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1. Basic concepts

Let D denote the unit disc of the complex plane C, and let H(ID) be the space of all
analytical functions in . An analytic function f is called univalent (a conformal map)
if it is injective.

The class S (slicht) consists of univalent functions f in D normalized such that f(0) =0
and f’(0) = 1. Therefore the power series representation of f € S is of the form

f(2)=z2+az® +azz®*+---, z€D.
If f is univalent in D, then
f(z) = 1'(0)
2) ="——"~"—-€S8.
=)

Note that f is injective in a neighborhood of z; € D if and only if f'(z9) # 0, and hence
f'(z) #0 for all z € D, if f is univalent in . Obviously, f(z) = z is univalent.

Example 1.1. 1. The function f(z) = % maps D conformally onto the right half
plane, but f ¢ S. However,

l(z) = = = S
(2) 7(0) 2 1—-<”

and .
E(z):z—|—22+z3+...:Zz”, z € D.

n=1

This function maps D conformally onto the half-plane {w : Re (w) > —1/2}.

2. The function f(z) = (%)2 is also univalent in D and does not belong to S because
f(0) =1 and f'(0) = 4. The normalized function in S is now

OO = e
k(z) = 7/(0) - 4 ST

The function k plays an important role in the theory of univalent functions in .
It is called the Kobe function and it maps D conformally onto C \ (—oo,—1/4].

Further,
1 o0
1 =Y =144+ 4
-z
n=0
implies
1 - n—1
— QZan =1+2z+32+---
(1—2) e
and hence .
k(z) = a - )2:an”:z+222+323+~-.
— 2z

n=1
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3. The function

is univalent in D and satisfies

f(0) = ;logl—O and f'(2) 1—z2 Z

n=0

so f € S. Now, by integrating along a line segment from 0 to z, we obtain

2n+1 3 5

o _OO z 22z
/f Ydw + f(0 Z/ dw 2n+1 z+§+€+---.

1 1+2 1 1+ 2
= —1 - -y,
f(z) 5 og‘1_2’+2zarg(1_z)

maps D onto the strip {x +iy : ® € R, —7/4 <y < 7/4}.
The class S is invariant with respect to several elementary transformations.
Theorem 1.1. The class S is invariant under the following transformations:
(i) Rotations: If f € S and 0 € R, then g : D — C, g(2) = e f(e¥2) belongs to S:
Dilatation: If f € S and 0 <r <1, then g:D — C, g(z) = %f(rz) belongs to S;

)
(iii) Conjugation: If f € S, then g, g(z) = f(Z), belongs to S;
)

(iv) Disc automorphism: If f is univalent in D and
a+z
a = ) :Da D%
Ya(2) = TTa. ° eD,z e
then g : D — C,
Va(2)) — fla
Jo) - L) ~ (@

f'(@)(1 —1al?)

belongs to S;

(v) Range transformation: If f € S and ¢ : f(D) — C is analytic and univalent, then
g:D—C,

belongs to S;
(vi) Omitted value transformation: If f € S and w € C\ f(D), then g : D — C,

wf(z)

9(z) = w——f(z)’

z €D,

belongs to S.



Proof. (i) Clearly g(0) = e ?f(0) = 0 and ¢'(2) = e ¥ f'(e?2)e? = f'(e?2) giving
¢'(0) = f'(0) = 1. Moreover, g(D) = {e7f(z) : z € D} = e (D) is the image of f
rotated by —6@ and hence ¢ is univalent.

(i) Trivially g(0) = 0 and ¢'(z) = Lf'(rz)r = f'(rz) giving ¢’(0) = f’(0) = 1. The
univalence is trivial.

(iii) Trivially g(0) = 0. Let the Maclaurin series of f be f(z) = > a,z". Now g(z) =
> a,z" =Y a,z". This gives ¢'(0) = f'(0) = 1. Moreover, g(D) = {f(z) Dz € ]D)}.

(iv) Now

/ o 1- |a|2
wa(z) - ma
and hence
(f o ¥a)(2) = (f 0 4a)(0) _ f(¥a(2)) — f(a) ()
(f ©14)'(0) f(a)(1 = |al?) '

As f o1, is univalent in D, g € S.
(v) As ¢ is univalent, gzﬁ’( ) # 0 for all z € f(D). Hence g(0) = 0 and ¢’(0) = 1 as

9'(2) = ¢'(f(2))f'(2)/¢'(0). Thus g € 5.
(vi) Now ¢(z) = (T o f)(z) where

wz

T(z) =

w—z

T is a Mobius transformation with pole w ¢ f(ID). Hence g is analytic and univalent in
D. Clearly ¢(0) =0 and

§(2) = wf(2)(w = f(z) + [(Dwf(z)  wf(z)
(w— f(2))? (w = f(2))*

so ¢'(0) =1. Thus g € S. |

Theorem 1.2 (Square root transformation). If f € S, then there exists an odd func-
tion g € S such that ¢g*(z) = f(z?) for all z € D.

Conversely, if g € S is odd, then there exists f € S such that f(z?) = g(z)? for all
z € D.

Proof. Let f € S and h(z) = f(z)/z. Then h € H(D),

h(0) = tim L3 iy JE 2SO gy g

z—0 2 z—0 z2—0

The only possible zeros of h are those of f, and since f is univalent, A must be zero-free
in . Therefore as I is simply connected, there exists an analytic branch of logh in
D. (Lemma of the analytic logarithm). In particular, there exists an analytic branch of
the Square root of h (22 = e2 1ng) Let ) be the analytic branch of v/A in D such that

= +/h(0) =+/1=1. Then



which is equivalent to

f(2) = 29(2%)* = (29(2%))?,
and hence g(z) = 21(2?) is an analytic branch of 1/ f(22) in D. Let us see that it satisfies
the desired properties:

(1) 9(0) = 0-9(0) =

(2) ¢'(0) =lim, 4 M = lim,_, M =(0) = 1;

(3) g(—2) = —2p((—2)%) = —2¢(2%) = —g(2), and thus g is odd;
(4)

If g(z1) = g(2s), then [210(22)]° = [220(22)]?, that is, f(22) = f(22) and hence
22 = z2. Thus zp = £z for € = £1. If 2; = 0, then 2, = 0 = 2;. For otherwise,
0 # g(z1) = g(z2) = g(€21) = £g(21) and thus £ = 1 which is equivalent to z; = 2.
Therefore ¢ is univalent in .

Conversely, let g € S be odd. Then
g(Z) = Alz + A323 +--= ZAZH'HZ = ZZA2n+1Z Al + - )

where A; = 1. The radius of convergence of > Ay, 12°" is at least 1, so

lim sup | Az o <1

n—o0

Therefore the radius of convergence of > Ay, 12" is also atleast 1 because

2
limsup|A2n+1|% = (limsup |A2n+1|21n) <1.

n—0o0 n—oo

Therefore we may define an analytic function in D by

o

n

= E A2n+12 .
n=0

2) = 2¢0(2%) implies g(z)* = 2% (2?)? for = € D and we may define f € H(D) by
f(z) = 2¢0(2)?. Let us check that f has the desired properties:

(1) f(z%) = 2% (2*)* = g(2)*

(2) f£(0) =0;

(3) f/(0) = lim.o T = lim, 0 4h(2)? = 9(0)* = Ay = L;

(4) We see that f(z1) = f(z2) is equivalent to 219(21)? = 291(29)2. Let &1, & € D such

that £2 = z; and &2 = 2,. The
9(61)? = EU(E])? = 210(21)? = 29(22)? = EY(E3)? = 9(&)?

and hence g(&1) = §g(&2) for £ = £1. Since g is odd, g(&2) = £g(&) = g(&&1) and
& = &€ since g is injective. It follows that zp = &2 = (££,)? = &€ = 2, and thus f
is injective.



O

Let f(z) = 2z + a2®> + --- € S. By Theorem there exists an analytic branch
g(z) = \/f(2%) € S such that g is odd. Hence g(z) = z + A3z3 + A52° + .-+, and as
f(2%) = g(2)* we have

f(Z%) =2" +a2* + a3z’ + - = g(2)?
= (2 4+ A3 + As2® + - ) (2 + A32® + A52® +---)
= 22+ 2432  + (A +245)2° + -+ .

Hence A3 = ay/2,

CL3—A§:4(I3—G%
2 8

as 5 4daz—a} .
o) = VI = St M

Theorem 1.3. (N-th root transformation) Let N € N\ 1 and f € S. Then there exists
g € S such that g(2)Y = f(2V). The function g satisfies

A5:

Therefore

g (¢52) = gl

for all z € D, and its Maclaurin series is of the form

e}

_ N+1 2N+1 _ EN+1
9(z) = z+ayy12 + asni12 +..= g ARN+12 , zeD. (%)
k=0

In particular, the image g(D) has the N-fold rotational symmetry, that is, w € g(D) if
and only if |
eFw e g(D).

Conversely, if g € S is of the form (), then there exists f € S such that f(zV) = g(z)V
for all z € D.

Proof. Similar to that of Theorem [1.2] see also Exercises. O

Example 1.2. The Kobe function satisfies

22

k(ZQ) = m

for all z € . By applying the square root transformation we obtain the odd function
ges,

oz
1 — 22

g(z2) :z+23+z5+--«2222”“, z€D.
n=0

8



As k(2?) = g(2)? and k maps D onto C\ (—oo, —1/4], g maps D onto C\{yi : |y| > 1/2}.
The N-th root transformation of the Kobe function gives

z

g(z) = T z e D.
The function g € S and
Nl (2k+1)mi
g(D):C\U{re N :4’1/N§7“<oo}.
k=0

Let X denote the class of analytic functions F' : C \ D — C which are injective, have
simple pole at oo and whose Laurent series in C \ D is of the forml

F(z):z+bo+b12_1+b2z_2—|—---:z+bo+2bnz_”, z € C\D.
n=1

This last condition on the Laurent series can be replaced by F(z)/z — 1 as z — 0.
If feS and
f(2)=z2+a2* +azz® +---,

then F', F(z) = (f(1/2))! belongs to X:
(1) Since f is univalent in D, f(1/z) is univalent in C\D. Since 1/z # 0 for all z € C\D

and f € S, we have f(1/2) # 0 for all 2 € C \ D. We deduce that F is univalent in
C\ D. (Compare with the omitted value transformation.)

(2) We see that

F(z) 1 1 1

= z2f(l)2) (4 adtas+) ltas+tal+--

as z — 00.
(3) We see that
F1/2)=(fe) ' =(+az® +azz® +-- ) =z 1+ a2z +azz* +--),

hence F'(1/z) has a simple pole at the origin, thus F' has a simple pole at oo.
Moreover, F(z) # 0 for all z € C\ D.

Conversely, if € ¥ and F(z) # 0 for all z € C\ D, then f(z) = (F(1/2))7}, z € D,
belongs to S. More generally, if F' € ¥ and

ceC\ F(C\D),

then f(z) = (F(1/z) — ¢)~! belongs to S.



2. Area theorem

We pass to state and prove the so-called area theorem proved by Gronwall in 1914. It
shows that the univalence of functions in C \ D has strong implications on the Laurent
coefficients.

Theorem (Green) Let C' be a positively oriented, piecewise smooth, simple closed curve
in the plane R? (a contour), and let D be the domain bounded by C. If L and M are
functions defined on a domain containing D and have continuous partial derivatives there,

then .y oL
( (z,y) (x,y)) dedy.

ox oy

A@@MW+M@WM:/

D
Take M(x,y) =« and L(z,y) =0 to get

A(D) = area(D) = /Ddxdy = /dey.

This is the identity we will use.

According to Wikipedia it is said that George Green stated a divergence theorem in
1828. After that, Cauchy stated Green’s theorem in 1846 and Riemann gave the proof in
1851.

Theorem 2.1. (Area theorem) Let f be analytic in a domain that contains the circle
{z : |z| =r} and let its Laurent series be given by f(z) = > .7 an,z". If I(r) =
{f(re") : 6 €[0,27]} is closed and simple (Jordan), then the area of the domain D(r)
enclosed by I(r) is

[e.9]

Z nla, [*r*"| .

n=—oo

A(r)y=m

Proof. Consider the functions

f(reie)—l—f(Teie) 1 &

_ 0\ __ _ - nb | —_ —inf\,.n
u(f) = Re f(re") = 5 =3 n:E_OO(ane +ane”")r", 0 € 0,27,
and
_ 0\ f(reiﬁ) B f(rew) . 1 S inf _ —_—inb\, .n
v(0) = Im f(re”) = 5 =3 ng_oo(ane ane” """, 0 € [0,2mr].

By Green’s theorem

A(r) = / dxdy = / xdy‘ =
D(r) 1(r)
1 2m > ) ) > ) .
/ < Z amesz +m€—zm6> P ( Z naneznﬂ _ nme—mﬁ) r"do
0

m=—oQ

4



Hence we get

1 o0 27 ) '
AN =7 3 [ e e

m,n=—00

+ ama—nei(m—n)e + @ane—i(m—n)QdQ

o0 o0

1
Z M 2T + QG 27) + 2 Z ™ (|ag 227 + |an |227)

m=—00 m=—00

[e.9]

Z n|an|2r2"

n=—oo

=TT s

since the first sum on the second last line is equal to 0. O

Corollary 2.2. Let F' € ¥ and let

F(z)=z+by+» bz", z€C\D,

n=1
be its Laurent series. Then
o0
> nfb* < 1.
n=1
Proof. By the Area theorem,
1 0o
Alr)y=m Z nla,*r*| = 7 |r* — Zn\bn\zr’% , r>1
n=—oo n=1

Since 7% — Y n|b,[*r=2" > 0 for r sufficiently large is also continuous and its absolute
value equals A(r)/7 that is nonzero, we deduce that it is positive for all » > 1. Hence

0<A(r)/m=1r*— Zn\bn\Qr_Q", r>1,
n=1
and by letting » — 17 we deduce
> nfb* < 1.
n=1

There is of course an analogue of Corollary [2.2] for the class S.

11



Corollary 2.3. Let f € S such that
1 1
—— =—-+ b,2", z€D.
[EREAPY
Then

o0

> nfb,* < 1.

n=1
Proof. Similar to that of Corollary 2.2] For a proof without appealing to Green’s theorem,
see [3, Chapter 13]. O
Corollary 2.4. Let F' € X and let

F(z):z+bg—|—an2_”, z€ C\D,

n=1

be its Laurent series. Then |by| < 1. Further, |b;| =1 if and only if
A —
F(z)=24+by+—, zeC\D,
2

where by € C and A € T = {z € C : |z| = 1}. This maps C \ DU {oo} conformally onto
the complement of a segment of length 4.

Proof. The assertion |b;] < 1 and the iff-claim follows directly from Corollary For
the last part, see Exercises. O

3. Coefficient estimates for the class 5, Part 1

Theorem 3.1. (Bieberbach 1916) Let f € S and f(z) = 2z + agz® + --- for all z € D.
Then |as| < 2. Moreover, |as| = 2 if and only if f is a rotation of the Kébe function
(Ko(2) = e K (e?2)).

Proof. By Theorem [1.2] we may take g € S odd such that g(z)* = f(2?) for all z € D.
Now

g(z) = 2432 e’ 4= 262k+1z2k+1+z, zeD,
k=1
and hence
(z4+c 42+ )zt des® +- )= tapet +---, z€D.

By comparing coefficients, we deduce ¢; = 2. Set F(z) = (g(1/z))~" for all z € C\ D.
Then F' € ¥ is odd and its Laurent series is of the form

a2/2

FKZ)iZ:Z'_ E§_+... =z — +---, ZzE (j\ﬁj
z

12



This holds since

1 ¢ c cs 2—c
(—+—§,+—‘2+---) (z——3+ . 5+---):1.
2 23 2z z 2

Corollary yields |as| < 2. Further, if |as| = 2, then Corollary shows that

F(z) = —
(2) =z+ ;
for some A € T, and hence
A 1
Flz)y=z2z4-= ,
eV
which is equivalent to
1
1 =
o1/2)=
which gives
1 z

Therefore

and we deduce that

O

Theorem 3.2. Let f € S and f(z) = z+asz®+azz®+- -+ forallz € D. Then |a3—a3| < 1.

Proof. Take F(z) = (f(1/z))~'. Then

1 1 1 -2
T Txgage.. Ctetarirestaes

F(z)

which is equivalent to

Hence

(3.1)

13



which gives
Qg + Co

C1 + agoCyp+as = 0, that iS, C1 = —Q9Cy — ag,

which is equivalent to

Co = —a2
c1 = a3 — as,
and hence |
F(z):z—ag—k(a%—ag);—i—--- , z€C\D.
Corollary [2.3] yields |a3 — a3| < 1. O

The Kobe function . .
k(z) = ann =z+ Z anz"
n=1 n=2

satisfies a3 — a3 = 22 — 3 = 1, but there are other functions in S for which the equality in
Theorem [3.2| holds. For example, the square root transform of the Kébe function,

z
1 — 22

00
:E 22n+122+23+25+"‘,
n=0

has this property because in this case a; = 0 and az = 1.

Corollary 3.3. Let f € S be odd and f(z) = z+c32> +--- for all z € D. Then |c3] < 1.

Moreover, |c3| = 1 if and only if f is a rotation of the function z(1 — 2)~',

Proof. Since ¢3 = 0, Theorem [3.2] yields |co| < 1. The iff-part of the assertion is left as
an exercise. O

Corollary gives an easy way to see that S is not a convex set (compare with
Exercise 1). Namely, let f = K and

g(2) = —k(—2)=2—-222+322—-.., zeD.

Then g is a rotation of Kobe and hence f,g € S. The function

hz) = 5(f(2) +9(2)) =

[22+2-3z3+--~} =2+32 452+, z€D,

[z+222+323+---+z—222+323—4z4+...]

DN | —

(3.2)

N =N =

is odd, but ¢z = 3, so h ¢ S by Corollary [3.3]
Bieberbach conjectured in his paper that if f € S, then the Maclaurin coefficients a,,
of f would satisty |a,| < n for all n € N with equality only for rotations of the Kibe

14



function. Loéwner proved the assertion for n = 3 and subsequently proof was given for
n =4,5,6,---. Littlewood (Flett’s teacher) (1925) showed that |a,| < en for all n € N
and Basilevic (1951) established the bound

[la,| < en/2 was proved by Baernstein in the 1970’s| Milin (1960’s) proved |a,| < 1.243n
and Fitzgerald (1970’s) in turn showed |a,| < /7/6. Finally, de Branges proved the
Bieberbach conjecture in 1984 (Milin).

4. Kobe One Quarter Theorem

Each f € S is an open mapping with 0 € f(ID). Therefore there exists ry > 0 such that
D(0,ry) C f(D). To start with, the radius r; depends on the function f. Kébe proved
the existence of a positive § such that D(0,6) C f(D) for all f € S. The Kobe function
shows that § < 1/4. Bieberbach proved that one can actually take 6 = 1/4.

Theorem 4.1. (Kébe 1/4 - theorem) The disc D(0,1/4) is contained in the range of each
f €8S, that is, D(0,1/4) C f(D) for all f € S. Moreover, if there exists w ¢ f(D) with
|w| = 1/4, then f is a rotation of the Kébe function.

Proof. Let f € S and f(2) = z + agz® + azz® + -+ for all z € D. Let w ¢ f(D). By
applying the omitted value transformation, we see that g, defined by

wf(z)
g(z) = —————, z€D,
AT
belongs to S. Let
g(2) =2+ b2 +b32° +--- ) ze€D.

Now g(z)(w — f(2)) = wf(z) for all z € D, and hence
(z+b222+bgz3+--~) (w—Z—CLQZ2—CL323—"') = wz + wagz® + wazz® + - .
This is equivalent to
wz + (wby — 1)2% + -+ = wz +wagz® + -+ -,

which implies

b2w —1= was, that iS, bg = — + as.
w

Since f and g belong to S, we have |as| < 2 and |by| < 2 by Theorem [3.1] It follows that

1 1
‘—‘ < ‘——i—az + fazf = ‘bQ‘ + \(12| <4.
w w

Hence |w| > 1/4. Moreover, if |w| = 1/4, then |as| = 2 and hence f is a rotation of the
Kébe function by Theorem [3.1} O

15



The univalence is essential in K6be’s theorem. Namely, if we setl
1
fa(z)=—=("”=1), zeD,neN,
n

then f, is analytic in D, f,,(0) = 0 and f/(0) = 1 for all n € N. However, f, omits the
value —1/n.

Kobe’s theorem allows us to estimate the distance of a point in a proper subdomain
of C to the boundary. This quantity is important in geometric applications. Let D C C
and w € D, and let

d(w,0D) = inf |z —w|, we€ D.
2€0D

Theorem 4.2. If f is univalent in D and f(D) = D, then

%1(1 — [ZPIf ()] < d(f(2),0D) < 1= |zP)If (2)], z€D.

Proof. Let f be univalent in ID. By Theorem
f(Wa(2)) — f(a)
(1= lal?)f'(a) ’

belongs to S. By the Kébe 1/4 - theorem, D(0,1/4) C ¢(D), that is, for each w €
D(0,1/4), there exists z € D such that g(z) = w or equivalently

f($a(2)) = f(a)
(1 —la?)f"(a)

_|_
2 eD, wa(z):&—;z, aeD,

9(z) =

:w’

which gives

f'(a)

wm(l —laP)If (@),

f(@Wa(2)) = fla)w(l — |a*) f'(a) = f(a) +

f'(a)
|f(a)l

where € T. In other words, for each

we b (s L0~ yam) |

4

there exists 2’ = 1,(z) € D such that f(z') = w’. Hence

11— 1aP)|f(@)| < d(f(a),0D), a€D.

To see the upper bound, let R, = d(f(a),0D) and consider the mapping ¢ : D —
D(f(a),R,), ®(2) = f(a) + Ryz, 2 € D, and f~' : D(f(a), R,) — D, and set w(z) =
(Y_go fTlo®)(2), z€D. Then w(D) C D and w(0) = (Y_q o fH(f(a)) = V_4(a) =0,
and hence the Schwarz lemma yields |w/(0)| < 1. But a direct calculation shows that

R,
(0= [aP)f (@)

16

W'(0) =



and 50 d(f(a),0D) = R, < (1— |af?)|f'(a)]. =
Recall that the Bloch space B consists of f € H(D) such that

£l = sup /()1 = [2%) + 1£(0)] < oo

Theorem [4.2] shows that if f € H(ID), then
[f'(2)[(1 = [2*) < d(f(2),0D), =z €D.

Here f(z) =< g(x) if there exists C' > 0 such that

éf(x) < g(x) < Cf(x),

that is, if the quotient f(x)/g(x) is uniformly bounded above and bounded away from
zero. On the other hand, if there exists C' > 0 such that A < CB, we write A < B. In
particular, A < B < A is equivalent to A < B.

Therefore we can deduce:

Theorem 4.3. Let f € H(D) be univalent and f(ID) = D. Then the following assertions
are equivalent:

(i) f€B;
(i) sup,ep d(f(z),0D) < oo;

(iii) D does not contain arbitrarily large discs.

5. Growth and distortion theorems

Theorem 5.1. Let f be univalent in D. Then

2 2P |4l

— . zeD.
Pl TP T 1— 2 7

Proof. Consider

(f 0 %a)(2) — f(a)
f'(@)(X —=1al?)

which belongs to S. By Theorem |F"(0)/2] < 2. Let us calculate:

F(z) = z€D,aeD)\{0},

a+z s 1—]af? _ —2a(1 —|af?)

vl = ig BB = Tay YOS Ty

z €D,

giving

Ya(0) =a, 9,(0) = (1—lal*), ¥;(0)=—2a(l—l|al*)
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and

F(2) f(Wa(2))¢(2) F,,(Z):f”(wa(Z))dJ;(Z)+f’(¢a(2))¢é’(2)

~ fla)(A — [aP)’ /()1 —|a]?) ’

SO
p f"(a)(1 —a]*)? — 2a(1 — |al*) f'(a) ‘1 — |a? ( f"(a)  2Jal )
F = — _
0 7)1 = JaP?) o \"Plo) 1-laP)|
and hence () 2laf? ila
a a a
e~ Tjap| < T © PO
O
Theorem [5.1] implies (for each univalent f)
Y 4 2|Z’ _6_2<1_‘Z|>

In particular,
llog f*lls = sup |(log £)'()[(1 [2[*) + [log f/(0)| <6, fe€S.
ze
The important point to remember is that the seminorm

sup|(log ) (2)/(1 = |=I*)

is uniformly bounded by 6 for all univalent functions f in D.

The quantity (log f') = f”/f' is called the pre-Schwarzian derivative of f and it is
well-defined if f is locally univalent analytic function.

|The Schwarzian derivative of f is

f// "3 f// 2
but we will speak about this later.|

Theorem 5.2. (Distortion theorem) Let f € S. Then

el < i < ATy
(1+\z|)3_k( ||)§|f()|§(1—]z\)3 E'(|2]), e D.

Moreover, equality for one of these inequalities holds for some z € D\ {0} if and only if
f is a rotation of the Kébe function.

Proof. By Theorem [5.1

= f"(w) 2w | f"(w) 2w
/o (f’(w) ‘1—\wl2)dw‘§/o Flw) 1= Jwp| ™!
| =
< | 1)) T o
1 1




for all z € D. But

W) T\ [F 2w
/o (f’(w) i |w|2d“’) ‘10gf(z>‘/o T Jwp ™

b2ztzdt
:]_ / —/ —_—
.S )= | TP (5.2)

— log f'(2) + [log(1 — |=*#2)] .,

= log f'(2) — log

1— |z
and consequently,
1 1+ |z|

log f/(2) —1 <2l e D.

og f'(2) BT Lp|S2oeT T 7
It follows that

1+ |z , 1 1+ |z
—21 < Re (Il —1 <21 , eD,
BT[] = e (log f'(z) 0g1_|z|2)_ BT L C

that is,

log (1‘—") < log [|f'(2)(1  |+P%)[] og ( L 'Z')Q, 2eD,

1+ |z| 1— |z

which is equivalent to

G . :z:)Q < [1F()0 = [2P)] G i t:)Q :eD,

which holds if and only if

1_|Z| /
mﬂ |f(z)| <

1+ |z

- D.
a—lz) °©

If z € D\ {0}, then, by the proof above, equality for one of the inequalities in the statement
holds only if
" (w) 2w | 4
Flw)  1—|wP|  1—]w
In particular, this inequality must be valid for w = 0. Hence |f”(0)| = 4, and so f is a
rotation of the Kobe by Theorem since now |az| = [f"(0)/2] = 2. O

w € [0, 2].

One observation on the proof of Theorem In the crucial step we passed to the
real part of the logarithm. By taking the imaginary part, we deduce

1+ |z|

1
—2log Im (log f'(2)(1 — |2]?)) < QIOgﬂ, eD,
— 7| 1—|z]
which is equivalent to
1
|arg f(2)] SQli_ﬂ’ zeD, fef



where it is understood that arg f'(z) is the branch which vanishes at the origin (f'(0) = 1).
The quantity arg f’(z) can be interpret geometrically as the rotation factor under the
conformal map f € S. Hence the inequality above may be called a rotation theorem.
Unfortunately, this result is far from being sharp at any point z € D\ {0}. The true
rotation theorem reads as

|arg f'(2)] < {

and is much deeper and its proof is based on the Lowner’s method.
The distortion theorem is now applied to obtain the sharp upper and lower bounds to

£ (2)]-
Theorem 5.3 (Growth theorem). Let f € S. Then

||
(1= 12])?

||

TEsE —k(=|z]) < [f(2)] <

=k(|z]), =zeD.

Moreover, equality for one of these inequalities holds for some z € D\ {0} if and only if
f is a rotation of the Kébe function.

Proof. By Theorem [5.2

ﬂ@zu[f%M4§AWNM%H=A|ﬂwmwﬁ§A|MWMbW=kWD

and thus |f(2)| < k(|z|) for all z € D. If z € D\ {0} and |f(2)| = k(|z|), then |f'(£)| =
E'(|£]) for all € € [0, 2], so f is a rotation of the Kébe function by Theorem

To see the lower bound, note first that r/(1 +7)* € [0,1/4) for all r € [0,1), so the
inequality |z|/(1 + |2])? < |f(2)| is trivial when |f(z)| > 1/4. Let now z € D such that
|f(2)| < 1/4. By the Kobe 1/4-theorem, the segment [0, f(2)] is contained in f(ID). Let
v(t) = f7Htf(2)) for all t € [0,1]. Now |f(2)]| is the length of the line integral [0, f(2)] so

f(2) 1
IﬂM=A uw:/W@waaAumeWWt

and hence Theorem [5.2] gives

\ﬂﬁz%ziiﬁ%www

1+ |[v(6)]) (5.3)
© 1-h)| d A e N 1 '
e A Ll Al e R cwar 2
where in () we have used the inequality
()] _ Ayt (6)* _ A ()t Jr_v’(t)W _ Re (Y (11(1)) < Y OIh@®] _ (),

dt dt 2y (t)y(t)) /2 v (8)] [y (8)]



valid for v(t) # 0. Theorem [5.2 shows the second part of the assertion. O

In the proof of Theorem [5.3| we may do the step (*) slightly differently by arguing as
follows. Theorem [5.2] yields

wm=/ﬁ%me/w4mm«

Take now a parametrization of v that is of the form ~(t) = r(t)e®®, where ¢t € [0,1].
Then

uunz/wvmww
= /1 E'(—r()r' ()e®D + r(t)e®Dig' (t)|dt
_ /0 K (—r(8) 7 (£) + r()if(t)|dt

1
> [ (o)t
0
= — [k(=r(t))]i=o = —k(~12)-
One further inequality, a combined growth and distortion theorem is sometimes useful.
Theorem 5.4. Let f € S. Then

1— 2] _ —lz[F (=2
1+ 2] k(=lz])

23

Moreover, equality for one of these inequalities holds for some z € D\ {0} if and only if
f is a rotation of the Kébe function.

2K (=) _ 1+ 7]

|
< - 9
k() 1A

e D.

Proof. Let f € S and a € D. Then f o1, is univalent in D and further
F(2) fWa(2)) = fla) D

- fla)—aP)

belongs to S, and

|/ (a)]
F(—a)|l = D.
P = T apir@r €
Theorem applied to F' implies
|al |/ (a)] |al
< < , a€D,
(L+lal)?> = A —=laP)|f"(a)] = (L —]a])?
which is equivalent to
1—1fa* _ |f(@)] _ 1—]af
< < . aeD,
(1+lal)? = faf(a)] = (1 —|a])?
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that is,

L fa _ (S _ 1+l
i < (@) < Toip oeP

The second assertion again follows by Theorem [5.3] O

A family F of analytic functions in a domain D C C is a normal family (in the sense
of Montel) if for each sequence {f,,} C F there exists a subsequence { f,,, } such that either
fon = [ # o0 or f, — oo uniformly on compact subsets of D. Further, F is normal at
2o if it is normal in some neighborhood of z.

