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1. Solutions for exercises

1.1. Exercise 1

E1P1. What is the image of D under the map f(z) = z − 1
2
z2 = 1

2
(1 − (1 − z)2)? Is f

univalent in D?

Hint: Cardioid.

Solution. We may calculate

f(z)− f(w) = z − w − 1

2
(z − w)(z + w) = (z − w)

(
1− 1

2
(z + w)

)
.

Since 1
2
(z + w) ∈ D, f(z) = f(w) implies z = w. Therefore f is univalent.

Let z = eit = cos(t) + i sin(t) so that Re (z) = cos(t) and Im (z) = sin(t). We have

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y),

which gives cos(2t) = 2 cos2(t)− 1 and by di�erentiation we have sin(2t) = 2 cos(t) sin(t).
With these formulas, we obtain

x(t) = Re (f(eit)) = cos(t)− 1

2
cos(2t) =

1

2
+ cos(t)(1− cos(t))

and

y(t) = Im (f(eit)) = sin(t)− 1

2
sin(2t) = sin(t)(1− cos(t)).

Hence

f(eit) = (x(t), y(t)) =

(
1

2
, 0

)
+ (1− cos(t))(cos(t), sin(t))

and we have r(t) = (1−cos(t)) for the polaric representation of the boundary curve. This
curve is called a cardioid. Therefore f maps the unit disc D to the interior of the cardioid.

If

g(z) = z − zn

n
, z ∈ D,

for n ∈ N \ {1}, then g is univalent in D and the boundary curve is called an epicycloid.

E1P2. What kind of set is the image of D under the conformal map

f(z) =

(
1+z
1−z

) 1
2 − 1(

1+z
1−z

) 1
2 + 1

?
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There is no need to write the image set f(D) explicitly, just understand what f does.
What happens if you replace 1

2
by another number?

Solution. Function g : D→ C,
g(z) =

1 + z

1− z
maps the unit disc to the right half plane {z : Re (z) > 0}. By setting g(z) = w and
solving for z we �nd the inverse function of g:

w =
1 + z

1− z
is equivalent to w − wz = 1 + z, which gives w − 1 = (w + 1)z and hence

z = g−1(w) =
w − 1

w + 1
.

Set h : C → C, h(z) = z
1
2 . Now we see that f = g−1 ◦ h ◦ g. Therefore g sends D to the

right half plane, square root h reduces the half plane to a sector having a vertex of angle
π
2
at the origin and g−1 returns this sector inside the unit disc. We obtain a �lens� having

vertices of angle π
2
at 1 and −1 and the boundary consists of two circular arcs.

E1P3. Show that the class S of normalized univalent functions in D is not a vector space
neither a convex set.
Solution. We give simple examples and use only the de�nition of the class S. To consider
the vector space property, let v1(z) = v2(z) = z for z ∈ D. Now, v1, v2 ∈ S, but
v1 − v2 = 0 /∈ S and hence S is not a vector space.

For the convexity, let

c1(z) =
z

1 + z
= −`(−z) and c2(z) =

z

(1− z)2
= k(z).

and take c3 = (c1 + c2)/2 so that c′3 has two zeros in D. To provide the details, �rst we
note that c1, c2 ∈ H(D) and the univalence follows by

c1(z)− c1(w) =
z − w

(1 + z)(1 + w)
and c2(z)− c2(w) =

(z − w)(1− zw)

(1− z)2(1− w)2
.

Moreover, c1(0) = c2(0) = 0 and by

c′1(z) =
1

1 + z
− z

(1 + z)2
=

1

(1 + z)2

and

c′2(z) =
1

(1− z)2
+

2z

(1− z)3
=

1 + z

(1− z)3
,

we see that c′1(0) = c′2(0) = 1 so that c1, c2 ∈ S. Now take c3 = (c1 + c2)/2. We get

c′3(z) =
1

2

[
1

(1 + z)2
+

1 + z

(1− z)3

]
=

(1− z)3 + (1 + z)3

2(1 + z)2(1− z)3

=
1− 3z + 3z2 − z3 + 1 + 3z + 3z2 + z3

2(1 + z)2(1− z)3
=

1 + 3z2

(1 + z)2(1− z)3
= 0,
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when z = ±i/
√

3 ∈ D. Thus c3 is not univalent and S is not a convex set.

