Introduction to univalent functions
Spring 2015
Exercise 7, week 8

1. Let f be a locally univalent analytic function in D such that
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Show that
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but f is not univalent if C' > 0 is sufficiently large.
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2. Let 7 € (0,7) and
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Show that R(p(e®)) = 27772(r — |0]) if |0] < 7 and R(p(e)) = 0 if
T<|0] <.

3. (Schwarz 1955) Let A be an analytic function in D and consider the dif-
ferential equation f”+ Af = 0 in D. Show that the following conditions
are equivalent:

() sup[A(2)[(1 - [2])* < o0;
z€E
(ii) there exists p € (0,1) such that
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for the zero-sequence {zj} of each solution f.

Hint: Nehari and Kraus.

4. (Chuaqui et. al. 2013) Let A be entire. Then the Euclidean distance
between all distinct zeros z and w every non-trivial (entire) solution f
of /" + Af = 0 is uniformly bounded away from zero if and only if A
is constant.

Hint: Kraus.

5. (Yamashita 1977) A locally univalent analytic function f in D is called
uniformly locally univalent, if there exists p > 0 such that f is univa-
lent in each pseudohyperbolic disc of radius p. Show that the following
conditions are equivalent for each locally univalent functions f in D:

(i) f is uniformly locally univalent;

ii) su (z)
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(1) sup S5(2)] (1 - 2)? < o0
zeD
(iv) There exist p > 0 and an univalent function A in I such that

W= (f)".

Hint: You may use Becker’s univalence criteria which says that if an
analytic function f in D satisfies |2f"(2)/f(2)|(1 — |2]?) < 1 for all
z € D, then f is univalent in D.