Montel’s theorem If F is a locally bounded family of analytic functions in a domain
D CC, then F is normal.

F is locally bounded in a domain D, if for all zy € D there exists r = r(z9) > 0 and
M = M(zp) > 0 such that D(z9,7) C D and |f(z)| < M for all z € D(zy,7) and f € F.

Hurwitz’s theorem Let D C C be a domain and f, : D — C\ {0} analytic for all
n € N. If f, — [ uniformly on compact subsets of D, then f: D — C\ {0} is analytic
or f =0.

Corollary 5.5. S is a normal family. S is compact family with respect to the topology
of uniform convergence on compact sets.

Proof. 'To see that S is normal, by Montel’s theorem, it suffices to show that S' is locally
(uniformly) bounded. This follows by Theorem if z € D(0,7), then

|| r
(IS EIERRCE=aEs

[f ()] < k(|2]) =

Now, if {f,} is a converging sequence of functions in S that converges uniformly to
f € H(D) (by Weierstrass theorem) in each compact subset of D, Hurwitz theorem shows
that f is either constant of injective in :

Consider g,(z) = fu(z) — f(a), where a € D is fixed in the domain D \ {a}. Then
gn(2) # 0 for all z € D\ {a}. Hurwitz theorem implies that either g = f — f(a) does
not have zeros or ¢ = 0. Since a € D was arbitrary, we deduce that either f is injective
or a constant. But since f’ — f uniformly on compact subsets by Weierstrass theorem
and f/(0) =1 for all n, we must have f/(0) = 1, thus f cannot be a constant. Therefore
f € H(D) is univalent, f(0) = lim,_ fn(0) = 0 again by the Weierstrass theorem and
f(0)=1. O

Some auxiliary results

Here are some facts from [3, pages 485 and 383|, which are related to the course. For
example the Ascoli-Arzela Theorem is related to Montel’s theorem about normal families.
Moreover, we need the Change of Variables Theorem. Lusin Area Theorem states that for
an univalent function we get the area of the image by integrating the square of modulus of
the derivative in the domain (for non-univalent functions see Theorem 2.14 in Conway 11
for the analogous claim).
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Convergence of C' Functions: Let f; be continuously differentiable functions with
common domain [a,b]. Assume that f; — f uniformly on [a, b] and also that the derived
functions f] converge uniformly to some function g. Then f € Cland f' = g.

The Ascoli-Arzela Theorem: Let {f;},  be functions on a compact set K C RY.
Suppose that the following two properties hold for this sequence:

(1) The functions {f;} are equicontinuous, in the sense that if € > 0, then there exists
ad=0(c) > 0so that |f;(z) — f;(t)| < e whenever z,t € K and |z —t| <.

(2) The functions are pointwise bounded in the sense that, for each x € K, there is an
constant M (z) such that |f;(x)] < M(z) for all j € N.

Then there is a subsequence {fj, }, _ that converges uniformly to a continuous function
fon K.

The Tietze Extension Theorem: Let £ C RY be any closed set and f : £ — R a
continuous function. Then there is a continuous function F : RY — R such that the
restriction of F' to E equals f.

The Change of Variables Theorem in Two Variables: Let U and V' be bounded,
connected planar regions, each with piecewise C! boundary. Let ® : U — V be a C!
mapping that has a C! inverse. Assume that the derivatives of ®, ®~! are continuous and
bounded. Let f be a bounded, continuous function on V. Then

/Uf(@(s,t))detJacCD(s,t)dsdt—/Vf(x,y)dmdy.

Here the Jacobian determinant of ® = (&, ®,) is given by

det Jac ®(s,t) = det (Ei;%j <(§21)>:> (5.5)

The Cauchy-Schwarz Inequality: Let f, g be continuous functions on the interval

la,b]. Then
[ rwswa) < ([ 1rwpar) " ([ towrar) "

Lusin area integral: Let {2 C C be a domain and ¢ : 2 — C a one-to-one holomorphic
function. Then ¢(€2) is a domain and

area((92)) = / 16/(2) PdA(2).

Proof. We may as well suppose that the areas of {2 and ¢(2) are finite: the general result
then follows by exhaustion. Notice that if we write ¢ = u+iv = (u,v) = F, then we may
think of ¢(z) as

F:(z,y) = (u(z,y),v(z,y)),
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an invertible C* mapping of Q2 C R? to F(Q2) C R The set () is open by the open
mapping theorem; it is also connected since it is the image of a connected set. Therefore
F(€) is a domain. The Jacobian of F is

Jac F = (uz uy) ;
Vg Uy

det Jac F = u? + 02 = |¢/|.

Thus the change of variables theorem gives

/¢ RZCE /Q det Jac F dA(z) /Q (=) dA(2)

also

as desired. O

Here is a proof from [7] to be discussed.
Proof. Let f be an analytic function in D. For z = re? € D, z € D(0,p), where
p= %(1 + ), and hence, by the Cauchy formula,

iy 1 f(Q)d¢
T M e

B 2m f(pei(t—&-@))pei(t—&-e)i

- 0 (pez‘(t+0) —rei9)2 dt (5‘6)

_ ﬂ 27 f(pei(t+6))ei(t—9)
21 Jo (pe’ —r)?

dt.

This and the Minkowski’s inequality in continuous form then gives

0 0

2 0 (pett —r)?

27 1 27 i(t+6) 4
s/ (_/ If(/)f 2)Idt) "
0 21 Jo  |pet —r|

1 p
1 27 27 i(t+0) p P

Bl / e N 40" at
21 Jy 0 |pett —r?

1 p
(2 i(t+0)\|p 79\ ?
L (e e pan)” 6.1

2 0 |P€it - 7"|2

2m ) 1 2w dt p
— 9\|Pg _
[istoepas (o [T )

’ rf<pef¢>rpd¢( ! )

p2_7«2

£ (e P (m)
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6. Coefficient estimates for the class 5, Part 2

Theorem 6.1. Let f € S and f(z) =2+ asz+ ... for all z € D. Then

la,| < JM < §e2n2
4 8
for all n € N.

Proof. The coefficients in the Maclaurin series of f are given by

1 f(z) 1 [ flre™)

ay = — = dd, 0<r<l.

2 ). ontl  on o (reif)n
Theorem [5.3] yields
1 £ (2)] L or 1 1
< — dz| < — o= 0<r<l
[an] < 27 /|Z:,, |z|”4rl| 2= 2 (1 —r)2 prtl o (1 —r)2rn—1 "

For n € N\ {1}, the function ¢, : (0,1) = (0,00), pu(r) = r'7"(1 — r)~? satisfies
@ (r)=r"(1—7)"2[(1 =n) +2r(1 —7)~'] = 0 if and only if
- n—1
n+1’

and one may deduce by the monotonicity of % that ¢, attains its minimum at r, =
(n—1)/(n+ 1). This choice gives

1 n—I1 __1 —2 1 n n—1 1
0] < on(r) = n+ o _(n+ n n(n+1)
n—1 n—+1 n n—1 4

for n € N\ {1}. Since (ZE)™ < e for all m € N (and in fact lim,,_, ("2)™ =€) we
deduce

3

n(n+1) _ 320
8 Y

1
4 4
because n(n + 1) < 3n? for all n € N\ {1}. O

2

§62n

N W

|an| < €

By Section [3| we know that the estimate in Theorem is not sharp; it is not even of
the correct order of magnitude. In the proof we passed the modulus inside the integral
and applied the pointwise growth estimate inside the integral. This is of course a rough
estimate. By estimating L'-means, we get the correct order of magnitude |a,| = O(n),
n — oo.

For 0 < p < oo, denote

1

2T
f2 - 10y |p
M2 (r, f) 27r/0 |f(re®)Pdo, 0<r <1

The Hardy space H? consists of f € H(D) such that
[fllgw = sup My(r, f) = lim My(r, f) < o0
0<r<1

r—1—
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Theorem 6.2 (Littlewood 1925). Let f € S. Then

O0<r<l.

Proof. Let f(z) = z+ ) 2, a,2", and let g(z) = \/f(2%) = > ¢,2" be the square root
transformation of f. Then g € S is odd, and SO g(O) =0, ¢, = 1 and ¢y, = 0 for all
n € N. By Theorem

2]

(1 —1z)*

z € D,

|f(2)] <

and hence

2|2 1/2 z r
Ig(@l—(f(zz))”zﬂ(%> _ 2 € D(O,7).r € (0,1).

1—|z] L—1z]2 = 1—7r%

Therefore
T
g(D(O,T)) Q D (0, m) >

which implies that

7"2

area (g(D(0,7))) < area <D (o, #)) =T

On the other hand,

wealg(DO.) = [ daw) = [ ig(e)raAc)
(D(0,r)) D(0,r)
2
/ / (se)|2dOpdp
2 2
:/ / chnpnflei(nflw
/ / Z nmcncmp" 1 m 1 zn 1) —z(m 16d0pdp
n,m=1

/ ZnQICnIQPQ” “2mpdp
r 2n
= ﬂZn2|cnl2— = WZMC,JQTQ”,
n=1 n n=1

dbpdp

(6.1)

and hence

% 2
WZ”’CHT% = area(g(D(0,7))) < area (g (D (O, ﬁ))) = 7T(1_r—r2)2, 0<r<l.
n=1
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By dividing this by 7r and integrating from 0 to R with respect to r we deduce

lik | R :/Rimc 2r2tdr < /R S —;
2 n=1 ! 0 n=1 ' a 0 (1 —7”2)2

RO (©:2)
|z ey 0 R
Now the left-hand side equals to the L?-mean of g (by the Parseval’s formula):
1 [ : 1 [ & >
o |, lg(Re?)|?df = %/0 n;1 e R"R™ = /n:l le.?’R*™, 0<R<1,
SO
M2(R,g) = Z|cn|R2” R?’ 0<R<1.
But g(2)? = f(2?) for all z € D, g is odd and thus |g| is even, and therefore
e T Ty IR
7r 27
= —/ |g(Re" | dt = —/27r (Re™)2dt (6.3)
= M;(R,g) < —RQ’ 0<R<1.
From here we finally deduce P
Mi(R.f) < T
forall 0 < R < 1. O

In the proof we used the proof of Parseval’s formula which is a generalization of
Pythagoras’ theorem.
Let X be a vector space and let (-,-) : X x X — C satisfy

(i) (
(ii) (z,y) = (z,y) for v,y € X;
(iii) (

Then (-,-) is called an inner product and (X, (-,-)) is an inner product space. Now the
inner product induces a norm to X:

x,xy = 0 if and only if x = 0;

ar +y,z) = alx,z) + (y,2) for z,y,z € X and a € C.

|z|” = (z,2), =z €X,
and the norm induces a metric to X:

d(z,y) =z —yl, zyeX
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If (X, d) is complete, then we say that (X, (-,-)) is a Hilbert space.
Let D be a domain and let A? consist of f € H(D) such that

/D F(2)PdA(2) < oo
(f.g) = /D F(2)g(2)dA(2)

is an inner product on A% and (A?, (-,-)) is a Hilbert space.
If (x,y) =0, then = and y are orthogonal.
Parseval’s formula Let X be a Hilbert space with an orthogonal basis {e,}, . Now if

o0
f - Z Cn€n,

n=0

Now (-, ) 42 : A2 x A? = C,

then

oo
2 2
AP = lenl llenl®
n=0

Proof. By the properties of the inner product

Hf” <ch6n> Z Cm€m> = Z Z CnCrn (€ns €m) = Z leal? ||en||2-
n=0

n=0 m=0
O
The set {en},cn, for e, = 2" is a orthogonal basis for A*(D(0,7)). Moreover,
2n+2 2n+2
2 2n r
en = z|*dA(z dfpdp = 27 = .
belBiotom = [ 1ePaa() = [ [ raspap = om 75 = TS
Hence for .
= Z ne, 2"t
n=1
we have
[, 1CAG) = 19 oty ZnQ\cnl e~
" (6.4)

= mr?
= Zn2|cn|2— = WZn|cn|2r2n.
n=1 n n=1

Corollary 6.3. Let f € S and f(z) = z+ ) -, a,2" for all z € D. Then |a,| < en for
alln € N.
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Proof. By Theorem

|an| < T%Ml(ra f) < Wll—r) =tn(r), neN,re(01).

The function v, : (0,1) — (0, 00) attains its minimum at r,, = 2%, and hence

1 n n—1
‘an‘grnl(l—r):< ) n<en, neN\{l}.

" n—1
a
7. Estimates of integral means
Let us begin with discussing the sharpness of Littlewood’s result (Theorem [6.2):
1 2 1 27
Mi(r k) = / |k (rei®)|df = / S ;7
o 2r Jo |1 —re?|? (7.1)
o1 /2” 1—r? g " T .
Cl—r227 fy [1—re?2  1—12 T 17’
by the properties of the Poisson kernel.
[Note that we have by Parseval’s formula for f(z) =Y 7 a,2"
1 n
VE) = 5 (20 = 3 lnl? 1 ooy
. A (7.2)
Z 0Ln|2 / Ire2do = Z |a, 2"
=0 n=0
Hence for g(z) = - = >_»", 2", we have
1 2w o
o — dh = M2 — 2n __
27T/0 |1—7‘e’9|2 rMy(r.9) Tnz:%r 1—7‘2

for r € (0,1).]

In the last step we used the "rough” estimate r < r. Therefore we observe that
Littlewood’s result is not sharp for the Kobe function. In 1974 Baernstein proved that
the Kobe function is extremal in the integral means estimates, that is, if f € S, then

2

My(r, f) < My(r, k)

for all € (0,1) and 0 < p < oo (the case p = oo is already known by the Growth theorem
or can be deduced from here since lim, ,o My(r, f) = M(r, f)). In fact, Baernstein
proved much more; he showed that

[T Grostioen i< [Torglre), re0.5€s
0 0
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for any increasing and convex function ® with equality for some r € (0,1) and a strictly
convex ¢ only if f is a rotation of Kébe. By choosing ®(z) = eP* we deduce M,(r, f) <
M,(r, k).

At this point we do not prove Baernstein’s theorem, but we observe that it implies

|| < 77" My(r, f) < "My(r k) =" (1 =)t r e (0,1).

This implies |a,| < §n, which improves Corollary [6.3} but does not prove Bieberbach’s
conjecture.
By a result of Hardy and Littlewood,

/0 " M(p, )dp < TME(r. f), € H(D). (+)

The converse of this inequality is totally false. It is “easy” to construct (by using lacunary
series or infinite products) analytic functions such that their maximum modulus grows
arbitrarily slowly to infinity, but which fails to have radial limit on a set of positive
measure.

For univalent functions, however, a kind of a converse of (x) is true by a result due to
Prawitz.

Lemma 7.1. Let f € H(D) and 0 < p < co. Then

d d 2 . .
& (raarzeo)) = B8 [T i e, o< <

Proof. By direct calculation

0 4 P . .y
el fre) =l [1re Frem]
= STy [ T + f<rae>we-ﬂ

_ ‘f(r€i9| Re <T’€i9f/(7“€iegfg7"€i9)>

(7.3)

|f(re?)]

)
= | (re")| Re ( ’}(()) ) -

and
1
2] (re?) )
‘ !(reif rei@if(rew)
= —|f(re”)| Re <_f ( |f<)rez‘0)|2 ) (7.4)
f/(rew)TeiO)
f(re?)

9 (re®)| =

— —  ~  9Re (f’(reie)reieif(rew))

= ~1ftre)m (
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SO

9 _ f(2)
\zmmzn — |f(2)| Re ( )

£(2) = —1£()|Tm ( ﬂ(;)

and

8 arg z
It follows that

reFEF = plFG)P Al = plFG)P Re (J}())

and

S EF = I P )] = =3l () I (J;()) .

Consequently,

o (st ) = 2 (wrcrre (22))

(7.5)
- 7)) e (re (53))
=i (re (<55) )+ 7(2)
and
_ 9 )P f'(z
sl = 5 (-srerm (22)) .
B » THEANY p 0 f'(z) '
—riser (m (455 ) =g (m (75))
The Cauchy-Riemann equations in the polar coordinates read as
U, = 11}9, v, = —lue, F=u+w.
r r
Therefore, by considering F(z) = z l((zz)), we deduce
o ( 0, . | I
o (ralIF ) + gl P =Rl [ -
=plf )P ()
Hence
0 0 1 (> 0 0 ,
r <TEM5(T, f)) = %/0 "5 (TE|f(T6w)|p> de .
_ P’ o i0|p z‘@f’(reie) zdg 78)
- % 0 |f<T6 | re f(?"eie) )
which is equivalent to the claim. O
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Theorem 7.2. Let f € S and 0 < p < co. Then
T dp
Prf)<p | ME(p,f)—, 0<r<l.
0 P

Proof. By Lemma [7.1]

d rd ([ d
r%MIf(r, f) :/0 I (SEM;;(S?]F)) ds
r, 2 2m
S = CU T RO

=2 Jpon [F(2) P21 ()P dA(2)

= |w|P2d A(w) (7.9)
27 J 1(p(o,r))

2

<

27 J (0, Moo (r,£))

M()C(rhf)
=p’ / -t
0

=pME(r, f), 0<r<l.

w]P~*dA(w)

By integrating this and noting that f(0) = 0, we deduce

Muo(p, f)
p

"d

MP(r, f)= | —MD(s, f)dsg/p dp, 0<r<l.
o ds 0

O

The Hardy-Littlewood inequality (%) combined with Prawitz’ theorem shows that a
univalent function f in D belongs to H? if and only if

/M” fldr < oo, 0<p< 0.
Prawitz’ theorem also gives the following.

Theorem 7.3. Let f € S. Then the following assertions hold:
(i) f e HP for all p € (0,1/2);
(ii) Mi(r, f) < 1= for all v € (0,1);

(iil) Myjs(r,f) < Clogil, v —17;

(iv) Mp(r, f) < Camymr 2p r for all r € (0,1) when p > 1/2.

32



Proof. (i) Let us show that each univalent function f in I belongs to H? for all 0 < p <

1/2. By the inequality (z + y)? < aP +yP, z,y > 0 and 0 < p < 1, Prawitz’ theorem and
Theorem [5.3]

Mp(r, f) = My (r, f — £(0) + £(0))
f f(0
< [fO)P+ M|\ r,—; "(0)7
/'(0) ) (7.10)

< | O)P +1£1 o>p0 Qpplp
< O +1£0)PpC(p),

’p

where C'(p) depends only on p.
|Recall that the beta and gamma functions satisfy

B(z,y) = /01 1=ty = M, Re (x), Re (y) > 0,
and -
I'(t) = 7 te™®dz, Re (z i
) /0 . Re(2)>0
Hence
/ P! )" dp = B(p,1 - 2p).

Of course the value of the constant C'(p) does not matter here.|

Hence M,(r, f) is uniformly bounded, and thus f € H? for all 0 < p < 1/2.
(ii) Theorem [5.3] yields

" dp "oodp 1] 1 o
e n < [ n® < (o - i)~ -

p=0

(iii) As above, for r > 2

11//22(7“ f) < /0 ML (p, Fp %/ 1= p)p/2
1 (12
- 5/0 1-— 1/2 / 1/2
12 g, dp
S/O o1/2 \/—//2 1 —

(7.11)




and the assertion for the limit » — 1= follows.
(iv) As above,

r dp C
14 < < S OO R —
Mp(raf) = _pA (1_p>2pp1_p = — (1_7,)2;;—1

O

By the proof it is clear that (i), (iii) and (iv) are valid for all univalent functions in D.
Moreover, (ii) is Littlewood’s theorem, Theorem so Prawitz’ estimate is better than
Littlewood’s inequality. The Koébe function does not belong to H'/2, hence (i) is sharp.
The Kobe also shows the sharpness of (iii) and (iv).

The right hand side of the identity of Lemma is an important object in complex
analysis. Recall that:

(1) Cauchy-Riemann equations read u, = v,, u, = v, for f(z) = u(z,y) + w(z,y),
z=x+1y.

(2) The Wirtinger operators are

9 _1(o 0N 0 _1(0 0
0z 2\0x Oy 0z 2\ox Oy
and satisfy
0z __o
oz 0%
and f is analytic in an open set U C C if and only if
of
— =0
0z

in U.

(3) For a realvalued C?-function v in an open set U C C, the Laplacian of u is

If Au =0, then u is a harmonic function.

0 0 0 0
DN ANu=4——u=4—— A p:42 p—2 /2‘
(4) Au=do-—u=d————uand A[f|" = 4p°|f"*| '
Lemma can be written as
0 0 r 27 ‘ r
- - p - P 10 _ p
o (TaTMpW)) 87T/0 AlfP(re®)do = M (r, AlFPP).

Lemma has an important consequence regarding to Hardy space norms. Namely,
two integrations and Fubini’s theorem show that

1

)= [ Alfpee

L dA) + O,

E
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which leads to

1 1
1 =5 | AP g dAG) + 7O

||

::p2]g|f(Z)P‘2LfTZ)Plog-}—deZ)-%!f(Oﬂp-

2]

The right hand side of the formula contains the Jacobian |f’(z)|* and the formula is useful
when for example the composition operator Cy(f) = f o ¢ is studied.
We next consider the integral means of derivatives of univalent functions. The deriva-

tive of the Kobe function is
1+ 2

M) ==

and k' € H? for all p € (0,1/3). Moreover,

1/3 _ 1 _
Ml/g(r,k’) /\logl_r, r—1-,

and .
M{j(r, kY =< —(1 ESETEE r—1".

It is natural to ask if Theorems and [7.3 have analogues for higher order derivatives.
Of course, de Brange’s theorem (|a,| < n) implies for f(z) = >~ a,2z" in S, that

Mf(r, f/) _ anlan’%z(nfl) < Zn2n2r2(”*1) _ M;(r, k’), 0O<r<l
n=1 n=1
and further

ME(r fY< MX(r,K), 0<r<1, feS, NEeN.
We begin with the integrability of the Laplacian of |f|P.

Theorem 7.4. Let 0 < p < co. Then there exists a constant C = C(p) > 0 such that

Moo (r, f)P

1
—<r<il
1—r @ 2"

2
/ A|f|P(re?)dh < C
0
for all f € S.
To prove this, we will need the following lemma.

Lemma 7.5. The inequality

log 3 1+r

[Flpe”) = fre) < == Ifls, r<p<

O<r<l1, ©0#eR,
holds for all f € H(D).
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Proof. Let f € B, for otherwise there is nothing to prove. Let 0 < r < 1 and 0 € R, and
let r < p < 5. Then

o) = 1 = | [ r©as| < [ 17 ar
147
> dt
<swplrIL- ) [ 5
2€D - —t (7.12)
1+t 1| 2
< Il {bg ]
t=r
||f|| 3 +7r log 3
5 log < Iflls =~
(I
Corollary 7.6. There exists a constant C' > 0 such that
1 f'(pei?) 147
— < - < < p< 0<r«l1 feR
O —_ f/(rele) —_ C? T —_ IO —_ 2 Y —_ ,r ) e b
and .
1| fpe") Ltr
— < - < < - < 1 feR
C_f(rew)_c’ TEPSToT g sTs b PER
for f€S.
Proof. By Theorem log f" € B with [[log f'|| 5 < 6. Hence Lemma [7.5] yields
f,(pew) f/(pew) / i0 ! 1
1 | < | =1 Yy —1 !
10g3 og '
[log /5 <

Since

1 10
log (pe”)
f/(reza)
the first chain of inequalities follows.
Since f € S, f(2)/z defines a non-vanishing analytic function in D which attains the
value 1 at the origin. Consider the analytic function

o f(re®)
a ‘log f(pe) |’

Then




Therefore, by Theorem [5.4]

1 1'(z) 1 (147 2(1+ |2|)
ld'(2)] S—(‘z— p1) < — (B )y = A TED
12| \|" f(2) 2] \1—|[7] 2](1 = [2]?)
and consequently,
2(1
Moo (r,g)(1 —1?) < ( :r>, 0<r<l. (%)
It follows that
/ 9 4
sup [¢'(2)[(1—]2]") < -, O0<R<L
R<|z|<1 R

On the other hand, if » < R, we have

Mo(Rg)1-F) @ 2

MOO(Tv g/)(l - T2) < MOO<Ra g,) = 1— R? R(l — R)7

and hence

2 1
<% __8 R=-=
l9lls = Za—H 2

since g(0) =log1 = 0. Lemma yields

flpe®) r f(pe®)re” i0 i0 log 3
o8 <‘ ) 5| ) = 198 Firam pan | = logalpe”) —logglre®)| < == 8 = dlog3
and the second chain of inequalities follows. 0

Note that Corollary [7.6] implies

Oo(paf/)u 0<T§p§12i<17

My (r, ") =M
= Mx(p. f), 3<r<p<ir<l, feb

Moo (r, f)

Proof of Theorem[7.4] By Corollary there exists a constant C' = C(p) > 0 such that

1+r

AlfP(re?) < CAlfIP(pe), = <r<p< <1, HcR,



for all f € S. This implies

1+r 2 =R
r ( - r) / AlfP(re®)dd = 7“/
2 0 r
14

Cr / Alf1P(pe®)dbdp
r 0

27
dp / AP (re®)do
0
QT 2T

IN

Alf[P(2)dA(z)

Alf[P(2)dA(z)

/<>
J

lw[P~2d A(w) (7.14)

[w]P~*dA(w)

/f(D(Ovlér))
J

= 4p*C21 sPds

_ 4p2027rM00 <1+T,f)
p

2

1
= 8mpCM?, < +r,f) .

2

Since Moo ((141)/2, f) < My (r, f) by Corollary [7.6|and (1 +7)/2 —r = (1 —1)/2, we
deduce the assertion. O

Now we can prove the following result due to Feng and MacGregor, which shows that

M,

p

(r, f') < OMy(r, k)

forp>§andallf€5.
Theorem 7.7 (Feng-MacGregor 1976). Let% < p < 0o. Then there exists a constant
C' = C(p) > 0 such that

C

Mp(r, ) < W’

0<r<l,

for all f € S.

Proof. Let f € S and, without loss of generality, consider the value % <r<l.Ilfp>2,
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then Theorems [7.4] and [5.3] yield

2

P )

2
2w 1) = [ e et |
p—2 2m
5?1(1372) / [Fre) P2 £ (re?) a0

r

(7.15)
@ C(p) ML f)
— P72 (1 —r)pt
B3 Clp)r®
— (1 —r)3rt
Let now 0 < p < 2. Write p = a + 3, where «, 5 > 0. Then
1 [ f’(’rew)
Mp / - a+ .
2 =50 | |G| Lreas
The Hoélder’s inequality with indices 2/p and 2/(2 — p) gives
2 f/( ) 2 ) 9 >
)< ( [ renesas) ([ 1pte )
o | fre?) 0
27 ) 9 ) 21 9p 2%}7
= ([ eenrireenyzan) ([T nee i) © <1
0 0
(7.16)
Theorems [7.4] and [5.3] give
P LG ) P S
1=r | S e

Moreover, if 28/(2 — p) > 1, then Theorem 7.2 yields

1 1
11 < = —.
T e R (R Rl
Consequently,
1 1
P . < =
Mp(r, f) <T-I1'S (1 — p)20t5+28-105 (1 — )31
This gives the desired estimate provided
20 1 . P
> 2 that .
>, > 5 at is, [ > 1
But 0 < a = p — 3, and hence
2—p Hp—-2
0<p—-—pB<p-— = .
sp-B<p-— 1
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We deduce that such g exists only if p > % O

In the proof of Theorem we did not keep track on the constant C' = C(p) > 0.
It is worth mentioning that for certain range of values of p one can prove Theorem
by using Prawitz’ result. Namely, the Cauchy’s integral formula together with Fubini’s
theorem (p = 1) and Minkowski’s inequality (p > 1) shows that

1
My (r, f') < Mﬁ(ﬂvf)ma r<p<l, feHD), 1<p<oo,
from which Theorem gives
b G ds 1
Mp(rvf) Sp Moo(smf)_'ﬁa fEH(D)
0 s pT=r

By choosing p =7+ (1 —r)K for K € (0,1) [this gives 1 —p = (1 —r)(1 — K)] and using
Theorem [5.3] and elementary estimates, one obtains

P ds
T
p(hf)— (1—T)pr<27’—|—<1—T>K>p 0 (1—8)2p31—p
S..
1 1

(1—r)3r-12p -1 K?%(1 — K)»-1
(7.17)

By minimizing the last factor on (0, 1), one gets Theorem for p > 1 with a numerical
constant. For example, the case p =1 gives

27 1

N2 & ‘
Ml(r,f)_4(1_r)2, 0O<r<l1, feS

In general for p,q > 0 we have

1

1
M, —_
(1 — T)Q+1

H(r f)=0 (m) if and only if M,(r, f') = 0O ( ) . feH(D),

by [2, Theorem 5.5|. Therefore Theorem [7.7|is of interest only when p < 1, i.e. p € (%, 3.

8. Maximum modulus of univalent functions
In this section we will discuss a refinement of Theorem Let f € S and ¢ = 9y :
(0,1) — (0, 0),
1
(1 - T)ZMoo(rv f)

r

W(r)

The Hayman index of f is
o(f) = i vy (r).

We don’t know that this limit exists, but the following result shows that this is indeed
the case.
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Theorem 8.1. If f € S is not a rotation of the Kobe function, then 1y is strictly
decreasing on (0,1) and hence tends to a limit asr — 1.

Proof. By Theorem [5.4

dlog | f(re”)|
or

dlog f(re?)
or

f(re?)
f(re)

for r € (0,1). If f is not a rotation of K6be, then strict inequality holds above. Integrating
this inequality from 71 to ro, where 0 < r; < ro < 1, we obtain

< 1+r 7
“r(l—r)

9 log f(re')

=R
e(?r

|

f(rye') /7”2 1+r r 2 (1 —71)%ry
%Lﬂmé% S s R R (R o R Gy
Therefore
1 — 1p)?2 | 1—1)2 |
(74—712)|f(7“2620)| < (70—711)|f(7“1620)|, O<ri<rya<1, 6OeR.
2 1

Choose 0 = 0(ry) = 0(f, ) such that |f(rye??)| = My (7, f). Then

(1 — T2)2MOO<T‘2,f) < (1 — T1)2 |f(7’1€i9)| < (1 — 7’1>2

MOO<T’1,f), O0<r <ryg<l.
T2 1 1

Hence v is strictly decreasing on (0,1) unless f € S is a rotation of Kébe. By Theo-

rem [5.3]

1— 2
a(f) = tim L= e ) <1
r—1- T
Of course, if f € S is a rotation of Kébe, then ¢y = 1 and a(f) = 1. O

Krzyz proved a corresponding result in the other direction for the derivative of f € S.

