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1. Solutions for exercises

1.1. Exercise 1

E1P1. What is the image of D under the map f(z) =z — 122 =3(1—-(1—2)?)? Is f
univalent in D?

Hint: Cardioid.
Solution. We may calculate

f(z)—f(w)—z—w—%(z—w)(Zva)—(z—w) (1—%(2—1—11))).

Since 3(z +w) €D, f(z) = f(w) implies z = w. Therefore f is univalent.
Let z = €' = cos(t) +isin(t) so that Re (z) = cos(t) and Im (2) = sin(¢). We have
cos(z + y) = cos(x) cos(y) — sin(x) sin(y),
which gives cos(2t) = 2 cos?(t) — 1 and by differentiation we have sin(2t) = 2 cos(t) sin(t).
With these formulas, we obtain
. 1 1
z(t) = Re (f(e")) = cos(t) — 5 cos(2t) = 3 + cos(t)(1 — cos(t))

and ]

y(t) = Im (f(e")) = sin(t) — 3 sin(2t) = sin(t)(1 — cos(t)).
Hence

F(e) = (a(t),y(1)) = (—,0) (1~ cos(t))(cos(), sin(t))

and we have r(t) = (1 — cos(t)) for the polaric representation of the boundary curve. This
curve is called a cardioid. Therefore f maps the unit disc D to the interior of the cardioid.
If

n

g(z):z—z—, z €D,
n

for n € N\ {1}, then g is univalent in D and the boundary curve is called an epicycloid.

E1P2. What kind of set is the image of D under the conformal map

1
() -1,

flz) = —————1
;. ()7 +1
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There is no need to write the image set f(ID) explicitly, just understand what f does.
What happens if you replace % by another number?

Solution. Function g : D — C,
I +z

1z
maps the unit disc to the right half plane {z : Re (2) > 0}. By setting g(z) = w and
solving for z we find the inverse function of g:

9(2)

1+=
w =
11—z
is equivalent to w — wz = 1 + z, which gives w — 1 = (w + 1)z and hence
o ~w—1

Set h: C — C, h(z) = 22. Now we see that f =g tohog. Therefore g sends D to the
right half plane, square root h reduces the half plane to a sector having a vertex of angle
Z at the origin and ¢~' returns this sector inside the unit disc. We obtain a "lens” having
vertices of angle 7 at 1 and —1 and the boundary consists of two circular arcs.

E1P3. Show that the class S of normalized univalent functions in ID is not a vector space
neither a convex set.
Solution. We give simple examples and use only the definition of the class S. To consider
the vector space property, let v1(z) = v9(2) = z for z € D. Now, v;,v9 € S, but
v; — vy =0 ¢ S and hence S is not a vector space.

For the convexity, let

c1(z)

z z

BRI A

= k(2).
and take c3 = (¢; + ¢2)/2 so that ¢ has two zeros in . To provide the details, first we
note that ¢y, cy € H(D) and the univalence follows by

¥ — w (z—w)(1—zw)

B I B R (e E ()

Moreover, ¢1(0) = ¢2(0) = 0 and by

¢ () = 1 z B 1
DYl (1422 (14 2)2
d
an , 1 2z 1+ =

Co

S s (N ()
we see that ¢} (0) = ¢4,(0) = 1 so that ¢1,co € S. Now take c3 = (¢ + ¢2)/2. We get

. 1 1 1+z2 (1—2)P34(1+2)3
cs(2) =5 2 T 3|~ 2 3
21(1+2)?2 (1-2) 2(1+2)%(1 —2)
1324322 -2+ 14324322 4+2° 14327 0
B 2(1 + 2)2(1 — 2)3 (14221 =23 7
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when z = +i/v/3 € D. Thus c; is not univalent and S is not a convex set.

E1P4. Let f : D — D C C be a conformal map such that f(0) = 0 and f’(0) € R. Let
f(z) =>"",a,2z" be the Maclaurin series of f in D. Show that:

(a) The domain D is symmetric with respect to the real axis if and only if a,, € R for
alln e NU{0}.

