmn of p(u) = f(g(u)) are specified by

cj = am
0,j , j = 0, . . . , mn .

The generalization to multivariate Bernstein–form polynomials, defined
over simplex domains (see Section 8.2), is also presented in [59].

17. interpolation & approximation. There is a unique polynomial p(t)
of degree n that interpolates n+1 function values f0, . . . , fn associated
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with nodes t0, . . . , tn — i.e., p(tk) = fk for k = 0, . . . , n. In power form,
p(t) can be obtained by solving the Vandermonde linear system (which
is often ill–conditioned) or by construction of the Lagrange basis for the
given nodes [46]. For nodes t0, . . . , tn ∈ [ 0, 1 ], on the other hand, the
Bernstein–Vandermonde system is typically well–conditioned, and can
be solved by accurate and efficient algorithms [58, 140]. Likewise, stable
Bernstein–basis algorithms have been developed [141] for least–squares
approximation of the given data by polynomials of degree < n.

18. resultants. The resultant of two polynomials f(t), g(t) is a polynomial
expression in their coefficients, that vanishes if and only if they possess
a common root [205], i.e., f(τ) = g(τ) = 0 for some τ ∈ C. Resultants
are typically formulated as determinants, with entries defined in terms
of the power coefficients of f(t) and g(t) — e.g., the Sylvester or Bezout

determinants [32]. It has been noted [84, 104] that these determinants
can be expressed in terms of the Bernstein coefficients by replacing each
power coefficient by the corresponding scaled Bernstein coefficient —
i.e., by

(
m
j

)
aj for j = 0, . . . , m and by

(
n
k

)
bk for k = 0, . . . , n. However,

this approach is not optimal in terms of efficiency and stability. Several
alternative resultant formulations have recently been developed by Bini
[19, 20] and Winkler [218, 219, 220, 221]. These methods are also useful
in computing greatest common divisors of Bernstein–form polynomials.

Products and ratios of binomial coefficients arise in many algorithms for
processing Bernstein–form polynomials, and it is desirable to compute their
values in exact integer arithmetic, while avoiding the possibility of overflow
for large degrees. Algorithms to efficiently compute the prime decompositions
[98, 99] of binomial coefficients are useful in this regard, since they allow the
products and ratios of binomial coefficients to be determined by the addition
or subtraction of corresponding prime exponents.

5.2 Shape features of Bézier curves

The interpretation of some of the above properties, in the case of the Bézier
curve (9) and its control polygon, is illustrated in Figure 8 — for complete
details, see [74]. The control polygon may be viewed as a “caricature” of the
curve (9), that exaggerates its shape. However, the correlation between the
curve and control polygon diminishes as the degree n increases: see [149] for
bounds on the deviation of the curve from its control polygon.
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Figure 8: Left: confinement of a Bézier curve within the convex hull of its
control polygon. Center: variation–diminishing property — no straight line
may intersect the curve more often than the control polygon. Right: control
polygons of a quintic Bézier curve after elevation of the degree to 6, 10, 25.

In many applications, such as rendering and intersection computations,
the convergent piecewise–linear control polygon approximations to the curve
r(t) generated by subdivision or degree elevation are a valuable feature of the
Bézier form, that also generalizes to the B–spline form (see Section 8.3 below).
Subdivision and degree elevation are archetypal examples of “corner–cutting”
algorithms, whose convergence rates have been studied by many authors —
see [39, 43, 48, 144, 158]. Iterated midpoint subdivision, for example, yields
a polygonal approximation converging quadratically to the curve (9).

The shape–preserving property of Bézier curves is another a key attribute
in geometric design applications. A polynomial basis {φ0(t), . . . , φn(t)} is said
to be normalized totally positive on [ 0, 1 ] if it satisfies φ0(t)+ · · ·+φn(t) = 1
and, for every sequence of points 0 ≤ t1 < · · · < tm ≤ 1, the (n + 1) ×m
collocation matrix with elements Mjk = φj(tk) is totally positive — i.e., all
its minors are non–negative. For such a basis, the number of sign variations
of p(t) = c0φ0(t) + · · · + cnφn(t) on (0, 1) cannot exceed the number of sign
changes in the coefficients c0, . . . , cn [105], and hence curves specified in terms
of it are shape–preserving. Carnicer and Peña [35] showed that the Bernstein
basis is “optimally” shape–preserving, i.e., the Bézier control polygon gives
a better sense of the curve shape than the polygon associated with any other
normalized totally positive basis on [ 0, 1 ]. This arises from the fact that the
latter can always be expressed as a linear combination of the Bernstein basis,
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specified by a stochastic13 totally positive matrix. See also [142].
Although the Bernstein basis is most often used to represent parametric

curves and surfaces, it also offers an intuitive means to define implicit curve
or surface segments over finite (simplex or rectangular) domains [177, 178]. In
this context, the implicit curve/surface segment is viewed as the zero set of a
multivariate polynomial, determined by Bernstein coefficients associated with
each point of a control net, and its geometry can be manipulated by varying
these coefficients. A related scheme is concerned with spatial deformations
of geometric models [179], using displacement fields specified by alterations
to a Bernstein–Bézier control net over a prescribed domain (see Figure 9).

Figure 9: Free–form deformation of an ellipse (left) by using a tensor–product
bicubic polynomial to define a displacement field. The deformed shape (right)
is obtained by moving the control points from their original lattice positions.

6 Numerical stability

The control–point paradigm for constructing and manipulating polynomial or
rational curves and surfaces, and the many geometrically intuitive algorithms
associated with it, were the initial motivations for the enthusiastic adoption
of the Bernstein form in computer–aided geometric design in the 60s and 70s.
It was not until somewhat later, however, that another key property was fully
appreciated — namely, the numerical stability of the Bernstein form [83] with
respect to perturbations of initial data, or rounding errors that occur during

13A stochastic matrix is determined by elements that are non–negative and sum to unity
across each row — see also Section 7.3 below.
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floating–point calculations. The importance of this attribute stems from the
high premium placed on the “robustness” (i.e., accuracy and consistency) of
the geometrical computations performed in CAD systems. Unlike most other
forms of scientific or engineering computation, the output of CAD systems —
geometric models — are not ends in themselves. Such models are rather the
point of departure for downstream applications (meshing for finite–element
analysis, path planning for manufacturing, etc.) that cannot succeed without
accurate and consistent geometrical representations.

Any n+1 linearly–independent polynomials φ0(t), . . . , φn(t) of degree ≤ n
constitute a basis for polynomials p(t) of degree n in the variable t, i.e., such
a polynomial can be uniquely specified by coefficients c0, . . . , cn in the form

p(t) =
n∑

k=0

ckφk(t) . (20)

When choosing a basis for numerical computations, the sensitivity of p(t) to
uncertainties in its coefficients is of fundamental concern. Such uncertainties
may be regarded as arising from initial measurement error, or — through the
method of backward error analysis [216] — as representing the accumulation
of rounding errors during a floating–point computation.

6.1 Condition numbers

Suppose each coefficient ck of (20) suffers a random perturbation δck and p(t)
is consequently perturbed to p(t)+δp(t). The magnitude of δp(t) depends on
(a) the value of the independent variable t; (b) the statistical distributions
of the perturbations δc0, . . . , δcn; and (c) the adopted basis φ0(t), . . . , φn(t).
To focus on the influence of (c), we assume here that (a) t lies on the interval
[ 0, 1 ]; and (b) the coefficient perturbations have uniform distributions, with
a fixed maximum relative magnitude ǫ, so that

−ǫ ≤ δck/ck ≤ +ǫ (21)

for k = 0, . . . , n. Then the nominal value of (20) is perturbed to

p(t) + δp(t) :=

n∑

k=0

ckφk(t) +

n∑

k=0

δckφk(t) ,
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where the perturbation δp(t) satisfies the bounds

−
n∑

k=0

|δckφk(t)| ≤ δp(t) ≤ +

n∑

k=0

|δckφk(t)| . (22)

Thus, denoting the basis {φ0(t), . . . , φn(t)} by Φ and using (21) we may write

|δp(t)| ≤ CΦ(p(t)) ǫ where CΦ(p(t)) :=

n∑

k=0

|ckφk(t)| . (23)

CΦ(p(t)) is the condition number for the value of the polynomial (20), at each
t, with respect to the uniform relative perturbations (21) of its coefficients in
the basis Φ = {φ0(t), . . . , φn(t)}. It should be noted that CΦ(p(t)) depends
on the choice of basis for the representation of p(t).

A basis Φ = {φ0(t), . . . , φn(t)} is said to be non–negative on the interval
t ∈ [ a, b ] if its components satisfy

φk(t) ≥ 0 for t ∈ [ a, b ] , k = 0, . . . , n .

As noted above, the Bernstein basis (1) has this property when [ a, b ] = [ 0, 1 ].
Non–negative bases are of interest [81] in the following context.

Theorem 1. Let Ψ = {ψ0(t), . . . , ψn(t)} and Φ = {φ0(t), . . . , φn(t)} be non–

negative bases for polynomials of degree n on t ∈ [ a, b ] such that the former

can be expressed as a non–negative combination of the latter, i.e.,

ψj(t) =

n∑

k=0

Mjkφk(t) , j = 0, . . . , n , (24)

where Mjk ≥ 0 for 0 ≤ j, k ≤ n. Then the condition numbers for the value

of any degree–n polynomial p(t) at any point t ∈ [ a, b ] in these bases satisfy

CΦ(p(t)) ≤ CΨ(p(t)) . (25)

Proof : In the given non–negative bases, let p(t) have the representations

p(t) =

n∑

j=0

ajψj(t) =

n∑

k=0

ckφk(t) . (26)

28



Then, from (24), the coefficients in the two bases must be related by

ck =

n∑

j=0

ajMjk for k = 0, . . . , n . (27)

Since they are both non–negative on t ∈ [ a, b ] the condition numbers for the
value of p(t) in these bases may be written as

CΦ(p(t)) =

n∑

k=0

|ck|φk(t) and CΨ(p(t)) =

n∑

j=0

|aj |ψj(t) . (28)

Now substituting (27) into CΦ(p(t)) and using the triangle inequality

∣
∣
∣
∣
∣

n∑

k=0

xk

∣
∣
∣
∣
∣
≤

n∑

k=0

|xk| , (29)

we obtain

CΦ(p(t)) =

n∑

k=0

∣
∣
∣
∣
∣

n∑

j=0

ajMjk

∣
∣
∣
∣
∣
φk(t) ≤

n∑

k=0

[
n∑

j=0

|ajMjk|
]

φk(t) . (30)

Then, setting |ajMjk| = |aj|Mjk (since Mjk ≥ 0 for all j, k) and re–arranging
the order of summation on the right–hand side of (30), we have

CΦ(p(t)) ≤
n∑

j=0

|aj |
n∑

k=0

Mjkφk(t) =
n∑

j=0

|aj |ψj(t) = CΨ(p(t)) , (31)

where we make use of (24) in the second step.