Theorem 8.2 (Krzyz, 19637). If f € S is not a rotation of the Kébe function, then

the function
(1—=r)°

147

is strictly decreasing on (0,1). Moreover, the limit

Moo (Ta f/)

lim My (r, f)(1 —7)* = B(f)

r—1-

exists and B(f) € [0,2]. Equality B(f) = 2 occurs if and only if f is a rotation of Kébe.

Proof. By Theorem [p.1] and direct calculation,

f”(rew)
F/(re?)

2r +4 d 1+7r
< = - 108 )
1—7r2 dr (1—r)3

g eR,re(0,1).
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Moreover, equality can occur for some r and 6 if and only if f is a rotation of Kébe. Both
|f/(re®®)|(1—7)2/(1+7) for a fixed § and My (r, f/)(1—7)3/(1+7) are strictly decreasing
(Exercise) on (0, 1) unless f is a rotation of Kébe. Since

lim M (r, f’)(l — ) =1,

r—0+ 1+7r

we deduce, by Theorem [5.2

lim M (r, 1)1

—r
r—1- 1+7r 2rs1-

P _1 lim Mo (r, f')(1—r)’ = @ =1

Clearly, 5(f) = 2 if and only if f is a rotation of Kobe. O

We give the following result, the proof of which is an easy geometric argument and
left as an exercise.

Theorem 8.3. Let f be univalent in D. Then
Moo(r, f) < mrMi(r, f)+1f(0)], 0<r<1.
Proof. Let f € S and C, =9D(0,r) for r € (0,1). Now
2m )
(C,) = / |f'(re)|d6 = My(r, f'), 0<r<1,
0
is the length of the curve C,. Clearly dist(0, C,) < ¢(C,)/2, that is,

1
My (r, f) < = - 2nrMy(r, f') = 7rMy(r, f'), O0<r<1.

\V)

The general case follows. O

Theorem 8.4. If f € S and

lim My (r, f)(1 —7)>=0,

r—1-

then
lim M;(r, f)(1 —r)=0.

r—1-

Proof. By the proof of Prawitz’ theorem,

d My (r, f) ()
$M1<T7f)§ . BRCEEESE
where ,
P(r) = Moo (r, A = 7) , 0<r<l,



is strictly decreasing on (0,1) by Theorem and the hypothesis M (r, f)(1 —r)*> — 0.
Integration from r to ro produces

Mtra )= 1) < [ < [M S v |-

r 1—T2 1—7"1

which is equivalent to

1—r
Mi(ra L= 12) < Myl (1= 1) 4 00) [ 1= 2] £ D)1= )+ ),
— T
Hence
M 1—1p)?
limsup My (1, £)(1 — 1) < () = el DA g 0y
ro—1— 1
and by letting r; — 17, we obtain the assertion. O

|How could one show that

lim My (r, f)(1 —7)*> =0 does not in general imply lirr% M(r,f)(1—7r)=07
r—

r—1

It’s possible to use a derivative of a Blaschke product or a lacunary series, since for a
lacunary series
Mo(r, f) < My(r,f), r—17, 0<p<oo.
Does the fact
lim My(r, f) = Mx(r, f), 0<r <1,

p—0o0

play any role here?]

Corollary 8.5. If f € S, f(z)=>"2

1
r=r,=1——
n
to obtain
n "
Jan] < (1——) (1 —r)Mi(r,f) >e-0=0, n— oo,
n n
where the last step follows by Theorem O

Hayman’s regularity theorem (1955) states that for each f € S with f(z) =3 07 a,2"
we have

lim M:oz(f)<1

n—oo N -

and o < 1 unless f is a rotation of Kébe. We do not prove the more involved case a > 0
NOW.
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9. Coeflicient estimates for odd univalent functions

By Theorem [I.2] the square root transformation of each f € S is an odd function in .S and
conversely, every odd function in S is the square root transform of f € S. The set of all
odd functions in S is denoted by S®. The square root transform of the Kébe function is

—1_Z2:z—|—23+25+--~,

and, as expected, this function plays a role in S® similar to that of k in S.

2| ||
h < eD
1+|z|2—’ () S1 R 5
e E; 1+
1—1z + |z
——— < |W(z ——, z€D.
a1y = WIS Ty
Proof. The proof is left as an exercise. O

In general, one can show that if f € S, has the N-fold symmetry, denoted by f € SO,

then ] ]
Z z
@ =V = g 2o P

We omit the details.
In view of Theorem it is reasonable to expect the coefficients of functions in S
to be bounded.

Theorem 9.2. There exists C > 0 such that |c,| < C foralln = 3,5,7,... forallh € S
with h(2) = 2z + c32° + ¢c52° + . . .

Proof. Each h € S@ is of the form h(z) = \/f(22) for some f € S. Two more square

root transforms produce the univalent function
9(2) = (W(=")5 = f(z")5, =z €D. (+)
Since g*(z) = h(z'), we obtain by differentiating 4¢°(2)g’(z) = h/(2*)423, which gives

h/(24) — g3(2)gl<z>

3 , ze€D.

The Cauchy-Schwarz inequality gives

M) — / l9(re®)Plg'(re)| db
0

73 2

A N C R /A
< 0 6_ / 10 2_ (91)
< (/ lg(re®) 27?) (/ g (re)] 2W)

= —M(r,g)Ms(r,q"), 0<r<1.
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By Prawitz’ theorem and Theorem

9.2)

" dp 1
<6 S :
. / (L= ppt ™ (L=r)17

On the other hand, the integral means M, (r, ¢’) are non-decreasing and hence

M2 / 7i o o / 0 2d9
Hnd) =5 [ 1)

147

4 = 2 )
— d / 10 2d9
7r(1—r)(1+3r)/0 p p/o l9'(pe™)|
4

|9/ (2)[PdA(2)

- m/zx)

e (00152

Thnd5.3] 1 B
N —(1—r)3/2’ r—1".
Combining these restimates we deduce
1 1 1
My (r* 1) < M3(r, g) May(r, ¢') < _ s 1

(=) A=) 1—¢

Finally, by the Cauchy integral formula, n|c,| < 7'="M;(r, k), and hence, by choosing
r:rnzl—%wededuce

1 1 1 1 \'"™"
Hu- b (1) <2 (1-2) g
n mn n n n

and the theorem is proved. O

len] <

10. Nehari’s theorem

Let A, =sup{|a,| > a;zj € S}. Hayman (1958) proved an existence of the limit

. n
A= lim —.
n—oo M
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The Bieberbach conjecture (=de Branges theorem) asserts that A,, = n for all n, while the
asymptotic Bieberbach conjecture is the weaker assertion that A = 1. Littlewood (1925)
posed another conjecture: If f € S and f(z) # w for all z € D, then |a,| < 4|w|n for
all n € N. Nehari showed that the asymptotic Bieberbach conjecture implies Littlewoods
conjecture.

Theorem 10.1 (Nehari 1927). Let f € S with f(z) = ) a,2™ and suppose that w € C
such that f(z) # w for all z € D. Then |a,| < 4lw|An for all n = 2,3,..., where

We will need the following lemma.

Lemma 10.2. Let g be analytic and univalent in D with g(0) = 0 and g(z) # 1 for all
z € D. Then the function G defined by

G(z) = 29(2%) = (9(=*)(9(z*) — 1))

has the same properties as g.

N

Proof. Let g(z) = 3 72, ¢;2/, 2 € D. Note first that

1

1 1
h(z) = [9(z*)(9(z*) = 1)]? = [}z +2c1022° + 22° + ... — 12 — 2 — ] =i+, ..

(*)
is an odd analytic function in D which vanishes only at the origin. This because g(z) # 1

for all z € D, g is univalent and g(0) = 0; hence (g(z%) —1)2 has an analytic branch and
an analytic branch of /g(z2) can be found by writing

o0
f(2) =) agz"
=0

and working out the coefficients from
f(2)? =a22? + 2aa32* + a2z + .. =12 + et H e+ = g(2Y)

inductively. Suppose now that G(z) = G(§) for some z,§ € D. Then, by denoting
g(2?) = a and g(£?) = b, we have

a—b=h(z) = h(§),
which implies
a® —2ab + b* = h(2)* — 2h(2)h(&) + h(£)* = a® — a — 2h(2)h(E) + b* — b,

which is equivalent to
a+b—2ab= —2h(z)h(§),

which gives
a? + 2ab + b* — 4(a + b)ab + 4a*b* = 4h(2)*h(£)*.
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By simplifying, we get
a’® + 2ab + b* — 4a’b — 4b%a + 4a*V? = 4(a® — a)(b* — b) = 4a’b* — 4a’b — 4ab* + 4ab,

that is,
a® + 2ab + b? = 4ab,

which gives
a?—2ab+ b = (a — 6)2 =0= (9(22) - 9(52))2-

Since g is univalent, this implies z = +£. But h is an odd function with h(z) # 0 for
z # 0, and so

G(z) — G(—2) = 2g(2%) — 2h(2) — (29(2*) — 2h(—2)) = —2h(2) + 2h(—2)? — 4h(z) # 0,

unless z = 0. Thus z = £, which proves that G is univalent. If G(z) = 1 for some z € D,
then

ol

0= —fala-1)E, a= g,

which implies

1
2 — —_ = 2 —
a a+ 1 a a,
which is equivalent to 0 = 1. This contradiction shows that G(z) # 1. O

Proof of Theorem If feSand f(z) # w for all z€ D, then

g(z) = %f(z) =ciz+ct+ ...

satisfies the hypotheses of Lemma, The operation of the lemma may be iterated to
produce a sequence of functions

gk(z):cgk)z—i—cék)zQ—i—..., k=0,1,2,...,

where gy = g and

[NIE

ge11(2) = 206(z%) — 2 [ge(2) (au(z) = D]*, k=0,1,....

N

Since z +— 2 [g1(2?)(gx(2?) — 1)]? is an odd function, we have
ch ' =2d0, neN, (1)

and further, by (),
4 = )

N[
—~
~—

which implies

)C(k+1)

1
2
1 ‘

:2(c§k> . keN,

where 61(10) = ¢, = . Now
oLl <y4
[End 'w‘
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by the Kébe 1/4-theorem, and it follows inductively from () that || < 4 for all k € N.
Since gk/cgk) € S, we deduce

6] < 16 1An <44, meN\ {1},

For an arbitrary n € N\ {1}, the iteration of now yields

1 @ 1 I &
Cp = §an) = ﬁcgn) = ...= 2_k:c;k)n
and hence
2%le,| = | | < 4Ap,, keNneN\{1}.

Consequently

A
|an| = |wl|en] < 4lw|27%Age,, = dwn=2", k€N,

2kn,

and the desired result follows as k — oo. O

11. Nehari’s univalence criteria

A meromorphic function f in D belongs to the restricted class R if f has only simple poles
and f'(z) # 0 for all z € D. [It’s the class of locally univalent meromorphic functions.
See exercises.| The Schwarzian derivative of f € R is

50 (53) 3 (55) - 56 2 (66) - e

Analytic functions f in R are those that are locally univalent (< f'(2) # 0 for all z € D),
and hence Sy is a well-defined analytic function whenever f is a locally univalent function.
One can actually show that a meromorphic function f in D belongs to R if and only if f
is locally univalent (Ex). If f has a simple pole at zy € D, then

f(z) = ——+g(2)

Z — 20

for all z in a neighbourhood D of 2z, where ¢ € C\ {0} and g is analytic.

/ — / " 2 " mn —6 n
) = oo t e [0 = oo e 10 = o ),
For
S :f_m_§(f_//>2:12f/fm_3(f”)2
Tpoe\y) 2 (g
we obtain

F1(2)'(z = 20)" = (= + (2 — 20)%g(2))*

48



and
2/(:)7"(2) = 3(7(2)] (= — 20)
—C / —6e Z—Z4WZ . 2c 2_202//2 ?
zz(ﬁw(z))( 6+ (2 — 20)'9"(2)) 3( T >g<>)

Z— 29 = Z0
L2 ged(2) — ez — 20)29"(2) + ¢ (2)(z — 20)'9"(2)
= — — C Z)—C\lZ2 — Z zZ ZIZ — Z z
(z—z)2 Y 09 g 09 (11.1)
1262 4 n

SCEnT 12(z — 20)9"(2) — 3(2 — 20)*¢"(2)?

= —1209’(2) — C(Z _ Z0>2g///(z) + g’(z) (Z . Zo)4g///(2)
— 12(2’ _ Zo)g”(z) o 3(2 o z0)4g”(z)2.

Therefore
_12 / _ /
cg'(20) _ —6g (20) cC.
(—c)? c

Thus Sy has a removable singularity at zo, and therefore Sy € H(D) when f € R.

lim Sf(Z) =

Z—20

N | —

Lemma 11.1. Let f € R and ¢ : D — D analytic and locally univalent. Then
Stap = Spo - (¢/)* + Sy

in D.

Proof. Denote F' = f o . Then
F'=fop-¢i F'=f"op)+¢"f(0)

Hence F’ does not vanish in D. Moreover, since ¢ — a, a € DD, has only simple zeros, F’
has only simple poles. Thus F' € R. Now

B _[roelgV+ e fe) _[Top ¢
r f'(e)¢’ froep ¢’

[Here we see that the pre-Schwarzian sy = f”/f’ has the similar property

Sjop = S7(P)¢’ + sp.
Of course we can consider higher order differential operators of the same kind and try

to produce nice formulas for them too. Maybe we can have pre-Schwarzian, Schwarzian,
I-post Schwarzian, 2-post Schwarzian etc.| Hence [whenever the image of T is contained
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in the domain of f]

) / 1 [/ F" 2
5=(7) 2(¥)
- (L
f'(¢)
_1 f"(¢) ? "2 f'(®) 4
2( g) +2f’(¢)¢)+5@
_ Q)+ IO)) ~ P ) (112
(f'(#)?)
POV e )
2 (f’(@)) )~ TOM o+ 5
f///( ) 2_§ f//((,@) 2
ENIC R (f’(w)) (5

= S(@)(¢)* + S,

If T is a nondegenerate linear fractional transformation

az+b
T(z) =212 .
(2) ot d ad — be # 0,
then d—1b 2¢(ad — be) 6¢%(ad — be)
;o ad—bc " —2c(a c ey _ 6¢(ad —be
T(Z>_(cz+d)27 =) = (cz+d)3 () (cz+d)*
and hence

Stop = Sro f(f')* + Sp = Sy

by Lemma because Sy = 0. On the other hand, Sj.r = Sy o T(T")? also by
Lemma IT.11

The problem of finding functions of prescribed Schwarzian derivative has a simple
solution.

Theorem 11.2. Let p € H(D). Then, for any two linearly independent solutions g; and
go of the linear differential equation

g +pg=0 (11.3)
the quotient f = g1/g2 € R and Sy = 2p.
Conversely, let f € R and p = 3S;. Then p € H(D) and (11.3) admits two linearly
independent solutions g, and gy such that f = g1/ga.

To prove this, we will need the following result of differential equations.

Theorem 11.3. Let gy, > be any linearly independent solutions of (|11.3]).
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(i) All the zeros of gygy are simple;

(ii) An arbitrary solution g of (11.3) has unique representation g = c1g; + coga, wWhere
c1,c0 € C.

Proof. (i) The Wronskian determinant

a1 9
g2 95

W (g1, 92) = 9195 — 9261 = ‘
satisfies

D(W(g1,92)) = D(9195 — 9291) = 9195 — G297 = —910g> + g2pg1 = 0.

Hence W (g1, g2) is a non-zero constant for if W(g, g2) = 0, g1 and go would be linearly
dependent [4]. From
9195 — 9291 = ¢ # 0,

we deduce the following things:

(i) |g1(2)] + |g2(2)| = 0 is impossible for all z € D and therefore g; and go do not have
common zeros, that is, g;g> has only simple zeros. Therefore both ¢g; and g, have
only simple zeros;

(i) |g1(2)|+]g7(2)| = 0is impossible for all z € D and therefore g; has only simple zeros,
that is, all nontrivial solutions have only simple zeros (this was already included in

(1));
(iii) |g1(2)] + |g5(2)| = 0 is impossible for all z € D and therefore g; and ¢} do not have

common zeros, that is, gj¢5 has only simple zeros.

[In the lectures: Further

9 9 _ 919 — 901 _ W91, 92)

g2 g1 9192 9192

All poles of the meromorphic function g/g; are simple, and hence the zeros of g, g must
be simple as well.|
(ii) Fix zp € D. The linear system of equations

c191(20 + c292(20) = g(20)
c191(20) + c295(20) = ¢'(20)
where ¢; and ¢, are unknown has a unique solution, since the determinant of the coefficient

matrix W(gi, g2) # 0 by the proof of (i). We see that ¢; g1 + 292 is a solution of the initial
value problem

f"+pf =0, f(z)=9(2), f(20)=47(2), (11.4)
since
crgy + 29y + pergr + peage = gl + pergr + ca(gs + pga) = 0.
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Since g is also a solution of (11.4) and ([11.4)) posesses a unique solution in D, g = ¢191+¢292
in D. O

Proof of Theorem [11.3. Let p € H(D) and f = g1/gs, where g; and g are linearly
independent solutions of (11.3)). By the proof of Theorem [11.3] W (g1, g2) € C\ {0}. Now

;o 9192 — G591 . W(g1, g2)
f - 2 - 2 ’
95 932

e & 1
f//:_2W g1,92) 3, _:_2_7
( )gg’ f g2
and hence f is meromorphic in D such that f’(z) # 0 for all z € D and all poles of f are
simple (as zeros of go) by Theorem [I1.3[(i). Moreover,

" " "o ()2 1 1\2 "
S; = (;/) (,;I) _ o929 g2<gz) __.4(92) :_29_2:229’

2 2 93 g2
proving the first part of the assertion.
Conversely, let f € R and p = %Sf. Then p € H(D), see the beginning of the section.
Define g = (f/)~'/2, where the branch is fixed, for example, such that v/1 = 1. Then
g € H(D). Now ¢’ = —1(f/)7%2f" which implies

2 + g = 2 (~ (1) PP+ ) =0

so ¢ is a nontrivial solution of

2f'g'+ f"g =0. (11.5)
Hence f
29 + 7 g=20,
which implies
f'// f//
291/ + (f/ g + f’ = 0.
But (L1.5) implies
g9
2 fr

which gives

o+ (7)o () (55) -0
wea((7)-3(5)) -

or equivalently 2¢” 4+ £Sg = 0. Thus g is a nontrivial solution of (11.3).

that is,
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To get the other solution, consider h = fg. Since

W' +ph=f"g+2f'g + fg" + pfg
ffg+2f9 + f(g" +pg)
g f//
= f'g+2f (—57) +0=0,
so h is also a solution of ([11.3]). Since all solutions are analytic, h € H(D). If g and h

were linearly dependent, f = h/g would be a constant, which is impossible, since f” % 0
for all z € D. Thus f is a quotient of two linearly independent solutions of ([11.3).

Lemma 11.4. For each pair of distinct points z; and z, in D, there exists a linear frac-
tional map (an automorphism of D)
a—2z

p(z) =6——, z€D, aeD, (€T,
1—az

such that 0 < p(z1) = —p(z2).

Lemma 11.5. Let u # 0 be a real-valued continuously differentiable function on [—1, 1]
such that u(x) = O(1 —x) asx — 17, and u(x) = O(1 + x) as x — —17. Then

1 u<w)2 1 )
/_1 —(1 T dr < /_1 u'(z)? du.
Proof. Observe that

0</11 (fli(z)2+u'(x)>2dx:/1%6&—1—2/1%6&—#/1#@)%&.
(11.6)

Integrate the second term by parts to obtain
1
2/1 xu(x)u’gm) dp — ru(xr)? B /1 u(x)21 — 2?4 22? dp — _/1 u2(x)1+x2,
4 l—x 1—22] _ , J. (1 —22)2 1 1— 22

hence 1 2 ( )2 1 1 2 1
T u(x 9 +x 9

1 2 1
U(ZE) / 2
/1—(1—x2)2 dr < /1u(x) dz.
Note that equality in (11.6) occures only if

which is equivalent to

1 —a?

+u'(z) =0, ze€(-11).

It is easy to see that the unique solution of this separable differential equation is u(z) =
(1 — 22)'/2 which does not satisfy the hypotheses of the lemma. O

23



Theorem 11.6 (Nehari’s univalence criterion 1949). If f € R satisfies |S¢(z)|(1 —
|2|2)? < 2 for all z € D, then f is univalent (injective) in D.

Proof. First observe that it suffices to prove f(r) # f(—r) for 0 < r < 1 under the
hypothesis |S;(2)](1 — |2[*)? < 2. Indeed, if f(z1) = f(22) for 21,22 € D, then by
Lemma[11.4]some automorphism 7" of D produces a function F' = foT with F(r) = F(—r)
and with the Schwarzian derivative Sy = S;(T)(1")? by Lemma [11.1] The assumption
and the Schwarz-Pick lemma therefore give

T'(z)]*  sp 2

e = G- (<P

Thus F' also satisfies the assumption, and hence it suffices to prove f(r) # f(—r) for
all € (0,1). In view of Theorem [I1.2] it is equivalent to prove that if p € H(D) such
that |p(2)[(1 — |z]*)> < 1 for all z € D, then the ratio g;/g> of two linearly independent
solutions of ¢” +pg = 0 takes different values at £r for each r € (0, 1). If, on the contrary

[Sp(2)| = ST (DI (2)]* < 2

0lr) o)
92(r)  g2(—r)
for some r € (0, 1), then g = g1 — g, satisfies

go(r
o1r) = (1) = an(r) = 1(r) (1= 221 ) =0 = g(-).
9 (r)
|[Here it was assumed that g,(r) # 0. If g1(r) = 0, then we have go(r) # 0 and we can do
a similar argument.|
Conversely, if some nontrivial solution of ¢” + pg = 0 vanishes at +r, that is,

g(£r) = gi(£r) + Bga(£r) =0,

we deduce
91(r) _ g1(—1)

92(r) g2(—1)
for suitably chosen base functions ¢g; and g». The theorem is therefore equivalent to the
statement that if p satisfies |p(2)|(1 — |z[*)? < 1 for all z € D, then no nontrivial solution
of ¢" + pg = 0 can vanish at both +r for any r € (0, 1).
Suppose, on the contrary, that there exists a nontrivial solution of ¢” + pg = 0 and
r € (0,1) such that g(r) =0 = g(—r). Then

0=4g"+rg

implies

- [ y@s@de+ [ plolgo)P i

= [pwi]_ - [ d@i@a [ op@re  a
=0-0- /_ g (x)]? dx + /_Zp(x)\g(x)]de.
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Now |p(2)|(1 —|2]?)* < 1 implies

[ wris= [ olsopar < [ G005 0
[ gt [ SR g s [ O o

so by denoting g(rt) = u(t) + iv(t), we have

/_l (W (£)2 + o (1)) dt < /1 u)” oty

1 o (=)

Hence

This contradicts Lemma [IT.5 O

One may write Nehari’s criterion in the following form: If f is meromorphic in D and
satisfies |S;(2)[(1 — |2]?)? < 2 for all z € D, then f is univalent in D.

The constant 2 in Nehari’s theorem is the best possible and cannot be replaced by any
larger number. This is seen by considering the function

ra=(152) . acc

for which ( 2
2(1 — «

The function f is univalent in I or, equivalently, w® is univalent in the right half-plane

if and only if o = a + ib satisfies a? + b* < 2|a|. The choice o = ib gives a non-univalent
function f with
2(1+ v?)

15¢(2)] < =P

z € D.

Theorem 11.7 (Kraus 1932, Nehari 1949). Let f € H(D) be univalent in D. Then
|S¢(2)| <6 for all z € D.

Proof. Let

f($a(2)) = f(a)
f'(a)(1 = lal?)

Then G,(z) = F,(1/2)™" = 2+ By + By1z~' + -+ belongs to ¥, and so By = A% — A;
satisfies |B;| < 1 by Corollary co:bl estimate. But

F.(2) = =2+ A2+ A3 +..., a€D.

1
B = —£Sy(a)(1 |2,

and the assertion follows. See the exercises for details. O
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Stowe-Chuaqui conjecture

In their paper [I], Dennis Stowe and Martin Chuaqui considered the equation
P+ Af =0
in the case, when there exists some C' > 0 such that

1+C(1—|z)
A _ e D.
AC) < o 2 (+)
If C =0, then Nehari applies: each solution f of f”+ Af = 0 can vanish at most once
in D.
Does [+ imply that each solution has at most finitely many zeros? Equivalently, does

imply that f is of finite valence?

If

L+n(z])  n(zl])
A< e 1o1

— 00, |z] = 17,

then f” + Af = 0 might have solutions of infinite valence.

In fact, implies that f has only one zero in a pseudo-hyperbolic disc A(zg, R), for
all zp € D, for some R = R(C) —» 1—, C — 0+

If {z,} is a zero sequence of f, we may consider many conditions. For example

1/2

sup(1 — [a(zn)]) " < 00,

a€D

the Blaschke condition

S0 - Jal) < o,

Zn

condition about uniform separation etc.

12. Sharpened forms of the Schwarz lemma

Let f € H(D) such that |f(2)] < 1 for all z € D. If f(0) = 0, the Schwarz lemma says
that |f(z)| < |z| for all z € D and |f’(0)| < 1. In more general terms, the Schwarz-Pick
theorem asserts that

1) = £(€)
1= /()

z—=¢
1—&z2

< . z,£€D, (12.1)

and
()1 =25 <1—|f(2), zeD.

A more careful analysis leads to sharper results on the region of values of both f(zg)
and f’(zo) at the fixed point zg € D.
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Theorem 12.1 (Dieudonné 1931). Let zp,wy € D, 29 # 0. Then

{f'(z0) : fE€HD), f(D)CD, f(0)=0, f(z0) = wo}
_D (@ |20/2 — [wo|? ) (12.2)

20 |20l(1 = |20/?)

Proof. By ([12.1)), the function g defined by

f(z) —wo  z—wp B
1 —wof(z) 1—zozg

that is, )
 f(z) —wo 1 =%z
9(2) = 1 —wof(z) z—wo

satisfies |g(z)| < 1 for all z € D. Thus an application of (12.1)) to g gives

< |2ol.

)
= 9(0)g(20)

But since f(0) = 0 implies g(0) = wy/zy (note that zy # 0), this inequality shows that
g(z0) belongs to D(v, p) where

9(20 - 9(0)
1 g

1 — |20 -z wy 1—|20]2@

[ B T T e
and
2
— | %o
po sl Lol = fl?
L= w0 Taol(1 = o)

by Lemma Al. Since

f'()( —wof(2) +wf'(2)(f(z) —wo) 1 —Z0z+Z(2 — 20)
(1 —wof(2)) (1 —Z2)?

we deduce, by choosing z = z,

f'(z0) (1 = [wol*) 1 — 1zl

zZ— 20

9(2) + 9/ ()=

L—lwoP)? @ =Jep? )
that is,
1 — |wol?
/ —
filz0) = 1— 22 9(=0)

This is equivalent to saying that f’(zg) belongs to

D (@, |20]% — |w0|22 )
20 |z0[(1 — |wol?)
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To see that the whole disc is covered, let

a — Wy

B

— T la] <1,

and let f be defined by

f(z) —wo 22—z wo+ ZPz
1 —wof(z) 1—7Zgz20 +WohBz

The first factor on the right hand side has modulus less than one for z € D. On the other
hand,

20

20 + WPz a 20 (1—1—@&2) _2_014—62@
20

belongs to D and we deduce |f(z)| < 1 for all z € D. If z = 0, then we have

f(O)—wo :—z%:
1 — a5 f(0) 0Zo

which implies f(0) =0, and if z = 2,

f(Zo) — Wo
1 — g f(20)

which implies f(zp) = wo. Moreover, a direct calculation gives

—Wo,

=0,

Wo |20]* — |wol?

2 20(l—l200?)

f'(z0) =
Since o € D was arbitrary, this completes the proof. O

Corollary 12.2. If f € H(D), f(D) C D and f(0) = 0, then

Feledl L, TSV

This bound is sharp for each r € (0,1).

Proof. For z € D fixed, let r = |z] and R = |f(z)]. Then R < r and Theorem gives

) R m-R R1-r)+r*-R  Y(R)
F=)l < r * r(l—r2) r(1—r2) (1 —r?)

The function ¢ attains its maximum at R = (1 — r?):

V'(R)=—2R+1-1"=0
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is equivalent to

The maximum is

¢(1_2T2) 1—r2 1—r? 2:1—2T2+7‘4+ 2_(1+r2)2‘

Therefore

PR o ECESL R
z = r -1
“r(1—=1r%)  4r(1—1r2)’ -
For r <2 —1, ¢(R) < ¢(r) =r(1 —r?) on [0,7], so |f'(2)| < 1 there.
The sharpness is clear, since every value f’(z) in the disc given by Theorem is
attained for some function f. O

The next result may also be viewed as a sharpened form of the Schwarz lemma. For
2o € D\ {0} fixed, let A,, denote the closed region containing the disc D(0,|z|?) and
bounded by an arc of the circle 9D(0, |29|*) and the two circular arcs 7,, and 7,, joining
2o to the respective points i|2|20 and —i|z0|20, and tangent to the circle 9D(0, |z|*) at
these points.

Theorem 12.3 (Rogozinski 1934). Let zy € D\ {0} be fixed. Then
{f(z0) : f € H(D), (D) CD, f(0) =0, f(0) > 0} = A.,.
Proof. Apply with € = 0 and with f(z) replaced by f(2)/z # 1 to obtain

f(z) = ['(0)z
z = [(0)f(2)

This places wy = f(z0) in the disc D, defined by

< |z|.

where t € [0, 1] by the Schwarz lemma. Since

w — 2o

z0 — tw

we see that w/zy belongs to the pseudohyperbolic disc centered at t and of radius zy = ry.
Therefore w belongs to the Euclidean disc of radius

1— ¢ 11—t 2l
———TgTog = ——=="T5, To = |20,
1—t2r(2)0 0 1—t27’30 0 0
and center
1—7’(2)t
—12zp.
1—t2r2 0
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This center point traverses the line segment from 0 to zy as t increases from 0 to 1.
The union of the discs Uogtgl D, equals to A,,. To see this, write the equation fro the
boundary of D; in the form

w — tzp

F(w,t) = Re (log ) — log |20] = log‘
Zo0 — tw

w — tzg

/|z0| = 0.

