- 1. Supply the details of the last part of Corollary 2.4.
- 2. Show the "if and only if"-part of Corollary 3.3.
- 3. For $\alpha \in (0, 2]$, the function

$$f_{\alpha}(z) = \frac{1}{2\alpha} \left(\left(\frac{1+z}{1-z} \right)^{\alpha} - 1 \right), \quad z \in \mathbb{D},$$

is called the generalized Köbe function. Show that $f_{\alpha} \in S$ and describe the image of \mathbb{D} under f_{α} .

- 4. Show that $\bigcap_{f \in S} f(\mathbb{D}) = D(0, \frac{1}{4}).$
- 5. Let $F \in \Sigma$. Show that

$$|F'(z)| \le \frac{|z|^2}{|z|^2 - 1}, \quad z \in \mathbb{C} \setminus \mathbb{D}.$$

- 6. Let $f \in S$ such that $|f(z)| < M \in (1, \infty)$ and $f(z) = z + a_2 z^2 + \cdots$ for all $z \in \mathbb{D}$. Show that $|a_2| \le 2(1 M^{-1})$.
- 7. Give an example of $f \in \mathcal{H}(\mathbb{D})$ with f(0) = 0 and f'(0) = 1 such that f satisfies the estimates of the Growth theorem but is not univalent in \mathbb{D} .