- 1. Show that $|a_2^2 a_3| \le \frac{1}{3}(1 |a_2|^2)$ for $f \in C$.
- 2. Show that

$$\frac{|z|}{1+|z|} \le |f(z)| \le \frac{|z|}{1-|z|}, \quad z \in \mathbb{D},$$

for all $f \in C$. Equality occurs only for functions $z(1 - \xi z)^{-1}$, where $|\xi| = 1$.

- 3. Let k denote the Köbe function. Show that $\log \frac{k(z)}{z}$ belongs to C.
- 4. Let k denote the Köbe function. Show that $\log k'(z)$ belongs to S^* .
- 5. Use the Herglotz formula to show that each $f \in S^*$ has a unique representation

$$f(z) = z \exp\left(\int_0^{2\pi} \log \frac{k_{\varphi}(z)}{z} d\mu(\varphi)\right),$$

where μ is a unit measure and $k_{\varphi}(z) = z(1 - e^{i\varphi}z)^{-2}$ is a rotation of Köbe. Observe further that this formula represents a starlike function for any choice of the unit measure μ .

If extra tasks needed, one can take a look at the exercises 12–14 on p. 71 in Duren's book.