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1 Basic concepts

Let D denote the unit disc of the complex plane C, and let H(D) be the space of all
analytical functions in D. An analytic function f is called univalent (a conformal map)
if it is injective.

The class S (slicht) consists of univalent functions f in D normalized such that f(0) = 0
and f ′(0) = 1. Therefore the power series representation of f ∈ S is of the form

f(z) = z + a2z
2 + a3z

3 + · · · , z ∈ D.

If f is univalent in D, then

g(z) =
f(z)− f ′(0)

f ′(0)
∈ S.

Note that f is injective in a neighborhood of z0 ∈ D if and only if f ′(z0) ̸= 0, and hence
f ′(z) ̸= 0 for all z ∈ D, if f is univalent in D. Obviously, f(z) = z is univalent.

Example 1.1 1. The function f(z) = 1+z
1−z maps D conformally onto the right half

plane, but f /∈ S. However,

ℓ(z) =
f(z)− f(0)

f ′(0)
=

1+z
1−z − 1

2
=

z

1− z
∈ S,

and

ℓ(z) = z + z2 + z3 + . . . =
∞∑
n=1

zn, z ∈ D.

This function maps D conformally onto the half-plane {w : Re (w) > −1/2}.

2. The function f(z) =
(
1+z
1−z

)2
is also univalent in D and does not belong to S because

f(0) = 1 and f ′(0) = 4. The normalized function in S is now

k(z) =
f(z)− f(0)

f ′(0)
=

(
1+z
1−z

)2 − 1

4
= · · · = z

1− z
.

The function k plays an important role in the theory of univalent functions in D.
It is called the Köbe function and it maps D conformally onto C \ (−∞,−1/4].
Further,

1

1− z
=

∞∑
n=0

zn = 1 + z + z2 + z3 + · · ·

implies
1

(1− z)2
=

∞∑
n=1

nzn−1 = 1 + 2z + 3z + · · ·

and hence

k(z) =
z

(1− z)2
=

∞∑
n=1

nzn = z + 2z2 + 3z3 + · · · .
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3. The function

f(z) =
1

2
log

1 + z

1− z

is univalent in D and satis�es

f(0) =
1

2
log 1 = 0 and f ′(z) =

1

1− z2
=

∞∑
n=0

z2n, z ∈ D,

so f ∈ S. Now, by integrating along a line segment from 0 to z, we obtain

f(z) =

∫ z

0

f ′(w)dw + f(0) =
∞∑
n=0

∫ z

0

w2ndw =
∞∑
n=0

z2n+1

2n+ 1
= z +

z3

3
+
z5

5
+ · · · .

Further, as 1+z
1−z maps D onto the right half plane, it is easy to see that

f(z) =
1

2
log

∣∣∣∣1 + z

1− z

∣∣∣∣+ 1

2
i arg

(
1 + z

1− z

)
maps D onto the strip {x+ iy : x ∈ R,−π/4 < y < π/4}.

The class S is invariant with respect to several elementary transformations.

Theorem 1.1 The class S is invariant under the following transformations:

(i) Rotations: If f ∈ S and θ ∈ R, then g : D→ C, g(z) = e−iθf(eiθz) belongs to S:

(ii) Dilatation: If f ∈ S and 0 < r < 1, then g : D→ C, g(z) = 1
r
f(rz) belongs to S;

(iii) Conjugation: If f ∈ S, then g, g(z) = f(z), belongs to S;

(iv) Disc automorphism: If f is univalent in D and

ψa(z) =
a+ z

1 + az
, a ∈ D, z ∈ D,

then g : D→ C,

g(z) =
f(ψa(z))− f(a)

f ′(a)(1− |a|2)
belongs to S;

(v) Range transformation: If f ∈ S and ϕ : f(D) → C is analytic and univalent, then
g : D→ C,

g(z) =
ϕ(f(z))− ϕ(0)

ϕ′(0)
, z ∈ D,

belongs to S;
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(vi) Omitted value transformation: If f ∈ S and w ∈ C \ f(D), then g : D→ C,

g(z) =
wf(z)

w − f(z)
, z ∈ D,

belongs to S.

Proof. (i) Clearly g(0) = e−iθf(0) = 0 and g′(z) = e−iθf ′(eiθz)eiθ = f ′(eiθz) giving
g′(0) = f ′(0) = 1. Moreover, g(D) =

{
e−iθf(z) : z ∈ D

}
= e−iθf(D) is the image of f

rotated by −θ and hence g is univalent.
(ii) Trivially g(0) = 0 and g′(z) = 1

r
f ′(rz)r = f ′(rz) giving g′(0) = f ′(0) = 1. The

univalence is trivial.
(iii) Trivially g(0) = 0. Let the Maclaurin series of f be f(z) =

∑
anz

n. Now g(z) =∑
anz

n =
∑
anz

n. This gives g′(0) = f ′(0) = 1. Moreover, g(D) =
{
f(z) : z ∈ D

}
.

(iv) Now

ψ′
a(z) =

1− |a|2

(1 + az)2
,

and hence
(f ◦ ψa)(z)− (f ◦ ψa)(0)

(f ◦ ψa)′(0)
=
f(ψa(z))− f(a)

f ′(a)(1− |a|2)
= g(z).

As f ◦ ψa is univalent in D, g ∈ S.
(v) As ϕ is univalent, ϕ′(z) ̸= 0 for all z ∈ f(D). Hence g(0) = 0 and g′(0) = 1 as

g′(z) = ϕ′(f(z))f ′(z)/ϕ′(0). Thus g ∈ S.
(vi) Now g(z) = (T ◦ f)(z) where

T (z) =
wz

w − z
.

T is a Möbius transformation with pole w /∈ f(D). Hence g is analytic and univalent in
D. Clearly g(0) = 0 and

g′(z) =
wf ′(z)(w − f(z)) + f ′(z)wf(z)

(w − f(z))2
=

w2f ′(z)

(w − f(z))2
,

so g′(0) = 1. Thus g ∈ S. 2

Theorem 1.2 (Square root transformation) If f ∈ S, then there exists an odd func-
tion g ∈ S such that g2(z) = f(z2) for all z ∈ D.