(b) The following are equivalent:

(i) f is odd;
(ii) D satisfies the implication w € D = —w € D for all w € D;
(iii) ag, = 0 for all n € NU {0}.

(c) For each k € N\ {1} the following are equivalent:

(i) f is antisymmetric of order k, that is, f(£z) = £f(z) for each k:th root & of 1
and for all z € D;

(ii) D has "the symmetry of order k”, that is, w € D = &w € D for each k:th root
¢ of 1 and for all w € D;

(iii) f is of the form f(z) =Y o7 agns12*" T in D.

Solution. We first recall a fact of uniqueness. Let D C C be simply connected. If zp € D,
then there exists a unique f : D — D such that f(0) = 2y and f'(0) > 0.

The uniqueness can be shown as follows. Let f,g : D — D be conformal such that
f(0) = g(0) = 20 and f(0),4'(0) > 0. Let h = f~'og. Now h is an automorphism
and h(0) = f~(g(0)) = f~Y(z) = 0. Hence h(z) = az for « € T. Moreover, h'(0) =
ﬁg’(()) > 0. Hence o =1 and h(z) = f~(g(z)) = 2. Therefore f = g.

We deduce that if f,g € S, f(D) = g(D) and f’(0)g’(0) > 0, then f = g.

(a) Let a,, € R for all n € NU {0}. Now,

f@ =) a,(2)" =) 2" =) a,z"=f(z), z€D,

and hence D = f(ID) is symmetric with respect to the real axis.
On the other hand, suppose that D is symmetric with respect to the real axis. Let

g:D — D, g(z) = f(Z). Now f and g are conformal maps from D to D and satisfy
g(0) = f(0) =0 and ¢'(0)f'(0) = ¢’(0) f(0) > 0. Hence g = f. We get

f(z) = Zanz" =f(z)= Zmz”, zeD.

By the uniqueness of the Maclaurin coefficients, we get a,, = @,, that is, a, € R for all
n e NU{0}.
(b) is a special case of (c).



(¢) For the proof, let £ € N\ {1} and

be a k:th root of 1.
We first show that (i) and (iii) are equivalent. Now,

Zan &2)" —52%5" Lt =Ef(z 52% "

is by the uniqueness of the Maclaurin coefficients, equivalent to
aé" ' =a, neN,

which is equivalent to
an(§"1—=1)=0, neEN,

which happens if and only if a,, = 0 for n Z 1 mod k. This is equivalent to the fact that
f is of the form

oo

f(z) = Zakn+1zk”+1 z e D.

n=0
Assume now that (i) is valid. For f(z) =w € D, f({z) = £f(2) = €&w € D and hence
(ii) is valid.
Assume now that (ii) is valid. Let g(z) = £f(£z) for 8 = 1. Now f,g € S, g(D) = f(D)

and ¢/'(0)f'(0) = ¢'(0)f'(0) > 0 giving g = f. Hence {f(€2) = f(2), that is, f(£2) = £f(2)
for all z € D. Hence (i) is valid.

E1P5. Give the details of the proof of Theorem 1.3.

Solution.

Theorem (N-th root transformation) Let N € N\ {1} and f € S. Then there exists
g € S such that g(2) = f(zV). The function g satisfies

g (e%z> = e%g(z) (1.1)

for all z € D, and its Maclaurin series is of the form

o0

g(2) =z +an 2T Fagn 2N = ZakNszN“, z € D. (1.2)
k=0

In particular, the image g(D) has the N-fold rotational symmetry, that is,
w € g(D) if and only if eFwe g(D). (1.3)

Conversely, if g € S is of the form (1.2)), then there exists f € S such that f(zV) = g(2)V
for all z € D.