An important instance of Theorem 1 is the case where Φ is the Bernstein
basis (1) on [ 0, 1 ] and Ψ is the monomial or “power” basis 1, t, . . . , tn [83].

Corollary 1. The condition numbers CB(p(t)) and CP (p(t)) for the value of

p(t) in the Bernstein and power representations, (7) and (8), satisfy

CB(p(t)) ≤ CP (p(t))

for any polynomial p(t) and any value t ∈ [ 0, 1 ].
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Proof : The Bernstein and power bases are both non–negative on [ 0, 1 ] and
from the transformations (15) between them we see that the power basis is a
non–negative combination of the Bernstein basis, but not vice–versa. Hence,
the conditions of Theorem 1 hold.

In other words, the Bernstein form is systematically more stable than the
power form, when evaluating polynomials on t ∈ [ 0, 1 ] whose coefficients are
subject to the random perturbations (21) of uniform relative magnitude.

Note that Theorem 1 makes no assumption concerning the magnitude of
the relative coefficient error ǫ in deducing the bound (23). The perturbation
δp(t) of p(t) satisfies this bound for finite (not just infinitesimal) errors in the
coefficients. The effect of these uncertainties may be regarded as “exploding”
the graph of p(t) from a line of zero width to a region of finite (variable) width.
At each t, the width of this perturbation region depends on the adopted basis.
However, in comparing the Bernstein and power forms over [ 0, 1 ] we can be
sure that, for any polynomial, the perturbation region for the former is always
narrower than that for the latter, as illustrated in Figure 10.

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

ε = 0.00002

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

ε = 0.002

Figure 10: Perturbation region for the Bernstein (black area) and power (grey
area) forms of a degree–6 polynomial, with a given coefficient uncertainty ǫ.

The above arguments can be adapted to describe the sensitivity of the
roots of a polynomial p(t) to uncertainties in the coefficients. In this context,
one must consider the sensitivity of a root to infinitesimal perturbations of
the coefficients, in accordance with standard theory [167] for the condition
of problems with analytic “input–output” relations. If τ is a simple root of
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(20), i.e., p(τ) = 0 6= p′(τ), then in the limit ǫ → 0 the perturbation δτ of
the root induced by the perturbations (21) satisfies [96, 97] the bound14

|δτ | ≤ CΦ(τ) ǫ where CΦ(τ) :=
1

|p′(τ)|

n∑

k=0

|ckφk(τ)| . (32)

CΦ(τ) is the condition number for the root τ of p(t), in the basis Φ. Since
it differs from CΦ(p(τ)) only by the factor |p(τ)|−1, which is independent of
the basis, the result of Theorem 1 applies also to root condition numbers.

Two more important cases of Theorem 1 are concerned with subdivision

and degree elevation of the Bernstein form [83].

Corollary 2. The condition numbers C̃(p(t)) and C(p(t)) for the value of a

polynomial p(t) of true degree n in the Bernstein bases of degree n+ r and n
on [ 0, 1 ] satisfy

C̃(p(t)) ≤ C(p(t))

for any polynomial p(t) and any value t ∈ [ 0, 1 ] and for all r ≥ 1.

Corollary 3. Suppose [ t1, t2 ] ⊂ [ 0, 1 ]. Then the condition numbers C̃(p(t))
and C(p(t)) for the value of a degree–n polynomial p(t) in the Bernstein bases

of degree n on [ t1, t2 ] and [ 0, 1 ] satisfy

C̃(p(t)) ≤ C(p(t))

for any polynomial p(t) and any value t ∈ [ t1, t2 ].

Corollary 2 follows from the fact that, for all r ≥ 1, the Bernstein basis
of degree n is a non–negative combination of the basis of degree n+ r — as
expressed by (19). Similarly, Corollary 3 is a consequence of the fact that,
whenever [ t1, t2 ] ⊂ [ 0, 1 ] the Bernstein basis on [ 0, 1 ] can be expressed as a
non–negative combination of the basis

b̃nk(t) =

(
n

k

)
(t2 − t)n−k(t− t1)

k

(t2 − t1)n
, k = 0, . . . , n

on [ t1, t2 ]. Specifically [82], we have

bnj (t) =

n∑

k=0

Mjk b̃
n
k(t) , j = 0, . . . , n , (33)

14For an m–fold root, |δτ | grows like ǫ1/m rather than linearly with ǫ, as in (32).
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where

Mjk =

min(j,k)
∑

i=max(0,j+k−n)

bn−k
j−i (t1) b

k
i (t2) , 0 ≤ j, k ≤ n . (34)

Corollaries 2 and 3 also apply to the root condition numbers.

6.2 Wilkinson polynomial

A “simple” polynomial whose roots are notoriously difficult to compute [215]
is the Wilkinson polynomial

p(t) =
n∏

k=1

(t− k/n) , n = 20 , (35)

with twenty equidistant roots on the interval t ∈ [ 0, 1 ]. This polynomial was
first employed by the British numerical analyst J. H. Wilkinson15 in 1959, in
the context of testing a software implementation of floating–point arithmetic
(only fixed–point arithmetic processors were available then). To compute the
roots of p(t), Wilkinson first determined its power coefficients a0, . . . , an by
multiplying out (35), and then used the power form to evaluate p(t) and p′(t)
for Newton–Raphson iterations. But he found that most of the roots could
not be determined with more than just a few accurate digits — if at all. After
eliminating the possibility of bugs in the software, Wilkinson found the true
source of the problem — the extreme sensitivity of the roots to perturbations
in the power coefficients a0, . . . , an. He subsequently called this “the most
traumatic experience in my career as a numerical analyst” [217].

A radically different picture emerges [83] if one uses the Bernstein, rather
than the power, form of (35). By Theorem 1, we expect the root condition
numbers in the Bernstein basis to be systematically smaller than those in the
power basis. An explicit computation shows that the difference is substantial:
the largest condition numbers are ∼ 1013 in the power basis, but only ∼ 106

in the Bernstein basis [83] — see Figure 11. Typically, the base 10 logarithm
of a condition number indicates the number of inaccurate significant decimal
digits one can expect in the result of a floating–point calculation. Thus, with
double–precision arithmetic (∼ 15 significant digits) one struggles to secure
just a few accurate digits in the roots of p(t) with the power form, but the
Bernstein form typically yields at least 9 accurate digits.

15Wilkinson actually used roots at t = 1, . . . , 20. Scaling them down to the unit interval
t ∈ [ 0, 1 ] as in (35) does not materially alter the problem.
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Figure 11: Root condition numbers for the Wilkinson polynomial (35) in the
power basis and Bernstein basis on [ 0, 1 ]. The Bernstein–basis root condition
numbers on the two subintervals [ 0, 1

2
] and [ 1

2
, 1 ] of [ 0, 1 ] are also shown.

The striking difference in accuracy obtained with the power and Bernstein
forms has a simple explanation [76]. For both bases, the coefficients exhibit
alternating signs, but the terms in (7) and (8) are of much larger magnitude
for the power form than for the Bernstein form. Large cancellations of leading
significant digits occur when the terms are summed, incurring amplification of
the relative errors inherent in each term (due to the coefficient uncertainties).
With the power form, this effect is much more severe than with the Bernstein
form, since the individual terms are many orders of magnitude larger.

6.3 Optimal stability

The basic ingredients of Theorem 1 are that (i) Ψ = {ψ0(t), . . . , ψn(t)} and
Φ = {φ0(t), . . . , φn(t)} are both non–negative bases on the specified interval;
and (ii) the former is a non–negative combination of the latter, i.e.,

ΨT = MΦT (36)

for some matrix M with elements satisfying Mjk ≥ 0 for 0 ≤ j, k ≤ n. As
noted in Section 6.1, the power and Bernstein bases are archetypal examples
satisfying these conditions, and the Bernstein form is therefore systematically
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more stable than the power form. One is naturally led to ask if other non–
negative bases exist, in terms of which the Bernstein basis can be expressed as
a non–negative combination, so they are more stable even than the Bernstein
basis. This question was studied in [81] and it was shown that, in fact, the
Bernstein basis is “optimally stable” in the sense outlined below.

Let Pn be the set of all non–negative bases for degree–n polynomials on
[ 0, 1 ]. The transformation (36) between degree–n polynomial bases by means
of a non–negative matrix M establishes a partial ordering of Pn. Specifically,
when Ψ,Φ ∈ Pn and (36) holds for some non–negative matrix M, we write
Φ - Ψ. Since the product of two non–negative matrices is non–negative, the
transitivity condition Ψ - Φ and Φ - Θ =⇒ Ψ - Θ is satisfied.

Now a non–negative matrix has a non–negative inverse if and only if it
is the product of a permutation matrix and a positive diagonal matrix [145].
Thus, the relations Φ - Ψ and Ψ - Φ are both satisfied if and only if, with
suitable ordering, the elements of Φ are positive multiples of those of Ψ. In
that case, we write Φ ∼ Ψ. Finally, when Φ - Ψ but Φ 6∼ Ψ we write Φ ≺ Ψ.
We say that Φ precedes Ψ when Φ ≺ Ψ, and Φ is similar to Ψ when Φ ∼ Ψ.

The relation - determines a partial ordering of the set Pn of non–negative
bases on [ 0, 1 ]. This ordering is only “partial” since bases Φ,Ψ ∈ Pn exist
such that neither the matrix M in (36), nor its inverse, is non–negative —
no precedence (or similarity) relation exists between such bases.

A non–negative basis Φ is a minimal basis of Pn if no basis Ψ ∈ Pn exists,
such that Ψ ≺ Φ. Note that, since Pn is only partially ordered, there may be
— modulo similarity — more than one minimal basis. The following results
from [81] show that such minimal bases are “optimally stable” in the sense of
the condition numbers defined above (see also [151, 152] for extensions and
generalizations of these results).