Conversely, if g ∈ S is odd, then there exists f ∈ S such that f(z2) = g(z)2 for all
z ∈ D.

Proof. Let f ∈ S and h(z) = f(z)/z. Then h ∈ H(D),

h(0) = lim
z→0

f(z)

z
= lim

z→0

f(z)− f(0)

z − 0
= f ′(0) = 1.

The only possible zeros of h are those of f , and since f is univalent, h must be zero-free
in D. Therefore as D is simply connected, there exists an analytic branch of log h in
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D. (Lemma of the analytic logarithm). In particular, there exists an analytic branch of
the square root of h (z

1
2 = e

1
2
log z). Let ψ be the analytic branch of

√
h in D such that

ψ(0) =
√
h(0) =

√
1 = 1. Then

f(z) = zh(z) = zψ(z)2,

which is equivalent to
f(z2) = z2ψ(z2)2 = (zψ(z2))2,

and hence g(z) = zψ(z2) is an analytic branch of
√
f(z2) in D. Let us see that it satis�es

the desired properties:

(1) g(0) = 0 · ψ(0) = 0;

(2) g′(0) = limz→0
g(z)−g(0)

z
= limz→0

zψ(z2)
z

= ψ(0) = 1;

(3) g(−z) = −zψ((−z)2) = −zψ(z2) = −g(z), and thus g is odd;

(4) If g(z1) = g(z2), then [z1ψ(z
2
1)]

2
= [z2ψ(z

2
2)]

2, that is, f(z21) = f(z22) and hence
z21 = z22 . Thus z2 = ξz1 for ξ = ±1. If z1 = 0, then z2 = 0 = z1. For otherwise,
0 ̸= g(z1) = g(z2) = g(ξz1) = ξg(z1) and thus ξ = 1 which is equivalent to z1 = z2.
Therefore g is univalent in D.

Conversely, let g ∈ S be odd. Then

g(z) = A1z + A3z
3 + · · · =

∞∑
n=0

A2n+1z
2n+1 = z

∞∑
n=0

A2n+1z
2n = z(A1 + · · · ),

where A1 = 1. The radius of convergence of
∑
A2n+1z

2n is at least 1, so

lim sup
n→∞

|A2n+1|
1
2n ≤ 1.

Therefore the radius of convergence of
∑
A2n+1z

n is also atleast 1 because

lim sup
n→∞

|A2n+1|
1
n =

(
lim sup
n→∞

|A2n+1|
1
2n

)2

≤ 1.

Therefore we may de�ne an analytic function in D by

ψ(z) =
∞∑
n=0

A2n+1z
n.

Thus g(z) = zψ(z2) implies g(z)2 = z2ψ(z2)2 for z ∈ D and we may de�ne f ∈ H(D) by
f(z) = zψ(z)2. Let us check that f has the desired properties:

(1) f(z2) = z2ψ(z2)2 = g(z)2;

(2) f(0) = 0;
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(3) f ′(0) = limz→0
f(z)−f(0)

z
= limz→0 ψ(z)

2 = ψ(0)2 = A1 = 1;

(4) We see that f(z1) = f(z2) is equivalent to z1ψ(z1)2 = z2ψ(z2)
2. Let ξ1, ξ2 ∈ D such

that ξ21 = z1 and ξ22 = z2. The

g(ξ1)
2 = ξ21ψ(ξ

2
1)

2 = z1ψ(z1)
2 = z2ψ(z2)

2 = ξ22ψ(ξ
2
2)

2 = g(ξ2)
2

and hence g(ξ1) = ξg(ξ2) for ξ = ±1. Since g is odd, g(ξ2) = ξg(ξ1) = g(ξξ1) and
ξ2 = ξξ1 since g is injective. It follows that z2 = ξ22 = (ξξ1)

2 = ξ21 = z1, and thus f
is injective.

2

Let f(z) = z + a2z
2 + · · · ∈ S. By Theorem 1.2, there exists an analytic branch

g(z) =
√
f(z2) ∈ S such that g is odd. Hence g(z) = z + A3z

3 + A5z
5 + · · · , and as

f(z2) = g(z)2 we have

f(z2) = z2 + a2z
4 + a3z

6 + · · · = g(z)2

= (z + A3z
3 + A5z

5 + · · · )(z + A3z
3 + A5z

5 + · · · )
= z2 + 2A3z

4 + (A2
3 + 2A5)z

6 + · · · .

Hence A3 = a2/2,

A5 =
a3 − A2

3

2
=

4a3 − a22
8

.

Therefore

g(z) =
√
f(z2) = z +

a2
2
z3 +

4a3 − a22
8

z5 + · · · .

Theorem 1.3 (N-th root transformation) Let N ∈ N \ 1 and f ∈ S. Then there exists
g ∈ S such that g(z)N = f(zN). The function g satis�es

g
(
e

2πi
N z
)
= e

2πi
N g(z)

for all z ∈ D, and its Maclaurin series is of the form

g(z) = z + aN+1z
N+1 + a2N+1z

2N+1 + · · · =
∞∑
k=0

akN+1z
kN+1, z ∈ D. (∗)

In particular, the image g(D) has the N-fold rotational symmetry, that is, w ∈ g(D) if
and only if

e
2πi
N w ∈ g(D).

Conversely, if g ∈ S is of the form (∗), then there exists f ∈ S such that f(zN) = g(z)N

for all z ∈ D.

Proof. Similar to that of Theorem 1.2, see also Exercises. 2
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Example 1.2 The Köbe function satis�es

k(z2) =
z2

(1− z2)2

for all z ∈ D. By applying the square root transformation we obtain the odd function
g ∈ S,

g(z) =
z

1− z2
= z + z3 + z5 + · · · =

∞∑
n=0

z2n+1, z ∈ D.

