>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> E1P1 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> %(This code can be directly copy pasted into Matlab.) %We make a grid of points in the unit disc %and store the points in a matrix z. N=100;e=0.001; r=linspace(0,1-e,N);t=linspace(0,1,N)*2*pi; z=r'*exp(1i*t); %The next step will make the grid more dense %near a point on the boundary. Here we produce %a more dense grid near points 1 and -1. k=100;l=1:k;t=2.^l;T=[-t,t];[x,y]=meshgrid(t,T);a=(x+1i*y);b=(a-1)./(a+1); z=[z;b;-b]; %Compare this to the following: %z=[z;b]; %theta=pi/2;[z;exp(1i*theta)*b]; %Now, we open a new figure window and draw the first picture there. figure('units','normalized','outerposition',[0 0 1 1]) subplot(1,2,1) plot(z,'.b') %We add a title for the first picture. title('$z\in\textbf{D}$','interpreter','latex','fontsize',20) %We adjust the axes and add a grid. axis equal K=2; axis([-K,K,-K,K]) grid on %We plot the second picture. subplot(1,2,2) w=z-z.^2/2; plot(w,'.r') axis equal title('$w=z-\frac{1}{2}z^2$','interpreter','latex','fontsize',20) axis equal axis([-K,K,-K,K]) grid on >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> E1P2 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> %We make a grid of points in the unit disc. N=100;e=0.001; r=linspace(0,1-e,N);t=linspace(0,1,N)*2*pi; z=r'*exp(1i*t); k=100;l=1:k;t=2.^l;T=[-t,t];[x,y]=meshgrid(t,T);a=(x+1i*y);b=(a-1)./(a+1); z=[z;b;-b]; %We draw the unit disc, figure('units','normalized','outerposition',[0 0 1 1]) subplot(2,2,1) %2x2 plots, this is the first one plot(z,'.b') title('$z\in\textbf{D}$','interpreter','latex','fontsize',20) axis equal %half plane, subplot(2,2,2) %second plot w=(1+z)./(1-z); %calculate w plot(w,'.r') %plot w L=10; %adjust the limits of the image area axis([-L,L,-L,L]) title('$w=\frac{1+z}{1-z}$','interpreter','latex','fontsize',20) %sector, subplot(2,2,3) pow=1/2; %now the power is 1/2. you can change the power (*) q=w.^(pow); plot(q,'.g') axis([-L,L,-L,L]) title('$w^{1/2}$','interpreter','latex','fontsize',20) %and the lens with unit disc on the back. subplot(2,2,4) c=(q-1)./(q+1); plot(z,'.','color',[1 0.5 0.1]) hold on plot(c,'.k') axis equal title('$f(z)=\frac{w^{1/2}-1}{w^{1/2}+1}$','interpreter',... 'latex','fontsize',20)