E1P4. Let f : D → D ⊂ C be a conformal map such that f(0) = 0 and f ′(0) ∈ R. Let
f(z) =

∑∞
n=0 anz

n be the Maclaurin series of f in D. Show that:

(a) The domain D is symmetric with respect to the real axis if and only if an ∈ R for
all n ∈ N ∪ {0}.

(b) The following are equivalent:

(i) f is odd;

(ii) D satis�es the implication w ∈ D ⇒ −w ∈ D for all w ∈ D;

(iii) a2n = 0 for all n ∈ N ∪ {0}.

(c) For each k ∈ N \ {1} the following are equivalent:

(i) f is antisymmetric of order k, that is, f(ξz) = ξf(z) for each k:th root ξ of 1
and for all z ∈ D;

(ii) D has �the symmetry of order k�, that is, w ∈ D ⇒ ξw ∈ D for each k:th root
ξ of 1 and for all w ∈ D;

(iii) f is of the form f(z) =
∑∞

n=0 akn+1z
kn+1 in D.

Solution. We �rst recall a fact of uniqueness. Let D ( C be simply connected. If z0 ∈ D,
then there exists a unique f : D→ D such that f(0) = z0 and f

′(0) > 0.
The uniqueness can be shown as follows. Let f, g : D → D be conformal such that

f(0) = g(0) = z0 and f ′(0), g′(0) > 0. Let h = f−1 ◦ g. Now h is an automorphism
and h(0) = f−1(g(0)) = f−1(z0) = 0. Hence h(z) = αz for α ∈ T. Moreover, h′(0) =

1
f ′(0)

g′(0) > 0. Hence α = 1 and h(z) = f−1(g(z)) = z. Therefore f ≡ g.

We deduce that if f, g ∈ S, f(D) = g(D) and f ′(0)g′(0) > 0, then f ≡ g.

(a) Let an ∈ R for all n ∈ N ∪ {0}. Now,

f(z) =
∞∑
n=0

an(z)n =
∞∑
n=0

anzn =
∞∑
n=0

anzn = f(z), z ∈ D,

and hence D = f(D) is symmetric with respect to the real axis.
On the other hand, suppose that D is symmetric with respect to the real axis. Let

g : D → D, g(z) = f(z). Now f and g are conformal maps from D to D and satisfy
g(0) = f(0) = 0 and g′(0)f ′(0) = g′(0)f ′(0) > 0. Hence g ≡ f . We get

f(z) =
∞∑
n=0

anz
n = f(z) =

∞∑
n=0

anz
n, z ∈ D.

By the uniqueness of the Maclaurin coe�cients, we get an = an, that is, an ∈ R for all
n ∈ N ∪ {0}.

(b) is a special case of (c).
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(c) For the proof, let k ∈ N \ {1} and

ξ = ξj = e
2πij
k

be a k:th root of 1.
We �rst show that (i) and (iii) are equivalent. Now,

f(ξz) =
∞∑
n=1

an(ξz)n = ξ

∞∑
n=1

anξ
n−1zn = ξf(z) = ξ

∞∑
n=1

anz
n

is by the uniqueness of the Maclaurin coe�cients, equivalent to

anξ
n−1 = an, n ∈ N,

which is equivalent to
an(ξn−1 − 1) = 0, n ∈ N,

which happens if and only if an = 0 for n 6≡ 1 mod k. This is equivalent to the fact that
f is of the form

f(z) =
∞∑
n=0

akn+1z
kn+1, z ∈ D.

Assume now that (i) is valid. For f(z) = w ∈ D, f(ξz) = ξf(z) = ξw ∈ D and hence
(ii) is valid.

Assume now that (ii) is valid. Let g(z) = ξf(ξz) for ξk = 1. Now f, g ∈ S, g(D) = f(D)
and g′(0)f ′(0) = g′(0)f ′(0) > 0 giving g ≡ f . Hence ξf(ξz) = f(z), that is, f(ξz) = ξf(z)
for all z ∈ D. Hence (i) is valid.

E1P5. Give the details of the proof of Theorem 1.3.
Solution.