As k(z2) = g(z)2 and k maps D onto C\(−∞,−1/4], g maps D onto C\{yi : |y| ≥ 1/2}.
The N-th root transformation of the Köbe function gives

g(z) =
z

(1− zN)2/N
, z ∈ D.

The function g ∈ S and

g(D) = C \
N−1∪
k=0

{
re

(2k+1)πi
N : 4−1/N ≤ r <∞

}
.

Let Σ denote the class of analytic functions F : C \ D → C which are injective, have
simple pole at ∞ and whose Laurent series in C \ D is of the form¨

F (z) = z + b0 + b1z
−1 + b2z

−2 + · · · = z + b0 +
∞∑
n=1

bnz
−n, z ∈ C \ D.

This last condition on the Laurent series can be replaced by F (z)/z → 1 as z → ∞.
If f ∈ S and

f(z) = z + a2z
2 + a3z

3 + · · · ,
then F , F (z) = (f(1/z))−1 belongs to Σ:

(1) Since f is univalent in D, f(1/z) is univalent in C\D. Since 1/z ̸= 0 for all z ∈ C\D
and f ∈ S, we have f(1/z) ̸= 0 for all z ∈ C \ D. We deduce that F is univalent in
C \ D. (Compare with the omitted value transformation.)

(2) We see that

F (z)

z
=

1

zf(1/z)
=

1

z(1
z
+ a2

1
z2

+ a3
1
z3

+ · · · )
=

1

1 + a2
1
z2

+ a3
1
z3

+ · · ·
→ 1,

as z → ∞.

(3) We see that

F (1/z) = (f(z))−1 = (z + a2z
2 + a3z

3 + · · · )−1 = z−1(1 + a2z + a3z
2 + · · · ),

hence F (1/z) has a simple pole at the origin, thus F has a simple pole at ∞.
Moreover, F (z) ̸= 0 for all z ∈ C \ D.

Conversely, if F ∈ Σ and F (z) ̸= 0 for all z ∈ C \ D, then f(z) = (F (1/z))−1, z ∈ D,
belongs to S. More generally, if F ∈ Σ and

c ∈ C \ F (C \ D),
then f(z) = (F (1/z)− c)−1 belongs to S.
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2 Area theorem

We pass to state and prove the so-called area theorem proved by Gronwall in 1914. It
shows that the univalence of functions in C \ D has strong implications on the Laurent
coe�cients.

Theorem (Green) Let C be a positively oriented, piecewise smooth, simple closed curve
in the plane R2 (a contour), and let D be the domain bounded by C. If L and M are
functions de�ned on a domain containing D and have continuous partial derivatives there,
then ∫

C

(L(x, y)dx+M(x, y)dy) =

∫
D

(
∂M(x, y)

∂x
− ∂L(x, y)

∂y

)
dxdy.

Take M(x, y) = x and L(x, y) ≡ 0 to get

A(D) = area(D) =

∫
D

dxdy =

∫
C

xdy.

This is the identity we will use.
According to Wikipedia it is said that George Green stated a divergence theorem in

1828. After that, Cauchy stated Green's theorem in 1846 and Riemann gave the proof in
1851.

Theorem 2.1 (Area theorem) Let f be analytic in a domain that contains the circle
{z : |z| = r} and let its Laurent series be given by f(z) =

∑∞
n=−∞ anz

n. If I(r) ={
f(reiθ) : θ ∈ [0, 2π]

}
is closed and simple (Jordan), then the area of the domain D(r)

enclosed by I(r) is

A(r) = π

∣∣∣∣∣
∞∑

n=−∞

n|an|2r2n
∣∣∣∣∣ .

Proof. Consider the functions

u(θ) = Re f(reiθ) =
f(reiθ) + f(reiθ)

2
=

1

2

∞∑
n=−∞

(ane
inθ + ane

−inθ)rn, θ ∈ [0, 2π],

and

v(θ) = Im f(reiθ) =
f(reiθ)− f(reiθ)

2
=

1

2

∞∑
n=−∞

(ane
inθ − ane

−inθ)rn, θ ∈ [0, 2π].

By Green's theorem

A(r) =

∫
D(r)

dxdy =

∣∣∣∣∫
I(r)

xdy

∣∣∣∣ = ∣∣∣∣∫ 2π

0

u(θ)v′(θ)dθ

∣∣∣∣
=

1

4

∣∣∣∣∣
∫ 2π

0

(
∞∑

m=−∞

ame
imθ + ame

−imθ

)
rm ·

(
∞∑

n=−∞

nane
inθ − nane

−inθ

)
rndθ

∣∣∣∣∣ .
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Hence we get

A(r) =
1

4

∣∣∣∣∣
∞∑

m,n=−∞

nrm+n

∫ 2π

0

amane
i(m+n)θ + amane

−i(m+n)θ

+ amane
i(m−n)θ + amane

−i(m−n)θdθ

∣∣∣∣∣
=

1

4

∣∣∣∣∣
∞∑

m=−∞

m(a−mam2π + amam2π) +
1

4

∞∑
m=−∞

mr2m(|am|22π + |am|22π)

∣∣∣∣∣
= π

∣∣∣∣∣
∞∑

n=−∞

n|an|2r2n
∣∣∣∣∣ ,

since the �rst sum on the second last line is equal to 0. 2

Corollary 2.2 Let F ∈ Σ and let

F (z) = z + b0 +
∞∑
n=1

bnz
−n, z ∈ C \ D,

be its Laurent series. Then
∞∑
n=1

n|bn|2 ≤ 1.

Proof. By the Area theorem,

A(r) = π

∣∣∣∣∣
1∑

n=−∞

n|an|2r2n
∣∣∣∣∣ = π

∣∣∣∣∣r2 −
∞∑
n=1

n|bn|2r−2n

∣∣∣∣∣ , r > 1.

Since r2 −
∑
n|bn|2r−2n > 0 for r su�ciently large is also continuous and its absolute

value equals A(r)/π that is nonzero, we deduce that it is positive for all r > 1. Hence

0 < A(r)/π = r2 −
∞∑
n=1

n|bn|2r−2n, r > 1,

and by letting r → 1+ we deduce

∞∑
n=1

n|bn|2 ≤ 1.

