
Appendices

A. Pseudohyperbolic and hyperbolic metrics (brie�y)

Recall that the pseudohyperbolic distance between two points z and w in D is

dph(z, w) = |ϕz(w)| =
∣∣∣∣ z − w1− zw

∣∣∣∣ , ϕz(w) =
z − w
1− zw

.

The hyperbolic distance between two points z and w in D is de�ned as

dh(z, w) = inf

{∫
γ

2|dζ|
1− |ζ|2

=

∫ 1

0

2|γ′(t)|dt
1− |γ(t)|2

: γ piecewise C1 joining z and w

}
= min

{∫
γ

2|dζ|
1− |ζ|2

=

∫ 1

0

2|γ′(t)|dt
1− |γ(t)|2

: γ piecewise C1 joining z and w

}
= log

1 + dph(z, w)

1− dph(z, w)
= log

1 + |ϕz(w)|
1− |ϕz(w)|

.

(A.1)

The hyperbolic metric is one of the most natural and important metrics in D and deserves
to be studied in detail at some point, but in this occasion we do not concentrate on that
and, in particular, we skip the proofs of the above two fundamental equalities.

It is clear by the de�nition that ρh(z, w) ∈ [0,∞). Moreover, for any �xed w ∈ D,
|ϕz(w)| → 1−, as |z| → 1−, and hence ρh(z, w)→∞. This means that T is "in�nitely far
away" from each point of D.

It is immediate from (A.1) that both metrics dh and dph are conformally invariant; for
each automorphism ψ of D,

dh(ψ(z), ψ(w)) = dh(z, w) and dph(ψ(z), ψ(w)) = dph(z, w).

Moreover, the topologies induced by dh, dph and the Euclidean metric de(·, ·) = | · − · |
coincide; the corresponding collections of open sets are the same. We will use the following
notations for Euclidean, hyperbolic and pseudohyperbolic discs, respectively:

D(a, r) = {z ∈ C : |a− z| < r}, a ∈ C, r ∈ (0,∞);

∆h(a, r) = {z ∈ D : dh(a, z) < r}, a ∈ D, r ∈ (0,∞);

∆ph(a, r) = {z ∈ D : dph(a, z) < r}, a ∈ D, r ∈ (0, 1).

We will prove two basic lemmas that show that each pseudohyperbolic disc is an
Euclidean disc and, of course, vice versa.

Lemma A.1. Let a ∈ D and r ∈ (0, 1). Then ∆ph(a, r) is the Euclidean disc D(C,R),
where

C =
1− r2

1− r2|a|2
a and R =

1− |a|2

1− r2|a|2
r.
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Proof. We start by deriving two equations, namely (A.2) and (A.3). Let α, β ∈ C. Now

|α− β|2 = (α− β)(α− β) = |α|2 − (αβ + βα) + |β|2.

Since z + z = 2Re (z) = 2Re (z) for all z ∈ C, we get

|α|2 + |β|2 − |α− β|2 = 2Re (αβ) = 2Re (αβ). (A.2)

This is actually the law of cosines. Namely, if α = aeit ja β = beis, where a, b > 0
and t, s ∈ R, and we denote γ = s − t and c = |α − β| we get the familiar equation
c2 = a2 + b2 − 2ab cos γ.

Let z ∈ C be arbitrary. By substituting α = 1 and β = az to (A.2) we get

1 + |a|2|z|2 − |1− az|2 = 2Re (az).

On the other hand, by substituting α = z and β = a to (A.2) we get

|z|2 + |a|2 − |z − a|2 = 2Re (az).

By substracting last two equations we get

1− |z|2 − |a|2 + |a|2|z|2 − |1− az|2 + |z − a|2 = 0,

which simpli�es to
|1− az|2 = |z − a|2 + (1− |a|2)(1− |z|2). (A.3)

Let z ∈ D be arbitrary. Now by equation (A.3) we have

|ϕa(z)|2 =
|z − a|2

|1− az|2
=

|z − a|2

(1− |a|2)(1− |z|2) + |z − a|2
= r2.

This is equivalent to

|z − a|2(1− r2) = (r2 − |a|2r2)(1− |z|2),

and hence

|z − a|2 =
r2 − |a|2r2

1− r2
− r2 − |a|2r2

1− r2
|z|2.

