1. Let $f \in \mathcal{H}(\mathbb{D})$ such that f(0) = 0 and f'(0) = 1. Show that $f \in S^*$ if and only if

$$\int_0^z \frac{f(\zeta)}{\zeta} \, d\zeta \in C.$$

2. Show that each $f \in S^*$ can be written in the form f(z) = zg'(z) for some $g \in C$. Show also that each $f \in C$ can be written in the form

$$\int_0^z \frac{g(\zeta)}{\zeta} \, d\zeta, \quad z \in \mathbb{D},$$

for some $g \in S^{\star}$.

- 3. Complete the proof of Kaplan's theorem by using normal family arguments. See Duren for a hint if needed.
- 4. Duren p. 72 19.
- 5. Duren p. 72 20.
- 6. Duren p. 72 21.
- 7. typically real?
- 8. typically real?
- 9. Let ϕ be a convex and nondecreasing function on the real line. Show that for each $f \in S$,

$$\int_{-\pi}^{\pi} \phi\left(\log \frac{\rho}{|f\left(re^{i\theta}\right)|}\right) \, d\theta \le \int_{-\pi}^{\pi} \phi\left(\log \frac{\rho}{|k\left(re^{i\theta}\right)|}\right) \, d\theta$$

for 0 < r < 1 and $\rho > 0$. Conclude that $M_p(r, 1/f) \leq M_p(r, 1/k)$ for 0 < r < 1 and 0 .