2

There is of course an analogue of Corollary 2.2 for the class S.
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Corollary 2.3 Let f ∈ S such that

1

f(z)
=

1

z
+

∞∑
n=0

bnz
n, z ∈ D.

Then
∞∑
n=1

n|bn|2 ≤ 1.

Proof. Similar to that of Corollary 2.2. For a proof without appealing to Green's theorem,
see [3, Chapter 13]. 2

Corollary 2.4 Let F ∈ Σ and let

F (z) = z + b0 +
∞∑
n=1

bnz
−n, z ∈ C \ D,

be its Laurent series. Then |b1| ≤ 1. Further, |b1| = 1 if and only if

F (z) = z + b0 +
λ

z
, z ∈ C \ D,

where b0 ∈ C and λ ∈ T = {z ∈ C : |z| = 1}. This maps C \ D ∪ {∞} conformally onto
the complement of a segment of length 4.

Proof. The assertion |b1| ≤ 1 and the i�-claim follows directly from Corollary 2.2. For
the last part, see Exercises. 2

3 Coe�cient estimates for the class S, Part 1

Theorem 3.1 (Bieberbach 1916) Let f ∈ S and f(z) = z + a2z
2 + · · · for all z ∈ D.

Then |a2| ≤ 2. Moreover, |a2| = 2 if and only if f is a rotation of the Köbe function
(Kθ(z) = e−iθK(eiθz)).

Proof. By Theorem 1.2 we may take g ∈ S odd such that g(z)2 = f(z2) for all z ∈ D.
Now

g(z) = z + c3z
3 + c5z

5 + · · · =
∞∑
k=1

c2k+1z
2k+1 + z, z ∈ D,

and hence

(z + c3z
3 + c5z

5 + · · · )(z + c3z
3 + c5z

5 + · · · ) = z2 + a2z
4 + · · · , z ∈ D.

By comparing coe�cients, we deduce c3 = a2
2
. Set F (z) = (g(1/z))−1 for all z ∈ C \ D.

Then F ∈ Σ is odd and its Laurent series is of the form

F (z) = z − c3
z
+ · · · = z − a2/2

z
+ · · · , z ∈ C \ D.
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This holds since (
1

z
+
c3
z3

+
c5
z5

+ · · ·
)(

z − c3
z
+
c23 − c5
z3

+ · · ·
)

= 1.

Corollary 2.3 yields |a2| ≤ 2. Further, if |a2| = 2, then Corollary 2.3 shows that

F (z) = z +
λ

z

for some λ ∈ T, and hence

F (z) = z +
λ

z
=

1

g(1/z)
,

which is equivalent to

g(1/z) =
1

z + λ/z
,

which gives

g(z) =
1

1/z + λz
=

z

1 + λz2
.

Therefore

f(z2) = g(z)2 =

(
z

1 + λz2

)2

=
z2

(1 + λz2)

2

and we deduce that

f(z) =
z

(1 + λz)2
=
k(−λz)
−λ

, λ ∈ T, z ∈ D.

2

Theorem 3.2 Let f ∈ S and f(z) = z+a2z
2+a3z

3+· · · for all z ∈ D. Then |a22−a3| ≤ 1.

Proof. Take F (z) = (f(1/z))−1. Then

F (z) =
1

f(1/z)
=

1
1
z
+ a2

z2
+ a3

z3
+ · · ·

= z + c0 + c1z
−1 + c2z

−2 + · · · ,

which is equivalent to(
1

z
+
a2
z2

+
a3
z3

+ · · ·
)(

z + c0 +
c1
z
+
c2
z2

+ · · ·
)
= 1.

Hence

1 +
a2
z
+
a3
z2

+ · · · = 1,

+
c0
z
+
a2c0
z2

+ · · ·

+
c1
z2

+ · · ·
...

(3.1)
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which gives 
a2 + c0 = 0

c1 + a2c0 + a3 = 0, that is, c1 = −a2c0 − a3,
...

which is equivalent to 
c0 = −a2
c1 = a22 − a3,

...

and hence

F (z) = z − a2 + (a22 − a3)
1

z
+ · · · , z ∈ C \ D.

Corollary 2.3 yields |a22 − a3| ≤ 1. 2

The Köbe function

k(z) =
∞∑
n=1

nzn = z +
∞∑
n=2

anz
n

satis�es a22 − a3 = 22 − 3 = 1, but there are other functions in S for which the equality in
Theorem 3.2 holds. For example, the square root transform of the Köbe function,

z

1− z2
=

∞∑
n=0

z2n+1 = z + z3 + z5 + · · · ,

has this property because in this case a2 = 0 and a3 = 1.

Corollary 3.3 Let f ∈ S be odd and f(z) = z + c3z
3 + · · · for all z ∈ D. Then |c3| ≤ 1.

Moreover, |c3| = 1 if and only if f is a rotation of the function z(1− z)−1.

Proof. Since c2 = 0, Theorem 3.2 yields |c2| ≤ 1. The i�-part of the assertion is left as
an exercise. 2

Corollary 3.3 gives an easy way to see that S is not a convex set (compare with
Exercise 1). Namely, let f = K and

g(z) = −k(−z) = z − 2z2 + 3z3 − · · · , z ∈ D.

Then g is a rotation of Köbe and hence f, g ∈ S. The function

h(z) =
1

2
(f(z) + g(z)) =

1

2

[
z + 2z2 + 3z3 + · · ·+ z − 2z2 + 3z3 − 4z4 + · · ·

]
=

1

2

[
2z + 2 · 3z3 + · · ·

]
= z + 3z3 + 5z5 + · · · , z ∈ D,

(3.2)

is odd, but c3 = 3, so h /∈ S by Corollary 3.3.
Bieberbach conjectured in his paper that if f ∈ S, then the Maclaurin coe�cients an

of f would satisfy |an| ≤ n for all n ∈ N with equality only for rotations of the Köbe
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function. Löwner proved the assertion for n = 3 and subsequently proof was given for
n = 4, 5, 6, · · · . Littlewood (Flett's teacher) (1925) showed that |an| ≤ en for all n ∈ N
and Basilevic (1951) established the bound

lim sup
n→∞

|an|
n

≤ e

2
.