Theorem (N-th root transformation) Let N ∈ N \ {1} and f ∈ S. Then there exists
g ∈ S such that g(z)N = f(zN). The function g satis�es

g
(
e

2πi
N z
)

= e
2πi
N g(z) (1.1)

for all z ∈ D, and its Maclaurin series is of the form

g(z) = z + aN+1z
N+1 + a2N+1z

2N+1 + · · · =
∞∑
k=0

akN+1z
kN+1, z ∈ D. (1.2)

In particular, the image g(D) has the N -fold rotational symmetry, that is,

w ∈ g(D) if and only if e
2πi
N w ∈ g(D). (1.3)

Conversely, if g ∈ S is of the form (1.2), then there exists f ∈ S such that f(zN) = g(z)N

for all z ∈ D.
Proof. Note that the properties (1.1), (1.2) and (1.3) are equivalent by E1P4.
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Let f ∈ S and h(z) = f(z)/z. Then h ∈ H(D),

h(0) = lim
z→0

f(z)

z
= lim

z→0

f(z)− f(0)

z − 0
= f ′(0) = 1.

The only possible zeros of h are those of f , and since f is univalent, h must be zero-free
in D. Therefore as D is simply connected, there exists an analytic branch of log h in
D. (Lemma of the analytic logarithm). In particular, there exists an analytic branch of

the N -th root of h (z
1
N = e

1
N

log z). Let ψ be the analytic branch of h
1
N in D such that

ψ(0) = h(0)
1
N = 1

1
N = 1. Then

f(z) = zh(z) = zψ(z)N ,

which is equivalent to
f(zN) = zNψ(zN)N = (zψ(zN))N ,

and hence g(z) = zψ(zN) is an analytic branch of (f(zN))
1
N in D. Let us see that it

satis�es the desired properties:

(1) g(0) = 0 · ψ(0) = 0;

(2) g′(0) = limz→0
g(z)−g(0)

z
= limz→0

zψ(zN )
z

= ψ(0) = 1;

(3) For ξ = exp(2πi/N), we have g(ξz) = ξzψ((ξz)N) = ξzψ(zN) = ξg(z), and thus g
satis�es (1.1);

(4) If g(z1) = g(z2), then
[
z1ψ(zN1 )

]N
=
[
z2ψ(zN2 )

]N
, that is, f(zN1 ) = f(zN2 ) and hence

zN1 = zN2 . If z1 = 0, then z2 = 0 = z1. Otherwise, (z2/z1)
N = 1 and by the

property (1.1) we get

g(z1) = g(z2) = g

(
z2
z1
z1

)
=
z2
z1
g(z1),

which gives z1 = z2. Therefore g is univalent in D.

Conversely, let g ∈ S satisfy (1.2). Then

g(z) = z
∞∑
k=0

akN+1z
kN = z(a1 + · · · ),

where a1 = 1. The radius of convergence of
∑
akN+1z

kN is at least 1, so

lim sup
k→∞

|akN+1|
1
kN ≤ 1.

Therefore the radius of convergence of
∑
akN+1z

n is also atleast 1 because

lim sup
k→∞

|akN+1|
1
k =

(
lim sup
k→∞

|akN+1|
1
kN

)N
≤ 1.
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Therefore we may de�ne an analytic function in D by

ψ(z) =
∞∑
k=0

akN+1z
n.

Thus g(z) = zψ(zN) implies g(z)N = zNψ(zN)N for z ∈ D and we may de�ne f ∈ H(D)
by f(z) = zψ(z)N . Let us check that f has the desired properties:

(1) f(zN) = zNψ(zN)N = g(z)N ;

(2) f(0) = 0;

(3) f ′(0) = limz→0
f(z)−f(0)

z
= limz→0 ψ(z)N = ψ(0)N = A1 = 1;

(4) We see that f(z1) = f(z2) is equivalent to z1ψ(z1)
N = z2ψ(z2)

N . Let ξ1, ξ2 ∈ D such
that ξN1 = z1 and ξ

N
2 = z2. The

g(ξ1)
N = ξN1 ψ(ξN1 )N = z1ψ(z1)

N = z2ψ(z2)
N = ξ2Nψ(ξ2N)N = g(ξ2)

N

and hence g(ξ1) = ξg(ξ2) for ξ
N = 1. Since g satis�es (1.2), g(ξ2) = ξg(ξ1) = g(ξξ1)

and ξ2 = ξξ1 since g is injective. It follows that z2 = ξN2 = (ξξ1)
N = ξN1 = z1, and

thus f is injective.

2

E1P6. Let F : C \ D, F (z) = z + b0 + λ/z, where b0 ∈ C and λ ∈ T. Show that F ∈ Σ.
What can you say about the set C \

{
F (C \ D)

}
?

Solution. Clearly F is analytic in C \ D. Now, the univalence of F is shown by

F (z)− F (w) = z − w +
λ

z
− λ

w
= (z − w)

(
1− λ

zw

)
, z, w ∈ C \ D.