2o — tw

A curve C'in C is an envelope of the family {F(w,t) =0 : 0 <¢ < 1} if at each point of
C at least one member of the family is tangent to C, different members being tangent
in different points of C. One can show that the envelope of {F(w,t) : 0 <t <1} is
determined by the pair of equations F(W,t) = 0 and

oF _Re (P tw —20(20 — tw) + w(w — tzp) — Re wo _
ot w — t2 (20 — tw)? 20— tw  w—tz

See [9]. Now

w 2 w 2
Re — 0 =Re (—/—— | — 0
o —tw w—tz Zo — tw w — tzy

— Re |w|? — t20w0 — |20] + tzow
(Zo — tw)(w — tzp)

= (lw|* = |20[*) Re ( 2o — tw )

|20 — tw]?(w — tz)

_ w]? = J20f Re (20 - tw)

|2 — twl? w — tzg

(12.3)

so that the envelope is defined by

F(w,t)=0 and Re (ZO_“”>:0.

w — tzg
Thus the envelope is given by

—t _
W0 FOD=0 i = iz,

2o — tw

which is equivalent to
ttar
w = 2 =w(t), 0<t<I1.
1+ try
This equation defines the circular arcs v,,, 7,, which comprise part of the boundary of
A,

To see that the entire A, is covered, consider the function

¢ _
f(z):zlaj_:— ., aeD, 0<t<l1.
az

Then f(D) C D for all @ and ¢. Moreover, f(0) =0,

£(z) = az+t Za(l +taz) — ta(az + t);
1+taz (1+ taz)?

f(0) =t,
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and

azg+1
wo = flz0) = o1 + tazg
that is,
Wo — tZ()
azyg =
zZ0 — two

and o € D, this shows that every point in the disc D, is the image of z, under some f
with the required properties. O

13. Hyperbolic metric

The hyperbolic arc length element is defined by

o |dz|
k=15

If 7, parametrized by z(t) : [a, b] — D is differentiable arc or curve in D, then for z = z(t)
|dz| = |2'(t)|dt, the hyperbolic length of v is biven by

b /
|2/ (t)|dt
/\(V)Z/dSZ/ EREAYE
~ a - |Z(t)|2
Lemma 13.1. Let v be a differentiable arc or curve in D and ¢ : D — D conformal.
Then \p(7y)) = A(v), i.e. o is length-preserving.

Proof. Each conformal map from D onto D is of the form {{== for { € T and a € D, and
hence |¢'(2)[(1 — |2]?) = 1 — |¢(2)|* for all 2 € D. Hence

|dw| | (2)||dz|  « |dz|
M) = [ e - [P ]
W= ) &= ) Tl = L TR~ TP

= A(7).

O

[Note that if ¢ : D — D is analytic, then by inequality given by the Schwarz-Pick
theorem gives < instead of an equality in . Thus in this case, we obtain A(p(7)) < A(7).]

The geodesic between zq, 2o € D, 21 # 25 is a curve joining z; and 2, in D of minimal
hyperbolic length.

Lemma 13.2. The geodesic between 0 and r € (0,1) is the line segment [0,r] from 0
tor.
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Proof. Clearly, [0,7] can be parametrized as z(t) =t, 0 <t <r, so

"od
o= [ =[5
r 1

1 1

== dt 13.1
14(1—ﬂ+1—t (13.1)
1 1 1+r

= 5(—1og(1 —r)+log(l+7r)) = Elog T

Let v be an arbitrary differentiable arc in D joining 0 and r, parametrized by z(t) =
z(t) +iy(t), 0 <t <r. Then

[ o
A(’Y)—/O e 2/0 O

:llogl—'——m(?ﬂ)_ 1"'35(0)711 1+7r
2

/ (13.2)
T—a(r) 2 ®1-2(00) 2 ®1—+

Whence the assertion. O

Note that the inequality in the proof of Lemma is strictly less unless y(t) = 0 for
all t € [0,r], so that the geodesic joining 0 and r € (0, 1) is unique.

Lemma 13.3. The geodesic between z1,zqg € D, 21 # 29, is a circular arc joining them,
which, if extended, meets the unit circle orthogonally.

Proof. Let F : D — D, F(D) = D be a Mdbius transformation such that F(z;) = 0
and F(z3) = r € (0,1). The geodesic connecting z; and z is the inverse image of [0, r],
since F' is length-preserving by Lemma This inverse transformation is a Mobius
transformation of D, that takes circles onto circles, regarding a straight line as a special
case of a circle. Furthermore, since the mapping is conformal and [0, 7] is orthogonal to
T if extended untill T, so is the geodesic joining z; and zs. O

Write (21, z9) for the geodesic joining 21 and 2z in D (circular are, hyperbolic segment).
For many authors "a geodesic” is a hyperbolic line in D, i.e. a circular arc in D that meets
T in two points and is orthogonal to T.

Lemma 13.4. Let 21,2, € D. Then

L 1+ pa() a—
A =1 ! a , a,beD
(<217Z2>) 92 Ogl— ‘SOZI(ZQ)" ® (Z) 1—a a
Proof. Let
z—2z
gp(z)zl_z_llz, zeD

Then ¢ is a Mobius transformation such that ¢(z1) = 0 and |p(22)| =r € (0,1) if 21 # 2.

now 11 1 14 | (20)]
== = — T = — M
A(<Zl72’/2>) - )\(90(<Z1722>)) - 2 log 1 —r - 2 log 1 . ’@Zl (Zg)l .
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O

Write pp(z1, 22) = A((21, 20)) for all 21,29 € D. As pp(21, 22) represents the length of
(z1, 29), pn defines a metric in . This is called the hyperbolic metric or the Poincaré
metric. Note that py is additive on hyperbolic lines, so along geodesics the equality in the
triangle inequality occures.

Hyperbolic disc with hyperbolic center z5 € D and hyperbolic r € (0, c0) is defined by

Ap(z0,7) ={z €D : pp(20,2) <7}

A A 627' -1
= Ayp (20, tanhr) = Ay | 2o, T

_ e —1

e +1]7
where ppy, is called the pseudohyperbolic metric. The fact that pp, is a metric is inherited
from the properties of the hyperbolic metric. In particular,

(13.3)

20 — R

= {z eD : ppn(z0,2) =

1— %52

1 1
Ph(Zh 22) = - log —+ pph(Zh 22)

, 21,722 € D.
21— ppul(z1,20)” V7

The hyperbolic metric is one of the most natural and important metrics in D. It is clear
by the definition that p,(z,w) € [0, 00). Moreover, for any fixed w € D, |p,(w)| — 17, as
|z| — 17, and hence pp(z,w) — oo. This means that T is "infinitely far away" from each
point of .

It is immediate that both metrics dj, and d,;, are conformally invariant; for each auto-
morphism v of D,

dh(¢<z)7w(w)) = dh(sz) and dph(¢(z)a¢(w)) = ph(sz)‘

Moreover, the topologies induced by dj,, d,, and the Euclidean metric d.(-,) = |- — - |
coincide; the corresponding collections of open sets are the same.

We will use the following notations for Euclidean, hyperbolic and pseudohyperbolic
discs, respectively:

D(a,r)={2z€C:la—z|<r}, a€C, re(0,00);
Ap(a,r) ={z€D:dy(a,z) <7}, a€eD, re(0,00);
App(a,r) ={z€D:dp(a,z) <r}, aeD, re(0,1

We will prove two basic lemmas that show that each pseudohyperbolic disc is an
Euclidean disc and, of course, vice versa.

Lemma 13.5. Let a € D and r € (0,1). Then Ay,(a,r) is the Euclidean disc D(C, R),
where

1-r a and R = 1_‘(1’2

- 1 —r2?|al? 1 —r2|al? "

C
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Lemma 13.6. Let C € D\ {0} and R € (0,1 — |C|). Then the Euclidean disc D(C, R)
is the pseudohyperbolic disc Ay (a,r), where

(L+ B2 —|CP) = (L+ B2 — [CP)? - 4|C
2|cp?

and

1+ R —|C]?) — /O + R2—|CP)2 - 4R?
2R '

Proof of Lemma[13.5, We start by deriving two equations, namely (13.4) and (13.5). Let
a, B € C. Now

o = B> = (@ = B)(a = B) = |af* — (aB + @) + |B]*.
Since z +Zz = 2Re (2) = 2Re (Z) for all z € C, we get
af? + |82 = |a — B? = 2Re (aB) = 2Re (@H). (13.4)

This is actually the law of cosines. Namely, if a = ae” ja B = be'®, where a,b > 0
and t,s € R, and we denote v = s —t and ¢ = |a — | we get the familiar equation
c? = a® + b? — 2abcos .

Let z € C be arbitrary. By substituting a = 1 and § = @z to ([13.4) we get

1+ |a?z)* — |1 — @z|* = 2Re (a2).
On the other hand, by substituting o = z and § = a to (13.4)) we get
|2]> + |af* — |z — a|* = 2Re (az).
By substracting last two equations we get
1 22 — Jal? + af?2|22 — [1 — @2 + |z — af2 = 0,

which simplifies to
1—az|> = |z —al* + (1 — |a*)(1 —|z]%). (13.5)

Let z € D be arbitrary. Now by equation ([13.5) we have

_ le—a? |2 —al® 2

[pa(2)]” = — = _
1—az|>?  (1—|a*)(1—]z?) + |z — a|?

This is equivalent to
2 —al*(1 = %) = (r* = |al*r*)(1 — [2]),

and hence
"2 _ |a|2r2 "2 _ |a\27‘2

1—172 1—1r2

|z —al” = Kl
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Now by equation ([13.4)) we have

P2 _ ]a|2r2 P2 _ |a|2r2

1—r2 1 —p2

2" + |al® — 2Re (az) = Kl

Y

which gives

r2 — |a|27°2 B r2 — ’CL‘QTQ
‘Z|2 (1 + 1_—7.2) — 2Re ((IZ) = 1_—712 - ’CL|2,

which simplifies to

1 — 2,.2 2 2

1—1r2 1—172

Multiplication by factor

1—1r2
A= —7F——>0
=P
gives
2 2
: oo 2l
 9Re (Aaz) = 19
|Z| ’ ( CZZ) 1— ’@‘27“2
Therefore o
_ r2 _ g
21— 2Re (4a7) + |Aaf* = {55 + Alal®
and by equation ({13.4]) we obtain
2 Jaf
|Z — Aa|2 — - |a|2T2 + A2|a|2,
That is,
|z — Aa|2 = (r? — la*)(1 — |a|?*r?) + (1 — 7r?)?|a|?
(1 — ’a‘2r2>2 5
hence

r? — laf*r* — |a|* + |a|*r? + |a]? = 2|a|*r? + r*|a|?
(1 [aPr2)? ’

|z — Aa|® =
which simplifies to
r?(1 —la?)?
(T~ JaPre)?
Now C' = Aa, the right hand side is R? and the proof is complete.
Proof of Lemma[13.6 Let first C € [0,1) so that a € [0,1). By Lemma [13.5

|z — Aa|® =

1—r? 1 — a?
C:—l—r2a2a and R:—l—r2a2 T,
and hence
C_I_R:a—rza—i-r—mQ: (at+r)(l—ra) a+tr
1 —1r2a? (1—ra)(l4+ra) 1+ra
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and

o R_a—rza—r—i-raQ_ (a—r)1+4ra) a-—r
B 1 —r2a?  (I=ra)(1+ra) 1-ra
Therefore
a+r=C+R+raC+raRk
and

a—r=C—R-—raC+raR.
By adding these equations and dividing by 2 we get

a=C+raR. (13.6)
By subtracting the equations and dividing by 2 we get

r=R+raC. (13.7)

Equations ([13.6)) and (13.7]) are in some sence symmetrical. Namely, let P(xq, xo, x3,24) =
To + x3w124 — 1. Now (13.6)) is P(a,C,r, R) = 0 and equation (|13.7) is P(r, R,a,C) = 0.
By solving r from equation ((13.7)) we get

R
r= )
1—aC
Substituting this to (13.6)) we have
R%q
=C )
“ + 1—aC

Multiplying both sides with 1 — aC' we get
a—a*C = C —aC? + R?a,
which gives a quadratic equation for the center a, that is,
0=Ca®>—(1+R*—C?%a+C.

Quadratic formula gives

L (+R-)+ I+ -2 -4
a=a = 20 .

A direct calculation shows that a™ > 1, and hence

(1+R*—C* — /(1 + R?—(C?)2 — 4C?

“= 20
Solving for a in equation (|13.6)) gives
- C
1—-7rR’
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Susbstituting this to (13.7)) we have
C?r

=R )
4 +1—7"R

Multiplying both sides with 1 — rR we get
r—r’R=R—rR>+ C?r,
which gives a quadratic equation for the radius r, that is,
0=Rr*—(1+R*-C*r+R.
Quadratic formula gives

. (I+R-CHE /(O + R —C2)2 —4R?
r = )

2R

of which the acceptable one is r~, and thus
(1+R?*—-C?% — \/(1+R2 —(C?)2 —4R?
2R '

The general case follows by rotating the center of the Euclidean disc to the segment [0, 1).
O

14. Two-point distortion results

Theorem [5.3] gives the necessary condition

| 2]
axae =S [F(2)] < A= 22 z €D,

for f € H(D) with f(0) = 0 and f/(0) = 1 to be univalent, but this condition is of course
not sufficient. We next give a necessary and sufficient condition for univalence in terms
of two-point distortion.

Define the differential operator D, on H(D) by

Di(f)(z) = f(z)A = |2[*), z€D.
This operator satisfies
&tz
1+3z¢
Theorem 14.1 (Kim-Minda 1994). Let f € H(D). Then f is univalent if and only if
sinh(2pp,(a, b
@)~ )] 2 Sl D)

Moreover, there exists a,b € D, a # b, for which equality holds if and only if f = ®okoT,

where ® is an automorphism of C, k is the Kébe function, and T is an automorphism of
D.

Di(f)(z) = (fou:)(0), (&) £ eD.

‘max{|Di(f)(@)],IDo(HO)}, abeD.  (14.1)
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Proof. Let T be the automorphism given by

z+a
T(z) = D
(B)=117, #€D
and let .
s = ATED — ) S —f@
(foT)(0) fla)(1 = lal?)
Then g € S and Theorem [5.3] gives
|| sinh(2p5(0, 2))
z)| < = z €D, 14.2
l9(2)] < (14 2] 2exp(2p4(0,2)) (14.2)
and because 2p;(0, 2) = log }ft},
L R el
: Tl T T (4 2)? = (L= [e)? 2
Lo _ T e L _
S ( ph(O,Z)) 9 92 1 — |Z|2 1 — |Z|2
and Ll
+ |z
2exp(2p(0, 2)) = 21 e
thus inh(2pp (0 2 1
snh(2n(0.2) 2l 1ol _p

2exp(2on(0,2)) 21— [z 1+ [z (1+]2])*

Let z € D such that T'(z) = b, that is, z = 2=%. Then (14.2) becomes

sinh(2pp(a, b))
0= )] = S )

because the hyperbolic metric is invariant under 7" by Lemma [13.1} Interchanging the
roles of a and b leads to
sinh(2py(a, b))
a)— f(b)| >
S TTe)

[ D1(f)(b)],

and (14.1) follows.
The condition under which equality in (14.1]) holds can be deduced from the fact that

equality in the lower estimate |z|/(1 + |z])? < |f(z)| holds only for rotations of the Kébe
function. Details are omitted.

[t remains to show that implies univalence. Let f € H(D) be nonconstant such
that f(a) = f(b) for a,b € D, a # b, and it satisfies (14.1). Then f'(a) = f'(b) = 0 and
hence f is not univalent in any neighbourhood of a or b. Hence we find sequences {a,}
and {a;,} of distinct points in D such that

. . ,
lim a, =a, lima,=a
n—0o0 n—o0

and f(a,) = f(al) for all n € N. Then (14.1]) implies f'(a,,) = 0 for all n € N. Then (14.1)
implies f’(a,) = 0 for all n € N, and hence f is constant. This contradicts the hypothesis,
and we conclude that f is univalent. O

Blather proved the following result in 1978.
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Theorem 14.2. Let f € H(D). Then f is univalent if and only if
sinh?(2py,(a, b))

— (b))% > ’
f(a) = f(O)] = S cosh(dpn(a.D))
Moreover, there exists a,b € D, a # b, for which equality holds if and only if f = ®okoT,

where ® is an automorphism of C, k is the Kébe function, and T is an automorphism of
D.

Proof. We will not give a proof. It requires the estimates |as| < 2, |ag] < 3 and
las — a3| < 1wvalid for f(z) =z+> o ,a,2" in S. 0

(D1 @+ [Di(HO)F), abeD.  (14.3)

We can prove an inequality of type ([14.3]) with a nonsharp constant. Let f be univalent

in D. Now gives
sinh?(2p(a, b))
|f(a) = FOO)] > Texp(dpn(a.b)) -max{|Di(f)(a)]*,|D2(f)(0)]*}, a,beD.
For z,y € [0,00), we have

coshx = ere” > e—; — > ;
2 2 e* — 2coshx

x2—|—y2
2

max {IEQ, y2} >
and hence we obtain

inh®(2py(a, b))
2> S ,
[fla) = JOI" 2 16 cosh(4pp(a, b))
which fails to be sharp by factor 2.
On the other hand, by

(ID1(H(@) +[D2()F),  a,beD,

1 1
> — €10
coshx — e’ 7 €(0,00)

and
2?4+ y* > max {z%, ¢},
we get from ((14.3])

2 sinh2(2ph(a, b)) 2 2

> [fi0) — FO o e

(14.4)

. max{|D1(f)(a)|2, |D1(f)(b)|2} )
which implies
o sinh(2pp(a, b))
| f(a) = f(b)] = 32 exp(2pn(a, b))

which fails to be sharp by a factor V2.

Actually, Theorems and are special cases of a more general result where (14.3)
is replaced by

max{|D1(f)(a)|,|D1(f)(b)|}, aabGD’

sinh(2py(a, b))
— f(b)| >
due to Kim and Minda (1994) and Jenkins (1998). The case p = oo corresponds to

Theorem while p = 2 is Theorem [14.2| For upper estimates for |f(a) — f(b)], see
Jenkins (1998) and Ma and Minda (1999).

p=>1,
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15. Bounded univalent functions

If f € H(D), then the Cauchy integral formula shows that the coefficients in the Maclaurin
series of f are given by

1 f€)

ap = :
2m1 |z|=r én—l—l
the mean value of f(£)/£™ on the circle |z| = r. Hence, if f € H*,

1 2mr || fll g
anl < o 1l Sy = T
and thus f has uniformly bounded coefficients. However, if f is bounded univalent func-

tion in D, then f(DD) has finite area, and hence

[ 17 GPAG) =73 nlanf? < o

dg, 0 <r <1,

= | fllgoe, =17,

Therefore n|a,|* — 0, n — oo, implying
a, = o(n_l/Q) , N — 00.
Comparison test

Is the following reasoning correct? If not, where is the flaw?
Let by, ¢, € [0,00) for all n € N. Assume that

bn
limsup — = M € (0, 00).

n—o0 CTL

Now for € € (0,00) we find N = N(¢) € N such that
b

L <M+e, n>N,
Cn
that is,
by < (M +¢€)c,, n>N.
Now if

o0
D cn
n=1
converges, then
o0
D> bn
n=1

converges. This is the one-sided comparison test. Let now b, = = so that Y b, diverges.
Let f € H(D) be a bounded univalent function, f(z) = >.°° a,2™ and ¢, = nla,|* so
that > ¢, converges. We deduce

: bn ..
lim sup — = lim sup

= 0
n—oo Cn n—00 n2|an’2 ’

that is,

lim sup —— = o0.]
n—00 n‘an|
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Theorem 15.1 (Clunie and Pommerenke 1967). There exists o € (0,00) such that
a, = O(n~Y27%) for every bounded function f € S with f(2) =Y >0 a,z".

Proof. For 6 € (0,00), the Cauchy-Schwarz inequality gives

| 1reends < (1) (15.1)
where o .
10 = [ 1reen s g = [ et P,

Since J(r) increases with 7,

r(1—r)J(r) < /1 tJ(t)dt < /1 tJ(t)dt = Win\anﬁ < 0.

Thus

J(r):O( ! ) ro 1 (15.2)

1—7r

The estimation of I(r) is more involved. Since f is locally univalent, the function

F(z)=(f'(2))’ =) eas", =1,

n=1

is analytic in D (for a fixed branch), and

2m 0
I(r) = / |F(re®)|?do = 271'2 e |72
0

n=0

It follows that
[” _27_[_2‘6“' 2n 2n 2<87TZ’CTL|2 22n2

On the other hand,

for all f € S by Theorem and so

o 27
2m Y et = [P s
n=1 0

, o f”(rew)z
2 Fi(re)
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Combining these inequalities, we get

gy = (F0) =20 (10 < 2O

() I(r)) = I(r)
8wy o e, |Prin? < 1446% I(r) = 14407
B 1(r) (L=r2I(r) (1-r)?

Hence I(0) = 27|c|? = 2m; I'(0) = 0;

o 1)) =15 o)

Two integrations from 0 to r yield

— 0= (log I(r)

r=0

/0r<(10g](5))’_0)ds:]og](r)—logQﬂ.S14452/07/08ﬁd5

:14452/ (1 1 —1) ds
0 — S

1
< 1445% log .

and thus
log I(r) < log 27 — 1446 log(1 — 1),
that is,
I(r) < 2m(1 — 7)1,

The estimates give
/ (e a0
0

< (L(r)J(r)"?
2__ 1
S ()
(1—r)l/2
(15.3) 1 3
S (1 — r)i/2m2e r—+1".
For v € (0,1/2), let
Ey = Ei(y,r) = {6 : N<@=r)}
and
Ey=Ey(v,r) =40 : |f'(re”)| > (1—7r)""} =[0,27] < E).

Then, by (15.3),
2
L/ Frefao= [ |Fwed+ [ 17 )08
0 1 Eo

< 2T " (1 _ T)y(s /27r |f’(rew)|1+5d9
T (L= 0
1 1

(1—r) + (1 — r)1/2+7262 93"

N

r—1".

72

(15.3)

(15.4)



The exponent 1/2 + 726? — 4§ attains the minimum

1 72
2 288
at v
§=——.
144

[h(6) = 7262 — 46 + 1/2, '(5) = 1446 — v = 0 <> 6 = /144
This minimum is smaller than ~ if ~y is sufficiently close to 1/2. [0.49913 ~ 12(v/145 —
12) < v < 1/2| Thus for some v < 1/2, we have

27 ) 1
! 19 < 17.
/0 P S s T

The Cauchy integral formula yields

2
] € gy [ 170NN S
and the choice r =1 — % therefore gives
la,) =0 (n"7).
Since v < 1/2, the theorem is proved.
[v =12(v145 — 12); a = 1 — v = (289 — 241/145) /2 ~ 0.000865] O

The best value of « is unknown. Theorem has a close connection to the asymptotic
coefficient problem for the class ¥ of univalent functions

g(z) =z + anz_”, z€ C\D.
n=0

By Corollary 2.2] 3°°° n|ba|? < 1, so |by| = o(n"Y/?), n — co. By a method parallel
to that used in the proof of Theorem Clunie and Pommerenke improved this to
|bn| = o(n~1/278) for some B > 0 (the best value of 3 is again unknown). This actually
implies [I5.1} in fact, one can show that « > /5. More precisely, we have

Theorem 15.2 (Pommerenke 1967). If 5 > 0 and the coefficients b, of each function
g € X satisfy |b,| = O(n~Y278+) for every ¢ > 0, then |a,| = O(n~Y/27%*%) for the
coefficients a,, of each bounded univalent function f € S.
Proof. Suppose on the contrary, that

au] # O(n2#+%)

for some bounded f € S and € > 0. Consider the cube-root transform (Theorem [1.3)
h(z) = (fE)P = ™ =1
n=0
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We claim that |c,| # O(n~/278+¢). Otherwise, since for i+j-+k = n we have max(i, j, k) >
n/3, we could deduce

janl <D leiesenl

i+j+k=n

3 1/24+B—¢
<) X ew
j+k<n

1
§W Z |cjcxl (15.5)

J+k<n

- 1/2+5 - Z|Ck|2|0]’

1
S e

because the Cauchy-Schwarz inequality yields

n

" ) Vk ; 1/2
| < — kleg|? < (logn)'/? . 1.
;\k!—@k) <ZH) < (logn)

k=1

Here we used the facts that

3

= logn

| =

k=1

(3k +1)2
Zk\ck|2V2WZ]c |2 o —/D]h’(z)\dA(z)<oo

Let M > 0 such that h(z) < M for all z € D and consider ¢(w) = 7% + = in D(0, M).
Now 1 is univalent in D(0,w), since

_ _ _ 2
wla) — (e = C 0 - 0L L Z WMD) ¢ po,an)
Thus g(&) = ¥(h(1/£)) belongs to 3, and

h(1/e) 1 SPEIE T < o
9(&) = M2 +h(1/§) §+Zd§3+l Mzzcvfg 1=§+bo+;bvz .

In particular, b3,+1 =

and

S0 b, # O(v™1/2=B+e), O

Cu_
MZ>

Theorem 15.3 (Pommerenke 1967). For each m € N, there exists a bounded univa-
lent function

- Z amv+lzmv+17 S D?
with f(D) C D, a, > 0 and a,, # O(n"%%), n — oo.
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Proof. We will use the notation
S ot < 3o
n=0 n=0
if o, < 3, for all n € NU{0}. Let
z)=1+ Z Cp2"
n=1
be analytic in D and have the properties Re (p(z)) > 0, ¢, > 0 for all n € N and
A= Z — < 00.

Choose ¢ € N\ {1} and form the functions

A
O (2) = 2 mF ),

where
1 > Cn  nmag*
Z):m—qknglzz q, k’GN
Clearly,
1 ¢, A
< _ -
Re (0al2) < (2] < e 325 = o

and therefore

91(2)] = |21 |

A
= elexp (e (0u(2) = 2 ) < sl = 2] < 1.

for = € D. [Thus v satisfies the assumptions of the Schwarz lemma and is a so-called
Schwarz function.] Also

Cn nmq C1 q*
> —z , z€D,
mqk Z

maqk
and so
e¥r(z) z z Cl gk
Or(2) = 2—5— > — (1T +p(2)) > — [ 1+ —2"" |. (15.6)
emaF ema® emaF mq
Further,
e¥r(2) eVr(2)¥(2)
1%4(2) - T +z T
emqk emqk

I6)



and hence

emak

Z% (2) _ (zewkf) L ewuz)%(z)) /ze¢ku)

¢k(z) emak emadF

=1+ 214(2)

Theorem shows that ¢ is starlike and therefore univalent in D. Define fi(z) = 2
and fr11(2) = fr(or(z)) for k € N and z € D. Then

fer1(2) = fr(dk(2) = fro1(dr1(dr(2)))
= fi(or(@a(. .. (¢r(2)))))
=(propa0...00)(2), z€D.

Let fu(z) = > 00  arn2". Since ¢i(D) C D for all £ € N, fy(D) C D for all £ € N.
Moreover, since ¢, > 0 for all & € N, 1, has nonnegative coefficients, and therefore
ax,n, > 0 for all n, k € N. Moreover, as ¢, has "gaps” in its Maclaurin series, we see that
arn, 7 0 only if n = mv + 1, that is, each fj has m-fold symmetry.

Observe that
Jr1(2) = fro(Wr(2)) > apn(Vn(2))" > arn
z

(15.6) n c n
> aka (1 + _lzmqk)

ik mqFk (15.7)
2" cin
> ayg n oo 1+ I—quk , n € N.
" pmaE mq"
Define
¢ -1
ng=1+ml+q+...+¢" " :1+mq_1,
so that
qk+1 -1 N
Nk+1 = 1+mT =nE+mq .
Then, by (15.7),
i " cin
Z ak+1,j2j > akynT + Clkli—Znerqk (158)
j=1 emak emdt - mgk
and hence
C1ng
Ut = Ok Sy
emd® . mgk
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Denote Ay = ngay,n,. Then this becomes

Now define g by

and conclude from (|15.9)) that

A > Ak
q

by —k+1
— Ak,lqﬁ(l — q*k) exp (— d )

gk
> Ap2¢”(1— ") exp ( - ) (1—¢")exp (—

(q—k+2 + q—k-i-l)) Z

 Apag®(1— (1 — ¢ F)exp (
.

—.

<
I|
¥

> Ay® (A — ¢ 7) exp

> Apd® 21— g77) exp

—;

<
Il
—

— AT = ) exp (———

A
() 0

ket mq—1
where
= » A1
Ay H(1 —q7)exp (_Eq——l
7j=1
Since .
-1
ng =1 —|—mq -
g—1 qg—-1

/\qkarl

m

Aq

m

—k+1

(15.9)



this implies [nf = ¢°]

that is,
Ay 2 ——— = 5 — X —Bni g
Mg qr g q
and thus
Apny > Ony™', k€N, (15.10)

for some constant C' > 0. Tt follows by (15.10)) that

/\nj
Ak41m; = Qkn; €XP _qk_m ;

and hence

)\nj
Ak.pn; = Gp—1m, €XP | —
kn; = Yk—1,n; qk_lm

/\nj 1 1
Z a’k*Q,’ﬂj eXp - m qk_l + qk,_z Z LR

A a1
> i, € __]E —
= Agng Xp( m ql>

I=j

A o= 1
> i, € __]E —
= Agng Xp( m ql>

Anj g
= Qjn, €Xp | — e
mqjq—1

>Dnj', 1<j<k

by (15.8) and the fact n; =< ¢’.