Theorem 2. Any two non–negative bases Φ,Ψ ∈ Pn satisfy

Φ - Ψ ⇐⇒ CΦ(p(t)) ≤ CΨ(p(t))

for every polynomial p(t) and every value t on the unit interval [ 0, 1 ].

Theorem 3. The Bernstein basis is a minimal element of Pn, and it is the

only minimal element for which the basis functions have no roots in (0, 1).

At present, the Bernstein basis is the only known optimally–stable basis
in common use. Other minimal bases of Pn can be constructed (see [81] for
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examples in P2) but the optimal stability may not suffice for their adoption in
applications. A useful basis must admit efficient algorithms for interpolation,
approximation, root–finding, shape manipulation, and similar requirements.
The Bernstein basis combines optimal stability with a repertoire of versatile
algorithms that address diverse computational requirements.

Remark 1. The optimal numerical stability of the Bernstein basis is closely
related, but not identical, to the optimal shape–preserving property discussed
in Section 5. The former property is based on a comparison of bases that are
non–negative on [ 0, 1 ] while the latter is concerned with the more restrictive
context of normalized totally positive bases (i.e., for any set of nodes on [ 0, 1 ]
the collocation matrices must have minors that are all non–negative).

6.4 The Legendre basis

In the least–squares approximation of a given function f(t) over t ∈ [ 0, 1 ] by
degree–n polynomials, i.e., in the construction of the polynomial pn(t) that
minimizes the integral

E =

∫ 1

0

[ f(t) − pn(t) ]2 dt , (37)

it is convenient [169] to express pn(t) in terms of an orthogonal basis,

pn(t) =

n∑

k=0

akφk(t) , (38)

characterized by the property

∫ 1

0

φj(t)φk(t) dt =

{

βk if j = k,

0 if j 6= k,
(39)

since this allows the coefficients in (38) to be immediately identified as16

ak =
1

βk

∫ 1

0

f(t)φk(t) dt . (40)

Moreover, when deg(φk(t)) = k, the approximant (38) exhibits permanence of

coefficients with respect to its degree, i.e., the coefficients a0, . . . , an of pn+1(t)

16See [141] for direct computation of least–squares approximants in the Bernstein basis.
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agree with those of pn(t), and on increasing the degree we need only compute
the new coefficient an+1. The relations (37), (39), (40) can be generalized by
inserting a non–negative weight function w(t) in the integrand.

Now the Bernstein basis (1) is clearly not orthogonal with respect to any
non–negative w(t) but it is intimately related to the Legendre polynomials, a
family of classical orthogonal polynomials with w(t) = 1. Key aspects of this
relation are (i) the simple and intuitive form of the Legendre polynomials in
the Bernstein basis; and (ii) the relative stability of transformations between
the Bernstein and Legendre forms (see Section 6.5 below).

To emphasize symmetries, the Legendre polynomials are usually defined
[46, 118] on t ∈ [−1,+1 ]. To express them in Bernstein form, however, it
is more convenient to use the interval t ∈ [ 0, 1 ]. The Legendre polynomials
Lk(t) on [ 0, 1 ] can be generated through the recurrence relation

(k + 1)Lk+1(t) = (2k + 1)(2t− 1)Lk(t) − k Lk−1(t) , (41)

for k = 1, 2, . . ., commencing with L0(t) = 1 and L1(t) = 2t− 1. This gives

L2(t) = 6t2 − 6t+ 1 , L3(t) = 20t3 − 30t2 + 12t− 1 , . . . etc. (42)

These polynomials satisfy (39) with βk = 1/(2k+1). Alternatively, they may
be defined through Rodrigues’ formula

Lk(t) =
1

k!

dk

dtk
[ (t− 1)t ]k . (43)

From this formula, the following result can be easily proved by induction —
see [78, 133] for complete details of the proof.

Lemma 1. The Legendre polynomial Lk(t) can be expressed in the Bernstein

basis bk0(t), . . . , b
k
k(t) of degree k as

Lk(t) =

k∑

i=0

(−1)k+i

(
k

i

)

bki (t) . (44)

The Bernstein form (44) offers a simple and intuitive characterization of
the Legendre polynomials, easier to remember than the recurrence relation
(41) or Rodrigues’ formula (43) — namely, the Bernstein coefficients of Lk(t)
are simply the ordered sequence of binomial coefficients of order k taken with
alternating signs (starting with a + or − sign according to whether k is even
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or odd). The control polygon associated with these coefficients offers useful
insight into the behavior of the graph of Lk(t) for t ∈ [ 0, 1 ].

Another approach to least–squares approximation using polynomials in
Bernstein form is to formulate the dual basis functions dn

0 (t), . . . , dn
n(t) which

are characterized by the property

∫ 1

0

bnk(t) dn
j (t) dt = δjk =

{

1 if j = k,

0 if j 6= k.

Jüttler [119] has shown that, when the dual basis functions are themselves
expressed in Bernstein form as

dn
j (t) =

n∑

k=0

ajkb
n
k(t) ,

the coefficients ajk for 0 ≤ j, k ≤ n are given by

ajk =
(−1)j+k

(
n

j

)(
n

k

)

min(j,k)
∑

i=0

(2i+ 1)

(
n+ i+ 1

n− j

)(
n− i

n− j

)(
n+ i+ 1

n− k

)(
n− i

n− k

)

.

The polynomial pn(t) minimizing (37) then has the Bernstein coefficients

ck =

∫ 1

0

f(t) dn
k(t) dt , k = 0, . . . , n .

Details on conversions between the Bernstein basis and other orthogonal
polynomial bases may be found in [29, 40, 160, 161, 162].

6.5 Basis transformations

In theoretical discussions, the monomial form (8) of a polynomial p(t) is most
frequently used. In problems of min–max or least–squares approximation, on
the other hand, use of an orthogonal (e.g., Chebyshev or Legendre) basis may
be more convenient. As emphasized above, the Bernstein form is best suited
to manipulating the graph of a polynomial over a finite domain, to achieve
certain desired shape properties. In principle, one may freely switch between
alternative representations, since a change of basis for degree–n polynomials
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corresponds to a linear map, i.e., an (n+1)× (n+1) matrix, that determines
the coefficients in the new basis from those in the old basis.

Such basis transformations should generally be avoided if one wishes to
fully exploit the stability of the Bernstein form, since they may themselves
incur amplification of relative errors in the coefficients. In other words, the
problem should be formulated ab initio in the Bernstein form, and subsequent
computations should be performed exclusively in that basis. All the familiar
polynomial operations, typically performed using the power representation,
have straightforward Bernstein–form analogs [84].

The stability of transformations between the Bernstein and other bases
has been studied by several authors [44, 75, 78, 109, 133]. It may be quantified
by a condition number for the matrix that relates the coefficients in the two
bases. The p–norm of a vector v = (v0, . . . , vn)T is defined by

‖v‖p :=

[
n∑

i=0

|vi|p
]1/p

. (45)

In particular, ‖v‖1 = |v0| + · · · + |vn|, ‖v‖2 =
√

v2
0 + · · ·+ v2

n, and ‖v‖∞ =
max(|v0|, . . . , |vn|). The matrix norm subordinate to (45) is defined by

‖M‖p := max
v 6=0

‖Mv‖p

‖v‖p

. (46)

Specifically, ‖M‖1 and ‖M‖∞ are the greatest of the column sums and row
sums of absolute values of the matrix elements, respectively, while ‖M‖2 =√
λmax, where λmax is the largest eigenvalue of MTM [196]. Now if the matrix

M maps x = (x0, . . . , xn)T to y = (y0, . . . , yn)T according to

y = Mx , (47)

and a perturbation δx = (δx0, . . . , δxn) of the “input” induces a perturbation
δy = (δy0, . . . , δyn) of the “output,” the magnitudes of these perturbations
may be characterized by the fractional measures

ǫx :=
‖δx‖p

‖x‖p

and ǫy :=
‖δy‖p

‖y‖p

. (48)

One can then show [196] that ǫy is bounded in terms of ǫx by the relation

ǫy ≤ Cp(M) ǫx , Cp(M) := ‖M‖p‖M−1‖p , (49)
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Cp(M) being the p–norm condition number of M. The bound in (49) is sharp

— i.e., a perturbation δx exists for which (49) holds with equality.
For transformations between the Bernstein and power forms, the elements

of M and M−1 are defined by the relations (15) and one can show17 [75] that

C1(M) = C∞(M) = (n+ 1)

(
n

ν

)

2 ν , ν =

⌊
2(n+ 1)

3

⌋

. (50)

The simpler form 3n+1
√

(n+ 1)/4π is an excellent approximation [75].
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Figure 12: Condition numbers for transformations between polynomial bases
— Bernstein–Legendre (squares p = 1, and circles p = ∞); Bernstein–power
(triangles, both p = 1 and ∞); and Bernstein–Hermite (diamonds p = ∞).

Figure 12 illustrates the growth of the condition number with degree n for
transformations among the power, Legendre, Hermite, and Bernstein bases,
in the p = 1 and p = ∞ norms. The Legendre–Bernstein transformation (see
Section 6.4 above) is comparatively well–conditioned. The power–Bernstein
transformation condition number (50) exhibits a faster growth, although not
as severe as transformations that involve the Hermite form.

Since subdivision plays a fundamental role in algorithms for Bernstein–
form polynomials, it is also important to characterize the stability of the map

17The “floor” function ⌊x⌋ indicates the largest integer not exceeding x.
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that relates the coefficients c̃0, . . . , c̃n in the Bernstein basis on a sub–interval
[ t1, t2 ] to the coefficients c0, . . . , cn on the interval [ 0, 1 ]. In [82] it was shown
that this map may be specified by

c̃j =
n∑

k=0

Mjkck , j = 0, . . . , n ,

where the elements Mjk of the (n + 1) × (n + 1) matrix M are defined by

Mjk =

min(j,k)
∑

i=max(0,j+k−n)

bn−j
k−i (t1) b

j
i (t2) , 0 ≤ j, k ≤ n .

Setting tm = 1
2
(t1 + t2), the condition number of this matrix in the p = ∞

norm may be expressed [82] as

C∞(M) =

[
2 max(tm, 1 − tm)

t2 − t1

]n

.

See also [120] for a rounding–error analysis of the de Casteljau algorithm.