Namely, λ/zw ∈ D so that 1− λ/zw 6= 0. Hence F (z) = F (w) implies z = w, that is,
F is injective.

F has a simple pole at ∞, since the term z gives it while b0 + λ/z is analytic at ∞.
In other words,

F (1/z) =
1

z
+ b0 + λz

has a simple pole at the origin. Finally,

F (z)

z
= 1 +

b0
z

+
λ

z2
→ 1, z →∞,

and hence F ∈ Σ.
The last two conditions follow also from the fact that the Laurent series of F is of the

form

F (z) = z + b0 +
∞∑
n=1

.
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Namely, since the term z is present and terms zn, n ≥ 2 are absent, F has a simple pole
at ∞; and clearly the coe�cient of z is 1, which gives the limit for the fraction F (z)/z.

We examine the boundary curve of the set F (C \D) which the range of F . For b0 = 0
and λ = 1, we have

F (z) = z +
1

z
= z + z = 2Re (z), z ∈ T.

Hence Im (F (z)) = 0 for z ∈ T. Moreover |F (z)| ≤ 2 and F (1) = 2 and F (−1) = −2.
Therefore F (T) = [−2, 2] and the range of F is the complement of a segment of length 4.

For general b0 and λ,

F (
√
λz) =

√
λ+ b0 +

√
λ

z
=
√
λ

(
z + b0/

√
λ+

1

z

)
.

Hence the boundary curve F (T) is the segment [−2, 2] translated by b0/
√
λ and then

rotated by multiplying with a unimodular constant
√
λ. Hence the range of F is the

complement of a segment of length 4. Hence C \
{
F (C \ D)

}
, the complement of the

range of F , is a segment of length 4.

E1P7. Is there an analogue of Corollary 2.4 for the class S? If so, can you deduce
Theorem 3.1 by using this result?
Solution. In a sense, Theorem 3.1 is an analogue of Corollary 2.4.
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1.2. Exercise 2

E2P1. Supply the details of the last part of Corollary 2.4.
Solution. See E1P6.

E2P2. Show the �if and only if�-part of Corollary 3.3.
Solution. Let f ∈ S be odd and f(z) =

∑∞
n=1 c2n−1z

2n−1 for all z ∈ D. We need to show
that |c3| = 1 if and only if f is a rotation of the function z(1− z2)−1.

Let g ∈ S such that g(z2) = f(z)2 and g(z) =
∑∞

n=1 anz
n for all z ∈ D. By the proof

of Theorem 3.1, a2 = 2c3 and |a2| = 2|c3| = 2 holds if and only if g is a rotation of the
Köbe function. This is equivalent to

g(z) =
z

(1− eiθz)2
,

for some θ ∈ [0, 2π), which is equivalent with

g(z2) =
z2

(1− eiθz2)2
= f(z)2

and
f(z) =

z

1− eiθz2
,

since f ′(0) = 1.

E2P3. For α ∈ (0, 2], the function

fα(z) =
1

2α

((
1 + z

1− z

)α
− 1

)
, z ∈ D,

is called the generalized Köbe function. Show that fα ∈ S and describe the image of D
under fα.
Solution. Clearly

fα(0) = 0

and since (
1 + z

1− z

)′
=

(1− z) · 1− (−1) · (1 + z)

(1− z)2
=

2

(1− z)2
,

we have

fα(z) =
1

2α
α

(
1 + z

1− z

)α−1
2

(1− z)2
=

(1 + z)α−1

(1− z)α+1
, z ∈ D,

and in particular fα(0) = 1.
By geometrical considerations

fα(D) =

{
− 1

2α
+ reiθ : r ∈ (0,∞), θ ∈ (−πα/2, πα/2)

}
a sector of angle πα, having a vertex at −1/2α and symmetrical with respect to the real
axis.
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E2P4. Show that ∩f∈Sf(D) = D(0, 1/4).
Solution. For each θ ∈ [0, 2π), the function

kθ+π(z) = ei(θ+π)k(e−i(θ+π)z), z ∈ D,

omits the ray
{
reiθ : r ∈ [1/4,∞)

}
. Hence, by the Köbe 1/4-theorem,

D(0, 1/4) ⊆
⋃
f∈S

f(D) ⊆
⋃

θ∈[0,2π)

kθ+π(D) ⊆ D(0, 1/4).

E2P5. Let F ∈ Σ. Show that

|F ′(z)| ≤ |z|2

|z|2 − 1
, z ∈ C \ D.