Proof. Note that the properties (1.1), (1.2) and (1.3 are equivalent by [E1P4
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Let f € S and h(z) = f(2)/z. Then h € H(D),

h(0) = tim L3 Z iy JE =IO gy g

z—0 Zz 2z—0 z2—0

The only possible zeros of h are those of f, and since f is univalent, h must be zero-free
in D. Therefore as D is simply connected, there exists an analytic branch of logh in
D. (Lemma of the analytic logarithm). In particular, there exists an analytic branch of
the N-th root of h (2¥ = en'98%). Let ¢ be the analytic branch of A~ in D such that
(0) = h(o)% — 1~ = 1. Then

f(2) = zh(z) = 29 (2)",
which is equivalent to
FEN) = 2NN = (29 (zM)Y,

and hence g(z) = zip(zV) is an analytic branch of (f(z))~ in D. Let us see that it
satisfies the desired properties:

(1) 9(0) =0-9(0) = 0;
)

(2) ¢'(0) = lim, o 22290 —Tim, o 22 — (0) = 1;

z

(3) For & = exp(2mi/N), we have g(£2) = £20((£2)Y) = £294(2Y) = €g(2), and thus g
satisfies (L.I));

(4) Tf g(z1) = g(22), then [zlw(zfv)]N = [zgz/}(zév)]N, that is, f(zI)
oNo= 2. If 2y = 0, then 25 = 0 = 2;. Otherwise, (z2/2)

property (1.1) we get

f(z) and hence
= 1 and by the

=

z22

g(z1) = g(22) =g <—21) = 29(21),

21 21
which gives z; = z9. Therefore ¢ is univalent in I.

Conversely, let g € S satisfy (1.2]). Then

[e.9]

g(Z) = ZZakN+lsz — Z(al + .. >,
k=0

N

where a; = 1. The radius of convergence of > apn; 12" is at least 1, so

B
lim sup |agy41|* < 1.
k—oo

Therefore the radius of convergence of > apy12" is also atleast 1 because

N
1 ) B
limsup |agy41|* = (hmsup|akN+1]kN> <1.
k—o0 k—o0

5



Therefore we may define an analytic function in D by

(o)

n

z) = E AkN+1% -
k=0

Thus g(z) = 2¢(2") implies g(2) = 2V (V)N for 2 € D and we may define f € H(D)
by f(z) = 2¢(2)". Let us check that f has the desired properties:

(1) f(zY) = 2N(M)Y = g(2)";
(2) f(0) =
(3) £(0) = limyp PO = im0 (=) = 9(0)Y = A1 = L;
(4) We see that f(z1) = f(22) is equivalent to 219(21)Y = 21(20)". Let &,& € D such
that £ = 2, and £ = 2. The
g(€)" = ENY = 219 (2)Y = 29(2)" = ENY(ELN)Y = g(&)"

and hence g(&;) = £g(&2) for £¥ = 1. Since g satisfies (1.2), g(&2) = £g(&1) = 9(£61)
and & = && since g is injective. It follows that 2, = & = (£6)N = &Y = 21, and

thus f is injective.

2

E1P6. Let F: C\D, F(2) = 2z + by + \/z, where by € C and A € T. Show that I € X.
What can you say about the set C\ {F(C\D)}?

Solution. Clearly F is analytic in C\ D. Now, the univalence of F is shown by

A A A _
F(z)— Flw) =z — ———=(z- 1-——), zweC\D.
(2) (w) =z w+z ” (z w)( zw) Z, W \
Namely, A\/zw € D so that 1 — A\/zw # 0. Hence F(z) = F(w) implies z = w, that is,
F'is injective.
F has a simple pole at oo, since the term z gives it while by + A/z is analytic at oo.
In other words,

1

has a simple pole at the origin. Finally,

F b A
<Z)=1—|——O+—2
z z z

—1, z— o0,

and hence F' € X..
The last two conditions follow also from the fact that the Laurent series of I is of the
form

F(z)=z+by+ > .
n=1



Namely, since the term z is present and terms 2™, n > 2 are absent, [’ has a simple pole
at 0o; and clearly the coefficient of z is 1, which gives the limit for the fraction F'(z)/z.