7 Alternative approaches

The versatility of the Bernstein form is evident in the wide variety of available
approaches for elucidating the algorithms and properties associated with it.
Some alternative paradigms are summarized here, based on the shift operator,
polar forms (or blossoms), connections to probability theory, and the use of
generating functions and discrete convolutions.

7.1 The shift operator

Many properties and algorithms associated with the Bernstein form (7) can
be easily derived by invoking a “shift operator” S, whose action on a sequence
of Bernstein coefficients c0, . . . , cn is such as to increment each subscript by
1. In this context, we allow the subscripts to assume all integer values, i.e.,
we consider the infinite sequence

. . . , c−1, c0, c1, . . . , cn−1, cn, cn+1, . . . ,
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where it is understood that ck = 0 if k < 0 or > n. As a short–hand notation,
we write

Sck = ck+1 , (51)

and correspondingly Srck = ck+r. An inverse S−1 can also be defined, that
decrements each subscript by 1, indicated by the notation by S−1ck = ck−1,
so that S−1 acting on Sck (or S on S−1ck) yields ck. Finally, we also define
the identity operator I = S0, which leaves subscripts unchanged.

Consider now the operator expression (1− t) I + tS for any real value t.
By the binomial theorem, its n–th power may be formally expanded as

[ (1 − t) I + tS ]n =

n∑

k=0

(
n

k

)

(1 − t)n−ktk Sk =

n∑

k=0

bnk(t)Sk .

Hence, the polynomial (7) may be represented by the compact expression

p(t) = [ (1 − t) I + tS ]n c0 . (52)

Since the first forward differences of the coefficients are ∆ck = ck+1 − ck, we
introduce the operator

∆ = S − I ,
and (52) can alternatively be written as

p(t) = [ I + t∆ ]n c0 .

By way of example, we illustrate the use of (52) to obtain the derivative
and integral of (7). The derivative of [ (1− t) I + tS ]n with respect to t may
be expressed as

d

dt
[ (1 − t) I + tS ]n = n [ (1 − t) I + tS ]n−1∆ . (53)

Thus, by writing

p′(t) = n [ (1 − t) I + tS ]n−1∆c0 , (54)

and noting that Sk∆c0 = Sk(c1 − c0) = ck+1 − ck = ∆ck, we obtain

p′(t) =
n−1∑

k=0

n∆ck

(
n− 1

k

)

(1 − t)n−1−ktk =
n−1∑

k=0

n∆ckb
n−1
k (t)
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for the derivative of p(t). We can also obtain the indefinite integral of p(t)
using the shift operator. Observing that

∫

[ (1 − t) I + tS ]n dt =
1

n+ 1
[ (1 − t) I + tS ]n+1∆−1 ,

the integral of p(t) can be expressed in the form

∫

p(t) dt =
1

n + 1
[ (1 − t) I + tS ]n+1∆−1c0 . (55)

The inverse ∆−1 of the difference operator in (55) is obtained by writing

∆−1 = (S − I )−1 = S−1( I − S−1)−1 .

By analogy with the binomial expansion (1 − x)−1 = 1 + x + x2 + · · · , we
write the above as

∆−1 = S−1( I + S−1 + S−2 + · · · ) = S−1 + S−2 + S−3 + · · · .

Hence, the action of ∆−1 on ck is described by

∆−1ck =
k−1∑

j=−∞

cj ,

which is consistent with the requirement that ∆−1(∆ck) = ∆(∆−1ck) = ck.
In particular, since ∆−1c0 = · · ·+ c−2 + c−1, the numerical value of Sk∆−1c0
is zero if k = 0, and c0 + · · · + ck−1 if k ≥ 1. Thus, the indefinite integral of
p(t) is given (modulo a constant) by

n+1∑

k=1

[

1

n + 1

k−1∑

j=0

cj

](
n + 1

k

)

(1 − t)n+1−ktk =

n+1∑

k=1

[

1

n+ 1

k−1∑

j=0

cj

]

bn+1
k (t) .

Further details on the use of the shift operator may be found in [36, 114, 175].

7.2 Polar forms or blossoms

The polar form — or blossom — P (t1, . . . , tn) of a univariate polynomial p(t)
of degree n is a useful tool in the construction and analysis of algorithms for
Bézier (and B–spline) curves. P (t1, . . . , tn) is the unique polynomial that is
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linear and symmetric in the n independent variables t1, . . . , tn and coincides
with p(t) when t1 = · · · = tn = t. For example, the polar form of the cubic
p(t) = t3 − 3t2 + t− 1 is the symmetric trilinear polynomial

P (t1, t2, t3) = t1t2t3 − 3
t1t2 + t2t3 + t3t1

3
+
t1 + t2 + t3

3
− 1 .

There are several different approaches to computing the polar form of a given
polynomial (or polynomial curve) — see Section 8 of [165].

Poles and polar forms feature prominently in the work of de Casteljau,
who observed that “the pole, a real pilot point derived from the polar form of
the polynomials, is used for interpolation” [51, 52, 53, 55]. In the conclusion
of [53], he also remarks that

It is quite astonishing that the study of polar forms, which was

once so highly developed that mathematicians became irritated by

being overexposed to it, should now be limited to Cartesian forms.

Parametric forms have fallen into disuse, and the general form

of interpolation illustrated here could have become standard, but

circumstance and fashion decided otherwise.

However, it is mostly the work of Ramshaw [164, 165] that earned widespread
acceptance of polar forms as tools for analyzing the structure of algorithms
(and also established common usage of the term blossoming).

As a simple illustration of the use of polar forms, consider the de Casteljau
algorithm for evaluating and subdividing a Bézier curve r(t) at a given point
t. Suppose, for example, that the curve (9) is a cubic with polar form

R(t1, t2, t3) = (1 − t1)(1 − t2)(1 − t3)p0

+ [ (1 − t1)(1 − t2)t3 + (1 − t1)t2(1 − t3) + t1(1 − t2)(1 − t3) ]p1

+ [ (1 − t1)t2t3 + t1(1 − t2)t3 + t1t2(1 − t3) ]p2

+ t1t2t3 p3 , (56)

the polar values R(0, 0, 0), R(0, 0, 1), R(0, 1, 1), R(1, 1, 1) corresponding to
the control points p0,p1,p2,p3. By the linearity of (56) in t1, t2, t3 we have

R(0, 0, t) = (1 − t)R(0, 0, 0) + tR(0, 0, 1) ,

R(0, t, 1) = (1 − t)R(0, 0, 1) + tR(0, 1, 1) ,

R(t, 1, 1) = (1 − t)R(0, 1, 1) + tR(1, 1, 1) ,
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To evaluate (1− t)R(0, 0, t)+ tR(0, t, 1) and (1− t)R(0, t, 1)+ tR(t, 1, 1) in
the second step, we note that R(0, 0, t) = R(0, t, 0) and R(0, t, 1) = R(t, 0, 1)
from the symmetry of (56). By linearity, these expressions reduce to R(0, t, t)
and R(t, t, 1). Invoking symmetry again to observe that R(t, t, 1) = R(1, t, t)
the final expression (1 − t)R(0, t, t) + tR(t, t, 1) then yields R(t, t, t).

R(0,0,0)

R(0,0,1)

R(0,1,1)

R(1,1,1)
R(0,0,t)

R(0,t,1)

R(t,1,1)

R(0,t,t)

R(t,t,1)R(t,t,t)

Figure 13: Use of the polar form to illustrate the de Casteljau algorithm for
subdividing a cubic Bézier curve. Left: the intermediate points generated by
the algorithm, as values of the polar form (56). Right: the “left” and “right”
cubic segments, together with control polygons, after subdivision at t = 1

2
.

The polar form interpretation of the de Casteljau algorithm is illustrated
in Figure 13. The symmetry of the computed polar values becomes apparent
on arranging them in a triangular array,

R(0, 0, 0) R(0, 0, 1) R(0, 1, 1) R(1, 1, 1)

R(0, 0, t) R(0, t, 1) R(t, 1, 1)

R(0, t, t) R(t, t, 1)

R(t, t, t)

analogous to (10). In fact, the blossoming argument may be regarded as a
simple proof of the de Casteljau algorithm. The control points of a degree–n
Bézier curve appropriate to any parameter interval t ∈ [ a, b ] can be easily
obtained from its polar form as

pk = R( a , . . . , a
︸ ︷︷ ︸

n−k

, b , . . . , b
︸ ︷︷ ︸

k

) , k = 0, . . . , n .
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This is sometimes known [103] as the dual functional property of the blossom.
Polar forms prove valuable in many other contexts, e.g., analyzing geometric
continuity and generalizing from Bernstein–form polynomials on an interval
to B–spline functions on a partitioned domain. More complete details may
be found in [21, 50, 52, 103, 164, 165, 180].

7.3 Connections with probability theory

In addition to approximation theory, Bernstein made important contributions
to probability theory. There are, in fact, close connections between these two
fields. Considered as a function of an integer variable k that can assume the
discrete values 0, . . . , n, the basis functions bnk(t) specified by (1) correspond
to the binomial distribution, defining the probability of k successes in n trials
of a random event, when t is the probability of success in a single trial.

The non–negativity and partition of unity properties of the basis functions
(1) are the key characteristic features of any discrete probability distribution.
Similarly, the elements (34) of the matrix that specifies the Bernstein basis
on [ 0, 1 ] in terms of the basis on any sub–interval [ t1, t2 ] thereof satisfy

Mjk ≥ 0 , 0 ≤ j, k ≤ n and
n∑

k=0

Mjk = 1 , j = 0, . . . , n .

These are the characteristic features of a (right) stochastic or Markov matrix
[86]. A Markov chain describes the step–by–step evolution of a probabilistic
system that can assume one of several distinct states, s0, . . . , sn. If the system
is currently in state sj , the probability that it will transition to state sk in one
step is Mjk. The chain commences by assigning initial probabilities p0, . . . , pn

to the states s0, . . . , sn — e.g., pi = 1 and pj = 0 for all j 6= i if the system
is known with certainty to begin in the state si.