Solution. Now,

F (z) = z + b0 +
∞∑
n=1

bnz
−n, and F ′(1/z) = 1−

∞∑
n=1

nbnz
n+1.

By the triangle inequality, the Cauchy-Schwarz inequality, Corollary 2.3 and the formula

1

(1− z)2
=
∞∑
n=0

nzn, z ∈ D,

we have

|F ′(1/z)| ≤ 1 + |z|2
∞∑
n=1

(
√
n|bn|)

(√
n|z|n−1

)
≤ 1 + |z|2

(
∞∑
n=1

n|bn|2
) 1

2
(
∞∑
n=1

n(|z|2)n−1
) 1

2

≤ 1 + |z|2 · 1 ·
(

1

(1− |z|2)2

) 1
2

= 1 +
|z|2

1− |z|2
=

1

1− |z|2
, z ∈ D.

Hence

F (z) ≤ |z|2

|z|2 − 1
, z ∈ C \ D.

E2P6. Let f ∈ S such that |f(z)| < M ∈ (1,∞) and f(z) = z+ a2z
2 + · · · for all z ∈ D.

Show that |a2| ≤ 2(1−M−1).
Solution. We show |a2| ≤ 2−M−1, which is weaker. Let m = Meiθ for θ ∈ [0, 2π). Now
g : D→ D,

g(z) = f(z)
m

m− f(z)
, z ∈ D,
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satis�es g ∈ S. Moreover,

g′(z) = f ′(z)
m

m− f(z)
+ f(z)

mf ′(z)

(m− f(z))2

and
g′′(z) = f ′′(z) + 2f ′(z)2

m

(m− f(z))2
+ f(z)h(z), h ∈ H(D),

and hence

g′′(0) = f ′′(0) +
2

m
= 2a2 +

2e−iθ

M
= 2b2,

for g(z) =
∑∞

n=1 bnz
n. Let a2 = reit and choose θ = −t to obtain

a2 +
e−iθ

M
= eit

(
r +

1

M

)
= b2.

By Theorem 3.1, ∣∣∣∣eit(r +
1

M

)∣∣∣∣ = r +
1

M
= |b2| ≤ 2,

which gives

|a2| = r ≤ 2− 1

M
.

E2P7. Give an example of f ∈ H(D) with f(0) = 0 and f ′(0) = 1 such that f satis�es
the estimates of the Growth theorem but is not univalent in D.

1.3. Exercise 3

E3P1. Show that

r
∂

∂r
Re (log f ′(z)) = Re

(
z
f ′′(z)

f ′(z)

)
, z = reiθ,

and deduce
2|z| − 4

1− |z|2
≤ ∂

∂r
log |f ′(z)| ≤ 2|z|+ 4

1− |z|2

from Theorem 5.1.

E3P2. Use Rouché's theorem (without passing through Hurwitz' theorem) to prove the
second assertion in Corollary 5.5.

E3P3. Let f be univalent in D such that |f(z)| < 1 and f(z) = z + a2z
2 + · · · for all

z ∈ D. Prove the sharp inequality |a2| ≤ 2|a1|(1− |a1|).

E3P4. Let f ∈ S and denote

Lr(f) = r

∫ 2π

0

|f ′(reiθ)|dθ, 0 < r < 1.
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What is the geometric interpretation of this quantity? Show that

Lr(f) ≤ 2πr(1 + r)

(1− r)2
, 0 < r < 1.

E3P5. Let f be univalent in D. Show that M∞(r, f) ≤ πrM1(r, f
′) + |f(0)| for all

0 < r < 1.

E3P6. Let C be a recti�able Jordan curve with length L, bounding a domain with area
A. Prove the isoperimetric inequality A ≤ L2/4π, which says that among all curves of
given length, the circle encloses the largest area.

Hint: Let f be the Riemann from D onto the given domain. Express A and L as integrals
involving f ′, and let g =

√
f ′ to calculate these integrals in terms of the Maclaurin

coe�cients.
Solution. Way 2. We use the approach of [Pressley, Andrew Elementary di�erential
geometry.]

Theorem 1.1 (Wirtinger). Let F : [0, π]→ R be a smooth function such that F (0) =
F (π) = 0. Then ∫ π

0

(F ′(t))2dt ≥
∫ π

0

F (t)2dt

and equality holds if and only if F (t) = D sin(t) for all t ∈ [0, π] for some constant D ∈ R.