[|an| ≤ en/2 was proved by Baernstein in the 1970's] Milin (1960's) proved |an| ≤ 1.243n
and Fitzgerald (1970's) in turn showed |an| ≤

√
7/6. Finally, de Branges proved the

Bieberbach conjecture in 1984 (Milin).

4 Köbe One Quarter Theorem

Each f ∈ S is an open mapping with 0 ∈ f(D). Therefore there exists rf > 0 such that
D(0, rf ) ⊂ f(D). To start with, the radius rf depends on the function f . Köbe proved
the existence of a positive δ such that D(0, δ) ⊂ f(D) for all f ∈ S. The Köbe function
shows that δ ≤ 1/4. Bieberbach proved that one can actually take δ = 1/4.

Theorem 4.1 (Köbe 1/4 - theorem) The disc D(0, 1/4) is contained in the range of each
f ∈ S, that is, D(0, 1/4) ⊂ f(D) for all f ∈ S. Moreover, if there exists w /∈ f(D) with
|w| = 1/4, then f is a rotation of the Köbe function.

Proof. Let f ∈ S and f(z) = z + a2z
2 + a3z

3 + · · · for all z ∈ D. Let w /∈ f(D). By
applying the omitted value transformation, we see that g, de�ned by

g(z) =
wf(z)

w − f(z)
, z ∈ D,

belongs to S. Let
g(z) = z + b2z

2 + b3z
3 + · · · , z ∈ D.

Now g(z)(w − f(z)) = wf(z) for all z ∈ D, and hence(
z + b2z

2 + b3z
3 + · · ·

) (
w − z − a2z

2 − a3z
3 − · · ·

)
= wz + wa2z

2 + wa3z
3 + · · · .

This is equivalent to

wz + (wb2 − 1)z2 + · · · = wz + wa2z
2 + · · · ,

which implies

b2w − 1 = wa2, that is, b2 =
1

w
+ a2.

Since f and g belong to S, we have |a2| ≤ 2 and |b2| ≤ 2 by Theorem 3.1. It follows that∣∣∣∣ 1w
∣∣∣∣ ≤ ∣∣∣∣ 1w + a2

∣∣∣∣+ |a2| = |b2|+ |a2| ≤ 4.

Hence |w| ≥ 1/4. Moreover, if |w| = 1/4, then |a2| = 2 and hence f is a rotation of the
Köbe function by Theorem 3.1. 2
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The univalence is essential in Köbe's theorem. Namely, if we set¨

fn(z) =
1

n
(enz − 1), z ∈ D, n ∈ N,

then fn is analytic in D, fn(0) = 0 and f ′
n(0) = 1 for all n ∈ N. However, fn omits the

value −1/n.
Köbe's theorem allows us to estimate the distance of a point in a proper subdomain

of C to the boundary. This quantity is important in geometric applications. Let D ( C
and w ∈ D, and let

d(w, ∂D) = inf
z∈∂D

|z − w|, w ∈ D.

Theorem 4.2 If f is univalent in D and f(D) = D, then

1

4
(1− |z|2)|f ′(z)| ≤ d(f(z), ∂D) ≤ (1− |z|2)|f ′(z)|, z ∈ D.

Proof. Let f be univalent in D. By Theorem 1.1,

g(z) =
f(ψa(z))− f(a)

(1− |a|2)f ′(a)
, z ∈ D, ψa(z) =

a+ z

1 + az
, a ∈ D,

belongs to S. By the Köbe 1/4 - theorem, D(0, 1/4) ⊂ g(D), that is, for each w ∈
D(0, 1/4), there exists z ∈ D such that g(z) = w or equivalently

f(ψa(z))− f(a)

(1− |a|2)f ′(a)
= w,

which gives

f(ψa(z)) = f(a)w(1− |a|2)f ′(a) = f(a) + w
f ′(a)

|f(a)|
(1− |a|2)|f ′(a)|,

where f ′(a)
|f(a)| ∈ T. In other words, for each

w ∈ D

(
f(a),

|f ′(a)|(1− |a|2)
4

)
,

there exists z′ = ψa(z) ∈ D such that f(z′) = w′. Hence

1

4
(1− |a|2)|f ′(a)| ≤ d(f(a), ∂D), a ∈ D.

To see the upper bound, let Ra = d(f(a), ∂D) and consider the mapping Φ : D →
D(f(a), Ra), Φ(z) = f(a) + Raz, z ∈ D, and f−1 : D(f(a), Ra) → D, and set ω(z) =
(ψ−a ◦ f−1 ◦ Φ)(z), z ∈ D. Then ω(D) ⊂ D and ω(0) = (ψ−a ◦ f−1)(f(a)) = ψ−a(a) = 0,
and hence the Schwarz lemma yields |ω′(0)| ≤ 1. But a direct calculation shows that

ω′(0) =
Ra

(1− |a|2)f ′(a)
,
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and so d(f(a), ∂D) = Ra ≤ (1− |a|2)|f ′(a)|. 2

Recall that the Bloch space B consists of f ∈ H(D) such that

∥f∥B = sup
z∈D

|f ′(z)|(1− |z|2) + |f(0)| <∞.

Theorem 4.2 shows that if f ∈ H(D), then

|f ′(z)|(1− |z|2) ≍ d(f(z), ∂D), z ∈ D.

Here f(x) ≍ g(x) if there exists C > 0 such that

1

C
f(x) ≤ g(x) ≤ Cf(x),

that is, if the quotient f(x)/g(x) is uniformly bounded above and bounded away from
zero. On the other hand, if there exists C > 0 such that A ≤ CB, we write A . B. In
particular, A . B . A is equivalent to A ≍ B.