Regarding the curve parameter t as time, and the n + 1 basis functions
(1) as specifying a time–dependent discrete probability distribution, one may
interpret the Bézier curve (9) as the “expected path” of a point as t increases
from 0 to 1, when bnk(t) defines the probability at time t that it is coincident
with control point pk. As an alternative “physical” interpretation of (9), one
may consider the basis functions bn0 (t), . . . , bnn(t) as specifying time–dependent

masses, situated at the control points p0, . . . ,pn. The curve (9) then specifies
the trajectory of the center of mass, as t increases from 0 to 1.
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For a comprehensive discussion of the connections between probability
theory, Markov chains, and polynomial bases that provide intuitive geometric
design schemes, see the articles by Goldman [100, 101, 102] and also [106].

7.4 Generating functions & discrete convolutions

According to Wilf [214], a generating function is “a clothesline on which we
hang up a sequence of numbers for display.” More specifically, the sequence
of numbers a0, a1, a2, . . . is considered to be the coefficients in the power series
expansion a0 + a1x+ a2x

2 + · · · of a generating function f(x).
This idea can also be generalized to specify a generating function for a

sequence of functions φ0(t), φ1(t), φ2(t), . . . by considering these functions to
be the coefficients in the power series expansion of a bivariate function f(t, x)
with respect to x, i.e.,

f(t, x) =

∞∑

k=0

φk(t) x
k .

The generating function can prove useful in determining various properties,
identities, and recurrence relations for φ0(t), φ1(t), φ2(t), . . . When f(t, x) is
a polynomial, a simple generating function [103] for the Bernstein basis is

f(t, x) = (1 − t+ tx)n =
n∑

k=0

bnk(t) xk .

Simsek [187] considers a generalization of the Bernstein basis, defined by

bnk,s(t) =

(
n

ks

)
(1 − t)n−kstks

2k(s−1)
,

which specializes to (1) when s = 1. This basis can be obtained from the
generating function expansion

fk,s(t, x) =
2k(1

2
tx)kse(1−t)x

(ks)!
=

∞∑

n=0

bnk,s(t)
xn

n!
, (57)

where it is understood that bnk,s(t) ≡ 0 if ks > n. For the case s = 1 of the
“ordinary” Bernstein basis (1), with bnk(t) ≡ 0 if k > n, this reduces to

fk(t, x) =
(tx)ke(1−t)x

k!
=

∞∑

n=0

bnk(t)
xn

n!
. (58)
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Note that this generates basis functions of fixed index k and increasing degree
n, rather than vice–versa. The generating functions (57)–(58) are employed
in [187, 188, 189] to derive various basic properties of the Bernstein form.

Another approach to analyzing properties of the Bernstein form is through
the interpretation that the basis (1) arises from a discrete convolution — see
Goldman [103]. The discrete convolution

C = A⊗ B = {c0(t), . . . , cm+n(t)}

of two function sequences A = {a0(t), . . . , am(t)} and B = {b0(t), . . . , bn(t)}
is the function sequence specified by

ck(t) =
∑

i+j=k

ai(t)bj(t) .

The degree–n Bernstein basis (1) can be regarded as a discrete convolution
of bases of degree r and n− r, for 1 ≤ r ≤ n. For example,

{(1 − t), t} ⊗ {(1 − t)2, 2(1 − t)t, t2} = {(1 − t)3, 3(1 − t)2t, 3(1 − t)t2, t3} .

This interpretation is also useful in analyzing basic properties of the Bernstein
form — see [103] for further details.

8 Computer aided geometric design

The impetus for revived interest in the Bernstein form as a basis for practical
computations arose from the field of computer aided geometric design, mainly
through the work of Bézier and de Casteljau in the 60s and 70s (see Section 4).
This has subsequently evolved into a mature discipline, whose “classical core”
is centered on Bézier/B–spline forms. Since there are several excellent sources
for this material [28, 74, 103, 116, 157] this section will only highlight a few
key concepts involved in generalizing the basic Bézier curve (9).

8.1 Rational Bézier curves

Although the Bézier form (9) is primarily used for “free–form” curve design,
it is desirable to have a representation that can also accommodate important
“simple” curves (e.g., conic segments), and exhibits closure under projective
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transformations. This is achieved by introducting scalar “weights” w0, . . . , wn

that generalize (9) to the rational Bézier form

r(t) =

n∑

k=0

wkpk b
n
k(t)

n∑

k=0

wk b
n
k(t)

, t ∈ [ 0, 1 ] . (59)

To ensure that the curve has no points at infinity, it is customary to use only
positive weights. Note that only the ratios w0 : w1 : · · · : wn matter. Also,
for any α ∈ (0, 1) the rational linear (Möbius) parameter transformation

t 7→ (1 − α)t

α(1 − t) + (1 − α)t

preserves the t ∈ [ 0, 1 ] parameter interval, the curve degree n, and the control
points p0, . . . ,pn — only the weights w0, . . . , wn change. By virtue of these
freedoms, a rational Bézier curve may always be expressed in “standard form”
with w0 = wn = 1. For example, the rational quadratic Bézier curves can be
specified by three control points p0,p1,p2 and a single weight w1 as

r(t) =
p0(1 − t)2 + w1p1 2(1 − t)t+ p2t

2

(1 − t)2 + w1 2(1 − t)t+ t2
, t ∈ [ 0, 1 ] . (60)

This determines a segment of an ellipse, parabola, or hyperbola according to
whether w1 < 1, w1 = 1, or w1 > 1 (see Figure 14).

Figure 14: Left to right: segments of an ellipse (w1 < 1), parabola (w1 = 1),
and hyperbola (w1 > 1), defined by the rational quadratic Bézier form (60).

The weights w0, . . . , wn in the rational curve (59) offer additional degrees
of freedom for manipulating its shape. An intuitive means of exercising these
freedoms was proposed by Farin [72], based on introducing the weight points

qk =
wk−1pk−1 + wkpk

wk−1 + wk
, k = 1, . . . , n , (61)

48



on each control polygon leg. The location of qk between pk−1 and pk uniquely
fixes the ratio wk−1 : wk so the n points (61), also called Farin points, specify
the ratios w0 : w1 : · · · : wn. Hence, the curve shape may be manipulated by
“sliding” the weight points along the control–polygon legs.

If the rational curve (59) is planar, with control points pk = (xk, yk) for
k = 0, . . . , n, its homogeneous coordinates are specified by the polynomials

W (t) =
n∑

k=0

wk b
n
k(t) , X(t) =

n∑

k=0

wkxk b
n
k(t) , Y (t) =

n∑

k=0

wkyk b
n
k(t) .

The rational planar curve r(t) may be regarded as the image of a polynomial
space curve R(t) = (W (t), X(t), Y (t)) through a central projection from the
origin (W,X, Y ) = (0, 0, 0) onto the plane W = 1. A 3 × 3 matrix acting on
the homogeneous coordinate polynomials defines a projective transformation

of the curve. These ideas are also readily extended to rational space curves.
For a more detailed account of the algorithms and properties associated

with rational Bézier curves, see the paper [69] by Farin. In certain contexts
— e.g., the construction of planar Pythagorean–hodograph curves [77, 79] —
it is advantageous to interpret planar curves as complex–valued functions of
a real parameter t, i.e., points (x, y) in the plane are identified with complex
values x + i y, and the rational Bézier curve (59) then has complex control
points pk = xk + iyk. Sánchez–Reyes [171] describes a generalization of (59)
to the case where the numerator and denominator are both complex–valued
polynomials. The standard algorithms for rational Bézier curves carry over to
such forms, which offer compact representations of circular arcs (by rational
linear complex functions), and higher–order curves such as epitrochoids and
hypotrochoids. See also Ait–Haddou et al. [3] for some interesting relations
between complex polynomials and the geometry of planar polygons.

8.2 Triangular surface patches

The multivariate extension of the Bernstein basis (1) is important for many
applications. The “tensor–product” scheme, in which the multivariate basis
functions are simply defined as products of univariate basis functions in each
variable, is an obvious approach. For example, a tensor–product surface may
be defined over the parameter domain (s, t) ∈ [ 0, 1 ] × [ 0, 1 ] by an array of
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control points pjk for 0 ≤ j ≤ m and 0 ≤ k ≤ n by the expression

r(s, t) =

m∑

j=0

n∑

k=0

pjk b
m
j (s)bnk(t) . (62)

A more fundamental approach is to define multivariate bases over simplex

domains. In the univariate basis (1), the quantities u = 1 − t and v = t are
barycentric coordinates on a 1–dimensional simplex, the unit interval [ 0, 1 ].
They are non–negative, sum to unity, and the basis functions arise from the
binomial expansion of 1 = (u+ v)n. To define a bivariate basis, we choose a
reference triangle T as the 2–dimensional simplex domain. If T has vertices
pk = (xk, yk) for k = 1, 2, 3 that are not collinear, the determinant

∆ =

∣
∣
∣
∣
∣
∣

1 1 1
x1 x2 x3

y1 y2 y3

∣
∣
∣
∣
∣
∣

(63)

is non–zero, and T has signed area A = 1
2
∆ (positive or negative according to

whether the vertices are labelled in a counter–clockwise or clockwise sense).
Given any point p = (x, y) in the plane, consider the triangles T1, T2, T3

subtended at p by the sides of the reference triangle (see Figure 15), with
signed areas A1 = 1

2
∆1, A2 = 1

2
∆2, A3 = 1

2
∆3, where ∆k is the determinant

defined by replacing (xk, yk) in (63) with (x, y). The barycentric coordinates
(u, v, w) of the point p = (x, y) with respect to the reference triangle T are
then defined by the area–ratios

u =
∆1

∆
, v =

∆2

∆
, w =

∆3

∆
,

so that p = up1 + v p2 +w p3, where u+ v+w = 1. They are non–negative
when p lies within T (for p outside T , their signs are as shown in Figure 15).

Since the barycentric system has no origin, points cannot be treated like
vectors, i.e., we cannot add two points (u1, v1, w1) and (u2, v2, w2) to obtain a
new point (this would violate u+v+w = 1). However, by defining barycentric
vectors as triples (λ, µ, ν) that satisfy λ+ µ+ ν = 0, we can add a vector to
a point to obtain a new point, or two vectors to obtain a new vector.

From the trinomial expansion of 1 = (u+v+w)n we obtain the degree–n
bivariate Bernstein basis defined for 0 ≤ i, j, k ≤ n with i+ j + k = n by

bnijk(u, v, w) :=
n!

i!j!k!
uivjwk .
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T3

T1T2
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p2

p3
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p3
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Figure 15: Left: sub–triangles T1, T2, T3 subtended at a general point p by the
sides of the reference triangle T . Right: Signature of barycentric coordinates
over the entire plane, subdivided into regions by extension of the sides of T .