Proof. Let G(t) = F (t)/ sin(t) so that F (t) = G(t) sin(t). Now

F ′(t) = G′(t) sin(t) +G(t) cos(t).

Hence ∫ π

0

(F ′(t))2dt =

∫ π

0

(G′(t) sin(t))2dt+ 2

∫ π

0

G(t)G′(t) sin(t) cos(t)dt

+

∫ π

0

(G(t) cos(t))2.

(1.4)

Here

2

∫ π

0

G(t)G′(t) sin(t) cos(t)dt =
[
(G(t))2 sin(t) cos(t)

]π
t=0
−
∫ π

0

(G(t))2(cos2(t)− sin2(t))dt

=

∫ π

0

(G(t))2(sin2(t)− cos2(t))dt.

(1.5)

Hence ∫ π

0

(F ′(t))2dt =

∫ π

0

(G(t))2 − (G′(t))2) sin2(t)dt

=

∫ π

0

F (t)2 +

∫ π

0

(G′(t))2 sin2(t)dt

(1.6)
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and so ∫ π

0

(F ′(t))2dt−
∫ π

0

(F (t))2 =

∫ π

0

(G′(t))2 sin2(t)dt.

Hence ∫ π

0

(F ′(t))2dt ≥
∫ π

0

(F (t))2dt.

Equality holds if and only if G′(t) ≡ 0, that is, G(t) ≡ D giving F (t) = D sin(t) for
D ∈ R. 2

Take M(x, y) = 1
2
x and L(x, y) = −1

2
y in Green's theorem to obtain

A(D) =

∫
D

dxdy =
1

2

∫
C

xdy − ydx.

Let x = x(t), y = y(t) so that dx = x′(t)dt and dy = y′(t)dt. We get

A(D) =
1

2

∫
C

(x(t)y′(t)− y(t)x′(t))dt.

Let C = γ([0, π]). By translation, we obtain γ(0) = γ(π). Let{
x(t) = r(t) cos(θ(t))

y(t) = r(t) sin(θ(t))

so that {
x′(t) = r′(t) cos(θ(t))− r′(t) sin(θ(t))θ′(t)

y′(t) = r′(t) sin(θ(t)) + r(t) cos(θ(t))θ′(t).

We see that x2t + y2t = r2t + r2θ2t and

xyt − yxt = rrtcs+ r2c2θt − rrtcs+ r2s2θt = r2θt,

where we abbreviated cos(θ) = c and sin(θ) = s. Now let

t =
πs

L
, s ∈ [0, L].

We get

r2t + r2θ2t = x2t + y2t = (x2s + y2s)s
2
t =

L2

π2
,

and ∫ π

0

(r2t + r2θ2t )dt =
L2

π

since we may by reparametrizating suppose that x2s + y2s = 1.
On the other hand,

A =
1

2

∫ π

0

(xyt − yxt)dt =
1

2
r2θtdt.
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We get

L2

4π
− A =

1

4

∫ π

0

(r2t + r2θ2t )dt−
1

2

∫ π

0

r2θtdt

=
1

4

∫ π

0

r2θ2t − 2r2θt + r2t dt

=
1

4

∫ π

0

r2(θt − 1)2dt+

∫ π

0

(r2t − r2)dt ≥ 0,

(1.7)

since by Wirtinger's inequality the later integral is nonnegative, since r(0) = r(π) = 0.
Equality happens, if θt ≡ 1, that is θ = t+ α. In this case{

x(t) = D sin(θ − α) cos(θ)

y(t) = D sin(θ − α) sin(θ).

This is a parametric equation for a circle of diameter D.

E3P7. Let f be analytic but not univalent in a disc D(0, R). Show that there exist
distinct points z1 and z2 in D(0, R) with |z1| = |z2| such that f(z1) = f(z2).
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1.4. Exercise 4

E4P1. For 1 < p <∞, the classical Besov space Bp consists of f ∈ H(D) such that

‖f‖pBp =

∫
D
|f ′(z)|p(1− |z|2)p−2dA(z) <∞.

Show that Bp is Möbius invariant, that is, for each automorphism ϕ of D and f ∈ H(D) the
seminorm satis�es ‖f ◦ ϕ‖Bp = ‖f‖Bp . Use the Köbe 1/4-theorem to describe univalent
functions in Bp.
Solution. Let

ϕ(z) = λϕa(z) = λ
a− z
1− az

, a ∈ D, λ ∈ T, z ∈ D.