Therefore we can deduce:

Theorem 4.3 Let f ∈ H(D) be univalent and f(D) = D. Then the following assertions
are equivalent:

(i) f ∈ B;

(ii) supz∈D d(f(z), ∂D) <∞;

(iii) D does not contain arbitrarily large discs.

5 Growth and distortion theorems

Theorem 5.1 Let f be univalent in D. Then∣∣∣∣z f ′′(z)

f ′(z)
− 2|z|2

1− |z|2

∣∣∣∣ ≤ 4|z|
1− |z|2

, z ∈ D.

Proof. Consider

F (z) =
(f ◦ ψa)(z)− f(a)

f ′(a)(1− |a|2)
, z ∈ D, a ∈ D \ {0} ,

which belongs to S. By Theorem 3.1, |F ′′(0)/2| ≤ 2. Let us calculate:

ψa(z) =
a+ z

1 + az
, ψ′

a(z) =
1− |a|2

(1 + az)
, ψ′′

a(z) =
−2a(1− |a|2)
(1 + az)3

, z ∈ D,

giving
ψa(0) = a, ψ′

a(0) = (1− |a|2), ψ′′
a(0) = −2a(1− |a|2)
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and

F ′(z) =
f(ψa(z))ψ

′
a(z)

f ′(a)(1− |a|2)
, F ′′(z) =

f ′′(ψa(z))ψ
′
a(z) + f ′(ψa(z))ψ

′′
a(z)

f ′(a)(1− |a|2)
,

so

|F ′′(0)| =
∣∣∣∣f ′′(a)(1− |a|2)2 − 2a(1− |a|2)f ′(a)

f ′(a)(1− |a|2)

∣∣∣∣ = ∣∣∣∣1− |a|2

a

(
a
f ′′(a)

f ′(a)
− 2|a|2

1− |a|2

)∣∣∣∣ ,
and hence ∣∣∣∣af ′′(a)

f ′(a)
− 2|a|2

1− |a|2

∣∣∣∣ ≤ 4|a|
1− |a|2

, a ∈ D \ {0} .

2

Theorem 5.1 implies (for each univalent f)

|(log f ′)′(z)| ≤ 4

1− |z|2
+

2|z|
1− |z|2

=
6− 2(1− |z|)

1− |z|2
, z ∈ D.

In particular,

∥log f ′∥B = sup
z∈D

|(log f ′)′(z)|(1− |z|2) + | log f ′(0)| ≤ 6, f ∈ S.

The important point to remember is that the seminorm

sup
z∈D

|(log f ′)′(z)|(1− |z|2)

is uniformly bounded by 6 for all univalent functions f in D.
The quantity (log f ′)′ = f ′′/f ′ is called the pre-Schwarzian derivative of f and it is

well-de�ned if f is locally univalent analytic function.
[The Schwarzian derivative of f is

Sf (z) =

(
f ′′

f ′

)′

− 3

2

(
f ′′

f ′

)2

,

but we will speak about this later.]

Theorem 5.2 (Distortion theorem) Let f ∈ S. Then

1− |z|
(1 + |z|)3

= k′(−|z|) ≤ |f ′(z)| ≤ 1 + |z|
(1− |z|)3

= k′(|z|), z ∈ D.

Moreover, equality for one of these inequalities holds for some z ∈ D \ {0} if and only if
f is a rotation of the Köbe function.

Proof. By Theorem 5.1,∣∣∣∣∫ z

0

(
f ′′(w)

f ′(w)
− 2w

1− |w|2

)
dw

∣∣∣∣ ≤ ∫ z

0

∣∣∣∣f ′′(w)

f ′(w)
− 2w

1− |w|2

∣∣∣∣ |dw|
≤
∫ z

0

4

1− |w|2
|dw| = 4

∫ |z|

0

dt

1− t2

= 2

∫ |z|

0

(
1

1− t
+

1

1 + t

)
dt = 2 log

1 + |z|
1− |z|

(5.1)

18



for all z ∈ D. But∫ z

0

(
f ′′(w)

f ′(w)
− 2w

1− |w|2
dw

)
= log f ′(z)−

∫ z

0

2|w|
1− |w|2

dw

= log f ′(z)−
∫ 1

0

2ztzdt

1− |z|2t2

= log f ′(z) +
[
log(1− |z|2t2)

]1
t=0

= log f ′(z)− log
1

1− |z|2

(5.2)

and consequently, ∣∣∣∣log f ′(z)− log
1

1− |z|2

∣∣∣∣ ≤ 2 log
1 + |z|
1− |z|

, z ∈ D.

It follows that

−2 log
1 + |z|
1− |z|

≤ Re (log f ′(z)− log
1

1− |z|2
) ≤ 2 log

1 + |z|
1− |z|

, z ∈ D,

that is,

log

(
1− |z|
1 + |z|

)2

≤ log
[
|f ′(z)(1− |z|2)|

]
log

(
1 + |z|
1− |z|

)2

, z ∈ D,

which is equivalent to(
1− |z|
1 + |z|

)2

≤
[
|f ′(z)(1− |z|2)|

](1 + |z|
1− |z|

)2

, z ∈ D,

which holds if and only if

1− |z|
(1 + |z|)3

≤ |f ′(z)| ≤ 1 + |z|
(1− |z|)3

, z ∈ D.

If z ∈ D\{0}, then, by the proof above, equality for one of the inequalities in the statement
holds only if ∣∣∣∣f ′′(w)

f ′(w)
− 2w

1− |w|2

∣∣∣∣ = 4

1− |w|2
, w ∈ [0, z].