There are
(

n+2
2

)
= 1

2
(n+ 1)(n+ 2) linearly–independent basis functions. By

associating a coefficient cijk with each basis function, any degree–n bivariate
polynomial can be defined over the reference triangle T by the expression

f(u, v, w) =
∑

0≤i,j,k≤n
i+j+k=n

cijk b
n
ijk(u, v, w) .

If the scalar values cijk are replaced by control points pijk we obtain a vector
map from the parameter domain T to R3, i.e., a triangular surface patch,18

r(u, v, w) =
∑

0≤i,j,k≤n
i+j+k=n

pijk b
n
ijk(u, v, w) . (64)

The control net for this patch is specified by connecting each point pijk with
its neighbors pi−1,j+1,k, pi+1,j−1,k, pi,j−1,k+1, pi,j+1,k−1, pi+1,j,k−1, pi−1,j,k+1

(where subscripts remain between 0 and n) — it defines a polyhedral surface
with triangular facets. The patch must lie within the convex hull of its control
net. It interpolates the corner points pn00, p0n0, p00n and the tangent planes
at these points are defined by (pn00,pn−1,1,0,pn−1,0,1), (p0n0,p0,n−1,1,p1,n−1,0),
(p00n,p1,0,n−1,p0,1,n−1). Furthermore, the peripheral control points define the
patch boundaries as individual degree–n Bézier curves.

18The form (64) is usually known as a triangular Bézier patch. Ironically, it was discussed
in some detail in de Casteljau’s 1963 Citroën notes [51], but not at all in Bézier’s work.
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Figure 16: Labelling of points generated by successive stages r = 0, 1, 2, 3 of
the bivariate de Casteljau algorithm (65) for the case of a cubic patch, n = 3.

The triangular patch (64) may be evaluated and subdivided at any chosen
point p∗ = (u∗, v∗, w∗) ∈ T by a bivariate de Casteljau algorithm that is a
natural generalization of the univariate algorithm for curves described in §4.
Setting p0

ijk = pijk for 0 ≤ i, j, k ≤ n (with i + j + k = n), we compute the
tetrahedral array of points defined for r = 1, . . . , n by

pr
ijk = u∗ pr−1

i+1,j,k + v∗ pr−1
i,j+1,k + w∗ pr−1

i,j,k+1 , (65)

where 0 ≤ i, j, k ≤ n − r and i + j + k = n − r. Figure 16 illustrates the
arrangement of points generated by this algorithm in a tetrahedral array, for
the case n = 3. The apex pn

000 of the array identifies the point r(u∗, v∗, w∗)
on the surface (64), while the points on its three faces, specified by

pr
0,j,n−r−j for j = 0, . . . , n− r and r = 0, . . . , n ,

pr
n−r−k,0,k for k = 0, . . . , n− r and r = 0, . . . , n ,

pr
i,n−r−i,0 for i = 0, . . . , n− r and r = 0, . . . , n ,

define control nets for the patches over the subdomains T1, T2, T3 subtended
at p∗ by the sides of T . Figure 17 illustrates the subdivision of a cubic patch.

The degree–n patch (64) can also be degree–elevated, i.e., represented in
the basis bn+1

ijk (u, v, w) on the domain T , by multiplying (64) with 1 = u+v+w
and collecting like terms. For 0 ≤ i, j, k ≤ n+ 1 with i+ j + k = n + 1, the
control points p̂ijk of the degree–elevated form are given by

p̂ijk =
ipi−1,j,k + j pi,j−1,k + k pi,j,k−1

n + 1
,
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Figure 17: Left: a cubic triangular Bézier surface patch with its control net.
Right: subdivision at an interior point using the de Casteljau algorithm (65).

where terms on the right for which any of the indices is< 0 or> n are ignored.
The corner control points are unchanged, while those along the sides of the
control net are generated by the univariate degree–elevation algorithm.

Under successive degree elevations, the control net of a triangular patch
converges to the surface. However, the control nets generated by subdivision
of a triangular patch need not converge to the surface, because the boundary
curves are not subdivided. In this respect, 3–way subdivision of the triangular
patch (64) differs from 4–way subdivision of the tensor–product patch (62)
— i.e., subdivision with respect to both s and t.

By associating a scalar weight with each control point, the form (64) may
be generalized to rational triangular patches, that exactly describe patches
on quadric surfaces, tori, surfaces of revolution, etc. An octant of the sphere,
for example, can be specified as a rational quartic triangular patch [71].

The above ideas also generalize in a natural and straightforward manner
to the construction of Bernstein bases in terms of barycentric coordinates over
a simplex S in Rd specified by d+ 1 linearly–independent vertices p0, . . . ,pd

for any d ≥ 3. S may be regarded as the set of points p = µ0p0 + · · ·+ µdpd

that are convex combinations of the vertices, for weights µ0, . . . , µd that are
non–negative and sum to unity, and the faces F0, . . . ,Fd of S are the linear
subspaces defined by setting the weights to zero one at a time.

For any point p ∈ S, there are d + 1 simplexes S0, . . . ,Sd subtended at
p by each face, forming a partition of S. The signed volume of S is defined
by a determinant of dimension d+1, in which the coordinates of the vertices
p0, . . . ,pd appear as columns, analogous to (63) in the case d = 2. Similarly,
the volume of each subsimplex Sk is defined by replacing the column with
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the coordinates of pk by those of p in this determinant.
The barycentric coordinates (u0, . . . , ud) of p with respect to S are then

defined by the volume ratios uk = volume(Sk)/volume(S) for k = 0, . . . , d.
They are non–negative if p ∈ S, and sum to unity. The degree–n Bernstein
basis for the domain S is generated by the terms of the multinomial expansion

1 ≡ (u0 + · · ·+ ud)
n =

∑

0≤e0,...,ed≤n
e0+···+ed=n

n!

e0! · · · ed!
ue0

0 · · ·ued

d .

There are
(

n+d
d

)
basis functions, and any degree–n polynomial can be specified

by associating coefficients with them. The Bernstein basis thus defined has
an elegant hierarchical structure — restricted to a lower–dimension boundary
simplex by setting one or more of u0, . . . , ud equal to 0 or 1, it specializes to
the basis defined over the lower–dimension simplex spanned by the remaining
“free” coordinates. In R3, for example, each face of a tetrahedron simplex
inherits a bivariate basis, and each edge a univariate basis.

Multivariate Bernstein–form polynomials on simplex domains have a rich
repertoire of interesting properties and algorithms, and we have only skimmed
the surface here: more comprehensive treatments may be found in [49, 70].

8.3 The B–spline basis

The Bézier form facilitates smooth connections between curves and surfaces.
For example, if r(t) and s(t) have control points p0, . . . ,pm and q0, . . . ,qn on
t ∈ [ 0, 1 ], a tangent–continuous connection r(1) = s(0) can be obtained by
taking pm = q0 and requiring pm−1 and q1 to be colinear with this common
point. However, it is often simpler in such circumstances to directly invoke
bases that can describe piecewise–polynomial functions.

The B–spline basis Bn
k (t) may be regarded as an extension of the Bernstein

basis bnk(t), generalizing the description of a single polynomial on a continuous
interval to piecewise–polynomial (spline) functions over partitioned domains,
specified by a knot sequence . . . , tk−1, tk, tk+1, . . . It retains the non–negativity
and partition–of–unity properties of the Bernstein basis. Two new properties,
pertinent to the spline context, characterize the degree–n B–spline functions
— Bn

k (t) is (usually) of continuity class Cn−1 and is non–zero over only n+1
contiguous sub–intervals, from tk to tk+n+1 (the compact support property).
By “usually” we mean that these properties hold for distinct or simple knots,
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but in the presence of multiple knots19 the order of continuity and support
of the basis functions influenced by such knots are reduced.

t0=t1=t2=t3 t4 t5 tN tN+1=tN+2=tN+3=tN+4

B3
0(t)

B3
1(t) B3

2(t)
B3

3(t) B3
N–2(t) B3

N–1(t)
B3

N(t)

Figure 18: The cubic B–spline basis functions constructed on a sequence of
uniformly–spaced knots, with initial and final knots of multiplicity 4 each.

A common approach to specifying a set of linearly–independent B–spline
basis functions of degree n is to choose initial/final knots of multiplicity n+1.
Figure 18, for example, shows the cubic B–splines over uniform knots, with 4–
fold initial and final knots. Note that the number of basis functions depends
primarily on the number of knots, rather than the degree n. If there are just
two distinct knots, each of multiplicity n + 1, the B–spline basis specializes
to the Bernstein basis of degree n over the interval between them.

The B–spline basis functions can be generated by a simple recursion on
the degree n, analogous to (13) for the Bernstein basis, and the Cox–de Boor
algorithm is a fundamental recursive scheme for evaluating B–spline functions
that essentially generalizes the de Casteljau algorithm. The Bernstein form
of the polynomial component of a B–spline function over any subinterval of
the knot sequence can be obtained by increasing the multiplicity of the knots
delineating it to n + 1 through a knot insertion process.

A B–spline curve may be defined by associating a control point with each
B–spline basis function, in a manner analogous to (9). As seen in Figure 19,
such curves offer useful new properties beyond the capability of Bézier curves.
For example, the compact support of the basis functions permits strictly local
shape changes when the control points are moved. Straight line segments can
be smoothly embedded within free–form curves, and the use of multiple knots
allows the order of continuity at certain points to be reduced in a controlled
manner. By extension to the rational B–spline form, closure under projective
transformations is achieved, and simple (e.g., conic) curves may be combined

19If tk = tk+1 = · · · = tk+m−1 we have a knot of multiplicity m (or m–fold knot).
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Figure 19: Left: local modification of a cubic B–spline curve by displacement
of a single control point — note that C2 connections between the modified
and unmodified segments are maintained. Right: A line segment embedded
in a C2 cubic B–spline curve (four consecutive control points are collinear).

with free–form segments in an integrated representation format. A complete
account of the B–spline form is beyond the scope of this survey — the intent
here is simply to highlight its intimate connections to the Bernstein basis.
Complete details may be found in standard texts, e.g., [47, 74, 173].