Now

ϕ′(z) = λ
−(1− az)− (−a)(a− z)

(1− az)2
= λ
−1 + az + |a|2 − az

(1− az)2
= λ

|a|2 − 1

(1− az)2
.

On the other hand,

1− |ϕ(z)|2 =
|1− az|2 − |a− z|2

|1− az|2
.

For all α, β ∈ C,

|α− β|2 = (α− β)(α− β) = |α|2 + |β|2 − (αβ + βα) = |α|2 + |β|2 − 2Re (αβ).

Therefore

|1− az|2 − |a− z|2 = 1 + |az|2 − 2Re (az)− |a|2 − |z|2 + 2Re (az) = (1− |a|2)(1− |z|2).

Thus

1− |ϕ(z)|2 =
(1− |a|2)(1− |z|)2

|1− az|2

and we obtain

|ϕ′(z)| = 1− |ϕ(z)|2

1− |z|2
, z ∈ D.

Now we see that for g = f ◦ ϕ

‖g‖pBp =

∫
D
|g′(z)|p(1− |z|2)p−2dA(z)

=

∫
D
|f ′(ϕ(z))|p|ϕ′(z)|p(1− |z|2)p−2dA(z)

=

∫
D
|f ′(ϕ(z))|p(1− |ϕ(z)|2)p−2|ϕ′(z)|2dA(z)

=

∫
D
|f ′(w)|p(1− |w|2)p−2dA(w) = ‖f‖pBp .

(1.8)

Hence Bp is Möbius invariant.
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E4P2. For 0 < p < ∞ and −1 < α < ∞, the weighted Bergman space Apα consists of
f ∈ H(D) such that

‖f‖p
Apα

=

∫
D
|f(z)|p(1− |z|2)αdA(z) <∞.

Show that f ∈ S belongs to Apα if and only if∫ ∞
0

Mp
∞(r, f)(1− r2)α+1 <∞.

Hint: Prawitz' theorem, Hardy-Littlewood inequality
∫ 1

0
Mp
∞(r, g)dr ≤ π ‖g‖pHp applied

to g = fr, where fr(z) = f(rz) and 0 < r < 1, and Fubini's theorem.

Solution. First, we see that

‖f‖p
Apα

=

∫
D
|f(z)|p(1− |z|2)αdA(z)

=

∫ 1

0

∫ 2π

0

|f(reiθ)|p(1− r2)αdθrdr

= 2π

∫ 1

0

(1− r2)α 1

2π

∫ 2π

0

|f(reiθ)|pdθrdr

= 2π

∫ 1

0

(1− r2)αMp
p (r, f)rdr, 0 < r < 1.

(1.9)

Prawitz' theorem says that

Mp
p (r, f) ≤ p

∫ r

0

Mp
∞(ρ, f)

dρ

ρ
, 0 < r < 1. (1.10)

For g = fr, the right hand side of the Hardy-Littlewood inequality is

π ‖g‖pHp = π lim
s→1−

Mp
p (s, g) = π lim

s→1−
Mp

p (s, fr) = πMp
p (r, f)

and the left hand side is∫ 1

0

Mp
∞(s, g)ds =

∫ 1

0

Mp
∞(sr, f)ds =

1

r

∫ r

0

Mp
∞(t)dt.

Hence, we obtain∫ r

0

Mp
∞(t, f)dt ≤ 1

r

∫ r

0

Mp
∞(t)dt ≤ πMp

p (r, f), 0 < r < 1. (1.11)
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Now,

‖f‖p
Apα

(1.9)
= 2π

∫ 1

0

(1− r2)αMp
p (r, f)rdr

(1.10)

≤ 2π

∫ 1

0

(1− r2)αp
∫ r

0

Mp
∞(ρ, f)

dρ

ρ
rdr

= 2πp

∫ 1

0

∫ r

0

Mp
∞(ρ, f)

ρ
(1− r2)αrdρdr

Fubini
= 2πp

∫ 1

0

∫ 1

ρ

Mp
∞(ρ, f)

ρ
(1− r2)αrdrdρ

= πp

∫ 1

0

Mp
∞(ρ, f)

ρ

∫ ρ

1

−2r(1− r2)αdrdρ

=
πp

α + 1

∫ 1

0

Mp
∞(ρ, f)

ρ

[
(1− r2)α+1

]ρ
r=1

dρ

=
πp

α + 1

∫ 1

0

Mp
∞(ρ, f)(1− ρ2)α+1dρ

ρ

�
∫ 1

0

Mp
∞(ρ, f)(1− ρ2)α+1dρ,

(1.12)

since f(0) = 0. When use Fubini's theorem above, the integration variables r and ρ satisfy
0 < ρ < r < 1 and the integration bounds follow from this fact.