In particular, this inequality must be valid for w = 0. Hence |f ′′(0)| = 4, and so f is a
rotation of the Köbe by Theorem 3.1, since now |a2| = |f ′′(0)/2| = 2. 2

One observation on the proof of Theorem 5.2: In the crucial step we passed to the
real part of the logarithm. By taking the imaginary part, we deduce

−2 log
1 + |z|
1− |z|

Im (log f ′(z)(1− |z|2)) ≤ 2 log
1 + |z|
1− |z|

, z ∈ D,

which is equivalent to

| arg f ′(z)| ≤ 2
1 + |z|
1− |z|

, z ∈ D, f ∈ S
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where it is understood that arg f ′(z) is the branch which vanishes at the origin (f ′(0) = 1).
The quantity arg f ′(z) can be interpret geometrically as the rotation factor under the
conformal map f ∈ S. Hence the inequality above may be called a rotation theorem.
Unfortunately, this result is far from being sharp at any point z ∈ D \ {0}. The true
rotation theorem reads as

| arg f ′(z)| ≤

{
4 sin−1 r, r ≤ 1√

2
;

π + log r2

1−r2 , r ≥ 1√
2
,

and is much deeper and its proof is based on the Löwner's method.
The distortion theorem is now applied to obtain the sharp upper and lower bounds to

|f(z)|.

Theorem 5.3 (Growth theorem) Let f ∈ S. Then

|z|
(1 + |z|)2

= −k(−|z|) ≤ |f(z)| ≤ |z|
(1− |z|)2

= k(|z|), z ∈ D.

Moreover, equality for one of these inequalities holds for some z ∈ D \ {0} if and only if
f is a rotation of the Köbe function.

Proof. By Theorem 5.2,

f(z) =

∣∣∣∣∫ z

0

f ′(ξ)dξ

∣∣∣∣ ≤ ∫ z

0

|f ′(ξ)|dξ|| =
∫ 1

0

|f ′(tz)||z|dt ≤
∫ 1

0

|k′(t|z|)||z|dt = k(|z|)

and thus |f(z)| ≤ k(|z|) for all z ∈ D. If z ∈ D \ {0} and |f(z)| = k(|z|), then |f ′(ξ)| =
k′(|ξ|) for all ξ ∈ [0, z], so f is a rotation of the Köbe function by Theorem 5.2.

To see the lower bound, note �rst that r/(1 + r)2 ∈ [0, 1/4) for all r ∈ [0, 1), so the
inequality |z|/(1 + |z|)2 ≤ |f(z)| is trivial when |f(z)| ≥ 1/4. Let now z ∈ D such that
|f(z)| < 1/4. By the Köbe 1/4-theorem, the segment [0, f(z)] is contained in f(D). Let
γ(t) = f−1(tf(z)) for all t ∈ [0, 1]. Now |f(z)| is the length of the line integral [0, f(z)] so

|f(z)| =
∫ f(z)

0

|dw| =
∫
γ

|f ′(ξ)||dξ| =
∫ 1

0

|f ′(γ(t))||γ′(t)|dt.

and hence Theorem 5.2 gives

|f(z)| ≥
∫ 1

0

1− |γ(t)|
(1 + |γ(t)|)3

|γ′(t)|dt

(∗)
≥ 1− |γ(t)|

(1 + |γ(t)|)3
d

dt
|γ(t)|dt =

∫ |z|

0

1− r

(1 + r)3
= . . . =

|z|
(1 + |z|)2

,

(5.3)

where in (∗) we have used the inequality

d|γ(t)|
dt

=
d(γ(t)γ(t))1/2

dt
=
γ′(t)γ(t) + γ′(t)γ(t)

2(γ(t)γ(t))1/2
=

Re (γ′(t)γ(t))
|γ(t)|

≤ |γ′(t)||γ(t)|
|γ(t)|

= |γ′(t)|,
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valid for γ(t) ̸= 0. Theorem 5.2 shows the second part of the assertion. 2

In the proof of Theorem 5.3 we may do the step (∗) slightly di�erently by arguing as
follows. Theorem 5.2 yields

|f(z)| =
∫
γ

|f ′(ξ)||dξ| ≥
∫
γ

k′(−|z|)|dz|.

Take now a parametrization of γ that is of the form γ(t) = r(t)eiθ(t), where t ∈ [0, 1].
Then

|f(z)| ≥
∫
γ

k′(−|ξ|)|dξ|

=

∫ 1

0

k′(−r(t))|r′(t)eiθ(t) + r(t)eiθ(t)iθ′(t)|dt

=

∫ 1

0

k′(−r(t))|r′(t) + r(t)iθ(t)|dt

≥
∫ 1

0

k′(−r(t))r′(t)dt

= − [k(−r(t))]1t=0 = −k(−|z|).

(5.4)

One further inequality, a combined growth and distortion theorem is sometimes useful.

Theorem 5.4 Let f ∈ S. Then

1− |z|
1 + |z|

=
−|z|k′(−|z|)
k(−|z|)

≤
∣∣∣∣z f ′(z)

f(z)

∣∣∣∣ ≤ |z|k′(|z|)
k(|z|)

=
1 + |z|
1− |z|

, z ∈ D.

Moreover, equality for one of these inequalities holds for some z ∈ D \ {0} if and only if
f is a rotation of the Köbe function.

Proof. Let f ∈ S and a ∈ D. Then f ◦ ψa is univalent in D and further

F (z) =
f(ψa(z))− f(a)

f ′(a)(1− |a|2)
, z ∈ D,

belongs to S, and

|F (−a)| = |f(a)|
(1− |a|2)|f ′(a)|

, a ∈ D.

Theorem 5.3 applied to F implies

|a|
(1 + |a|)2

≤ |f(a)|
(1− |a|2)|f ′(a)|

≤ |a|
(1− |a|)2

, a ∈ D,

which is equivalent to

1− |a|2

(1 + |a|)2
≤ |f(a)|

|af ′(a)|
≤ 1− |a|2

(1− |a|)2
, a ∈ D,
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that is,
1− |a|
1 + |a|

≤
(
a
f ′(a)

f(a)

)
≤ 1 + |a|

1− |a|
, a ∈ D.

The second assertion again follows by Theorem 5.3. 2

A family F of analytic functions in a domain D ⊆ C is a normal family (in the sense
of Montel) if for each sequence {fn} ⊆ F there exists a subsequence {fnk

} such that either
fnk

→ f ̸≡ ∞ or fnk
→ ∞ uniformly on compact subsets of D. Further, F is normal at

z0 if it is normal in some neighborhood of z0.