We examine the boundary curve of the set F(C\ D) which the range of F. For by = 0
and A = 1, we have

1
F(z)=z2+-=2+Z=2Re(z), zeT.
z

Hence Im (F(z)) = 0 for z € T. Moreover |F(z)| < 2 and F(1) = 2 and F(—1) = —2.
Therefore F(T) = [—2,2] and the range of F'is the complement of a segment of length 4.
For general by and A,

FVR2) :ﬁ+bo+§:ﬁ(z+bo/¢x+§).

Hence the boundary curve F(T) is the segment [—2,2] translated by by/v/A and then
rotated by multiplying with a unimodular constant v/X. Hence the range of F is the
complement of a segment of length 4. Hence C\ {F(C\D)}, the complement of the
range of F', is a segment of length 4.

E1P7. Is there an analogue of Corollary 2.4 for the class S7 If so, can you deduce
Theorem 3.1 by using this result?
Solution. In a sense, Theorem 3.1 is an analogue of Corollary 2.4.



1.2. Exercise 2

E2P1. Supply the details of the last part of Corollary 2.4.
Solution. See [E1DG

E2P2. Show the ”if and only if”-part of Corollary 3.3.
Solution. Let f € S be odd and f(z) = > 7, cop12*" ! for all z € D. We need to show
that |c3| = 1 if and only if f is a rotation of the function z(1 — 2%)~1.

Let g € S such that g(2%) = f(2)? and g(z) = Y oo | a,z" for all z € D. By the proof

of Theorem 3.1, ay = 2¢3 and |ag| = 2|c3| = 2 holds if and only if g is a rotation of the
Kobe function. This is equivalent to

z
g(Z> - (1 - 6i92)27
for some 6 € [0, 27), which is equivalent with

22

9(2%) = m = f(2)?

and
z

] — eif2’

f(z)
since f'(0) = 1.

E2P3. For a € (0,2], the function

=5 ((122) 1), sep,

is called the generalized Kébe function. Show that f, € S and describe the image of D
under f,.
Solution. Clearly

fa(0) =0
and since .
I+z\ (1-2)-1—-(-1)-(14+2) 2
1—2) (1—2)2 (1= 2)%
we have ) )
1 1+2\"" 2 (14 2)*
— = ]D)
Jalz) = 550 (1 - z) T—22F (1—zpr “C%
and in particular f,(0) = 1.
By geometrical considerations
1 )
fa(D) = {—2— +re? i re(0,00), 0 € (—7Toz/2,7roz/2)}
o

a sector of angle ma, having a vertex at —1/2a and symmetrical with respect to the real
axis.



E2P4. Show that ﬂfegf(D) = D(O, 1/4)
Solution. For each 6 € [0, 27), the function

koin(z) = g0t ) 2 €D,

omits the ray {re’ : r € [1/4,00)}. Hence, by the Kébe 1/4-theorem,

DO,1/9) C | Jfm S |J kosr(D) C D(0,1/4).

fes 0€l0,27)

E2P5. Let F' € Y. Show that

|2

V4
F’ < C\ D.
P < oy 2€C\

Solution. Now,

F(z)=z+b+ Y byz", and F'(1/2)=1-Y nb,z""

n=1

By the triangle inequality, the Cauchy-Schwarz inequality, Corollary 2.3 and the formula

oo
= g nz", z e,
n=0

we have

[F'(1/2)] < 1412 Y (Valbal) (Val2["™)

=

<1t |ep (Zn\w) (Zn<rz\2>"-1>

n=1 n=1
1
1 2 | 2|2 1
<1 21 —m= ) =1 = , zeD.
st <<1— |z|2>2) TR
Hence
F(z) < 2" eC\D
y4 ya .
_ |Z’2 _ 17

E2P6. Let f € S such that |f(z)| < M € (1,00) and f(z) = 2+ ap2® + - - for all z € D.
Show that |as| < 2(1 — M~1).

Solution. We show |ay| < 2 — M~!, which is weaker. Let m = Me® for § € [0,27). Now
g:D— D,



satisfies g € S. Moreover,

/ _ / 2 m 2 mf,(z)
and m
9" (z) = f"(2) + 2f(2) CENIB)E + f(2)h(2), heH(D),
and hence

2e~%
M
for g(z) = > 07 byz". Let as = re' and choose § = —t to obtain

—i6 ) 1
a2+€ :e’t(r+—):b2.