On the other hand,

‖f‖p
Apα

(1.9)
= 2π

∫ 1

0

(1− r2)αMp
p (r, f)rdr

(1.11)

≥ 1

π

∫ 1

0

∫ r

0

Mp
∞(ρ, f)dρ(1− r2)αrdr

Fubini
=

1

r

∫ 1

0

∫ r

0

Mp
∞(ρ, f)(1− r2)αrdρdr

=
1

π

∫ 1

0

∫ 1

ρ

Mp
∞(ρ, f)(1− r2)αrdrdρ

=
1

2π(α + 1)

∫ 1

0

Mp
∞(ρ, f)(1− ρ2)α+1dρ.

(1.13)

The assertion follows by equations (1.12) and (1.13).

E4P3. Let f ∈ S not a rotation of Köbe. Show that |f ′(reiθ)|(1− r)3(1 + r)−1 for a �xed
θ and M∞(r, f ′)(1− r)3(1 + r)−1 are strictly decreasing on (0, 1).

E4P4. Supply the details of the proof of Theorem 9.1.

E4P5. Show that if the image of D under f ∈ S has �nite area, then f has Hayman
index 0. More generally, show that α(f) = 0 if the area Ar of the image D(0, r) under
f ∈ S satis�es Ar = o((1− r)−3) as r → 1−.
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E4P6. Show that for 0 < θ < π, the function

fθ(z) =
z

1− 2z cos θ + z2
=
∞∑
n=1

sinnθ

sin θ
zn, z ∈ D,

belongs to S and α(fθ) = 0.
Solution. First, we prove the given equality. For 0 < θ < π, we have by Euler's formula
and the sum of the geometrical series

∞∑
n=1

cos(nθ)zn + i

∞∑
n=1

sin(nθ)zn =
∞∑
n=1

(eiθ)nzn

=
eiθ

1− eiθz
1− e−iθ

1− e−iθ
=

eiθz − z2

1− z(e−iθ + eiθ)− z2

=
z cos θ − z2

1− 2z cos θ + z2
+ i

z sin θ

1− 2z cos θ + z2
.

(1.14)

For a real z, we compare the real and imaginary parts and obtain

∞∑
n=1

cos(nθ)zn =
z cos θ − z2

1− 2z cos θ + z2
and

∞∑
n=1

sin(nθ)

sin(θ)
zn =

z

1− 2z cos θ + z2
.

Since these formulas are valid for z ∈ (−1, 1) and (−1, 1) has a cluster point in D, the
formulas are valid for z ∈ D. Hence the de�nition is reasonable. For z ∈ D(0, r),∣∣∣∣∣

∞∑
n=N

sin(nθ)

sin(θ)
zn

∣∣∣∣∣ ≤ 1

sin(θ)

rN

1− r
,

and therefore the series
∞∑
n=1

sin(nθ)

sin(θ)
zn

converges uniformly on compact subsets of D implying fθ ∈ H(D). On the other hand,

fθ(0) =
∞∑
n=1

0 = 0 and f ′θ(0) =
∞∑
n=2

sin(nθ)

sin(θ)
n · 0n−1 =

sin(θ)

sin(θ)
= 1.

Since

f(z)− f(w) =
z − 2wz cos(θ) + wz2 − w + 2wz cos(θ)− wz2

(1− 2z cos(θ) + z2)(1− 2w cos(θ) + w2)
=

(z − w)(1− zw)

[ ]

for z, w ∈ D, f is univalent in D.

E4P7. Let Sα denote the class of functions in S with Hayman index α. For 0 < α < 1,
show that

fα(z) =
z + (α− 1)z2

(1− z)2
, z ∈ D,
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belongs to Sα.
Solution. Now,

fα(z) =
z + αz2 − z2

(1− z)2
=
z(1− z) + αz2

(1− z)2
=

z

1− z
+

αz2

(1− z)2
, z ∈ D.

Clearly for g(z) = αz2(1− z)−2, M∞(r, g) = αr2(1− r)−2. Hence,

lim
r→∞

M∞(r, f)(1− r)2

r
= lim

r→∞

M∞(r, f)

M∞(r, g)

M∞(r, g)(1− r)2

r
= lim

r→∞

M∞(r, f)

M∞(r, g)
αr = α.
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