Now by equation (A.2) we have

|z|2 + |a|2 − 2Re (az) =
r2 − |a|2r2

1− r2
− r2 − |a|2r2

1− r2
|z|2,

which gives

|z|2
(

1 +
r2 − |a|2r2

1− r2

)
− 2Re (az) =

r2 − |a|2r2

1− r2
− |a|2,

which simpli�es to

|z|2
(

1− |a|2r2

1− r2

)
− 2Re (az) =

r2 − |a|2

1− r2
.
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Multiplication by factor

A =
1− r2

1− |a|2r2
> 0

gives

|z|2 − 2Re (Aaz) =
r2 − |a|2

1− |a|2r2
.

Therefore

|z|2 − 2Re (Aaz) + |Aa|2 =
r2 − |a|2

1− |a|2r2
+ A2|a|2.

and by equation (A.2) we obtain

|z − Aa|2 =
r2 − |a|2

1− |a|2r2
+ A2|a|2.

That is,

|z − Aa|2 =
(r2 − |a|2)(1− |a|2r2) + (1− r2)2|a|2

(1− |a|2r2)2
,

hence

|z − Aa|2 =
r2 − |a|2r4 − |a|2 + |a|4r2 + |a|2 − 2|a|2r2 + r4|a|2

(1− |a|2r2)2
,

which simpli�es to

|z − Aa|2 =
r2(1− |a|2)2

(1− |a|2r2)2
.

Now C = Aa, the right hand side is R2 and the proof is complete. 2

Lemma A.2. Let C ∈ D \ {0} and R ∈ (0, 1− |C|). Then the Euclidean disc D(C,R) is

the pseudohyperbolic disc ∆ph(a, r), where

a =
(1 +R2 − |C|2)−

√
(1 +R2 − |C|2)2 − 4|C|2

2|C|2
C

and

r =
(1 +R2 − |C|2)−

√
(1 +R2 − |C|2)2 − 4R2

2R
.

Proof. Let �rst C ∈ [0, 1) so that a ∈ [0, 1). By Lemma A.1,

C =
1− r2

1− r2a2
a and R =

1− a2

1− r2a2
r,

and hence

C +R =
a− r2a+ r − ra2

1− r2a2
=

(a+ r)(1− ra)

(1− ra)(1 + ra)
=

a+ r

1 + ra

and

C −R =
a− r2a− r + ra2

1− r2a2
=

(a− r)(1 + ra)

(1− ra)(1 + ra)
=

a− r
1− ra

.
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Therefore
a+ r = C +R + raC + raR

and
a− r = C −R− raC + raR.

By adding these equations and dividing by 2 we get

a = C + raR. (A.4)

By subtracting the equations and dividing by 2 we get

r = R + raC. (A.5)

Equations (A.4) and (A.5) are in some sence symmetrical. Namely, let P (x1, x2, x3, x4) =
x2 + x3x1x4 − x1. Now (A.4) is P (a, C, r, R) = 0 and equation (A.5) is P (r, R, a, C) = 0.

By solving r from equation (A.5) we get

r =
R

1− aC
.

Substituting this to (A.4) we have

a = C +
R2a

1− aC
.

Multiplying both sides with 1− aC we get

a− a2C = C − aC2 +R2a,

which gives a quadratic equation for the center a, that is,

0 = Ca2 − (1 +R2 − C2)a+ C.

Quadratic formula gives

a = a± =
(1 +R2 − C2)±

√
(1 +R2 − C2)2 − 4C2

2C
.

A direct calculation shows that a+ > 1, and hence

a =
(1 +R2 − C2)−

√
(1 +R2 − C2)2 − 4C2

2C
.

Solving for a in equation (A.4) gives

a =
C

1− rR
.

Susbstituting this to (A.5) we have

r = R +
C2r

1− rR
.
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Multiplying both sides with 1− rR we get

r − r2R = R− rR2 + C2r,

which gives a quadratic equation for the radius r, that is,

0 = Rr2 − (1 +R2 − C2)r +R.

Quadratic formula gives

r± =
(1 +R2 − C2)±

√
(1 +R2 − C2)2 − 4R2

2R
,

of which the acceptable one is r−, and thus

r =
(1 +R2 − C2)−

√
(1 +R2 − C2)2 − 4R2

2R
.

The general case follows by rotating the center of the Euclidean disc to the segment [0, 1).
2
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