2
g"(0) = f"(0) + = 2a9 + = 2by,

M M
By Theorem 3.1,

M

. 1 1
elt(T—F_)':?ﬂ"‘_:’bQ’SZ,

which gives
1
lag] =r <2 — U

E2P7. Give an example of f € H(D) with f(0) = 0 and f’(0) = 1 such that f satisfies
the estimates of the Growth theorem but is not univalent in D.

1.3. Exercise 3

E3P1. Show that

0 , f"(z) i
TERG (log f'(2)) = Re (Zf’(z)) . z=re"

and deduce
2|z — 4 0 2|z| +4

< =1 ! <
1—‘Z|2 —ar Og’f(z)‘— 1_’2‘2

from Theorem 5.1.

E3P2. Use Rouché’s theorem (without passing through Hurwitz’ theorem) to prove the
second assertion in Corollary 5.5.

E3P3. Let f be univalent in D such that |f(2)] < 1 and f(2) = z + a92® + -+ - for all
z € D. Prove the sharp inequality |as| < 2|ai|(1 — |aq]).

E3P4. Let f € S and denote
2
Lo(f) = 7‘/ F(re®)]ds, 0<r< 1.
0
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What is the geometric interpretation of this quantity? Show that

2r(1+ 1)
(1—r)2 "~

E3P5. Let f be univalent in D. Show that My (r, f) < wrMy(r, f') + |f(0)| for all
0<r<l.

0<r<l.

L.(f) <

E3P6. Let C be a rectifiable Jordan curve with length L, bounding a domain with area
A. Prove the isoperimetric inequality A < L?/4rw, which says that among all curves of
given length, the circle encloses the largest area.

Hint: Let f be the Riemann from D onto the given domain. Express A and L as integrals
involving f’, and let ¢ = /f’ to calculate these integrals in terms of the Maclaurin
coefficients.
Solution. Way 2. We use the approach of [Pressley, Andrew Elementary differential
geometry.|

Theorem 1.1 (Wirtinger). Let F': [0,7] — R be a smooth function such that F(0) =
F(m) =0. Then

/W(F’(t))2dt > /7r F(t)*dt
and equality holds if and only if(}?(t) = Dsin(t) foor allt € [0, 7] for some constant D € R.
Proof. Let G(t) = F(t)/sin(t) so that F(t) = G(t)sin(t). Now
F'(t) = G'(t) sin(t) + G(t) cos(t).

Hence
/OW(F’(t))th = /OW(G’(t) sin(t))?dt + 2/077 G(t)G'(t) sin(t) cos(t)dt

n (1.4)
+ /o (G(t) cos(t))?.

Here
; /0 TG0 (1) sint) cos(t)dt = [(G())? sin(t) cos(D)] T, /0 TG )2 cos() — sin?(8))dt

_ /O (G2 (51n2(t) — cos?(1)) .
(1.5)

Hence



and so
/O (F'(t))*dt — /0 (F(t)* = /O (G/(t))? sin®(t)dt.
Hence

[ oy [z

Equality holds if and only if G'(t) = 0, that is, G(t) = D giving F(t) = Dsin(t) for
D eR. O

Take M (z,y) = 3o and L(z,y) = —3y in Green’s theorem to obtain

1
A(D) = /Dd:xdy =3 /dey — ydx.

Let x = z(t), y = y(t) so that doz = 2'(t)dt and dy = y'(t)dt. We get

1

AD) = 5 [ o ®) =y @)

Let C' = ([0, 7]). By translation, we obtain v(0) = ~y(m). Let

so that
{x’(t) =7'(t) cos(0(t)) — r'(t) sin(6(¢))0' (t)
' (t) sin(6(t)) + r(t) cos(0(t))0'(¢).