8.4 Generalized barycentric coordinates

Although triangular and rectangular surface patches are predominant in most
design applications, the need for patches with N ≥ 5 sides often arises, and
a number of schemes to permit their construction subject to given boundary
conditions have been formulated [38, 107, 115, 126, 134, 209]. Such N–sided
patches must typically interpolate given boundary curves and cross–tangent
data along them, to ensure G1 continuity with adjacent patches.

Noteworthy among these formulations are the S–patches [134] of Loop and
DeRose, and the toric surface patches introduced by Krasauskas [126]. The
former defines an N–sided patch by embedding an N–sided domain polygon
P in a simplex S of dimension N − 1, such that the sides of P coincide with
edges of S. When a vector–valued Bernstein–form polynomial is constructed
over the simplex S, its restriction to the polygon P yields an N–sided surface
patch. The latter constructs rational N–sided patches over polygon domains
with vertices that have integer coordinates. Both schemes subsume triangular
and tensor–product Bézier surface patches as special cases.

The study of N–sided patches has also prompted interest in extending the
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definition of barycentric coordinates from triangular or simplex domains to
more general polygons or polytopes. In extending from simplexes to general
convex polytopes, one must incorporate certain properties of the barycentric
coordinates [210] — if λ1, . . . , λN are the barycentric coordinates of a point p

with respect to a polytope P defined by vertices v1, . . . ,vN in Rd we require:

(1) non–negativity : λ1, . . . , λN ≥ 0 for all p ∈ P;

(2) linear precision: λ1f(v1)+· · ·+λNf(vN) ≡ f(p) for any linear function
f(p). Choosing f(p) = 1, this implies the partition of unity property,
i.e., λ1 + · · · + λN = 1 for all p.

(3) minimal degree: λ1, . . . , λN are the “simplest” functions of the location
of p that satisfy (1) and (2).

For a simplex, condition (3) is achieved with a linear dependence of λ1, . . . , λN

on the location of p. For a more general polytope, λ1, . . . , λN have a rational

dependence on the location of p. The first construction of such a system was
performed by Wachspress [207] in the context of constructing a finite element
basis for convex polygons — see also [45, 208]. For a convex polygon with m
sides, the barycentric coordinates are rational functions with numerators of
degree m− 2, and a denominator of degree m− 3 that defines the adjoint of
the polygon, i.e., the algebraic curve that passes through the pairwise points
of intersection of the linear extensions to the polygon sides (other than the
polygon vertices). Meyer et al. [143] showed that the Wachspress coordinates
can be expressed (see Figure 20) as

λk :=
wk

w1 + · · ·+ wN
, wk :=

area(vk−1,vk,vk+1)

area(vk−1,vk,p) area(p,vk,vk+1)
,

where vertex indices are interpreted cyclically, and area( ) is the signed area
of the triangle determined by the indicated points. Warren [210] subsequently
generalized the Wachspress scheme to convex polytopes of any dimension; an
extension to the case of smooth convex sets may also be found in [211].

A different approach based on the mean value theorem was introduced by
Floater [87]. These “mean value coordinates” are defined by

λk :=
wk

w1 + · · ·+ wN
, wk :=

tan 1
2
αk−1 + tan 1

2
αk

rk
,
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p

vk

vk+1

αk

p

vk–1

vk+1

Figure 20: Left: area(p,vk,vk+1) is the shaded triangle defined by an interior
point p and consecutive vertices vk, vk+1 of the domain polygon, while αk is
the angle subtended at p by vk and vk+1. Right: area(vk−1,p,vk+1) is the
shaded triangle defined by p and the non–consecutive vertices vk−1, vk+1.

where rk = |vk − p |, and αk is the angle between the vectors vk − p and
vk+1 − p (again, the indices are interpreted cyclically). The coordinates are
non–negative not only for convex polygons, but also within the kernel of any
star–shaped polygon. They can also be generalized to non–convex polygons
[112] although the non–negativity property is then relinquished. A general
approach to constructing barycentric coordinates over convex polygons was
presented in [89]. It was shown (see Figure 20) that the expression

wk :=
rm
k+1 area(vk−1,vk,p) + rm

k area(vk−1,p,vk+1) + rm
k−1 area(p,vk,vk+1)

area(vk−1,vk,p) area(p,vk,vk+1)

defines a family of three–point coordinates λk := wk/(w1+· · ·+wn) subsuming
the Wachspress and mean value coordinates as the cases m = 0 and m = 1.
Moreover, it incorporates the discrete harmonic coordinates used in [66, 154]
as the case m = 2 (but these are not barycentric coordinates, since they are
not necessarily positive over the interior of the domain polygon). See also
[62] and [172] for the case where the polygon is replaced by a smooth closed
curve, and data specified along this curve is to be interpolated by a function
f(p) that is defined at each point p of its interior.

Finally, as an extension to non–Euclidean spaces, we mention the case [5]
of barycentric coordinates with respect to spherical triangle domains (in this
context, the partition of unity property must be relinquished). As noted by
the authors, this construction can be traced to the work of Möbius.
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9 Further applications

As the Bernstein form has matured and proved its worth as a core paradigm
of CAGD, interest in taking advantage of the useful properties and algorithms
developed in that context for other computational disciplines has exhibited
increasing momentum in recent years. Some applications that have benefited
significantly from this trend are briefly discussed below.

9.1 Equations and inequalities

The ability to compute the real roots of a polynomial or solutions of a system
of algebraic equations, to determine the extrema of (or estimate bounds on)
polynomials in one or several variables over finite domains, and to optimize
polynomial functions under given constraints, are key requirements in many
scientific/engineering problems. The subdivision, convex hull, and variation–
diminishing features of the Bernstein form are very useful in such contexts.

The basic problem of isolating and approximating the roots of a univariate
Bernstein–form polynomial p(t) on the interval [ 0, 1 ] was addressed by Lane
and Riesenfeld [131]. Their algorithm employs recursive subdivision until the
Bernstein coefficients for each subinterval exhibit either no sign changes or
just one sign change. By the variation–diminishing property, subintervals in
the former category contain no roots, and those in the latter category contain
precisely one root.20 Once the real roots are isolated within sufficiently small
subintervals, rapidly–convergent approximation methods can be invoked to
approximate them to any desired accuracy. For example, simple conditions
for guaranteed convergence of the Newton–Raphson method

tk+1 = tk − p(tk)

p′(tk)
, k = 1, 2, . . . (66)

can be easily expressed in terms of the Bernstein coefficients c0, . . . , cn of p(t)
for any subinterval [ a, b ] on which they have exactly one sign change (with
c0cn < 0). Namely, the iteration (66) will converge to the unique real root of
p(t) on the interval (a, b) from any start point within it, if we have

S(∆c0, . . . ,∆cn−1) = 0 , (67)

20For subintervals containing multiple roots, the condition of zero or one coefficient sign
changes will not be met under repeated subdivision. To accommodate multiple roots, the
algorithm must be modified to consider also roots of the derivatives of p(t) — see [224].
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S(∆2c0, . . . ,∆
2cn−2) = 0 , (68)

|c0| ≤ n |∆c0| and |cn| ≤ n |∆cn−1| , (69)

where ∆ck = ck+1 − ck, ∆2ck = ∆ck+1 − ∆ck = ck+2 − 2ck+1 + ck, and S( )
indicates the number of sign changes in the ordered sequence of its arguments.
Conditions (67) and (68) ensure that p(t) has non–vanishing first and second
derivatives for t ∈ (a, b). The former implies that p(t) is monotone over (a, b)
and therefore has only one root in that interval. The latter implies that the
graph of p(t) is convex or concave over (a, b). Finally, condition (69) ensures
that the tangent lines to p(t) at t = a and t = b cross the t–axis within the
interval (a, b). A proof of this result may be found in [108, p. 79].

The above scheme may be modified and improved in a number of ways to
exploit further properties of the Bernstein form — the PhD thesis of Spencer
[191], for example, describes a number of interesting variants. The numerical
stability of the Bernstein form (see Section 6) is invaluable in the context of
root–solvers based on floating–point arithmetic operations.

The extension to systems of polynomial equations in several variables is
a non–trivial problem, since the variation–diminishing property of univariate
polynomials has no straightforward multivariate generalization. Nonetheless,
several methods exploiting the subdivision and convex hull properties have
been developed for tensor–product multivariate Bernstein–form polynomials
[95, 147, 148, 181]. Lack of space precludes a thorough description of these
methods here: complete details may be found in the cited references.

Closely–related problems are concerned with estimations of the range of
multivariate polynomials over given subdomains, in the context of relaxation
steps employed in the “branch–and–bound” approach to solving optimization
problems [91, 94, 150, 166, 190]. The subdivision and convex hull properties
of the Bernstein form again play a key role, along with simple monotonicity
and convexity tests over subdomains. Most of this work has addressed only
tensor–product polynomials defined over rectangular domains in R

n, but the
extension to barycentric forms over simplex domains is straightforward.

9.2 Finite element analysis

Since the geometric models created within CAD systems serve as the point of
departure for various physical analyses using the finite element method, one
might expect close coordination in the evolution of these fields. For many
decades, however, they have evolved in a largely independent manner.
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The “isogeometric analysis” paradigm seeks to remedy this disconnect
by using NURBS (non–uniform rational B–splines), a commonly–used CAD
geometry format, as shape functions in the analysis, bypassing much of the
costly and error–prone meshing requirements of traditional FEM approaches
[117]. Insofar as B–spline forms generalize the Bernstein form to partitioned
domains, the method may be considered to fall within the scope of this survey.
The key challenge lies in accommodating “trimmed” surface patches — which
are invariably present in complex geometric models, but incompatible with
standard tensor–product NURBS domains. We focus here on recent methods
that directly exploit the Bernstein form in finite element analysis.

Bogdanovich [23, 24, 25, 26] describes the use of tensor–product trivariate
Bernstein basis functions to specify three–dimensional displacement fields in
hexahedral finite elements, for the analysis of stresses in laminated composite
structures with anisotropic material properties. In the context of composites,
different continuity properties of the element “shape functions” are desired in
directions parallel and perpendicular to interfaces between distinct materials.
The Bernstein form facilitates the enforcement of appropriate displacement
and stress continuity conditions, and closed–form computation — rather than
numerical quadrature — for various integrals that determine the elements of
matrices required in the stress analysis. The author argues that the Bernstein
basis functions “a rarity in structural analysis, deserve more attention” [23].