Since f(D) C D, some subsequence converges uniformly on compacta to an analytic
function of the form

(15.11)

f(Z) = Z amv+12mv+1.
v=0
The limit function is not constant because
A
"(0) = > - > 0.
=)
Thus f is univalent and f(D) C D. Since ay, — a, for all n, it follows from (15.11)) that
an; > Dn ™', jeN. (15.12)

The final step is to make an appropriate choice of the function p upon which the conclusion
is made. Fix 7 € (0,7) and let

4 <1 —cosnt —
p<z):1+7—2;Tz’ z € D.
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Then

, Z(r — 9] 0] <7
Re 619 — 72 (7— ’ ? —
e {o r<hl<n
[Use Fourier series to obtain this.| In particular, Re (p(z)) > 0 for all z € D. Now choose

T =7/3 and compute [since p(z) =1+ > 7 ¢,2"]

41—cost 36 s 18
a=5—1 = p(l—cosg) =
and
N 36 36 = cosnm/3
/\:;EZE;n (1—008717')2;(3)—;”_1 e
Now
— cosnm/3 (-1 X (=1 = (=1)vtt
— o3 ; (3v)3 * ; 2(3v 4 1)3 + ; 2(3v + 2)3
and hence
36 = (—1)" ! 18 & 1 1
A=2(¢ — 2N () -
% (o255 ) - B [ -
36 — (-)! 18 -3 -3 -3
— 3 ——|(1-2 472 -5 < 2.93.
p (C( )+; e ) — ) — )]
Now choose ¢ = 14 to obtain from
Ié; _ 14 o A
1 exp ( e 1)
that 8 > 0.17. Hence ((15.12)) shows that a,, # O(n=%83%) 0

16. Functions with positive real part
We begin with the following auxiliary result.

Theorem 16.1 (Helly selection theorem). Let {«,} be a sequence of nondecreasing
functions on a bounded interval |a,b|, with a,,(a) = 0 and o, (b) = 1. Then some subse-
quence {«,, } converges everywhere in [a,b] to a nondecreasing function o and for each
continuous function ¢ on [a, b]

b

b
lim [ o(t)day,, (1) :/ o(t)da(t).

k—oo J,

Proof. By a diagonalization process we may extract from {«,} a subsequence {f,} such
that 5,(t) — «a(t) for every t € [a,b] N Q. For an arbitrary t € [a, b], let

a.(t) = liminf 5,(t), a*(t) = limsup §,(t).

n—o0

79



Then a.(t) = o*(t) = a(t) for each t € [a,b] N Q. The functions a, and a* are nonde-
creasing because each f3, is nondecreasing and therefore differentiable (thus continuous
as well) aside from a set of measure zero. By Froda’s theorem monotone functions are
continuous aside of a possible exceptional set E C [a, b] that is countable. For each t ¢ E,
it is clear that a.(t) = a*(t) because the rational numbers are dense in [a, b]:

a*(t) = Llir%a (s) = 1513}04 (s) = £1LI%(M (s) = lslir%a*(s) = ,(t).
s€Q seQ s€Q

Thus the subsequence {5, (t)} converges for each ¢t ¢ E. Another diagonalization process
applied to {8, } now produces a further subsequence {a,,, } which converges everywhere on
the countable set E. The function a(t) = limy_,o oy, (£) is therefore the desired function
on [a,b] with a(a) = 0 and a(b) = 1.

To prove the statement concerning integrals, we take advantage of the uniform conti-
nuity of ¢ at [a,b]. Given ¢ > 0, choose a partition

a=to <t <ty<...<t,=0b

such that |¢(t) — ¢(t;)| <efort;o <t <t;, 5 =1,2,...,n. Let M = maxyepay |6(1)].
Then

[ ottan )~ [ storiate)] < Z/ (1)l (1

+2/ o(0)ldat

+24]wmwwwaW|
§5/abdank(t)+s/abda(t)

+ M i |y, (t5) — alt;) — am, (ti-1) + alt;—1)]
— e+ Mji; () — alt;) — (1) + alt;_1)]

Since o, (t) — «(t) for all t € [a,b] as k — oo, we may choose k sufficiently large so that
the last term is at most €. This completes the proof. O
Recall that the Poisson kernel of D is
1—r? 1+ re®

P(r,0 =Re———— 0<r<l1, 6eR.
(r,0) = 1 —2rcosf + r? el—rew’ =7 ’ <

Theorem 16.2 (Herglotz representation theorem). Let u be a positive harmonic
function in D with u(0) = 1. Then there exists a unique positive unit measure j such
that

2m
u(re) = / P(r,0 —t)du(t), 0<r<1, 6¢€]l0,2n).
0
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Proof. For 0 < r < 1, define

1 /[ ,
wr(t) = —/ u(re)ds.
2 Jo

Then p, is an increasing function with p,.(0) = 0 and p,(27) = u(0) = 1 by the mean value
property of harmonic functions. By the Helly selection theorem, there exists a sequence
of radii r,, increasing to 1 and nondecreasing function p on [0, 27 for which p,., (t) — w(t)
as n — oo, for all t € [0,27]. By the Poisson integral formula

1 2m ) 2 )
u(rpz) = —/0 P(r,0 — tyu(rp,e)dt = /0 P(r,0 — t)du,, (1), z=re”.

21

By letting n — oo and appealing to the integration part of Helly selection theorem, we
obtain

u(z) = /0 ’ P(r,0 — t)du(t), z=re",

which is the desired representation because p is a unit measure, i.e., fOQW dp = 1.
To prove the uniqueness of the representing measure, assume that there exists positive
measures p1 and gy such that

2 2t
/ P(r,8 = )dp () = ure”) = / P(r.0 = t)dps(t), e’ €D.
0 0

Then p = py — po is the difference of positive unit measures such that the real part of the

analytic function
2T zt
+z
| S, zen.
0

eit
equals to

[P0 = tauty =/ Plr.0 =it = [ P00~ 00

= —u(re?) =0, re? €D,
Hence, for some v € R,

2m Zt+Z 2m ° int
O:/O i d,u()—l—z*y:/o 1+22€ 2" | dp(t) + iy

n=1

and hence, by conjugation as p is real, we deduce

2
/ e™du(t) =0, ne€Z.
0

Hence p annihilates every trigonometric polynomial. By the Weierstrass approximation
theorem, it must therefore annihilate every continuous periodic function. Since the charac-
teristic function of any interval can be approximated in Lz—norm by a continuous periodic
function, this shows that the y-measure of each interval is zero. Thus p is the zero measure
and M1 = 2. O

81



Corollary 16.3. Let f € H(D) such that Re f(z) > 0 for all z € D. Then there exists
an increasing function p : [0,27] — [0, 00) such that u(2m) — pu(0) = Re f(0) and

ezt

10 = [ S o) + i1 10

Proof. Consider the harmonic function v = Re f. By the proof of Theorem there
exists an increasing function p : [0,27] — [0, 00) such that pu(27) — p(0) = Re f(0) and

2 i(0—t
, 1+ ret®=1)
i6
= R ——— | du(t
e = [ ke (T ) o

2w
:/ Re ﬂdu(t)
0

et — rei

ezt _ 7"620

27
:Re/ H—r?du(t), 0<r<l.
0

Therefore the analytic function f and

2w it
zr—>/ et 4+ re? du(t)

eit — peif

have the same real part. Thus

2w it 6
6= | S dut) = i

for some v € R. But

F0) - [ S Santo) = £0) - Re () = it £(0)

et —(

and the assertion is proved. O

Theorem 16.4. Let f € H(D) with

z)=1+4 i anz"
n=1

and Re f(z) > 0 for all z € D. Then the following assertions hold:
(i) (Rea;)? <2+ Reay;
(i) |an| <2,n €N;
(i) (7)< 2B, ze D

( )‘f<)|§1|z\)2’ z € D.

All these inequalities are sharp.
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1—w

Proof. Since w — {72 maps the right half-plane {z = x + iy : > 0} conformally onto
D

Y

1—f(2)
h(t) = ————, e D,
W=z °
sends D into D with h(0) = 0. Hence, by the Schwarz lemma,
1—f(z)
< D.
‘Hf(z) <lel ze
Moreover, if equality occures for some z € DD, then
1—f(z)
T N ) € Ta
i) ¢
that is,
1—-&2

and hence f maps D onto the right half plane. In this case

Lhlel oy 26 o2
IS0 PO =grap VOIS g5
Now 00
flz) =1+ (—1)"2(&2)"

implies |a,| < 2 for all n € N and
(Re a1)® <2+ Re ay
if and only if
Re (—26)? < 2+ Re (267),
that is, for E =x + iy € T,
(—22)* <2+2(2® — %),
which is equivalent to
4a? < 24 227 — )2
and
a? +yf <,

and thus (i)-(iv) are satisfied. This also shows that (i)-(iv) are sharp.
We may now assume that |(1 — f(2))/(1+ f(2))] < |z| for all z € D. Then

V) = Trray 2ED v0)=-F
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is analytic in D and (D) C D. The Schwarz-Pick theorem yields [¢'(0)] < 1 — |1(0)|%.
Now

11-f(2) al
§(0) = lim YW =YO) _ T T 2
z—0 z z—0 z
. 2=2f(2) +amz+ arz2f(2)
= lim
20 222(1+ f(2))
I 2—2—2a1% —2a92% — ...+ az+aiz + a3 + ...
= lim
20 222(1+1+a12+...)
_ a9
2 4
and hence ) ) ) )
a ol o, laf | 6| o af
2 41— 47 2| 2
This implies (by taking the negative real part on the left)
R 2 2
—Re as + —e (al) S 2 — ‘aél )
that is,
1 o, laif _ 2
24+ Re a9 Z §Re (al) —I—T = (Re (11)

and thus (i) is proved.
(ii) By Corollary there exists an increasing p : [0, 27] — [0, 00) such that u(27) —

p(0) = Re f(0) = 1;

10 = [ S 0 + it 1)

et — 2
Since ) -
:; i_ z =142 ; e~y
we deduce o
a, = 2/ e "du(t), n €N,
SO '

oal <2 [ e du(t) = 2(u(2m) = 0) =2,

(iii) Using the notation above,

U@NSA%

(iv) Since

elt+z

et — z

1+ 2] 1+ |z]
d,utg/ du(t) = , ze€D.
0= o= 17




we have

2w 2 2
! < ——du(t) < ———— D.
< [ Gt < o 2

17. Convex and starlike functions

A set E C C is starlike with respect to wg € E if the linear segment joining w, to every
point w € E lies entirely in E. This means that every point of E is "visible” from wy.
The set E is conver if it is starlike with respect to each of its points, that is, the linear
segment joining any two points of E lies entirely in F.

A convex function is one which maps ID conformally onto a convex domain. A starlike
function is a conformal map which maps D onto a domain starlike with respect to
the origin. The classes of convex and starlike functions in S are denoted by C and S*
respectively. Thus C C §* C 5. The Koébe function

z 1/1+2\° 1
’“<z>—<1_—z>2—1(1_z) —p *€D

is starlike but not convex. The identity mapping f(z) = z, z € D, is convex.
Let P denote the class of f € H(D) such that Re f(z) > 0 for all z € D and f(0) = 1.
According to the Herglotz formula, every f € P can be represented as (a Poisson-Stieltjes

integral)
2 it 2 it
6= [ S+ im0 = [ S )

et — 2 g et—z

where p : [0,27] — [0, 1] is an increasing function such that p(27) — p(0) = 1.

Theorem 17.1. Let f € H(D) with f(0) =0 and f'(0) = 1. Then f € S* if and only if

()
P ePp.

Proof. Let first f € S*. We claim that f maps each D(0,p), p € (0,1), onto a starlike
domain. An equivalent assertion is that f, is starlike. To see this, we must show that
for each fixed ¢t € (0,1) and for each z € D, tf,(2) C f,(D) = f(D(0,p)). But since
f € S* tf(z) € f(D) and hence w(f) = f~'(¢tf(z)) is analytic, maps D into D and fixes
the origin: w(0) = f~1(¢f(0)) = f~1(0) = 0. Hence the Schwarz lemma gives |w(z)| < |2|

for all z € D. Thus tf,(2) =tf(pz) = f(w(pz)) = fr(wi(2)), where wy(2) = w(pz)/p and
gl _,
wi(z)] < P 2|

for all z € D. This shows that f maps each circle |z| = p € (0,1) onto a curve C, that
bounds a starlike domain. It follows that arg f(z) increases as z moves around the circle
|z| = p in the positive direction. In other words,

D (are o) 2 0
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But

%(argf(pew)) = Im (aa@ log f(pe' )) = lm <%) - <ZJ;((§))) ’

'z
)

Conversely, let f € H(D) such that f(0) =0, f(0) =
a simple zero at the origin and no other zeros in D. By the calculatlon above and the
observation just after the definition of P,

=1, we deduce 2

) ¢ P

for all z = pe? and since lim,_,q 222 f(z

%(arg f(pe®)) >0, 0<6<2r

Thus as z runs around the circle |z| = p in the counter-clockwise direction, the point
f(z) traverses a closed curve C, with increasing argument. Because f has exactly one
zero inside the circle |z| = p, the argument principle tells us that C, surrounds the origin
exactly once. But if C, winds around the origin only once with increasing argument, it
can have no self-intersections. Thus C), is a simple closed curve, which bounds a starlike
domain D, and f assumes each value w € D, exactly once in D(0, p). Since this is true
for every p € (0,1), it follows that f is univalent and starlike in D. O

Theorem 17.2. Let f € H(D) with f(0) =0 and f'(0) = 1. Then f € C if and only if

(140 ep

Proof. Let first f € C. We claim that f maps each D(0,7), » € (0,1) onto a convex
domain. To see this, let 21, 20 € D(0,7) with |z;| < |2s]. Let w; = f(%;), and

woztw1+(1—t)w2, O0<t<l.

Since f is convex, there exists a unique zy € D such that f(zy) = wy. We have to show
that |z9| < 7. The function

g(z) = tf (j—;z) +(1-t)f(z), zeD,

is analytic in D with
9(0) =tf(0)+ (1 —1¢)f(0) =0
and
9(z2) = tf(21) + (1 = 1) f(22) = wo.

Since f € C, the function f~!(g(z)) is well-defined. Since h(0) = f~(g(0)) = f~*(0) =
and |h(z)| = |f"'(g9(2))| < 1 for all z € D, the Schwarz lemma 1mp11es |h(2)] < |z]| for all
z € D. Thus

20 = | f M wo)| = | f M (g(22))| = |h(2)] < || <7
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which was to be shown. Hence f maps each circle |z| = r onto a curve C, which bounds a
convex domain. The convexity implies that the slope of the tangent to C,. is nondecreasing
as the curve is traversed in the positive direction. Analytically this means that

0 0 "

- — v > < g < .

%0 (arg(aef(pe )))_O, 0<0<2r
But

5 (s (500 ) = 55 s ()

= 2t (tog ire? (re)]

a6
0 |
= o5 Im (log(ir) + 16 + log f'(re™)) (17.1)
. f”(rew)reiei
" < T e
f”(z)) i0
=Re (1+2 >0, z=re",
( f'(z)
and thus 1 + ZJ}/,/((j)) eP.
Conversely, let f € H(D) with f(0) = 0, f/(0) = 1 and 1+ 2272 € P. The above

calculation shows that the slope of the tangent to the curve C, increases monotonically.
But as a point makes a complete circuit of C,., the argument of the tangent vector has
the total change

2n 8 (9 . 27 ) " 10
/0 20 (arg (af(rew))> df = Re /0 (1 + re? ff’((:eew)> do =27 + 0.

This shows that C, is a simple closed curve bounding a convex domain. This being true
for all r € (0,1) implies that f is univalent with convex range. O

Theorem 17.3 (Alexander 1915). Let f € H(D) with f(0) = 0 and f'(0) = 1. Then
f €C ifand only if zf'(z) € S*.

Proof. 1f g(z) = zf'(2) for all z € D, then

29(z) _ 2 +2 ") L 2R

9(2) 2f'(2) f'(z)
Thus the left-hand function is analytic and has positive real part in D if and only if the
same is true for the right-hand function. Hence

z € D.

fec 2 1+%6P & %EP T 2f'(z) € C,

because f(0) =0 and f'(0) = 1 and thus g(0) =0 and ¢'(0) = f/(0) +0- f"(0)=1. O

Near the origin f € S is close to the identity mapping. Tt is to be expected that f
will map small circles |z| = p, p € (0,1), onto curves which bound convex domains. The
following theorem expresses this in quantitative terms.
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Theorem 17.4. Let p € (0,2 —/3). Then f € S maps D(0, p) onto a convex domain.
This is false for every p > 2 — /3.

Proof. By Theorem

—Re (1 —i—zf//(z)) + L) <

f”(Z)) 1R
f'z))  1=lz2 7~

fe (”Zﬂz) ppE
S 1P
7z TP
) 2P
fz) TP
4]

1|z

IN

1+=2

(17.2)

z €D,

and hence
z e D.

" 1—4 2
e (14580 5 1AL
f'(2) 1— |z
Butl—4r+r2>0for0<r<2— \/§, so f must map such a disc D(0,r) onto a convex
domain by Theorem The Kobe function, for which
K'(z)  14+4z+4 22

E(z)  1—22
shows that the bound 2 — /3 is sharp. O

The number 2 — /3 ~ 0.267 is the radius of convezity for the class S. The radius
of starlikeness is tanh § ~ 0.655. The proof of this fact is harder (Lowner chains for
example).

Theorem 17.5 (Nevanlinna 1920). Let f € S* with f(z) = > a,2". Then |a,| < n
for all n € N. Strict inequality holds for all n > 2 unless f is a rotation of the Kdébe
function.

Proof. Let f € C and define

1+2 z €D,

_Zf/(z> _ C co 2"
p(z) = e 1+; .

Then ¢ € P by Theorem and |c,| < 2 by Theorem [16.4{(ii). Write zf'(2) = ¢(2) f(2)
and compare coefficients of 2™ to see that

z+ i na, 2" = (1 + i cnz") (i anz">
n=2 n=1

n=1

Zanz” + chz"Zanz" (17.3)
=D m" Z ch ot

n=1
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which is equivalent to

n—1
na, = a, + E Cpn—j@j, 1 €N,
j=1

where a; = 1. The proof now proceeds by induction. Suppose we have proved |ax| < k
for k=1,2,...,n—1, where n > 2. Then

n—1 n—1
(n—Dlan| <Y lensjlla] 2 j=n(n—1), (17.4)
j=1 j=1

which proves |a,| < n. According to Theorem [3.1] |as| < 2 unless f is a rotation of Kébe.
It then follows from ((17.4)) that |a,| < n for all n > 2 if f € S* and f is not a rotation of
the Kobe function. O

Corollary 17.6. If f € C with f(z) = > a,z", then |a,| < 1 for n = 2,3,.... Strict
inequality holds for all n unless f is a rotation of the function ¢ defined by ¢(z) = z(1—z)~!
for all z € D.

Proof. If f € C, then zf'(z) € S* by Theorem so nla,| < n by Theorem The

function
z
g pr— p— n
() =1 ;z

satisfies z0'(z) = k(z) and maps D onto the half plane Re w > —1/2, a convex region. O

Various inequalities for S, such as the growth and distortion theorems, remain sharp
in S* because the Kobe function is starlike and is extremal in S. However, these estimates
can be improved for the class C, which excludes the Kobe function. As may be expected,
the half-plane mapping ¢ is the typical extremal function in C. The following theorem
improves upon the Kébe one-quater theorem.

Theorem 17.7. The range of every f € C contains D(0,1/2).
Proof. If f € C and f(z) # w for all z € D, then g(z) = (f(z) — w)? is univalent. Indeed,

g(a) — g(b) = (f(a) —w)* = (f(b) —w)* = (f(a) = F(0))(f(a) + F(b) — 2w)

and (f(a) 4+ f(b))/2 = w is impossible for a convex function f which omits the value w.
Thus ,
w? — g(z)
h(z) = ———= D
(z) 5w 7 2 e D,
belongs to S. But h(z) # w/2 because g(z) # 0, so it follows from the Kébe one-quater
theorem that |w|/2 > 1/4, or |w| > 1/2. The function ¢ shows that the radius 1/2 is the

best possible. O
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18. Close-to-convex functions

An analytic function f in D is close-to-convex if there exists a convex function such that

/

Re (f(z)) >0, zeD.
g(z)

The class of close-to-convex functions f normalized by f(0) = 0 and f’(0) = 1 is denoted

by K.

Note that f is not required a priori to be univalent and the associated function need
not be normalized. The additional condition g € C (convex, univalent, g(0) = 0, ¢’(0) = 1)
defines a proper subclass of K which will be denoted by Kj.

The class K was introduced by Kaplan in 1952.

Every convex function is obviously close-to-convex (take g = f). More generally, every
starlike function is close-to-convex. Indeed, each f € S* has the form f(z) = z¢'(2) for
some g € C |Exercise| and

/ !/
Re (&) — Re (zf(z)) >0, 2¢eD,
9'(2) f(z)
by Theorem [17.1} Therefore we have
CCS"CKyCK.

Ever close-to-convex map is univalent. This follows from the following result.

Theorem 18.1 (Noshiro-Warschawski). If f is analytic in a convex domain D and
Re (f'(2)) > O there, then f is univalent in D.

Proof. Let z and w be distinct points in . Then f is defined on the linear segment

joining 2z and w, and

ﬂa—fwo:/%f@mc:@—uyéfﬁw+u—w@ﬁ¢a
since Re f'(z) > 0. 0

Theorem 18.2. Close-to-convex functions are univalent.

Proof. 1f f is close-to-convex, then Re (f'(2)/¢'(2)) > 0 for all z € D for some convex
function g by the definition. Let D denote the range of ¢ and consider the function

hw) = f(g~ (w)), we D
Hhen Flaw)  F()
/ _ g w _ z y = —lw
T ey T T

so Re (h'(z)) > 0in D. Thus h is univalent by Theorem and so f is univalent. O

Close-to-convex functions can be characterized by a geometric condition somewhat
similar to the defining properties of convex and starlike functions. To do this, the following
lemma is needed.
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Lemma 18.3. Let ¢ : R — R be continuous such that
p(t+2m) = ¢(t) +2m, teR,

and
gb(tl) — ¢(t1) > —m, 1 <. (].8].)

Then there exists a continuous nondecreasing function ¢ : R — R such that
Yt +2m) =(t) + 2m, tER,

and |¢(t) — ()] < /2.

Proof. Consider the function

Y(t) = max(s) —

s<t 5
Clearly, ¥ : R — R is continuous and nondecreasing. In view of properties of ¢,

Y(t+2m) = rglgtxqb(s +27) — g = max [¢(s) + 27| — T - Y(t) + 27

s<t 2
and
T 121 T T
O(t) — 5 < maxofs) = vl) = [6(t) +7] - = (1) + 2,
and thus the lemma is proved. O

Let f € H(D) and let C, = {f(2) : |z| = r}, where r € (0,1). Roughly speaking, f is
close-to-convex if and only if none of C, makes a "reverse hairpin turn”. More precisely,
the requirement is that as ¢ increases, the tangent direction

o (S50

should never decrease by as much as 7 from any previous value.

Because
% (arg (%f{r@%)) = Re (1 + z?fj) . z=re", (18.2)

by the proof of Theorem [17.2] this theorem can be stated as follows.

Theorem 18.4. Let f € H(D) be locally univalent. Then f is close-to-convex if and

only if
[% "
? f (2>) i0
Re {1+ 2 do > —m, z=re", 18.3
A ( f'z) (18:3)

for each r € (0,1) and for each pair of real numbers 6, and 0y with 6; < 0s.
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Proof. First suppose that f is close-to-convex, and let g be the associated function. Then,
as Re f'/g' > 0, for a suitable choice of arguments,

jarg /(=) — arg g (=) < 5. (18.4)

Let

F(r,0) = arg (%f(rew)) = arg (f’(rew)rewi) = arg (f’(r@i")) + g +0

and

G(r,0) = arg (%g(r6i9)> = arg (¢'(re”)) + g +0.

Since g is convex, G(r, ) is an increasing function of 6, see the proof of Theorem 17.2.

By (18.4) _
|F(r,0) — G(r,0)] < 5

Thus, for 0; < 6,

F(r,05) — F(r,0,) = [F(r,02) — G(r,02)] + [G(r,02) — G(r, 6)]

+ [G(T‘, 91) - F(T7 61)] (185)
> —g +0— g = —m,

which is equivalent to (18.3) by (|18.2]).

Conversely, suppose f is locally univalent function with the property ((18.3), and let
t "
2f"(2) 0
(brt:/Re (l—l— )d@, z=re".
=, Fie)

Since f'(z) # 0 for all z € D, arg f’(2) is a periodic function of # and so
t+2m zf”(z)) t ( Zf”(Z))
r 21) — . (t) = Re (1 dd— | Re (1 do
otran) =)= [ e (10 G Y- [ (14575

D [ (%f(@))]; s (550 <9))L

= [F(r.0)55 ~ [F(r.0)]; (18.6)
= F(r,t +2m) — F(r,0) — F(r,t) + F(r,0)
= F(r,t +2m) — F(r,t)

The condition ((18.3)) takes the form

or(ts) — or (1) = /Om Re ()df — /Otl Re ()df — /t2 Re () > —7, 1 <t

t1
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By Lemma there exists a continuous nondecreasing function ¢, : R — R such that

Uy (t + 2m) = ¥, (¢) + 27 and |, (t) — ¥ (8)] < /2.
For p € (0,1), define h, € H(D(0, p)) by the Poisson integral

hp<z>=i/0 PR () — e, = € D(0.p).

2w peit —
Then
] 1 27
Re (,(re")) = 5 [ B0 = )(0,(0) ~ )
™ Jo
where ) )
—Tr
Py(r,0) = —=

p?> —2rpcosf + r?
is the Poisson kernel for D(0, p). Since v,(t) — t is periodic,

Yo(t+2m) — (t+2m) =, (t) + 21 — (t + 27) = Y,(t) —

and 1, is nondecreasing, an integration by parts gives

2Re (h (rew)) _ 1 " QP (r,0 — ) (Y,(t) — t)dt
00 ’ 2wy 067" ’
1 u 813 0 — t) — t)dt
=5 5 (7, t)(W,(t) —t)
1 o 1 2
— 5 [ BAro =00~ 0+ 5 [ R0 — s - a
eriodicity 1 o
PTE 0 4 | Br 0= t)dy,(t) —1> 1.

(18.7)

Applying this to the analytic function

gp(2) = eiap/ et @dw, 2z e D(0,p),
0

where a, € R will be chosen later, we find

1" iap ,thy(z 1Y
Re (1+Z“Cf"(z)):1+Re S hl %)
gp(z) et eihp(2)
=1+ Re (izh;(z))

=1+ Re (ire”n)(zre”)) (18.8)

0 i
=1+ Re (%hp(re 9))

0 ;
=1+ %Re (hy(re)) > 0.
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Thus g, is convex in D(0, p) by Theorem Furthermore,

arg g,(z) = arg (eia"eih”(z))
= arg (eiapei Re hp(z)—Im hp(z)) (189)
= Re (h,(2)) + o,

and

arg f/(re”) = F(r,6) = 5 — 0= 6,(0) + F(r,0) — 5 — 6.

But arg f’(z) is the imaginary part of the analytic function log f’(z), thus a harmonic
function, so it can be expressed as a Poisson integral:

) 1 271 4
arg f'(re’) = g/ Py(r,0 —t)arg f'(pe)dt r < p.
0

We now choose o, = F'(r,0) — 7 and obtain for z € D(0, p),

1 2 ; ; s ; i
arg f'(z) — 92(2) = o /o P,(r,0 —t)arg f'(pe") dt — arg <€Z(F(”’0)_5)e“hp(”e 9’)

—12ﬂPetttho7T9
_%0 P(Ta _)¢P() + (pv)_g_
1 [ ,
50 | Blr0—trde- (F(p,O)—g+ Re (hp(rew))>
21
= L B0 — 1) (0,(t) — (1) dt, 2 = re?.
2 Jo

(18.10)

Since [¢,(t) — ¥,(t)] < § by Lemma [18.3 it follows that
s
|arg f'(2) —arg g (2)| < 5, 2 € D(0,p).

Finally, we observe that g,(0) = 0 and ¢/,(0) = e*e”(©) € T, 0 < p < 1. Now a normal
family argument gives the claim. O

19. Spiral-like functions (Juha-Matti)

Domain D C C is convex if the line segment [z,w] C D for all z,w € D. On the other
hand, D is starlike, if there exists zp € D such that the line segment [z, w] C D for all
w € D. Figuratively speaking in a convex set all points "see each other” and in a starlike
set there is “one police man” who ”sees” the other points. Here two points "see” each
other if there exists a straight segment belonging to the domain between the points. How
about, if we considered some other curves?

A logarithmic spiral is a curve

wW(t) = Wy a(t) = wee M, teR,
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for wy, A € C, Re A # 0. Here Re A # 0 ensures that {|w(t)| : t € R} = (0,00). [If it
were that Re A = 0, Im A # 0, we would obtain a circle D(0, |wg|) and in the case A =0
we would obtain a point wy € C.|

We may assume that A = e for some o € (—7/2,7/2). [We could also assume
wo € T, for example.| Now, we call the curve

W(t) = Wyyalt) = woe’emt, teR,

where wy € C\ {0}, @ € (—7/2,7/2) an «a-spiral. Since €* = cosa + isina and
a € (—7/2,7/2), we have a = Re (¢'*) € (0,1) and b = Im (') € (—1,1). Hence

w(t) = woe " (cos bt — isin bt).

Therefore lim;_,, e~ = 0 and "the curve goes counter clockwise as t — oo if and only if
b <0, that is, a € (—7/2,0). |To see this, recall that

log z = log |z| + i arg z,

which implies
arg z = Im log z,

so that

) —ibt\/ —ib —1ibt
(arge‘”’t),: Im (™) = Im ( e ) =—-b>0

o—ibt o—ibt

if and only if b < 0.
Denote the whole spiral by

W(wo, @) = {wy,o(t) : t € R},
the "positive part” by
W (wo, @) = {wyyo(t) : t €[0,00)}
and the "negative part” by

W™ (wo, @) = {wy,a(t) : t € (—00,0]}.

A domain D, 0 € D C C, is a-spiral-like if W+ (wq, ) € D for all wy € D\ {0}. [Thus D
is a-spiral-like if for each point wy # 0 in D the arc of the a-spiral from wq to the origin
lies entirely in D.|
A function f € U(D) = {f € H(D) univalent } with f(0) = 0 is a-spiral-like if f(D)
is a-spiral-like. Let
D, = {D a o — spiral-like domain }

and
Fo ={f a o — spiral-like function }

p= |J Do F= U ZF

ae(—7/2,m/2) a€(—7/2,m/2)

and set

Now each D € D is simply connected. Moreover, Fy is the class of starlike functions.
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Theorem 19.1. Let f € H(D), f(0) = 0, f/(0) # 0, f(2) # 0 for 0 < |2| < 1 and
a € (—n/2,7/2). Now f € F, if and only if

/

Re {e—mM} >0, zeD. (19.1)
f(2)

Note that by Theorem (19.1) implies that f is univalent.

Lemma 19.2. Let ¢ € H(D), Re p(z) >0, z € D, ( € D. Now the solution of

dz

T = (), 20)=¢, (19.2)

satisfies
|Z(t1)| > ’Z(tz)', 0<t; <ty <0

and limy_, |2(t)| = 0.