We see that a7 + yi = r + r?0} and
Ty, — yx, = rres + r2c20, — rres + r2s%0, = 20,
where we abbreviated cos(f) = ¢ and sin(0) = s. Now let
t=—, s¢€ [0, L].
We get
i =ty = (g =

and
2

T L
| o=
0

™

since we may by reparametrizating suppose that =2 + y? = 1.
On the other hand,

T 1
A= —/ (zy; — yoy)dt = =120,dt.
2/, 2

12



We get

L? 1 [7 1 [7
E - A = Z/O' (7”3 + T293)dt — 5/0 7’29tdt
1 T
= Zl / 7”20t2 — 2']"29,5 + thdt (17)
0

1 ™ ™
= —/ (0, — 1)%dt +/ (r2 —r?)dt > 0,
4 Jo 0

since by Wirtinger’s inequality the later integral is nonnegative, since r(0) = r(m) = 0.
Equality happens, if §; = 1, that is § =t 4+ «. In this case

{x(t) = Dsin(f — «) cos(6)
y(t) = Dsin(0 — «)sin(6).

This is a parametric equation for a circle of diameter D.

E3P7. Let f be analytic but not univalent in a disc D(0, R). Show that there exist
distinct points 2z; and z; in D(0, R) with |z1| = |22 such that f(z1) = f(z2).

13



1.4. Exercise 4

E4P1. For 1 < p < oo, the classical Besov space B, consists of f € H(D) such that

11, = / PP 2P 2dA(z) < 0o

Show that B, is Mdbius invariant, that is, for each automorphism ¢ of D and f € H(D) the
seminorm satisfies ||f o ¢l|z = [|f|[,. Use the Kébe 1/4-theorem to describe univalent
functions in B,,.

Solution. Let

a—z
go(z)—Agpa(z)—Al_aZ, acDXNeT,zeD.
Now
J(2) = )\—(1 —az) —E—E)(a— z) _ )\—1 +az +_|a|2 —az _ |a]2: 1 .
(1 —az)? (1 —az)? (1—az)?

On the other hand,
11 —az]* —|a—z|?

1_|Q0( )|2 |1—az\2

For all o, 8 € C,

= B2 = (a - B)(@—B) = laf + |8] — (aB + #a) = |af? + |82 — 2Re (aB).
Therefore
11— a2 —|a— 22 =1+ |az]? — 2Re (@z) — |af? — |2)> + 2Re (@) = (1 — |a?)(1 — |2]).
B (1= la?)(1 = |2])?

|1 —az|?

1L —|p(2)]* =

and we obtain

1 —Jo(2)?
¥'(2)] = T z € D.

Now we see that for g = f o @
lolly, = [ 1521 = 2Py 2aA()
= [P P At
= [P = eGPy e ()P dA)
= [ 1P = ofy-daw) = 115,

(1.8)

Hence B, is Mobius invariant.
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E4P2. For 0 < p < oo and —1 < a < oo, the weighted Bergman space AP consists of
f € H(D) such that

117, = / FEPA— 2P)dAG) < o

Show that f € S belongs to A? if and only if
/ MP (r, £)(1 —rH)*t < 0.
0

Hint: Prawitz’ theorem, Hardy-Littlewood inequality fol M2 (r,g)dr < 7 ||g||%,» applied
to g = f., where f,.(z) = f(rz) and 0 < r < 1, and Fubini’s theorem.
Solution. First, we see that

[mals —/If(Z)I”(l— |2[*)*dA(2)

/ / |” 1—7‘ )*dOrdr

1 2 0 (19)
=2 1— NNPdord
o Ry
1
= 27r/ (1-— TQ)O‘MZ’;(T, firdr, 0<r<1.
0
Prawitz’ theorem says that
T dp
Hp | ML(p, f)—, O<r<l (1.10)
0 P
For g = f,, the right hand side of the Hardy-Littlewood inequality is
Tllglyy =7 lim Mp(s, g) == lim MJ(s, f;) = wMJ(r, f)
s—1— s—1—
and the left hand side is
/Mpsgds—/Mpsrf /Mp
Hence, we obtain
/ ME (¢, f)dt < MZ(8)dt < 7M2(r, f), 0 <7< 1. (1.11)
0

