1. For $1 , the classical Besov space <math>B_p$ consists of $f \in \mathcal{H}(\mathbb{D})$ such that

$$||f||_{B_p}^p = \int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^{p-2} \, dA(z) < \infty$$

Show that B_p is Möbius invariant, that is, for each automorphism φ of \mathbb{D} and $f \in \mathcal{H}(\mathbb{D})$ the seminorm satisfies $||f \circ \varphi||_{B_p} = ||f||_{B_p}$. Use the Köbe 1/4-theorem to describe univalent functions in B_p .

2. For $0 and <math>-1 < \alpha < \infty$, the weighted Bergman space A^p_{α} consists of $f \in \mathcal{H}(\mathbb{D})$ such that

$$||f||_{A^p_{\alpha}}^p = \int_{\mathbb{D}} |f(z)|^p (1 - |z|^2)^{\alpha} \, dA(z) < \infty.$$

Show that $f \in S$ belongs to A^p_{α} if and only if

$$\int_0^1 M_\infty^p(r, f) (1 - r^2)^{\alpha + 1} \, dr < \infty.$$

Hint: Prawitz' theorem, Hardy-Littlewood inequality $\int_0^1 M_\infty^p(r,g) dr \le \pi \|g\|_{H^p}^p$ applied to $g = f_r$, where $f_r(z) = f(rz)$ and 0 < r < 1, and Fubini's theorem.

- 3. Let $f \in S$ not a rotation of Köbe. Show that $|f'(re^{i\theta})|(1-r)^3(1+r)^{-1}$ for a fixed θ and $M_{\infty}(r, f')(1-r)^3(1+r)^{-1}$ are strictly decreasing on (0, 1).
- 4. Supply the details of the proof of Theorem 9.1.
- 5. Show that if the image of \mathbb{D} under $f \in S$ has finite area, then f has Hayman index 0. More generally, show that $\alpha(f) = 0$ if the area A_r of the image of D(0,r) under $f \in S$ satisfies $A_r = o((1-r)^{-3})$ as $r \to 1^-$.
- 6. Show that for $0 < \theta < \pi$, the function

$$f_{\theta}(z) = \frac{z}{1 - 2z\cos\theta + z^2} = \sum_{n=1}^{\infty} \frac{\sin n\theta}{\sin\theta} z^n, \quad z \in \mathbb{D},$$

belongs to S and $\alpha(f_{\theta}) = 0$.

7. Let S_{α} denote the class of functions in S with Hayman index α . For $0 < \alpha < 1$, show that

$$f_{\alpha}(z) = (z + (\alpha - 1)z^2)(1 - z)^{-2}, \quad z \in \mathbb{D},$$

belongs to S_{α} .