Proof. Since
log z = log |z| + i arg z,

we have

which implies

that is,

which gives

(log [=(t)])" = —Re ¢(2(1)) <0
so log|z| as well as |z| decreases as ¢ increases. The solution z(t) is therefore defined for
all t € [0,00) and |z(t)| < |¢], for t € [0,00). Now h(w) = Re p(w) is harmonic. Since
Re ¢(w) > 0, w € D, Re p(w) >, w € D for some § > 0. We deduce that

Re ¢(z(t)) > 6, te]0,00).
Hence
(log|z(t)]) < =6, t € [0,00),

that is,
log |2(t)] < —dt + Cy,

which gives
|2(t)| < e“Pe™ = |¢le™® — 0,

as t — oo. O
Proof of Theorem[19.1] Suppose that f satisfies (19.1)). Let
M(2) -
°&) = Tray e,
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so that Re ¢(z) > 0 for all z € D.
Let ¢ € D be arbitrary, z a solution of (19.2) and define w(t) = f(2(¢)). Now

w(0) = £(¢) by ([192) and
W(t) = F((0)2(8) = —=(0)p(2)F (2(8)) = M((t) = —Mu(d).

Hence

giving

Hence, since A = e,
WH(f(C), @) € f(D)

and f € F,.

We claim that f is univalent. Let f(a) = f(b) for some a,b € D. Now ws(4)(0) =
Wew),a(0) and thus wye)o(t) = wie)a(t) for all t € [0,00). Since f'(0) # 0, function f is
univalent in some disc D(0,¢). By the lemma,

|2(t;a)], |2(t0)] < e

for all t > t, for some t,. It follows that z(¢;a) = z(¢;b) for all ¢t > to, and so by uniqueness
that z(t;a) = z(t;b) for t € [0,00). In particular z(0;a) = z(0;b), which means that
a = b. This proves the univalence of f in D. Conversely, let f € F, (univalent) for some
a € (—n/2,7/2). Now for each ¢ € D,

W*(¢ o) € f(D),
that is,
w(t) = f(Qe ™ € f(D), tel0,00),
where again A = ¢®. We can define
2(t) = 2(t,¢) = FH{f(Qe™), te[0,00). (19.3)

Clearly z(0) = (. For a fixed ¢t € [0,00), g({) = 2(¢;¢) is analytic and |g(¢)| < 1 and
g(0) = 0. Thus |g(¢)| < [¢] by the Schwarz lemma.
On the other hand, ((19.3) implies

F'(2(t:0))2(t: Q) = =2e ™ £(C)
so the proof of ((19.1)) reduces to showing

(Vi)

o<t () ().
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which is equivalent to

This is equivalent to

limlRe (M — 1) <0,
t—0 t ¢

but since |z(¢; )| < ||, this is clear. Thus f satisfies ([19.1]).
Geometric interpretation of (19.1). The radial angle of w = w(t) is

w(58). w0

Image of C'(0,7) = {z € C : |z| =7} is {w(t) = f(re) : t €]0,2m)}. Hence for C(0,r)

the radial angle is .
A(z) = arg <zzf];:§)z)> . z=w(t).

Thus is equivalent to A(z) € (a, + 7). On the other hand, W*(¢,a), ¢ € C, is
a curve with constant radial angle a. Thus an univalent f satisfies if and only if
level curves C, intersect all a-spiral-s at angles between 0 and 7. Thus Theorem is
geometrically obvious.

20. Typically Real functions (Kian)

A function f(z) = z+ > .-, a,2" in the class S is said to be a typically real univalent
function if all the coefficients a,, belong to R, we will denote this class by Sg.

Lemma 20.1. For f(z) =", a,z" € S, the following statements are equivalent:
1. f € Sk.
2. f(2) = ().
3. f(z) € Rif and only if z € R.

Proof. Lets suppose f € Sg, then

JE =Yz =3 @ = s = f(2)

n=1 n=1 n=1

Now let us assume f(z) = f(Z), if z € R then f(z) = f(Z) = f(z), hence f(z) € R. On
the other hand if f(z) € R we have f(z) = f(z) = f(%Z), and since f is univalent we get
z =7Z, hence z € R.




Finally if we suppose f(z) € R if and only if 2z € R, and define g(z) = f(Z), we have
that ¢ is analytic and g(z) = f(z) for all x € (—1,1), so by Wierstrass identity we obtain

0o oo 0o
Zﬁz" = Zan?‘ =g(z) = f(z) = Zanz",
n=1 n=1 n=1

and hence a,, € R for all n. O

Using the characterization of the functions in the class Sg, we can see that the image
set of these functions is symmetric with respect to the real line, more particularly these
functions will send the upper semi disk D™ = {z € D : Im z > 0} in to the upper half
plane C* = {z € C: Im z > 0}.

We will consider the functions f analytic on D, such that f(0) = 0, f’(0) = 1 and
satisfying f(z) € R if and only if z € R, as to be the class of typically real functions, and
denote them by T. These functions still satisfy the property f(D*) C C*, which can be
expressed in the following way

Im z- Im f(2) >0 forall ze€D\R. (20.1)
Theorem 20.2. Given f(z) = z + Y .~ ,a,2" analytic, the following statements are
equivalent:
1. feT.

2. ¢(z) = %f(z) € P and a, € R for all n (we denote this class of functions as Pg).

3. There exists an unique j probability measure on [—1, 1] such that

1 y4
f(z) = / g dta).

Proof. Lets suppose first that f € T, looking at the proof of the characterization for
typically real univalent functions we know that a,, € R for all n. Let us denote h(z) = 1_222,

which has a simple pole at 0, and boundary values h(e?) = —2isinfd. For 0 < p < 1 we
define ¢,(2) = h(z)f(pz) which is analytic in ID since it has a removable singularity at 0.

Re ¢,(e”) = Re h(e”)Re f(pe”) — Im h(e®)Im f(pe®)

= 2sinfIm f(pe®®) = ZTIm peIm f(pe) >0,
p

due to (20.1)).Since ¢, is analytic, Re ¢p,(e”) > 0 and ¢,(0) = p > 0 we can conclude
Re ¢,(z) > 0 for z € D, and by taking limit we have lim,_,; ¢,(2) = ¢(z), which preserves
the property Re ¢(z) > 0 and ¢(0) = 1, hence ¢ € P.

For 0 < p < 1 we define f,(z) = % which is analytic in D except for simple
poles at z = £1. Since ¢ € P we know that f,(z) € R when z € R and f/(2) =

lim, . ;‘(’Yi)f) = ¢(0) = 1, so f, is univalent in a neighbourhood of 0, and by the same

arguments as in we have f,(D") C C*. Lets suppose f is univalent in D(0,€), we
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consider g,(z) = % = h(2)¥(pz) which is analytic in D except for a simple pole at 0,

and with boundary values

Im g,(e”) = Re h(e™)Im ¢(pe®) + Im g(e”) Re 1(pe™) = —2sin O Re ¢(pe’?), (20.2)

so Im g,(e?) < 0 for § € (0,7), so for each s < e we denote D} = {z € D : s < |z|, Im 2z >
0}, we know that Im g,(z) < 0 for all z € ODf = {z € D : s < |z|,Im z > 0} for all
s < ¢, since f,(D*) C C*. Hence taking limit when s — 0 we obtain Im g,(z) < 0 for
z € DT, which implies Im f,(z) > 0 for z € D", and by taking limit when p — 1, we
conclude that f € T.

Now we shall suppose that f € T and prove the existence and uniqueness of said
measure, for this we shall use the previously proven equivalence, and the [16.3] allows the
following identity

N | =

1) =3 (/&) +T3) = 57— [#2) + 0]

iz 2w 6it_|_z 2m €it+§
= , du(t . du(t
21— 22) (/0 el )+/O ez du(t) (20.3)
2 P 1 »
= du(t) = ———du(t
/0 1 —2cos(t)z + 22 u(t) /11—2tz+z2 V().

where v is defined on the segment [—1,1], such that v(A) = p({e” : cos(d) € A}). This
proves the existence of said measure, and the uniqueness of v follows from the uniqueness

of u given by

Reciprocally suppose that f satisfies said representation , in that case

Im f(z) = Im (/_11 mdu(xo :/_11 Im (m) du(z),  (20.4)

together with Im —2— = 1|z

1—2zz+22 |1—2z2+22|2 Im 2, we obtain

1 1—|Z’2

=22z + 22|2(Im ?dle) 2 0

Tm f(z)Im 2 :/

hence f € T by O

Now due to Theorem [20.2, we can prove that Sg & T, since f(2) = 2z + 2% = 25 (1 -

z1) € T, because ¢(z) = 1 — z' € Pg. But f ¢ S, since f'(z) = 1 + 32? has zeros at
z =41,
3

-

Yet by Theorem we also have that 7' is convex, since Fy is also convex, and this
property is preserved. This contrast with the fact that Sg is not convex since k, k, € Sg,
but we know that g(z) = & (k(2) + kx(2)) = £ (k(2) — k(—2)) & S.

2 2
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Theorem 20.3. Let f € T and f(z) =2+ . ,a,2" for all z € D. Then
|an+2 - an| <2

for all n € N.

Proof. Using we have that

1— 2 00 . 00 . 00 .
o(z) = . f(z):1+z;anz 1—2%2 +1:1+z%(an+2—an)z+l,
and the result follows directly from theorem [16.4] O

This last result is stronger than Bieberbach’s conjecture, hence all f € T, satisfy
Bieberbach’s Conjecture.

To finish this section we will prove the Kébe’s 1/4-theorem, for functions in the class
T. In order to prove this we will use two auxiliary results, one of which we will take for
granted.

Theorem 20.4. Given f € T, and z = re?, the following assertions hold

L If Re (2+1) > 2 then |f(2)] > 2

2. If Re (z+ 1) < —2 then |f(z)| > L

[1—=]

3. If =2 < Re (24 1) <2 then \f(z)\zw

The proof of this theorem can be found in |§].

Lemma 20.5. Let C denote the arc |z +i| = V2 on which Im z > 0. For z = re € C
we have |Re (z+1)] < 2.

Proof. First we denote s = % (7” + %) If 2 € C,, then 2rsinf = 1 — 72, since

2=|z+id?=r%cos’0 + (1 +rsinf)? =1+ 7>+ 2rsinf
2

hence cos?f =1 —sin?6 =1 — (%) =2 52

Now z satisfies |[Re (z+ 1) | =|cosf| (r+ 1) < 2 if and only if |cos ] < 1. which is
true for z € Cy, since 2 — s < & . 0

Theorem 20.6. Let f € T then
1
D<O’Z_L> c f(D).
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Proof. First suppose that f is continuous in D. Let z € C, with z # +1. Using the
Lemma and the distortion theorem, we obtain that

|2|(1 = |2*)sinf 1

|f(Z)|Z |1—22|2 _47

since 2rsinf = 1 — r? and
|1 — 2% = (1 — r?cos(20))* + (r*sin(20))* = 1 +r* — 2r? cos(20) = 2(1 — r?)*. (20.5)

and for real z, we have |f(2)| > (1+‘\z| 7z, hence |f(£1)] > 1

Now by the same argument on the curve Cy = {2 : [z —i| = \/_}, where we can use the
simmetry f(z) = f(2) for all f € T, we get that in the curve C' = C1UCy, |f(2)| > 1, for
all z € C, hence D (0,%) C f (D) due to Roche’s theorem since f(0) = 0.

For general f, apply the previous result to fr(z) = % f(Rz), and take limit R — 17, O

21. Carathéodory convergence theorem

We begin with an auxiliary result which is of independent interest.

Theorem 21.1 (Vitali’s theorem). Let f, be analytic and locally bounded in a do-
main D for all n € N, and suppose that {f,(z)} converges at each point of a set which
has a clusterpoint in D. Then f, converges uniformly on each compact subset of D.

Proof. Because the functions f,, are locally bounded, they form a normal family. Extract
a subsequence { g, } which converges uniformly on each compact subset of D to an analytic
function g in D. If {f,} does not converge uniformly on compact subsets to g, then there
exists € > 0, a compact set K C D, a subsequence {f,, }, and a sequence of points z, € K
such that

Fu(2) —g(z) 2, keN. (21.1)

Extract a further subsequence of {f,, } which converges uniformly on compact sets to a
function h. Then h = g because the two analytic functions agree on the set of points
where {f,} converges, which has a clusterpoint in D.

So a subsequence of {f,, } converges uniformly on compact sets, in particular in K,
to g. This contradicts and completes the proof. O

Carathéodory gave a complete geometric characterization of the convergence of uni-
valent functions in terms of the convergence of their image domains.

Let {Q,} be a sequence of simply connected domains in C with 0 € €2,, and €, # C
for n € N. The kernel of {€2,} is the set 2 defined as follows

(i) if 0 ¢ Int (),cp 2n, then Q = {0} ;

(ii) if 0 € Int (), o 2, then Q is the set of all points w € C such that there exists a
simply connected domain H containing 0 and w such that H C €, for all sufficiently
large n. In other words, each compact subset of 2 lies in all but finite number of
domains €2,,.
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We say that €, converges to its kernel Q if each subsequence {€2,, } of {Q2,,} has the
same kernel €. In such a case, we write {2, —  as n — oc.

If Q, € Q4 for all n, then Q = J, .2, and Q, — Q, as n — oo. [This would be
enough for our purposes here.|

Example 21.1. Let I be a (closed) Jordan curve enclosing 0 and let € be its inner
domain (bounded and connected component of C\ T'). For a given wy € I, let T be a
Jordan arc emanating from wy to oo such that it does not intersect O\ {wy}.

Let {w,} C T be a sequence of distinct points such that w, traverses clockwise on T
and w,, — wgy, n — oo. Consider v, = ru {"part of T from wqy to w,”} and Q, = C\ ~,.
Then Q,, — Q. [We introduced T’ here so that we have a "slit domain”.]

Theorem 21.2. Let {Q,}, .y be a sequence of simply connected domains such that 0 €
Q, C C for alln € N, and let Q be the kernel of {Q2,,}. Let f,, : D — Q,, be univalent and
onto such that f,(0) = 0 and f/(0) > 0. Then f, converges uniformly on compact subsets
of D to f € H(D) if and only if Q, — Q # C, asn — oo. In the case of convergence there
are two possibilities. If Q = {0}, then f = 0. If Q # {0}, then Q is simply connected,
f:D — Qis conformal, and f; ' — f~! uniformly on compact subsets of ), as n — oo.

Proof. Assume first that f, — f uniformly on compact subsets of D. Then f € H(D) is
either constant function 0 or univalent in D.

Case I: f = 0. We must show that Q@ = {0}. Otherwise some disc D(0, p) is contained
in Q, for all n € N. The inverse functions f, ' are then defined in D(0,p) and have
the properties f,1(0) = 0 and |f;'(w)| < 1 there. By considering g¢,(z) = f,(pz)
we may deduce by means of the Schwarz lemma that |¢/,(0)] < 1 or [f/(0)] > p > 0.
This contradicts the assumption that f, — 0 uniformly on compact subsets. The same
argument shows that every subsequence of {{2,} has kernel {0}, so Q,, — Q = {0}.
Case II: f £ 0. Then f is univalent and maps D conformally onto some domain A C C,
with f(0) =0 and f/(0) > 0. We must show that A = Q and ©,, — .

We first show that A C . To do this, let £ C A be compact and surround E by a
rectifiable Jordan curve I'in A\ E.

Let § = dist(E,T') > 0 and let v = f~(T'). We will now prove that £ C €, for
all n sufficiently large. Fix wy € E and observe that |f(z) — wg| > 0 for all z € 4. By
the uniform convergence |f,(2) — f(z)| < 0 for all z € v and n sufficiently large, say
n > N. Hence, by Rouché’s theorem f,(2) —wy = (f(2) — wo) + (fu(2) — f(2)) has
the same number of zeros inside v as does f — wp; namely, one zero. [This is due to
Fa(2) = F(2)] < 6 < () — wol

This shows that wy € €, for all n > N, where N depends on E but not on wy. In
other words, ¥ C €, for all n > N. In view of the definition of the kernel €2, this shows
that A C Q.

It follows from the reasoning above that the inverse functions ¢, = f, ! are defined
for all n > N on E and are uniformly bounded there: |¢,(w)| < 1. Now choose an
expanding sequence of compact sets F,, C A and apply a diagonal argument to extract a
subsequence {¢,, } which converges uniformly on each compact subset of A to ¢ € H(D)
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with ¢(0) = 0 and ¢'(0) > 0 (this is inherited from f!(0) > 0). In fact,

1 1
0< 70) ~ 1}1_{20% = lim ¢,,(0) = ¢'(0),

SO ¢ is univalent in A.

The next step is to show that ¢ = f~'. Fix zy € D and let wy = f(zp). Choose
e > 0 sufficiently small so that C' = {z : |z — 29| = ¢} lies in D, let T" = f(c¢), and let
= diSt(U}O, F) > 0.

Then |f(z) —wo| > 6 on C while |f, (2) — f(2)| <6 on C for all k sufficiently large,
say k > ko, it follows from Rouché’s theorem that f,, (z;) = wy for some z; inside C.
Thus |z, — 20| < € and ¢, (wy) = 2. Therefore

|p(wo) — 20| < |P(wo) — b, (wo)| + |21 — 20| < 2.

for k sufficiently large, because ¢,, — ¢ uniformly on compact subsets of A. Letting
e — 07 we deduce ¢(wy) = zp. Because zy € D was arbitrary, this proves ¢ = f~1.

The preceding argument applies to every subsequence of {¢,} and shows that some
further subsequence converges to f~! uniformly on compact subsets. It follows that
¢n — 1 uniformly on each subset of A (assume not and find a contradiction).

In fact, the same argument shows that ¢, converges uniformly on compact subsets of
Q) to a univalent function + which satisfies [1)(w)| < 1 there. However, f~! already maps
A conformally onto D, so A = €.

It remains to show that €2, — . But the entire argument above can be carried over
for any subsequence {2, } to conclude that f maps D onto the kernel of {2, }, which
must therefore coincide with the kernel of {€2,}. Hence Q,, — Q, and Case II is done.

Conversely, suppose 2, — Q2 C C.

Case I: QQ = {0}.

Case I: 2 = {0}. Then we claim that f/(0) — 0. If not, there exists ¢ > 0 and a
subsequence { f,,, } such that f} (0) > e. By the Kébe 1/4-theorem, each €2,,, must contain
D(0,1/4), contradicting the assumption that each subsequence of {€2,} has kernel {0}.
Thus f/(0) = 0, n — oo. On the other hand, Theorem [5.3| implies

||
(1 —1z)*

It follows that f, — O uniformly on compact subsets of D.

[fn(2)] < [£2(0)] z€D. (21.2)

Case I: Q # 0, Q # C. Then we claim that {f/(0)} is a bounded sequence. Indeed, if

1. (0) — oo for some subsequence, the Kébe 1/4-theorem would imply that {€,, } has
kernel C. This contradiction shows that {f/(0)} is bounded. It follows by that f,
are uniformly bounded on each compact subset of D and therefore constitute a normal
family. By Vitali’s theorem, in order to conclude that f, converges uniformly on compact
subsets of D, it suffices to show that it converges pointwise. Because {f,} is a normal
family, two subsequences with different limits at 29 € D would have further subsequences
fn, and f,,, converging uniformly on compact sets to different functions f and f with

f(z0) # f(20). In view of what we have proved, the corresponding sequences {2, } and
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{Q,, } would then have different kernels, the images of D under f and f, respectively.
But this contradicts the hypothesis €2,, — €2. Thus we have shown that f,, — f uniformly
on compact subsets of . O

22. Bounded variation and absolute continuity

Let f:[a,b] > R and a = zp < z; < ... < x; = b a partition of [a,b]. Define

p= Z(f(x]) — flxj—1))", rT =max{r,0},

J=1
and

n=> (fl;) = flwj1))", v =lr|—rt,

Jj=1

and

t=n+p=2 |f(z;) = flz;)l

so that f(b)— f(a) = p—n. Let P =supp, N =supn and T" = sup ¢, where the supremum
is taken over all partitions of [a,b]. We clearly have PN <T < P+ N. P, N and T are
the positive, negative and total variation of f over [a,b]. We write T® = T°(f) and so on
to denote the dependance on a,b and f. If T' < oo, f is of bounded variation over [a,b] in
which case we write f € BV = BV (a,b).

Lemma 22.1. If f € BV (a,b), then T?(f) = P°(f) + N2(f) and f(b) — f(a) = Pb(f) —
Nz (f)-

Proof. For any partition of [a,b], p = n+ f(b) — f(a), and it follows that P = N + f(b) —
f(a). Also

t=p+n=p+p—(f(b) - fla)),

and thus
T =2P—(f(b)— f(a)) =P+ N.

O

Theorem 22.2. Let f : [a,b] - R. Now f € BV(a,b) if and only if f is the difference
of two nondecreasing real-valued functions on |a, b).

Corollary 22.3. If f € BV (a,b), then f'(x) exists for almost all x € [a,b].

Let f € [a,b] — R. If for given € > 0 there exists 6 > 0 such that
Do) = fla)l <e
j=1
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for every finite collection
{(wja)) sa<az<alj<b, j=1,...n}

of pairwise disjoint intervals with

n
Z |2 — ;] <,
=1

then f is absolutely continuous on [a,b).
Lemma 22.4. If f is absolutely continuous on [a,b], then f € BV (a,b).

Proof. Let 0 be one corresponding to € = 1 in the definition of the absolute continuity.
Each partition of [a, b] can be split, by inserting fresh partition points if necessary, into K
sets of intervals, each of total length less than ¢, where K is the largest integer less than
1+ (b—a)/d. Hence for any partition we have t < K, and so T' < K. O

Corollary 22.5. If f is absolutely continuous on [a,b], then f is differentiable almost
everywhere on [a, b].

Proof. 'This follows by Lemma and Corollary [22.3 O

23. Arzela-Ascoli theorem

Let X be a metric space (or a topological space) and (Y,d) a metric space. F C
{f : X = Y} is equicontinuous at x € X if for given ¢ > 0 there exists an open set
O, containing z such that d(f(z), f(y)) < e for all y € O, and f € F. F is equicontinu-
ous on X if it is equicontinuous at each point x € X.

Lemma 23.1. Let {f,} be a sequence of mappings of a countable set D into a metric
space Y such that for each x € D the closure of the set {f.(z) : n € N} is compact. Then
there exists a subsequence { f,,} that converges for each x € D.

Proof. Let D = {x}}. Pick up a subsequence {fni} of {f.} such that {fni (xl)} con-
verges. Pick up a subsequence {fn%} of {f"i} such that {fn% (xg)} converges. Continuing

in this fashion we obtain a subsequence fni convergent at x1,...,x;. The diagonal se-
quence {fn}g} _is a subsequence of {f”i} and thus {fn;: (:cj)} converges for all j. We
=j

deduce that {fn’,g} converges for each = € D. O

[
k

Lemma 23.2. Let X be a topological space and Y a complete metric space. Let

{fn : X = Y} be equicontinuous. If the sequence {f,(x)} converges at each point X of
a dense subset D of X, then {f,} converges at each point of X to a continuous function
f: X—=Y.

106



Proof. By the equicontinuity, for a given x € X and ¢ > 0 there exists an open set
O = O, . containing x such that d(f,(z), fn(y)) < ¢/3 for all y € D. Since D is dense,
there must be a point y € D N O, and since {f,(y)} converges by the hypothesis, it must
be a Cauchy sequence, and we may choose N = N(¢) € N such that

A(ful9). ful) < 5 mn > N.
Then

d(fu(@), () < d(fu(@), fu(y) + d(a(y), fm(Y)) + d(fn(y), fn(2)) < %'3 =e, (23.1)

for n,m > N. Thus {f,(z)} is a Cauchy sequence in Y and converges because Y is
complete.

Let f(z) = lim, o fin(z) for all z € X. To see that f is continuous at z, let € > 0 be
given. By the equicontinuity, there exists an open set O = O(e, z) containing x such that
d(fn(x), fu(y)) < e for all n and y € O. Hence, for all y € O we have

A(f (@), () = Tim d(ful), faly) < <,

and thus f is continuous at x. O

Lemma 23.3. Let K be a compact topological space and (Y, d) a metric space. Let
{fn : K — Y} be equicontinuous sequence of functions that converges at each point of
K to a function f. Then {f,} converges to f uniformly on K.

Proof. Let ¢ > 0. By the equicontinuity, each x € K is contained in an open set O, such

that d(f,(z), fu(y)) < e/3 for all y € O, and n € N. Hence d(f(x), f(y)) < /3 for all
y € O,.

By the compactness of K there exists a finite collection {O,,...,O,,} of these sets
which covers K. Choose N sufficiently large so that for all n > N we have

d(fu(zj), f(z5)) <€/3

for all z;, j = 1,..., k. Then for any y € K there exists j € {1,...,k} such that y € O,,.
Hence

d(fu(v), f () < d(fa(y), fulw;)) + d(fules), f(5)) +d(f(z5), f(y)) <e, (23.2)

for n > N. Thus f, — f uniformly on K. O

Theorem 23.4 (Arzela-Ascoli). Let X be a separable metric space and (Y, d) a com-
plete metric space. Let F be an equicontinuous family of functions f : X — Y. Let {f,}
be a sequence in F such that for each x € X the closure of the set {f,(xz) : n € N} is
compact. Then there exists a subsequence { f,,, } that converges pointwise to a continuous
function f, and the convergence is uniform on compact subsets of X.
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Proof. Since X is separable, there exists a countable set D C X such that D = X. By
the hypothesis the closure of the set Z, = {f,(z) : n € N} is compact for each x € D (in
fact for all z € X). By Lemma there exists a subsequence {f,, } that converges at
each x € D. But Z = |J,.y Z, is compact in Y and hence (Z,d) is complete. As {f,,}
is equicontinuous (as a subsequence) family of functions from X to Z, we may apply
Lemma and deduce that {f,, } converges at each z € X and the limit function is
continuous. Now, if K C X is compact, then Lemma shows that f,, — f uniformly
on K. O

Corollary 23.5. Let F be an equicontinuous family of real-valued functions on a sepa-
rable metric space X. Then each sequence { f,} in F which is bounded at each point (in a
dense subset) has a subsequence { f,, } that converges pointwise to a continuous function,
the convergence is being uniform on compact subsets of X.

24. First steps in Lowner theory

Léwner’s idea was to introduce a parameter in the Taylor coefficients of a univalent
function without using the univalence and with some additional properties in order to be
able to differentiate with respect to the parameter and take advantage of such derivation.
He worked with Riemann maps of slit domains (C minus a Jordan arc ending at oo). For
some applications this is not a real restriction because such family of functions is dense in
S in the topology of uniform convergence on compact subsets. Years later, Kufarev and
Pommerenke generalized Léwner’s idea to general univalent functions. Here we will work
with this new point of view. The next definition is due to Pommerenke.
A (radial) Lowner chain is a family {f;} of analytic functions in D such that

(1) each f; is univalent for all 0 <t < oo;

(2) {f:(D)} is an increasing family of simply connected domains, that is, fs(D) C f,(D)
forall 0 <s <t < oo

(3) f:(0) =0 and f/(0) = €' for all .
By (2) and (3) we can define ¢,; = f, ' o f,. Clearly, @, is univalent and
0(0) = (f7) (£5(0))£2(0) = (f7 1) (0)e™ = (f7 1) (fe(0))e* = e,

The biparameter family {¢s.} is the evolution family associated with the Léwner chain

{fi}-
Since e~'f; € §, Theorems 5.2 and [5.3| yield

el e

nd

a AE <o 2TEL L ep (24.2)
e = e s e ' ‘

Moreover, theorem 4.1} Hylelds e'D(0,1/4) C f(D) and hence {J,, f:(D) = C.
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Lemma 24.1. Let {f;} be a Léwner chain with evolution family {¢s,}

82|

[fi(2) = fs(2)] < m

(' —e*), 2€eD,

and

‘QOWJ(Z) - Sps,u(z)‘ < m(l —e )7 z € ]D7

forall 0 <s<t<u<oo.

. Then

Proof. Since ¢s; : D — D is analytic and ¢,,(0) = 0 for all s < ¢, the Schwarz lemma

implies |ps:(2)| < |2| for all s < t. Therefore the function

T4+e7 1 — 27, (2)

t) = , eD,
p(z787 ) 1 _ es_t 1 _|_ z_1g037t(2) z
has a positive real part. By Theorem [16.4)3)
1+ |z|
t < cD
|p<Z7S7 |— 1_|Z|7 Z b
and hence
z— @s1(2) 1+ |z|1—est v eD
z24@si(2)| T 1= |z| 1+ et ’
and
L+ ]z]1—est
— (2] <2 . zeD.

Since |f/(z)| < 2€'(1 —|z])7%, =z e D, by (24.2)), we deduce
[fe(2) = fs(2)] = [fe(2) = filps(2))]
JIRGL
)

5,t(2)

< [z = pa(e)|
> s\ 2) | g

(1—12])?
T4 |z|1—es"t 2¢
<2
<2k 2] T+ et (1 |2])3
o Afz[(1 A+ 2]) f —e?
TTA ) e

8
12 4(et—es), 0<s<t<oo.

< " 1
I ED)
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Similarly
|‘:0t7U<Z) - @S,u(zﬂ = |90t,u - ‘Pt,u(¢5,t(z))|

/ o (€)de
WS,t(Z)

1
<lz-— @s,t(2)|1_—|2’2 (24.5)

22|14 |z[) 1 —est 1
T 1—|z| l14et1—|z2

2|2| et
=it )

because

1
/
<
’gps,t(z)‘ -1 |Z|2’

by the Schwarz-Pick lemma. O

z €D,

To show that every f € S can be embedded in a Lowner chain, we need the following
lemma. Note that the guess f; := fe! doesn’t work in general.

Lemma 24.2. Every sequence of Léwner chains {f['}, .y has a subsequence that con-
verges to a Lowner chain {f;} locally uniformly in D for each fixed t > 0.

Proof. Write f/'(z) = fu(z,t) so that f, : D x [0,00) — C for all n € N. Lemma

implies

8 -
T (e —e®), neN, zeD(0,r),0<s<t<oo.

|fn<zvt) - fn(z75)| S
Moreover, gives
(2.0 = et = | [ttt

<le=gl [ 10— 9z + 6. 0lds (24.6)

1
et d, meN 120,56 DO

It follows that

|fn(zat) - fn(573)| < |fn(zvt) - fn(z78)| + |fn(z73> - fn(€73)|

. , 24.7
< (e ) e Tl 240

forn € N, 0 < s <t <ooand z¢ € D(0,r) and hence {f,}, .y is an equicontinuous
family on the compact set K = {(2,t) : [2| <1—1,0<t <k} forall k e N\ {1}.
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Since {f,}, oy 18 also uniformly bounded in K, by (24.1), we may apply Arzela-Ascoli
theorem. It implies that for k£ € N fixed, there exists a subsequence {fnp }peN which
converges pointwise in D x [0, c0), and furthermore the convergence is uniform on compact
subsets. In particular, the convergence is uniform on compact subsets of D for each fixed
t > 0. Since the limit function f;(z) = f(z,t) satisfies f(0,¢) = 0 and f'(0,t) = €, it
follows that f # 0, and hence f is univalent in ID for each ¢ > 0.