15



Now,

117, / ) M2(r, frdr

w,
-
< / r2)°‘p/ M2 (p, f —rdr

= ( /) (1 —73)*rdpdr
0
p
Fublui o / / —r3)rdrdp
, (1.12)
=7p ( /) —2r(1 — r¥)%drd
0
0 P 1
Mp p7 a+1
a1 / " ) } 4P
/ M, (p, f )““@
a1 p

X/O MZ,(p, £)(1 — p*)**dp,

since f(0) = 0. When use Fubini’s theorem above, the integration variables r and p satisfy
0 < p <r <1 and the integration bounds follow from this fact.
On the other hand,

171, 2 / (r, fyrdr
S //Mp (p, F)dp(1 — r?)°rdr
F“Em;/o /0 M? (p, /)(1 —r*)*rdpdr (1.13)

1 ot
[ [ aona—ryrady
©Jo J,
= ;/l MZ (p, )(1 = p*)**dp.
2m(a + 1 oo
The assertion follows by equations (1.12)) and ( -

E4P3. Let f € S not a rotation of Kébe. Show that |f'(re®)|(1—7)3(1+4r)"! for a fixed
6 and M (r, f')(1 —r)>(1 4+ r)~! are strictly decreasing on (0,1).

E4P4. Supply the details of the proof of Theorem 9.1.

E4P5. Show that if the image of D under f € S has finite area, then f has Hayman
index 0. More generally, show that a(f) = 0 if the area A, of the image D(0,r) under
[ € S satisfies A, =o((1 —7)?)asr — 1.
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E4P6. Show that for 0 < € < 7, the function

z . sinnb
— = n ch
Jol2) 1 —2zcosf + 22 Z ing - ’

belongs to S and «(fy) = 0.
Solution. First, we prove the given equality. For 0 < # < 7, we have by Euler’s formula
and the sum of the geometrical series

Z cos(nf)z" +i Z sin(nf)z" = Z(eie)nzn
n=1 n=1 n=1
A T e’z — 2° (1.14)
S l—eify] —ei0 ] — z(e70 + ) — 22
zcosf — 22 , zsin 6

1 —2zcosf + 22 1 —2zcosf + 22
For a real z, we compare the real and imaginary parts and obtain

2

- zcost — z = sin(nd) z
0)z" = d = :
nz_; cos(nf)= 1—2zcosf+22 ; sin(6) - 1 —2zcosf + 22

Since these formulas are valid for z € (—1,1) and (—1,1) has a cluster point in D, the
formulas are valid for z € D. Hence the definition is reasonable. For z € D(0,r),

=L sin(nf) 1N
Z (0 27 < = N1 ;
— sin(0) sin(f) 1 —r
and therefore the series
isin(nG) "
: z
sin(6)

n=1

converges uniformly on compact subsets of D implying f, € H(ID). On the other hand,

- . sin(nd in(@
fo0)=>"0=0 and f5(0)=>" sin((Q))n L0l = ZinEQi —1
Since
£(2) = fw) = 7 — 2wz cos(0) + wz® —w + 2wz cos(f) —w2? _ (2 —w)(1 — 2w)

(1 —2zcos(0) + 22)(1 — 2w cos(0) + w?) [ ]

for z,w € D, f is univalent in .

E4P7. Let S, denote the class of functions in S with Hayman index «. For 0 < a < 1,

show that ( ) )
z+(a—1)z

= D

fa(z) (1 _ 2)2 ) z 6 Y

17



belongs to S,.
Solution. Now,

z+az? -2 2(1—2)+ az? 2 az?
o e = = 3 e D
Jal2) = —a 3 =2y —: = °

Clearly for g(z) = az?(1 — 2)72, My(r,g) = ar?(1 — r)~2. Hence,
M(r, f)

. My (r, f)(1 —1)? ) )
lim = lim = lim —Zar = a.
r—00 r r—00 Z\Kf::(T, g) r r—00 M: 5 (’r" g)
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