1. Let f be a locally univalent analytic function in \mathbb{D} such that

$$f'(z) = \left(\frac{1+z}{1-z}\right)^{\frac{1}{2}} e^{\frac{C\zeta z}{2}}, \quad \zeta \in \mathbb{T}, \quad C > 0, \quad z \in \mathbb{D}.$$

Show that

$$\left|\frac{f''(z)}{f'(z)}\right| (1-|z|^2) \le 1 + C(1-|z|), \quad z \in \mathbb{D},$$

but f is not univalent if C > 0 is sufficiently large.

2. Let $\tau \in (0,\pi)$ and

$$p(z) = 1 + \frac{4}{\tau} \sum_{n=1}^{\infty} \frac{1 - \cos n\tau}{n^2} z^n, \quad z \in \overline{\mathbb{D}}.$$

Show that $\Re(p(e^{i\theta})) = 2\pi\tau^{-2}(\tau - |\theta|)$ if $|\theta| \le \tau$ and $\Re(p(e^{i\theta})) = 0$ if $\tau \le |\theta| \le \pi$.

- 3. (Schwarz 1955) Let A be an analytic function in \mathbb{D} and consider the differential equation f'' + Af = 0 in \mathbb{D} . Show that the following conditions are equivalent:
 - (i) $\sup_{z \in \mathbb{D}} |A(z)| (1 |z|)^2 < \infty;$
 - (ii) there exists $\rho \in (0, 1)$ such that

$$\inf_{j \neq k} \rho_{ph}(z_j, z_k) \ge \rho$$

for the zero-sequence $\{z_k\}$ of each solution f.

Hint: Nehari and Kraus.

4. (Chuaqui et. al. 2013) Let A be entire. Then the Euclidean distance between all distinct zeros z and w every non-trivial (entire) solution f of f'' + Af = 0 is uniformly bounded away from zero if and only if A is constant.

Hint: Kraus.

- 5. (Yamashita 1977) A locally univalent analytic function f in \mathbb{D} is called uniformly locally univalent, if there exists $\rho > 0$ such that f is univalent in each pseudohyperbolic disc of radius ρ . Show that the following conditions are equivalent for each locally univalent functions f in \mathbb{D} :
 - (i) f is uniformly locally univalent;
 - (ii) $\sup_{z \in \mathbb{D}} \left| \frac{f''(z)}{f'(z)} \right| (1 |z|^2) < \infty;$

- (iii) $\sup_{z \in \mathbb{D}} |S_f(z)| (1 |z|^2)^2 < \infty;$
- (iv) There exist p > 0 and an univalent function h in \mathbb{D} such that $h' = (f')^p$.

Hint: You may use Becker's univalence criteria which says that if an analytic function f in \mathbb{D} satisfies $|zf''(z)/f(z)|(1-|z|^2) \leq 1$ for all $z \in \mathbb{D}$, then f is univalent in \mathbb{D} .