To finish the proof we must show that fs(D) C f,(D) for 0 < s <t < co. Note if that

f”p<z’s) f”p(@st( ) )7 pEN'

By Montel’s theorem (or argumenting as above), there exists a subsequence of {n,} that
we denote again by {n,}, such that gpgfz converges to some @, uniformly on compact
subsets of D. The limit o5, is univalent in D, fixes the origin, and ¢, ;— = e¢*~*. Moreover,
fy0 95y = fo and |@y(2)] < |2] by the Schwarz lemma, so £,(D) C f,(D). 0

Theorem 24.3. For any f € S, there exists a Lowner chain {f;} such that f = f.

Proof. First assume that f is analytic in D. Then the image of T under f is a closed
Jordan curve C. Let G and H denote the inner and the outer domains of C' in the
extended complex plane C, respectively. Let g be a conformal map of C'\ D onto H such
that g(co) = oc.

For t > 0 consider the closed Jordan curve C; = {g(etew) <0< 27r} and its inner
domain G(t). Then G(0) = G = f(D) and the family {G(t)},., satisfies

0€G(s) CG(Ht)CC, 0<s<t<oo,

and
G(t,) — G(ty), tn — to € [0,00), (%)
and G(t,) — C, t, — .

Let g; map D onto G(t) such that ¢;:(0) = 0 and B(¢) = ¢;(0) > 0. The function
grtogs: D —D,t > s, fixes the origin and hence the Schwarz lemma implies

_A(s)
0

By the uniqueness of the Riemann map g;, we have gy = f. The Carathéodory kernel
theorem together with () shows that the function f is continuous on [0, 00) and £(t) — oo
as t — oo.

Set ft = gp-1(et)- Then

d

E(gt_l OQS)(Z) <L

£(0) = g%fl(et)(o) = ﬁ(ﬁfl(et)) =¢

and

fe(0) = gg-1(en(0) = 0
for all t. Moreover, f,(D) C f(D) for all 0 < s < t < oo by the construction. Also
fo=gs1y=090=1Ff because f = go and thus g;(0) = 5(0) = 1.
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For the general case, let f be an arbitrary function in S. For eachn € N, let r,, = 1 —%
and let f,(2) = r ' f(r,2). Then each f, € S and is univalent in a neighbourhood of D.
By the proof above, there is a Lowner chain {f'} with fJ = f,..

By Lemma there exists a subsequence {f'} that converges to a Lowner chain
{f:} locally uniformly in . Since, in particular, fi'* — fy locally uniformly in D and

05 (2) = fau(2) = rpl f(rn2) = f(2), as ny — oo, for each fixed z € D, we deduce

fo=Ff. O

Theorem 24.4. Let {f;} be a Lowner chain. Then there exists a function p : D X
[0,00) — C such that

1) 2+ p(z,t) is analytic for all t > 0;

(1)
(2) t — p(z,t) is measurable for all z € D;
(3) p(0,t) =1 for all t > 0;

(4)

4) Rep(z,t) >0 for all z€ D and t € (0,00);

and, for almost all t,

aféiz) = 2f/(2)p(z,t), z€D. (24.8)

The exceptional set of measure zero is independent of z.

Proof. By Lemma [24.1] for 0 < s <t < K €N

8)z| s t—s
|[fe(2) = fs(2)] < m(et —¢) < 8€Kma (%)
since ¢! — e® = ['e®dr < (t — s)e’, and hence, for a fixed z € D and arbitrary finite

collection (t,,t,) of pairwise disjoint intervals in [0, K], we have

Z ‘ft’ = frn (2 )} ~ Z(tm’ — tm),

m

sot — fi(z) is absolutely continuous on each [0, K], K € N, for each z € D. Corollary
implies that for each K € N, af t ) exists for almost all ¢ € [0, K]. Since a countable union
of sets of zero measure is of measure zero, we deduce that there exists £, C [0,00) of

measure zero such that %ﬁz) exists for all ¢t € [0,00) \ E,. It follows that we can find

E C [0,00) of measure zero such that aft(l/ ) exists for all £ € [0,00) \ E and all k € N,

Fix s € [0,00)\ F and let {t,} be a sequence of nonnegative numbers such that ¢, — s,
n — oo, and t, # t for all n € N. By , for a given compact set K C D, there exists
M = M(K,{t,}) such that

ftn(Z) B fS(Z)

<M, zekK.
t, — S
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The set
{Z [ ]D) : hm M exists}
n—oo

t, — S

contains the points 1/k for all £ € N, and thus it has a cluster point in D. By Theoremm
(Vitali’s theorem), there exists h € H(ID) such that

lim —ft"(z) — /() = h(z),

zeD
n—00 t, — S
Since {t,} was arbitrary,
lim £12) = /(2) _ h(z), zeD.
t—s t—s

By using that fs = f; o ps+ we can write

ft(zz)f : fs(Z) _ 6:5__8 1 z;_fs—:(lz) f;(z_) ;sfzii)p(z’ s,t), zeD, (24.9)

where p is defined by (22.3) and has non-negative real part.

Lemma [24.1| shows that f; — f; as t — s, locally uniformly in D and therefore also
fi — f!, as t — s, uniformly on compact subsets of D. Since ¢, ,(2) = (f; ' o f)(2) — 2
as t — s, it follows that

fi(2) = fo(2) _ fe(2) = filpsu(2))
) z— ps4(2)
_ Jo FOz+ (1= Nar(2)(z = aa(2)))dA
Z = Ps, t(z)

/ £+ (1= News(2))dr = F1(2), t—s.

(24.10)

Take s ¢ F so that fs( ) exists. By letting ¢ — s in (24.9) and using (24.10]), we obtain

0fs(2)

o = p(z.9)

for some p analytic in D with respect to z which again has non-negative real part and

p(0,s) = 1. Such a function is measurable in s because p(z, s) is the limit of p(z, s,t) and
this function is continuous in s for all ¢. O

A function p : D x [0,00) — C satisfying conditions (1)-(4) of Theorem is called
a Herglotz function, and Equation (24.8)) is known as Léwner PDE.

25. The third coefficient

Theorem 25.1. Let f(z) =z+ Y ., a,2" be a function in S. Then |az] < 3.
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Proof. The function
g(z) =Af(A2) =2+ daz® + N2+ ..., 2 €D,

belongs to S for all A € T. For a suitable choice of A the third coefficient of ¢ is nonneg-
ative. Therefore we may assume that a3 > 0. By Theorem there exists a Léwner
chain {f;} such that fo = f. Let p: D x [0,00) — C be a Herglotz function related to
{f:} in the sense of Theorem [24.4] Denote

fi(z) = €'z + ax(t)2® + as(t)2” + ...

and
p(z,t) =14+ ci(t)z + ca(t)2® + . ..
for all z € D. Then ([24.8]) gives

ez +ahy(t) 2 + ay(t)2® + ...

=z[l+ ()2 + ()22 + .. ][l + 2as(t)z + 3as(t)2> + .. ] (25.1)

and hence
ay(t) = 2ax(t) + c1(t)e’

and
ay(t) = 3az(t) + c1(t)az(t) + cot)e'.

By solving the first equation, we deduce

as(t) = —e* (/too e "¢ (z)dx + (J) :

Since e f, € S, we have

le tas(t)| = €'

/ e “ci(x)dx + C" <2
t
by Theorem This implies C' = 0. Similarly,
as(t) = —e (/ (e co(x) + 2 ay(x)ci () d + C’) .
¢

Repeating the argument, applying this time Theorem [3.2] we have again C' = 0 (this can
be seen also by using the fact that {e~'f;} is a normal family and hence their Taylor
coefficients must be bounded). In particular,

0> = as(0) = — /0 " eter(2)da
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and

—_ /O h e 2 eo(2)dr — 2 /O N (—e*ai(x)) / ) e ¢y (s)dsdx (25.2)

_ /O " e y(2)d — /0 N ( / N escl(s)ds)de
_ /O e ey(2)da + ( /0 N e_xcl(x)dx>2.

Finally, we deduce by Theorem [16.4(1),(2) [(Re ¢;)? < 2 + Re ¢y

- /0 " e 20, (5)da + ( /0 N e_xcl(x)dx>2]

< /Ooo (2 (Re ¢1(2))2)dx + (/000 ¢~ Ro cl(x)da:)2

= /Ooo 2e > dx — /000 e ¥ (Re c1(r))*dx + (/000 e "% Re ¢, (x)e_’”/de) 2 (25.3)
. /OOO =2 (Re ¢1(x))2dx /OOO e (Re ¢y (x))2dz /OOO e dy

- /0 T (e — ) (Re ey(2))’de

< 1+4/000(ex—e2x)dx:1+4(1—%> =3.

We are done. O

angeange

26. Lowner theory and univalence criteria

In 1965 Pommerenke proved that the converse of Theorem is true.

Theorem 26.1. Let p : D x [0,00) — C be a Herglotz function. Then, for any z € D
and s € [0,00), the initial value problem
dw
dt
has a unique absolutely continuous solution w, which is also Lipschitz continuous of
t € [0,00) locally uniformly with respect to z.

= —wp(w,t) aet € [s,00), w(s) =z, (26.1)

[VKCD,HM(K,])) . |w(t1)—w(t2)| SM’tl—t2|, ZEK]

Write @s+(z) = w(t). Then ps; is univalent in D for all 0 < s <t < oo and
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(1) Ps,s = id;

(2) Ps,t = Pu,t © Psus 0<s<u<t<oo;
(3) @s,t(o) and gp;vt(()) — 5t

Proof. Let wy(z,t) =0 and

t
Wpi1(2,t) = zexp (—/ p(wn(Z,T),T)dT) , neNU{0}, tels,00), zeD.

Then w,(0,%) = 0 and since the real part of p is positive,

¢
|Wnt1(2,t)] = |2] exp (—/ Re p(wn(Z,T),T)dT) <|z|, =ze€D,

so the equality part of the Schwarz lemma gives |w,(z,t)| < |z| for all z € D\ {0}. Take
¢ from the line segment [w,_1(2, 7), w,(z,7)]. Then Theorem [16.4(4) yields

2 2
(T—lgh? = (=2

' (z,7)| <

because |¢| < max {|w,_1(z,T)|, |wa.(2,7)|} < |z|. On the other hand,

b
/ e “dz

when Rea > 0 and Re b > 0. Hence

—a

le™ — et = <|a—10b| sup |e7*| =|a —b| sup exp(—Re z) < |a — b,

2€[a,b] z€|a,b)

|wn+1(za t) - wn('za t)‘

exp (_ /Stp(wn(Z,T),T)dT) — exp (— /:p(wnl(z,r)m)ch)’

/:p(’wn(z,T),T)dr — /Stp(wnl(Z,T)r)dT

t
t

= |7]

<

< \p(wn(2,7),7) — p(wn—1(z,7),7)| dT

wnp (z,T)
[ wemi

wn—1(2,7)

S

</
< ﬁ/t wn (2, 7) — w1 (2, 7)| dr.

dr
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Applying the inequality we just established n — 1 more times, we deduce

|wn+1(z t) — wy(z,t)]

t1
|z| 22/ / |wn_1(2,T) — wp_o(z, 7)|drdt;

2" 1 o1
W/ / / lwy(z,7) — 0|drdt, 1 - - dt;

2n n
:W@—S) ZGD, HENU{O}

| /\

IN

It follows that for m > n we have

[ Wi (2, 1) — wy(z,1)|
< Nwp(z,t) — wm_1(2,0)] + ... + |wnr1(z, 1) — wy(2, 1)

< —t—s

2 1= [
< m, |z| <7, s<t<T,
. —r)%j!

j=n
M T
A [ (O

We deduce that lim,, ., w,(2,t) exists uniformly in D(0,7) x [0,T] for every r € (0,1)
and T € (0,00). [Another way to see that the limit exists is to consider

wy = Y (w;(z,t) — wja(z,1))
j=1
and to use the estimate
2n
(1= |z])?n!

(t—s)")

|wj1(2,8) —w; (2, 1) <
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Denoting the limit by ¢s; (w, depends on s also) we have found an analytic function in
z and continuous in ¢ which satisfies

t
pst(z) = zexp (—/ p(goSJ(Z),T)dT) (26.2)
by Lebesgue’s dominated convergence theorem. Now ¢, +(0) = 0,

ss(2) = zexp(—0) =z, z €D,

ol (2) = exp (- / t p(%(m,r)dr) — exp <— / t dt) — et

by case (3) of the definition of p. It remains to show that p,: = @, 0 @, for all
0<s<u<t<oo. Itisclear that w(t) = ¢s(z) satisfies (24.8]):

8803;(2) = 2exp() (= 1)p(@s(2), 1) = —@sa(2)p(0se(2), 1) = —wp(w, )

and

and w(s) = ¢s4(2) = 2. Moreover, implies that w is locally absolutely continuous
function of ¢ € [s,00). (CHECK). In addition, ¢, is a Lipschitz continuous function of ¢
locally uniformly with respect to z. Indeed, by Theorem [16.4)(3)

exp(—xl¢p0dr)-—exp(—ll¢p0df)

to
<z [ Ip(psr(2),7)dr
t1

< r(1+r)

|05, (2) = s (2)] = |2]

(ta — 1)
for |z] <rand s <t; <ty < oc.

We next show that the solution is unique. To this end, let u be another solution such
that u(s) = z. Now (126.2)) yields

exp (— /tsp(u(r),r)dr) — exp (— /tsp(w(r),r)dr)

/pwmﬂm—/mmmﬂm
< r/ p(u(r), 7) — plw(r), 7)| dr
t (1)

g

(7)
2r t
= (1—r)2 lu(r) —w(r)|dr, t>s, [z <7

u(t) —w(t)] = 2|

<r

IN

dr

| e

w
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Consider a subinterval [s,t;] C [s, 00|, and let M > 0 be such that |u(t) — w(t)| < M on
[s,t1]. Then, for t € [s, 1], we have

M
(1—=7)?

By applying this together with the previous estimate, we deduce

u(t) —w(t)] < 7 (t—s).

u(t) — w(t)| < % (ui—rry)n (t—s)", telst], neN

Note that the factor n! comes from the integrations. The Stirling formula yields u(t) =
w(t) for all ¢ € [s,t1], and thus the solution is unique.

The indentity @5 = @yt © @5, follows from the uniqueness of solutions: both sides
satisfy and have the same value when t = u.

It remains to show that each ¢, is an univalent function when 0 < s <t < oco. Let
to > s and z1, 29 € D such that

Ps,to (z1) = Ps,to (22).
Let v;(t) = ¢s.4(2;) and denote
v(t) = vi(t) — va(t) = @se(21) = su(22).

Then v(ty) = 0. Since Re p(z,t) > 0 and p(0,t) = 1, the Herglotz integral formula
(Corollary [16.3] ITm f(0) = 0) gives the estimate

|21p(217t) - Z2p(227 )| =

for z1,20 € D and t > 0. Namely

27 it 2m it
e’ +z e’ +z
21/ Ldu(t) — 22/ . 2du(t)‘
0 0

ett — 21 6“-22
2w it
et + 2 €+ 29
S/ S T dp(t)
0 1 2
1+|22|1+‘21’
— 2m) — u(0
=1_ |22’1— |Zl|’21 ZQ‘(:“( 7T) :u( ))
_ 1+|Z2|1+|21||21—22|

1=zl |
since p(2m) — 1(0) = p(0,¢t) = 1 and
cta c+b (a—b)(ct+a)(c+b)

a— bc—b_ c—aec-0 a,b,ce C, (c—a)(c—0)#0.
Consequently,
5000)] = 10001 (0.0) ~ w(OpCa(0,0] < T, s <o



Choose K > 0 such that |v(t)] < K for s <t <ty. Then

) o1 1 1 1
lo(t)] = / Zot)dr| < K/ Flal bl lal Ll g
¢ Ot 0 1=zl — |z 1—[z2] 1 — |2
Hence
to a
t)| = —u(t)d
o) =| [ groor
o1 1
< [
i L=zl 1— |z
1 1 2t
< K( T laf 14 ‘Z2|) / (to — t)dr
1—[z|1 =2/ J;
<K (1+ 1] 1+ \22!>2 (to—)*
1_|22|1_|22| 2
By continuing in this fashion, we deduce
1 1 " (to—t)"
()] < ( it +|22|) b D" s<i<u,
1 —|zo| 1 — |29| n!
and thus v = 0 on [s, {] (the factorial does the job!). Hence
U(S) = UI(S) - UQ(S) = (ps,s(zl> - 905,5(22) =z — k= 0
giving z; = 2o as claimed. The proof is complete. O
Corollary 26.2. Let p and ¢s; = w(t) be as in Theorem |26.1, Then
fo(2) = lim e’ 4(2) (26.3)

t—o00

exists uniformly on compact subsets of D, {f;} is a Léwner chain satisfving fs = f; 0 ps4,

t > s, and
%ft(z) =zf/(2)p(z,t) ae t>0, zeD.

Proof. By the proof of Theorem [26.1]
t
si(2) = zexp <—/ p(g&sﬂ-(z),T)dT> .
The function ey, belongs to S, so Theorem (j.3)) gives

2] et 2 eD.

|ps5,t(2)| < m )

Fix r € (0,1) and let z € D(0,7). Then |ps(2)| < r (by the proof of Theorem ) and

Th iv) 2

Ws,‘r(z)
11— p(per(2),7)] = / P (€. m)de
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by Theorem [16.4{iv). Let ¢,#' > s. Then

et*sgos’t(z) — etl*sgps’t/(z)

tl

e ® 9057,5/(2’)‘
et p,4(2)

zexp(f 1 —p(ps,(2), ))d7>
zeXP(f — pps(2), ))d7>

1— €xXp (/t (1 _p(@s,T(Z)vT)) dT) |
2]

S m [exp /t (1 _p<§0s,’r(2)77—))d7— - 1]

r Qes—min{t,t'}
< e (o (-4 ) = +eP0

and hence {e' "¢}, is Cauchy locally uniformly in z. Therefore the limit

f+(2) = lim €', 4(2)

t—o0

- {et_s¢8,t(z>

= |et_sgos’t(z)‘ 1—

= |€t_8908,t(2>

is well defined and exists locally uniformly in z. Moreover, if ¢ > s, Theorem [26.1{2)
yields

fs(z) = lim €7 ,(2) = lim " (0 @s)(2) = fi(wse(2))-

T—00 T—

Also f5(0) = limy,00 €'¢54(0) = 0 and [p(0,t) = 1]

1) = Jim e (exp (= [ plor(a)imiar) 2.

f4(0) = lim e - e = ¢°.
t—o0

SO

Then, by Hurwitz’s theorem f; is univalent in D for each ¢ > 0 and thus, by putting
everything together, {f;} is a Lowner chain.
We skip the proof of the fact that the PDE is satisfied for a moment. O

We next prove a characterization of Lowner chains, which is one of the main results
of the theory.

Theorem 26.3. The function f : Dx[0,00) — C with f(0,t) = f,(0) = 0 and f/(0) = €',
t > 0, is a Lowner chain if and only if the following conditions hold:

(i) There exists r € (0,1) and M > 0 such that f; is analytic in D(0,r) for each t > 0,
locally absolutely continuous in t > 0 locally uniformly with respect to z € D(0,7)
and

|f:(2)] < Me', ze D(0,r),t>0. (26.4)
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(ii) There exists a Herglotz function p : D x [0,00) — C such that for all z € D(0,r)

% (z,t) = 2fi(2)p(z,t) ae. t>0. (26.5)

(iii) For each t > 0, f; is the analytic continuation of fi|pw,) to D, and further, this
analytic continuation exists under the assumptions (i) and (ii).

Proof. First assume that {f;} is a Lowner chain. Since e”'f, € S for each ¢ > 0,
Theorem implies that for each r € (0,1) there exists M = M(r) > 0 such that
|fi(2)] < Met for all z € D(0,7) and t > 0. Since the absolute continuity follows by
Lemma [22.1] (i) is proved. Part (ii) follows by Theorem

We now prove the converse statement. Let r € (0,1), M > 0, fi(2) and p(z,t) satisfy
(i) and (ii). We show that f; is locally Lipschitz continuous in ¢ locally uniformly with
respect to z € D(0,7). To do this, let p € (0,7) and T" > 0. By using Cauchy integral
formula and (26.4), we find L = L(p, T') such that

/()| <L, zeD(0,p), tel0,T]. (26.6)
(]

This together with (26.5) and Theorem [16.4](iii) yields

‘8f(z,t)
ot

1+p -

Further, since
20f(z,t
ft2<z>_ft1(z>:/ f(at )dta 0<t <ty <T,
t1

we deduce

|ft1(Z) — ft2(2)| < N(tg — tl), z € D(O,T)7 0<t; <ty <T. (267)

Since p € (0,r) and T" > 0 were arbitrary, f; is Lipschitz in ¢ locally uniformly with
respect to z € D(0,7).
Theorem [26.1] shows that the initial value problem

ow
ot
has a unique locally absolutely continuous solution w, w(t) = ¢s.(2). Moreover, for all
s and t, s, is univalent and |ps.(2)| < |z| in D. For z € D(0,7), s > 0 and ¢t > s, let
g(z,8,t) = fi(psi(2)). Since @s¢(z) = w(t) is Lipschitz continuous in ¢ € [s,00) locally
uniformly with respect to z € D by the proof of Theorem [26.1) we easily deduce that

g(z,s,t) is locally Lipschitz continuous in ¢ for ¢ € [s,00) locally uniformly with respect
to z € D(0,r) as well. Indeed, (26.6) implies

= —wp(w,t), a.e. te[s,00), w(s)=z

3
Fi(2) = fu©)] < / F)ldr] < Lz —¢]
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for all t € [0, 7], T >0, z € D(0,p), £ € D(0,p) and p € (0,7). Hence, if s > 0 and
T > s, the above inequality and (26.6) give

19(2, 5, t1) = g(2, 8, 02)| = [, (05,2 (2)) = fra (@522 (2))]
< S (0, (2)) = fro (@52 ()] + [ foa (951 (2)) = fra(05,02(2))]
<N(ty =) + L@, (2) = @s,(2)]
< N(ts —t1) + R(ta — t1)

for all z € D(0,p) and s < t; <ty < T. Tt follows that for all z € D(0,r) 2g(z,s,t)
exists for almost all t > s and moreover,

o 0
ag(z, s,t) = aft(%,t('z))

= 2 (F(par(2),0)

= ol + (35 (eu)

(o)) (Gpoua(e) 4 sl 1)) =0 a0

Because ¢(z,s,t) is locally absolutely continuous in ¢ and ¢, 4(2) = 2, we deduce that
g(z,s,t) is constant as a function of ¢ and hence

filpsi(2)) = fs(2) = f(s,2), z€ D(0,r), 0<s<t<o0.

We next extend the function f;(2) = f(z,t) univalently to the whole disc D. By (26.4)),

we have
e fzt) =2l < e fE D+ 1< M+1, zeDO,r), t=0,
and since f/(0) = €', e f(z,t) — 2 = as(t)z® + ..., and thus Schwarz lemma yields

2
le™" f(z,t) — 2| < (M + 1)%, ze D(0,r), t>0.

|Clearly
s flrzt) —r <M+1, =zeD.
Tz
Therefore »
ro flrzt) =z <M+1, zeD.
rz
Put z = w/r.|

Also since e *p, € S, Theorem gives

2] 2es_t, zeD, 0<s<t< .

ps(2)] < m
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Hence, the identity
flesi(2),t) = f(z,s), z€ D(0,r), 0<s<t<oo,
implies

|£5(2) = e'psi(2)] = €le™ f(psa(2), 1) = @su(2)]

’@s,t(Z)P

r2

‘Z|2 e2s—2t

(1= =Dt r2
(M + 1)e>~t
(1—r)* 7

<e'(M+1)

<e'(M+1)

< z € D(0,r).
From this we deduce
e'pei(z) = fulz), t— o0, (26.8)

uniformly on D(0, 7).
On the other hand, if g;(2) = g(z, s) is the function defined by

QS(Z) = tliglo etSOS,t(Z)v

then this limit exists locally uniformly on D for each s > 0, and g : D x [0,00) — C is
a Lowner chain by Corollary 26.2 Moreover, g(z,s) = f(z,s) for z € D(0,7) and s > 0
by (26.8). By using (iii) and the identity theorem of analytic functions, we deduce g = f
in D x [0, 00).

The reasoning in the next result completes the proof of Corollary

Theorem 26.4. Let {f;} be a Lowner chain and ¢, the evaluation family associated
with {f;}. Then there exists a Herglotz function p such that

Of(z,1)
ot

Moreover, for each s > 0 and z € D, s, is the unique locally absolutely continuous
solution of the initial value problem

%—Q: = —wp(z,t), ae t>s, w(s) =z, (26.10)

= z2f,(z)p(z,t) ae t>0, zeD. (26.9)

and the limit
lim cp(2) = fil2) (26.11)
— 00

exists locally uniformly on D.

Proof. The existence of p such that (26.9)) holds follows from the proof of Theorem [26.3]
Let u = u(z,s,t) be the locally absolutely continuous solution of the initial value
problem

Ju
ot

= —up(u,t), a.e. t>s, u(zss) =z,
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for each s > 0 fixed and z € D. Then |u(z,s,t)] < |z| for all z € D and w is univalent
for t > s in D by the proof of Theorem Since f(z,t) is locally absolutely continuous
in t, it is differentiable a.e. on [0,00), and with a similar reasoning as in the proof of
Theorem we deduce that f(u(z,s,t),t) is also locally absolutely continuous in ¢ and
hence differentiable a.e. on [s,00). Therefore yvields

%f(U(Z, 5,t),t) = f{(U)% +uf/(u)p(u,t) =0, ae. t>s.
Hence f(u(z,s,t),t) = f(u(z,t,s),s) = f(z,s) and thus

f<¢8,t(z>7t) :f<u('z787t>vt)7 ZGD, t > s.

[Continuos functions which agree a.e. are indentical.|] Since f; is univalent in D, we must
have u(z,s,t) = ps4(z) for all z € D and 0 < s <t < co. Consequently, p,(2) satisfies
the initial value problem. Moreover, from Corollary [26.2] equation (26.11)) follows. O

Corollary 26.5 (Becker 1972). Let f € H(D) with f'(0) # 0. If
/(=)
'(2)

i (1-12)*) <1, zeD, (26.12)

‘z
then f is univalent in .

Proof. We may assume that f(0) =0 and f/'(0) = 1. By (26.12)) we deduce f'(z) # 0 for
all z € D. Let

fi(z) = fle"2) + (" —e Hzf'(e'2), ze€D, t>0.
Then f, € H(D), f:(0) = f(0) =0,
f(0) = f1(0)e + (" —e™)[f(0) + 0] = ¢

for all t > 0, and f;(2) is absolutely continuous on [0,00) for each z € . Clearly, for
each r € (0, 1) there exists M = M (r) > 0 such that |f,(z)| < Me" for all z € D(0,r) and
t > 0.

|One may also see that

e 'fi(z) =2+ 0(e"), t— o0,
locally uniformly in z, and hence

lim ™" fi(2) = 2

t—o0

locally uniformly in z. Consequently, {e_tft}tzo is a normal family, and for each r € (0,1)
there exists M = M (r) > 0 such that |f;(2)] < Me! for all z € D(0,r) and ¢ > 0.] Hence
(i) in Theorem is satisfied for each r € (0,1). To see (ii) note first that

M = fle72)(—e"2) +efzf(e72) + ez f" (e 2)(—e '2)

ot _
+et2fle2) — etz f (e 2)(—e T 2)
— etzf/(e—t ) _ (1 _ e—2t)22f//(e—tz)
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and

2fi(z) = 2f (e 2)e™ + 2! — ) [f(e2) + 2f" (e 2)e ]
— eaf(e7t2) + (1 — e )2 (e )
— c2f(e ) [1 - Bz 1)),

where 1
o BN N Gl ‘2
E(z,t)=—(1—e)e Flea)
By using the hypothesis (26.12)) and the inequality 1 — e 2 < 1 — |e~t2|? for z € D, we
deduce

fret )
o f(e7'2)
TPl tz)

[B(z )] = (1—e™)

e

<(1—le7*2]) e <1,

and hence f/(z) # 0 for all z € D and ¢ > 0. Define

p(z,t) = —2 zeD, t>0.

Then

9ft(2)
plat)(1 = B(eut) =

B etzf'(e_tz) —(1- 6—2t)22f//(€—t2)
B etzf'(e7tz)(1 — E(z,t))
€tzf'(€_tz) _ (1 _ 6_2t)22f”(6_t2)
etzf'(e7tz)
(1 N 6—21&)2,2]0//(6—162,)
o f e

=1—(1—-e)efzi—72

x (1— B(z,1))

—1—

2)
L)
Fle ) 1+ E(z,t),

that is,

1+ E(z,t)
1— FE(z,t)
and also p(0,t) = 1 for all ¢. It follows that p is Herglotz. Theorem shows that {f:}
is a Lowner chain, in particular fy = f is univalent. O

p(z,t) = zeD, t>0,
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27. Baernstein’s theorem on integral means of univalent functions
(Taneli)

One important problem in the theory of univalent functions is to find the sharp upper
bounds for the integral means

1 2 ) » 1/p

%/0 ‘f(re’9)| d9> , 0<r<l,

for 0 < p < oo. In the case p = 1 the problem is closely related to the Bieberbach
conjecture. The main step in Littlewood’s proof that |a,| < en (Corollary is to

obtain the estimate M (r, f) <r/(1 —r) for all f € S. Once this estimate is improved to

where £ is the Kébe function, the proof gives |a,| < §n. In 1973 Albert Baernstein showed
that My(r, f) < M,(r,k) for all 0 < p < oo and f € S. In fact, he established a more
general inequality for the integral means defined in terms of an arbitrary convex function.
In the proof he used a remarkable fact that a certain maximal function, now known as
Baernstein star-function, is subharmonic.

Recall that a function ¢ continuous on R is said to be convez if ¢ |(z + y){ < Yo(x)+

2
¢(y)) for all z,y € R. It is said to be strictly conver if strict inequality holds unless = = y.

M) = (

My(r, f) < Mi(r, k) =

Theorem 27.1 (Baernstein’s theorem, 1973). Let ¢ : R — R be convex and non-
decreasing. Then for each f € S,

21

/%qs(log\f(re”)p deg/ ¢ (log |k (re)|) d8, 0<r <1,
0 0

where k is the Kébe function. If ¢ is strictly convex, then equality holds for some r only
if f is a rotation of k.