Schumaker [174] describes the use of bivariate spline functions defined on
triangulations, in which the Bernstein polynomial form is used to specify the
variation over each triangular subdomain, to solve boundary value problems
for elliptic partial differential equations: see also [129]. Bernstein–form finite
element algorithms for simplicial domains have also recently been studied by
Kirby [121, 122] with emphasis on efficient algorithms for computing mass
and stiffness matrices for high–order polynomials on simplex domains, and on
formulation of matrix–free algorithms. A closely–related paper by Ainsworth
et al. [2] shows that finite element algorithms for high–order Bernstein–form
polynomials over simplex domains, based upon the Duffy transformation [61],
can achieve computational complexity comparable to that for tensor–product
formulations. It is noteworthy [2] that, in 2011, use of the Bernstein form “has
attracted virtually no attention . . . among the finite element community.” An
exception is the paper by Scott et al. [176] on using T–splines (which provide
more topological flexibility than tensor–product B–splines) for isogeometric
analysis, and extracting Bernstein–form elements from T–spline models.

A generalization of the simplicial Bernstein basis described by Arnold et
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al. [7] is concerned with the characterization and geometric decomposition of
spaces of finite element differential forms, extending classical finite element
vector field spaces in R2 and R3 to higher–order forms and space dimensions.

The barycentric coordinates on simplex domains that are used to define
Bernstein bases also admit useful generalizations. For example, given a set of
points p1, . . . ,pn in the plane, their Voronoi diagram or Dirichlet tessellation

[159] comprises a set of contiguous polygonal tiles T1, . . . , Tn such that pk ∈
Tk and every point of Tk is closer to pk than to all the other points pj for
j 6= k. When a new point p is introduced,21 a new tile T will be associated
with it in the updated tessellation, overlapping certain tiles Tk1

, . . . , Tkm
of

the original tessellation. The location of p can be specified in terms of its
neighbor points pk1

, . . . ,pkm
in the form

p =
m∑

j=1

uj pkj
,

where uj is the fractional area of T that overlaps Tkj
. The Sibson coordinates

[182] u1, . . . , um of p are non–negative and form a partition of unity — i.e.,
u1, . . . , um ≥ 0 and u1+ · · ·+um = 1. Furthermore, when there are just three
neighbor points (m = 3), these Sibson coordinates specialize to barycentric
coordinates over the triangle defined by those points.

The Sibson (or natural neighbor) coordinates are unique, and continuous
with respect to the location of p. Furthermore, they can be generalized from
R2 to Rn for n ≥ 3, since the Dirichlet tessellation is defined in any number
of Euclidean dimensions. Sibson [183] defined an interpolant to data values
f1, . . . , fn associated with the data sites p1, . . . ,pn by the expression

f(u1, . . . , um) =
m∑

j=1

fjuj . (70)

Farin [73] showed that Sibson’s interpolant exhibits C1 continuity and has
linear precision (see Section 8.4), and interpreted (70) as the projection of a
linear Bernstein–form polynomial, defined on a simplex of dimension m− 1.
Using the Bernstein form, he also proposed a generalized interpolant with
quadratic precision (completeness) — i.e., when f1, . . . , fn are sampled from
a quadratic function, it exactly recovers that function.

21The new point p must lie in the convex hull of the given points p1, . . . ,pn.
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In the finite element context, the generalized Sibson interpolant has been
adopted [30, 199, 200] as the basis for an approach called the natural element

method, which may be considered “meshfree” or “meshless” since it does not
require any element connectivity information. The methods for generalizing
barycentric coordinates from simplex domains to general polygons/polytopes
discussed in Section 8.4 have also attracted interest within the finite element
research community. As noted above, these ideas originated with the rational
finite element basis of Wachspress [207]. More recent results can be found in
[45, 138, 139, 198, 201]. An interesting new method, the “maximum entropy”
approach, interprets the construction of barycentric coordinates over general
polygons/polytopes as a least–biased solution of an underdetermined system
of linear equations [113, 197]. Closed–form expressions for the coordinates
are no longer available in this context, but they can be efficiently computed
through a constrained optimization problem.

9.3 Robust control of dynamic systems

A key consideration in designing controllers for linear dynamic systems is the
selection of controller “gains” that are consistent with desired performance
and stability of the controller, i.e., for any bounded input, the system output
should remain bounded. The stability of a linear system can be characterized
by the complex–plane distribution of the roots of its characteristic polynomial

[60] — for analog systems, the roots must all lie to the left of the imaginary
axis (Hurwitz condition); for digital systems, the roots must all lie within the
unit disk centered on the origin of the complex plane (Schur condition).

The problem of robust control is concerned with systems whose physical
parameters are not precisely known, but may vary within prescribed ranges.
Thus, instead of a unique characteristic polynomial, the stability analysis of
such systems incurs parameter–dependent characteristic polynomials. To be
robustly stable, each instance of the system — corresponding to each possible
combination of the parameter values — must be stable [1, 8].

To guarantee certain performance criteria beyond nominal stability, it is
often desirable to restrict the characteristic polynomial roots to some subset
Γ of the left half–plane, or unit disk — the system is then said to be Γ–stable.
Suppose the characteristic polynomial has the form

p(t) =
n∑

k=0

ak(q1, . . . , qm) tk (71)
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where q1, . . . , qm are the system parameters, each confined to a given interval,
qk ∈ [ q

k
, qk ]. The zero exclusion principle is a key tool for testing Γ–stability.

For the characteristic polynomial (71), the value set V(z) is defined as the set
of all its complex values when the independent variable has a fixed complex
value z, and the parameters q1, . . . , qm all vary over their respective intervals.
According to the zero exclusion principle [8] the system is Γ–stable if 0 6∈ V(z)
as z traverses the stability–region boundary, ∂Γ. Figure 21, for example,
shows a sampling of the value set for the cubic interval polynomial

p(t) = [ 0.9, 1.1 ] t3 + [−1.2,− 0.8 ] t2 + [ 2.3, 2.7 ] t + [−1.2,− 0.8 ] (72)

as t moves on the imaginary axis between −1.4 i and +1.4 i .

Re

Im

Figure 21: Sampling of the value set for the interval polynomial (72) as the
independent variable t traverses the imaginary–axis interval [−1.4 i ,+1.4 i ].

For systems in which the coefficients ak have a polynomial dependence on
the parameters q1, . . . , qm the testing of the zero exclusion principle is greatly
facilitated by expressing the coefficients ak(q1, . . . , qm) in the tensor–product
Bernstein basis over the m–dimensional volume [ q

1
, q1 ]× · · ·× [ q

m
, qm ] and

exploiting the convex hull, variation–diminishing, and subdivision properties.
For more comprehensive details on this approach, the reader may consult the
papers [6, 63, 92, 93, 137, 184, 223] and references therein.
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9.4 Other problems

Applications of the Bernstein basis have also elicited interest in many other
computational problems, a few of which are briefly mentioned here. In [110]
the Bernstein basis is employed in modeling inter–molecular potential energy
surfaces through the reproducing kernel Hilbert space interpolation method.
Algorithms for neurofuzzy networks modelling non–linear dynamical systems
have invoked the bivariate Bernstein basis on triangular domains to represent
the system input [111]. Tensor–product Bernstein basis neural networks have
also been used in reconstructing 3D models from measured data and in the
calibration of optical range sensors [123, 124]. Degree elevation of univariate
Bernstein–form polynomials has been employed in [170] to facilitate design
of filter sharpening functions for signal processing applications. Convergent
piecewise–linear approximations obtained from the Bernstein form have been
invoked [68, 85] in computing time–optimal feedrates along curved paths for
CNC machines with prescribed axis acceleration bounds, which amounts to
a calculus of variations problem with polynomial point–wise constraints.

10 Closure

This survey has endeavored to describe the historical origins, current status,
and diverse applications of the Bernstein polynomial basis, on the centennial
anniversary of its introduction. The adoption of the Bernstein representation
as a medium for practical computations has been an evolutionary process, in
which three distinct phases may be clearly discerned.

First, beginning with Bernstein’s 1912 paper, it served as a fundamental
theoretical tool for analyzing the approximative capability of polynomials on
finite domains. However, the necessity of proceeding to very high degrees to
enforce tight error bounds precluded widespread use of Bernstein polynomial
approximations in practical computations. Second, the work of de Casteljau
and Bézier in the 1960s revealed that the Bernstein form provides an excellent
medium for the specification/modification of (vector–valued) polynomials on
finite domains, although at first their ideas were not explicitly identified with
the Bernstein basis. The ensuing elaboration of algorithms and properties for
the “Bernstein–Bézier form” in the field of computer aided geometric design

has led to a high degree of maturity and utility for this representation. Third,
drawing on the extensive body of methods developed in the CAGD context,
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the attractive features of the Bernstein form have been increasingly exploited
in other scientific and engineering applications over the past few decades (see
Section 9). It can be expected that a further development and diversification
of this latter phase may continue for many years to come.

The volume of papers concerned with properties, algorithms, applications,
and extensions of the Bernstein polynomial representation has grown to vast
proportions over the past century. Although it has not been possible to cite
every relevant work herein, it is nevertheless hoped that this survey offers a
balanced perspective on the principal research themes and trends, and thus
helps encourage further useful applications of the Bernstein form.
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control polygon, Computer Aided Geometric Design 16, 613–631.

[150] P. S. V. Nataraj and M. Arounassalame (2011), Constrained global
optimization of multivariate polynomials using Bernstein branch and
prune algorithm, Journal of Global Optimization 49, 185–212.

[151] J. M. Peña (1997), B–splines and optimal stability, Mathematics of

Computation 66, 1555–1560.

[152] J. M. Peña (2002), On the optimal stability of bases of univariate
functions, Numerische Mathematik 91, 305–318.

[153] G. M. Phillips (2010), A survey of results on the q–Bernstein
polynomials, IMA Journal of Numerical Analysis 30, 277–288.

[154] U. Pinkall and K. Polthier (1993), Computing discrete minimal
surfaces and their conjugates, Experimental Mathematics 2, 15–36.

79



[155] A. Pinkus (2000), Weierstrass and approximation theory, Journal of

Approximation Theory 107, 1–66.

[156] M. J. D. Powell (1981), Approximation Theory and Methods,
Cambridge University Press, Cambridge.

[157] H. Prautzsch, W. Boehm, and M. Paluszny (2002), Bézier and
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