The choice ¢(z) = eP* gives the result mentioned above:
Corollary 27.2. ForO0<p<oo and f € S,
My(r, f) < My(r, k)
with equality only if f is a rotation of k.

As already mentioned, the proof of Baernstein’s theorem involves a certain maximal
function, which we now proceed to define. Let u be a real-valued function defined on
the annulus r1 < [z| < ry such that w, € L'(0,2r), where u,(f) = u (re®), for each
r € (r1,72). The Baernstein star-function of u is

u*(re) = sup / u (reit) dt, 0<6<m,
|E|=20 J

where |E| denotes the Lebesgue measure of the set £ C [, 7]. Baernstein showed that

the star-function has the following remarkable property.
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Lemma 27.3. If u is continuous and subharmonic in the annulus r < |z| < rq, then u*
is continuous in the semiannulus {re“’ T <r<ry,0<0< 7r} and subharmonic in the
interior.

To prove Lemma we need the following more elementary properties of the star-
function, some of which will also be needed in the actual proof of Baernstein’s theorem.
These are purely “real-variable” results which make no reference to complex function
theory.

We start with a simple representation formula for convex functions. For any real-
valued function g, we will use the notations g™ (x) = [g(z)]T = max{g(z),0}.

Lemma 27.4. Let f : R — R be a convex function with ¢(s) = 0 on some interval
(—00, s9). Then

o) = [ ls =07 dutt)

o0

for some nonnegative measure dji.

Proof. A convex function satisfies a Lipschitz condition on each compact subinterval, and
so is absolutely continuous there. Thus

o) = [ swa=—[ -

Integration by parts now gives
o) =~ 0O -1+ [ -ndsw = [ ls-0rds

because [s — t]* = 0 for t > s. Since d¢’(t) > 0 because ¢ is convex, this is the desired
representation. O

Let g be a real-valued function on (—m, 7). The distribution function of g is

At) = [{z - g(x) > t}].

It is clear that A is nonincreasing and right-continuous, that is, A(¢) = limy, .o+ A(t +h) =
A(t+). By the definition of the Lebesgue integral,

/_:g(:v) d = —/_th)\(t).

Two functions defined on the same set are said to be equimeasurable if they have the same
distribution function. Thus two equimeasurable functions have equal integrals.

One particular functions equimeasurable with ¢ is of special importance. If A is contin-
uous and strictly decreasing, the symmetric decreasing rearrangement of g is the function
G defined for 0 < x <  as the inverse of ), then extended to [—,0) as an even function:
G(—z) = G(z). In the general case, we must resort to the more technical definition

G(z) =min{t: A\(t) <2z}, O0<z<m.
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G(0) is taken to be the essential supremum and G(7) the essential infimum of g, and
again G(—z) = G(z). Tt is not difficult to see that g and G are equimeasurable: If A and
A are the distribution functions of g and G, respectively, then

A(t) = {z: G(z) > t}| =2|{z > 0:min{s : A(s) < 2z} > t}|

—9{z > 0:A(t) > 22}] = 2 ‘ [o, @)’ — A\(t).

Now consider the star-function

g*(f) = sup / g(x)de, 0<6<m.
|E|=20 J E

It is useful to note that ”sup” may be replaced by "max”, that is, the supremum is always
attained, as the following lemma shows.

Lemma 27.5. For each 6 € [0, 7| there exists a set E C [—m, 7| of measure |E| = 20 for
which ¢*(0) = [, g(z) dx.

Proof. For 8 = 0 and for § = 7, the assertion is obviously true. For 0 < 6 < 7, choose
t such that A(t) <20 < A(t—). Let A = {2z : g(z) >t} and B = {x : g(x) > t}. Then
|A| = A(t) and |B| = A(t—). Choose a measurable set E with A C E C B and |E| = 26.
Then for any set F' of measure |F| = 26,

/Fg(:v) dr = /F(g(m) —t)dr + 26t < /Tr [g(z) —t]" dx + 20t

—T

:/E(g(x)—t)dx+20t=/g(x)d%

E

because g(x) —t <0 for all ¢ F and g(z) —t > 0 for all € E by the choice of the set
E. This proves the lemma. O

The star-function ¢g* and the symmetric decreasing rearrangement G are closely re-

lated, as the following lemma shows.

Lemma 27.6. For each 0 € [0, 7],

0 < 0 <, let E be the set of Lemma and let ¢ be determined by A(¢) % 20 < \(t—).
Then since [g(z) — ¢]T and [G(x) — t]* are equimeasurable,

Proof. For 6 = 0, both sides vanish. For § = 7, both sides equal to [" g(z)dz. For

g (0) = /Eg(x) dr = /7r [g(x) — t]" dx + 20t = /7r [G(z) —t]" dx + 26t.

—T —Tr
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But it follows from the definition of G and the choice of ¢ that
AME) At
{z:G(zx) >t} = (—%, %) C (—6,0)
Mt—) ANt—
C (—Q, —)) ={z:G(z) > t}.
2 2
Thus

/ﬂ[G(:c) — ) o+ 20t — /G(G(a:) ) da+ 260 — /_26?(:1;) da

-7 —0

O

The next lemma reveals the role of the star-function in the proof of Baernstein’s
theorem.

Lemma 27.7. For g,h € L'(—x,7), the following three statements are equivalent.

(a) For each function ¢ convex and nondecreasing of R,

/ oo ds < [ o(h(z)) da

/7r [g(x) —t]" dx < /7r [h(z) — 1] da.

—Tr —T

(b) For eacht € R,

(c) g*(0) < h*(9) for all 6 € [0, ].

Proof. (a) = (b). This is trivial since ¢(s) = [s — t]* is convex and nondecreasing.

(b) = (a). Since ¢ may be approximated by a monotonic sequence of lower truncations
(max{¢(x),a}, o € R), there is no loss of generality in assuming that ¢(s) = « for all
s < sg, where o and sy are constants. Furthermore, since ¢(s) = ((b(s) — a) + o, we may
assume o = 0. Then ¢ has the integral representation of Lemma [27.4] and hence

/_ng( da:—/_w/_ ) — 1] dul(t d:z:—/ /_7r " dx du(t)
/ /_7r 1" da du(t) /gb

(b) = (c). Since (b) clearly implies that [ g(x)dx < [ h(x)dz, it is enough to
consider the case 0 < 6 < m. Let v be the distribution function of h, and choose ¢ to
that v(t) < 26 < v(t—). Then as in the proof of Lemma [27.5] there is a set E of measure
|E| = 260 such that h(x) >t for all x € E and h(x) < 0 for all z ¢ E. Hence if F is any
set of measure |f| = 26,

/Fg(x) dx = /F(g(x) —t)dx + 20t < /Tf [g(x) —t]" do + 20t
< /7r [h(x) — t]" dw + 20t = /(h(m) —t)dx + 260t

= / h(z) dx < h*(0).
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Since F is arbitrary, it follows that ¢*(6) < h*(0).

(c) = (b). Let X be the distribution function of g. Given t € R, choose 6 € [0, 7|
so that A\(t) < 20 < A(t—), and let E be a set of measure 20 such that g(x) >t on E
and g(z) <t elsewhere. Appealing to Lemma [27.5 choose a set F' with |F| = 26 so that
h*(0) = [, h(x)dz. Then

/ “lgle) — )t dr = [ (6@ 10 < 57(0) 1

—T E
g

< h*(0) — 20t = /(h(x) —t)dr < / [h(z) —t]* dx,

F -7
which completes the proof. O

We now turn to the proof of Lemma the main tool in the proof of Baernstein’s
theorem.

Proof of Lemma [27.3 First we consider the assertion that u* is continuous in the given
semiannulus. Choose and arbitrary pair of points z = re? and 2/ = e with r,r' €
(ri,r2) and 0,6 € [0, 7]. By Lemma there is a set E C [—m, 7] of measure |E| = 26

for which
u* (rew) = / U (reit) dt.
E

Let E' C [—m, 7] be an arbitrary set of measure |E'| = 26', chosen so that E' C E'if § <6
and E C E'if § <0'. Then
u*(z) —u'(2) < / u (re’) dt —/ u (r'e) dt
E '/

= / u (re') dt —/ u (re') dt—i—/ (u(re) —u (r'e")) dt

E E/ E!
< }u (r@it)| dt —I—/ {u (Teit) —u (T'eit)’ dt,

F —7

where F' = (E'\ E') U (E' \ E) has measure |F| = 2|0 — ¢’'|. Interchanging the roles of z
and 2’ and recalling that w is continuous, we see that |u*(z) —u*(2')| < e if |z — 2/| < 0.
Thus u* is continuous.

The subharmonicity of u* lies deeper. It is convenient to view the function u (re') as
defined (for fixed r) on the unit circle T rather than on the interval [—m, 7]. Let n be a
positive integer, and let

uy (Tew) = Sup/ u (reit) dt, 0<60<m,
E

E

where the supremum is taken over all sets £ C T of measure |E| = 20 which are the union
of at most n disjoint closed arcs. Clearly

u,, (rew) <y (rew) <u* (reie) , n=12....

We will now check that w (re’”) — u* (re) as n — oc.
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Let € > 0 and let A C T be an open set such that A D T\ F =: E¢ and
2r—0)=|T\E|<|A <2(m—0) +e.

Let A; C T, j € N, be disjoint open arcs such that A = U;’il A;. Take n € N so large
that [A®™| > |A| —¢, where A®™) = Uj-1 4;, and denote B =T\ AM = M, AY. Then

|[E\B™|=|EnA™| <|ENA|=|A\(T\E)| <,

and thus
u (reie) > / U (reit) dt = / U (Teit) dt — / U (reit) dt > u* (Teie) — Me,
B(n) E E\B™)

where M = maxye|_r - u (re) < oo by the continuity of u. Hence uj, (re”) — u* (re')
as n — 00.

It now suffices to show that each function w;, n = 1,2,..., is subharmonic. The
preceeding argument may be adapted to show that w is continuous, so we only have to
show that u;, also has the local sub-mean-value property.

The proof will require some additional notation. For 0 < p < r, let

. . m
rpet =) a(y)] < 5

Note that r(—v¢) = r(v) and a(—v) = —a(v). For r; <r <ry, 0 <60 < and arbitrary
real ¢, define

0
v(r, 0, ) :/ u (rei(tﬂa)) dt.

-0
We will need the identity

/Wv(r(w)ﬁﬂc(w),w)dw: /_ﬂvw),e,waw»dw, 0<0<m  (211)

—T

valid for p so small that ry < (1)) <ry and 0 < 0 + a(v)) < m. To prove (27.1), write

/ o).+ a@) @) db = [ () + Ja(w)) do,

where
—0+a(w) ,
n = [ (e ) d
—0—a(y)
and
0+a(v)) _
B = [ (@) ar
—0+a(y)

But f_ﬂﬂ Ji(¢) dyp = 0 since Jy(—) = —J1(¢). On the other hand, the transformation
u=1t—ay) gives

0
Jo(t) = / u (r()eH D) dy = u(r (), 0, 0 + a(w)),

0
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which completes the proof of (27.1).
If I(p,0) denotes the closed arc of the unit circle described counterclockwise from
e'?=0) to e'¥19)  we may write

v(r,0,p) = /1( e)u (re’) dt.
¢,

We are now ready to show that w’ has the local sub-mean-value property. Fix re
with r <r <ryand 0 < 6 < m. The supremum in the definition of v, is attained simply
because a continuous function on a compact subset of the torus T?" has a maximum there.

Thus there exists a set
m m
U (@ 05), Y 6;=0, m<n,
=1 7j=1

10

composed of disjoint arcs I(goj, 6;), for which
up (re”) = / u (re') dt.
E
For 0 < p < r and —7 < ¢ <, define the set

E() = (1,0, + a(v U (0; + a(v), ;).

Let p be chosen small enough to keep the arcs in £(1)) disjoint for all ¢». Then E(1)) has
measure |E(¢)| = 260 + 2a(1), so by the definition of u},

0 () < [ ()
E()

= v(r(¥), 01 + a(¥), p1 +ZU ), 05,05 + a(y)).

Since 7 (1)e! W) = reif 4 peil@+¥) integration with respect to ¢ and (27.1]) now give

/7r ul (re” + pe) dyp = /7r u’ (r(w) i(O+a(¥) ) dy

—Tr —T

2/ v(r(¥), 01 + a(®), 1 d¢+2/ )05, + a(y)) d

- Z / 65,05 + (W) dp.

But since w is assumed to be subharmonic,

/_ v(r (W), 05, 5 + o)) dv = // )elltestawl)y dqup d

= / / w (Tei(t+4pj) + peiw) di dt
—0; J -7

0.
> 27?/ J u (rei(t+“’f)) dt.
—0

J
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Thus for sufficiently small p,
m 0; '

u (rew + pe“/’) dip > Z/ u (TBZ(H_%)) dt
j=1"=09;

= / u (re) dt =u}, (rew) :
E

This shows that each function u; has the local sub-mean-value property at each point
of the open semiannulus. Hence u; is subharmonic for each n, which implies that u* is
subharmonic in the semiannulus. This completes the proof.

1 s

2 ),

O

We are now finally ready to give the proof of Baernstein’s result.

Proof of Theorem[27.1, In view of Lemma ((b) = (a)), the inequality of Baernstein’s
theorem will be established if we can show that

T 6 T 16
/ longMdQS/ log+wd6, 0<r<l, (27.2)

—T —T

for each p > 0 and for all f € S.

The first step in the proof is to apply Jensen’s theorem to obtain another expression
for the left-hand side of (27.2). Let f be an arbitrary analytic function, o € C and let
n(f,a,r) be the number of points (counted according to multiplicity) in |z| < r at which
f(2) = a. Assume f(0) # «, and let

N(f,a,r) :/Ormdt.

t

Then Jensen’s theorem takes the form

% 7rlog‘f(rew) —oz! df = N(f,a,r)+1og|f(0) — al.

—T

If « = e and f(0) = 0, this reduces to
%/_ﬂlog ‘f (rew) — ei‘p‘ df = N (f,ew,r) )
Now integrate with respect to ¢ and use the simple identity
1 [7 ,
%/_ﬂlogW—ew‘ df = log™ |3 (%)
to obtain
/ N (f, ei“”,r) dp = %/ / log‘f (reie) —ew‘ de do
o " i " 0\ _ ip
—/_WQW/_Wlog‘f(re ) e ‘ dy df
:/ log* !f (reie)‘ do.

134



If f is replaced by f/p, this becomes

g T.eie T '
/ log™ wdQ :/_ N (f,pe,r) dp. (27.3)

—T U

But by the definition of N, if f € S and « # 0 is in the range D of f, then

T r +
N _ [t :[ @} T , .
(f,a,r) /0 ; t /fl(a)|t og i) 0<r<l1 (27.4)

Now let u(§) = —log|f~1(£)| be the Green’s function of D with singularity at 0. Extend
it to a continuous function in the punctured plane by setting u(¢) = 0 for £ ¢ D. Then
the formula (27.4) takes the form

N(f.&r) =[u(@) +logr]", 0<r<1,

for arbitrary &, and equation (27.3) becomes

™ 20 ™
/ log™ M df = / [u (pe?) + log 7“]+ dep. (27.5)
- P -7

Next let v(§) = —log |k~1(€)] for € in the range of the Kébe function k, and let v(§) = 0
elsewhere (i.e. for & € (—o0,1/4]). In view of (27.5), the inequality (27.2)) can be recast

in the form

™

/[u(pew)—i-logrrdgog/ [v(pei‘p)jtlogrrdgo, 0<r<l, 0<p<oc.

But by Lemma ((c) = (b)) this is implied by the inequality
u* (pe’?) < vt (pe’?), 0<p<oo, 0<p<m. (27.6)

The proof of will make use of Lemma The function v is continuous in
0 < [£] < co. In the domain D \ {0} it is positive and harmonic, and v = 0 outside D.
In particular, u has the local sub-mean-value property at each point £ ¢ D. This shows
that « is subharmonic in 0 < |{| < oo. Hence it follows from Lemma that u* is
subharmonic in the open upper half-plane.

The next step is to observe that v* is harmonic in the upper half-plane. First notice
that v (pe'?) = v (pe™*) since k (Z) = k(z). Also, v (pe'¥) is a decreasing function of ¢ in
the interval (0, 7). To see this, let z = k~1(£) and ¢ = pe’®, and compute

5o (%) = 5 (=g = (pe))

2 (pe'?) ipe'?z (pe'?) + z (pe'?) 2/ (pei#?) ipe™s
2|z (pei)|”

(5 (9) - (450
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Since £ = k(z) = 2(1 — z) 72, one can see that z(§) = % VITE and thus

/ (2— m) 26— 2 (14 2¢ — T T 4)
2(6) = e

12— VIFAE (6

282 TH4E &I +4E

Since M—
0 (pe) Im (Z()A§>:Im1_—z<0

6@ £)EV1 + 4 1+2z
for Im z > 0. It is now evident that
v* (pe¥?) = / v (pe™) dy, 0<p<m. (27.7)
—p

This formula allows the direct calculation of the Laplacian
1 0%v* N 0?v*
p* \d(logp)? = 0¢? )~
Since v (pew) is harmonic for —m < ¢ <,
0?v* , ¥ 0% ,
m,[) di) = — e i d
9(log p)? / d(log p)? logp ) & /_ga Op? (pet®) dv
, ov , v, .
— ip il —ipy |\ - 2 7 ip
(aN )= 5 0e)) = =55 ().

Thus the Laplacian vanishes and v* is harmonic in the upper half plane.
It is also clear from ([27.7) that v* is continuous int the closed upper half-plane, except
at the origin. By Lemma the same is true for u*. Near the origin, u has the form

u(§) = —log [¢] + ur (), (27.8)

where wu; is harmonic and u1(0) = 0 (u;(§) = Re log f%(f), ¢ € D\ {0}). Thus

u* (pew) +2plogp = sup / (u (peit) + log p) dt = sup / Uy (peit) dt — 0
E E

|E|=2¢ |E|=2¢
as p — 0, uniformly in ¢, ¢ € [0, 7]. Since the same is true for v*, it follows that
u* (pew) — " (pew) —0

as p — 0, uniformly for ¢ € [0,7]. As £ — oo, it is geometrically obvious that u(§) — 0,
thus u* (pe'?) — 0 as p — oo, uniformly in ¢.

Since u* — v* is subharmonic in the upper half-plane and continuous in its closure,
the maximum principle reduces the proof of to showing that u*(£) < v*(€) on the
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real axis. On the positive real axis this is trivial since by definition u*(§) = 0 = v*(§) for
¢ > 0. Next let d be the distance from 0 to the complement of D. By Kébe 1/4-theorem
d > 1/4. In the disc || < d u has the form (27.8), where u; is harmonic in [¢] < d and
u1(0) = 0. Thus

u* (pe'™) = / u (pe?) dp = —2rlogp, 0<p<d. (27.9)

—Tr

In fact, since u is subharmonic in 0 < |{] < oo, it is clear that u; is subharmonic in the
whole plane. Applying this remark to

v(§) = —log [¢] + vi(§)

we see that

T

v* (pei”) = —2mlogp +/ U1 (pei‘p) dy (27.10)

> 2mlogp+v1(0) = —2mlogp, 0<p< 0.

In particular u*(§) < v*(§) for —d < € < 0.
The inequality is more difficult to establish on the interval —oo < ¢ < —d. For this
purpose, we fix ¢ > 0 and consider the function

Q) =u'(§) —v"(§) —ep, &= pe”,

which is subharmonic in the upper half-plane and continuous in its closure, except at
¢ = 0. Since u*(§) —v*(§) = 0 as & — 0 and as £ — oo, it is clear that

limsup@Q(§) <0 and limsupQ(§) < 0.

£—0 £—o00

Let M be the maximum of () in the closed upper half-plane. Then M > 0, and the
maximum is attained somewhere on the real axis.

Suppose now that M > 0. Then, since u*(§) < v*(§) on the interval —d < £ < o0,
there is some point §, = —py for which —oco < &y < —d and Q (§,) = M. Let G(p) denote
the symmetric decreasing rearrangement of u (poe’?). In view of Lemma [27.6)

a“*( eiso)—i 2/¢G(9)d9 —2G(g), 0<¢<
8(10 pO _890 0 - SO7 —SD—/]T

But because py > d, there is some point on the circle |£| = po which lies outside D, so

G(m) = inf u(poe’?) = 0.

0<p<m
Applying the same argument to v* we conclude that

0 0 »
£ (fo) = % (poe”) = —ec <0.

137



But this is impossible since () has a relative maximum at &,. This contradiction shows
that M = 0, that is,

u (§) <v(€) +ep <v(€) +em, Im (£ >0.

Letting ¢ — 0, we obtain . This completes the proof of the inequality in Baernstein’s
theorem.

It now remains only to investigate the case of equality. Under the assumption that ¢
is strictly convex, we will show that if f is not a rotation of k, then strict inequality holds.

Continuing with the same notation, we first note that if f is not a rotation of k, then
u*(§) < v*(€) throughout the upper half-plane. To see this, observe that v(§) fails to be
harmonic in any annulus 1/4 < |£] < p, since it is nonnegative there and equal to zero at
interior points of the annulus on the segment —p < & < —1/4. Thus v;(§) = log |£]| + v(&)
cannot be harmonic in the disc [¢| < pif p > 1/4. If h is the function harmonic in |£| < p
and equal to vy on [£] = p, it follows that vy (§) < h(€) in |£] < p. In particular,

0 = 11(0) < h(0) = % /_Wvl (pei®) dg, p> i
Comparing this with and and bearing in mind that d > 1/4 if f is not a
rotation of k, we conclude that u*(¢) < v*(€) for —d < & < —1/4. Hence u* —v* is a
nonpositive subharmonic function in the upper half-plane, not identically zero. But by the
maximum principle, this implies u*(£§) < v*(§) everywhere in the half-plane Im (§) > 0.
We now claim that

[ Tuloen) =" do< [ o (o)~ )"

if 0 < A\,(t) < 27, where
Ap(t) = |{gp cu (pe'?) > t}‘ :

Indeed, since u* (pe'?) < v* (pe'?) for 0 < p < oo and 0 < ¢ < 27, this conclusion follows
easily from the proof of Lemma ((¢) = (b)). On the other hand, it is geometrically
clear that unless f(z) = z there will correspond to each ¢t > 0 an open interval I C (0, c0)
such that 0 < A\,(t) < 27 for all p € I. Indeed, if this were not true, then for each p > 0
we would have either u (pe'?) > t for all ¢ € (0,27) or u (pe™¥) <t for all p € (0,2n), and
therefore u (pe¥) would be constant in ¢ for each p > 0. Since f € S, this would imply
f(2) = z. Thus, if f(z) # z, there corresponds to each r € (0,1) an open interval I, such
that

™

/ [u (pei‘p) + log rr dp < / [v (pew) + log r]+ de, pel;

or equivalently, in view of (27.5),
s 60 s 0
/ log™ [ e) g - / log™ ‘k(r—:)} 4o, pel,. (27.11)

But this inequality (27.11)) obviously remains true even for f(z) = z with I, = (r,r+¢) for
sufficiently small ¢ > 0, since the left-hand side will be equal to zero while the right-hand
side is strictly positive.
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Now let ¢ be an arbitrary nondecreasing strictly convex function. Fix r € (0, 1), let
I, be the interval for which (27.11)) holds, and let J,. be the interval log I,. Let sy be a
point to the left of J. at which ¢ is differentiable. Decompose ¢ in the form

P(s) = d1(s) + Pa(s),

) = P(s), s < So,
“1(s) {gb(so)+¢’(so)(s—so), 5> Sp.

Then ¢; and ¢, are nondecreasing convex functions on (—oo,00), and ¢, is strictly in-
creasing on (sp,00). By Lemma ¢9 has the form

where

bo(s) = / Cls— 0" du(t), du(t) > 0. (27.12)

—00

Since ¢ is strictly increasing on (sg,00), u(J,) > 0. Rewriting (27.11)) in the form

/7T [log ‘f (reie)} - tr do < /7r [log }k (Tei9)| - tr o, teJ,

—Tr —T

using the representation (27.12)) and interchanging the order of integration, we obtain

[ ortoels e an= [ [ el ) -1 iy
:/Z/ llog | f (re®)| — ¢] df du(?)
</:/_1 [log |k (re®)| — 1] do dul(t)

= /1 2 (log |k (re”)]) dé.

But by Baernstein’s theorem (the inequality part),
/ o1 (log | f (re”)|) db < / o1 (log |k (re”)|) do.

Adding these two inequalities, we conclude that strict inequality holds in Baernstein’s
theorem for the function ¢. This completes the proof. O

Appendix:  Proof of the identity (). First note that by the change of variable ¢ =
0 + arg B and 27m-periodicity

T T—arg 3 27
/ log |8 — €| dy :/ ’ log‘eiargﬂ (18] =€) | a6 :/ log ||| —ew| do,
0

-7 —nm—arg 3

so we may assume 3 > 0 (the case § = 0 is trivial) and consider the integral from 0 to 2.
Denote f(z) = log (8 — €**). Then f is analytic whenever 3 — ¥ # —x for x > 0, that is,

z#arg(f+x) —ilog|B8+ x| =n2r —iy, ne€Z, y>logp.
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From now on the proof is divided into two parts.

If 5 > 1, then f is analytic in a domain containing the closed upper half-plane

{Im z > 0}. Thus

/Ff(z) dz =0

where I' is as in Figure Since € = e®e™Y, z = x + iy, is 27 periodic with respect to

f(z)dz=— [ f(2)d=.
I I3

x, we see that

Because €/7%) = ¢@e™P — 0 as p — 00, we see that

/12 f(z)dz =

as p — oo. Hence

and consequently
2T ' 2r '
/ log |8 — ¢”| d9=/ Re log (8 — €") df = 2mlog 5.
0 0

2w
/ log (ﬁ — ew) df = 27 log 3,
0

_ 2r +ip
ip I_A..
2
\ B A
I
I - —
B 7
(a) Case g > 1.

2
—/ log (ﬁ — e”e_”) dx — —2mlog 3
0

N r ) 2?’ +ip
¥ I-l I:l
L o 2| 27 +
i(e —log B)] Cy G i(c — log 3)
. . c—ilog
— 1 l{)g i I i l(}{_’_,' j) Yor — 1 ll:]g.:.'))
Iﬁ I]
I a
£ o —e|2r
(b) Case 8 < 1.

Figure 1: Integration paths.
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If 5 <1, then f is analytic in C\ {n27 — iy : n € Z,y > log f} which does not contain
the half-plane {Im z > 0}. Thus, for a path I' as in Figure , we have

/rf(Z) dz =0.

As in the case § > 1, we see that
f(z)dz+ | f(2)dz=0
I Iy

and
f(2)dz — —27mlog 3
I3

as p — oo. For the segments [; and 5, we have

—log§ . . 0 .y
f(2)dz+ | f(z)dz= / log (8 — e"@™==+)) j dy + / log (8 — e ETW)) 4 dy
I Is 0

—log B8
—log B
= z/ (log (6 — ei(%_e)e_y) — log (ﬂ — ei‘ee_y)) dy
" —log ) ,
= —/ (arg (ﬁ — 61(2ﬂ_5)€_y) —arg (5 — e’Ee_y)) dy
0

—log )
= —2/ arg (B — e’”e’y) dy — 2mlog 3,
0

as € — 0 (see Figure . Finally, because

o (_,—i:t,_‘lug a

v

Figure 2: Points 8 — e** for z € I, and z € I5.
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=05,

| = 1
z+ilog s z—>—l?llog/3 z+1log 8

z——ilog B

f—e* , ‘—iﬁ(z—l—ilogﬁ)+ﬁ(z+ilog5)2+...

so that [log (8 — )| < |log(z +ilog B)| as = — —ilog 3, we have that

i .
< iz
sz(z)dz < 2512%}2(‘10g(5 e )}—>0
as ¢ — 0. Similarly
(2)dz| — 0

Ch

as € — 0. Therefore

/%log(ﬁ—eie) d@z/f(z)dz:o.
0 I

References

1]

2]

131

4]

5]

[6]

7]

18]

19]

M. Chuaqui, D. Stowe, Valence and oscillation of functions in the unit disk. Ann.
Acad. Sci. Fenn. Math. 33 (2008), no. 2, 561-584.

P. Duren, Theory of H? Spaces, Academic Press, New York-London 1970.

R. E. Greene & S. G. Krantz, Function theory of one complexr variable, Pure and
Applied Mathematics (New York). Wiley-Interscience Publication. John Wiley &
Sons, Inc., New York, 1997.

I. Laine, Nevanlinna theory and complex differential equations. de Gruyter Studies
in Mathematics, 15. Walter de Gruyter & Co., Berlin, 1993.

Ch. Pommerenke, Univalent functions. With a chapter on quadratic differentials by
Gerd Jensen. Studia Mathematica/Mathematische Lehrbiicher, Band XXV. Vanden-
hoeck & Ruprecht, Gottingen, 1975. 376 pp.

Ch. Pommerenke, Boundary behaviour of conformal maps. Grundlehren der Mathe-
matischen Wissenschaften [Fundamental Principles of Mathematical Sciences]|, 299.
Springer-Verlag, Berlin, 1992.

J. Rattya, On some complex function spaces and classes. Ann. Acad. Sci. Fenn. Math.
Diss. No. 124 (2001), 73 pp.

M. P. Remizova Extremal problems in the class of typically real functions. Izv. Vyssh.
Uchebn. Zaved. Mat., 32 (1963), pp. 135-144.

D. Struik, Lectures on classical differential geometry. Reprint of the second edition.
Dover Publications, Inc., New York, 1988.

142



	Basic concepts
	Area theorem
	Coefficient estimates for the class S, Part 1
	Köbe One Quarter Theorem
	Growth and distortion theorems
	Coefficient estimates for the class S, Part 2
	Estimates of integral means
	Maximum modulus of univalent functions
	Coefficient estimates for odd univalent functions
	Nehari's theorem
	Nehari's univalence criteria
	Sharpened forms of the Schwarz lemma
	Hyperbolic metric
	Two-point distortion results
	Bounded univalent functions
	Functions with positive real part
	Convex and starlike functions
	Close-to-convex functions
	Spiral-like functions (Juha-Matti)
	Typically Real functions (Kian)
	Carathéodory convergence theorem
	Bounded variation and absolute continuity
	Arzelá-Ascoli theorem
	First steps in Löwner theory
	The third coefficient
	Löwner theory and univalence criteria
	Baernstein's theorem on integral means of univalent functions (Taneli)