Montel's theorem If F is a locally bounded family of analytic functions in a domain
D ⊆ C, then F is normal.

F is locally bounded in a domain D, if for all z0 ∈ D there exists r = r(z0) > 0 and
M =M(z0) > 0 such that D(z0, r) ⊆ D and |f(z)| ≤M for all z ∈ D(z0, r) and f ∈ F .

Hurwitz's theorem Let D ⊆ C be a domain and fn : D → C \ {0} analytic for all
n ∈ N. If fn → f uniformly on compact subsets of D, then f : D → C \ {0} is analytic
or f ≡ 0.

Corollary 5.5 S is a normal family. S is compact family with respect to the topology of
uniform convergence on compact sets.

Proof. To see that S is normal, by Montel's theorem, it su�ces to show that S is locally
(uniformly) bounded. This follows by Theorem 5.3: if z ∈ D(0, r), then

|f(z)| ≤ k(|z|) = |z|
(1− |z|)2

≤ r

(1− r)2
.

Now, if {fn} is a converging sequence of functions in S that converges uniformly to
f ∈ H(D) (by Weierstrass theorem) in each compact subset of D, Hurwitz theorem shows
that f is either constant of injective in D:

Consider gn(z) = fn(z) − f(a), where a ∈ D is �xed in the domain D \ {a}. Then
gn(z) ̸= 0 for all z ∈ D \ {a}. Hurwitz theorem implies that either g = f − f(a) does
not have zeros or g ≡ 0. Since a ∈ D was arbitrary, we deduce that either f is injective
or a constant. But since f ′ → f uniformly on compact subsets by Weierstrass theorem
and f ′

n(0) = 1 for all n, we must have f ′(0) = 1, thus f cannot be a constant. Therefore
f ∈ H(D) is univalent, f(0) = limn→∞ fn(0) = 0 again by the Weierstrass theorem and
f ′(0) = 1. 2

Some auxiliary results
Here are some facts from [3, pages 485 and 383], which are related to the course. For
example the Ascoli-Arzela Theorem is related to Montel's theorem about normal families.
Moreover, we need the Change of Variables Theorem. Lusin Area Theorem states that for
an univalent function we get the area of the image by integrating the square of modulus of
the derivative in the domain (for non-univalent functions see Theorem 2.14 in Conway II
for the analogous claim).
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Convergence of C1 Functions: Let fj be continuously di�erentiable functions with
common domain [a, b]. Assume that fj → f uniformly on [a, b] and also that the derived
functions f ′

j converge uniformly to some function g. Then f ∈ C1 and f ′ = g.

The Ascoli-Arzela Theorem: Let {fj}j∈N be functions on a compact set K ⊆ RN .
Suppose that the following two properties hold for this sequence:

(1) The functions {fj} are equicontinuous, in the sense that if ε > 0, then there exists
a δ = δ(ε) > 0 so that |fj(x)− fj(t)| < ε whenever x, t ∈ K and |x− t| < δ.

(2) The functions are pointwise bounded in the sense that, for each x ∈ K, there is an
constant M(x) such that |fj(x)| ≤M(x) for all j ∈ N.

Then there is a subsequence {fjk}k∈N that converges uniformly to a continuous function
f on K.

The Tietze Extension Theorem: Let E ⊆ RN be any closed set and f : E → R a
continuous function. Then there is a continuous function F : RN → R such that the
restriction of F to E equals f .

The Change of Variables Theorem in Two Variables: Let U and V be bounded,
connected planar regions, each with piecewise C1 boundary. Let Φ : U → V be a C1

mapping that has a C1 inverse. Assume that the derivatives of Φ,Φ−1 are continuous and
bounded. Let f be a bounded, continuous function on V . Then∫

U

f(Φ(s, t)) det JacΦ(s, t)dsdt =

∫
V

f(x, y)dxdy.

Here the Jacobian determinant of Φ = (Φ1,Φ2) is given by

det JacΦ(s, t) = det

(
(Φ1)s (Φ1)t
(Φ2)s (Φ2)t.

)
(5.5)

The Cauchy-Schwarz Inequality: Let f, g be continuous functions on the interval
[a, b]. Then ∣∣∣∣∫ b

a

f(x)g(x)dx

∣∣∣∣ ≤ (∫ b

a

|f(x)|2dx
)1/2(∫ b

a

|g(x)|2dx
)1/2

.

Lusin area integral: Let Ω ⊆ C be a domain and ϕ : Ω → C a one-to-one holomorphic
function. Then ϕ(Ω) is a domain and

area(ϕ(Ω)) =

∫
Ω

|ϕ′(z)|2dA(z).

Proof. We may as well suppose that the areas of Ω and ϕ(Ω) are �nite: the general result
then follows by exhaustion. Notice that if we write ϕ = u+ iv = (u, v) = F , then we may
think of ϕ(z) as

F : (x, y) 7→ (u(x, y), v(x, y)),
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an invertible C2 mapping of Ω ⊆ R2 to F (Ω) ⊆ R2. The set F (Ω) is open by the open
mapping theorem; it is also connected since it is the image of a connected set. Therefore
F (Ω) is a domain. The Jacobian of F is

Jac F =

(
ux uy
vx vy

)
;

also
det Jac F = u2x + v2x = |ϕ′|2.

Thus the change of variables theorem gives∫
ϕ(Ω)

1 dA(z) =

∫
Ω

det Jac F dA(z) =

∫
Ω

|φ′(z)|2 dA(z)

as desired. 2

Here is a proof from [7] to be discussed.
Proof. Let f be an analytic function in D. For z = reiθ ∈ D, z ∈ D(0, ρ), where
ρ = 1

2
(1 + r), and hence, by the Cauchy formula,

f ′(z) =
1

2πi

∫
|ζ|=ρ

f(ζ)dζ

(ζ − z)2

=

∫ 2π

0

f(ρei(t+θ))ρei(t+θ)i

(ρei(t+θ) − reiθ)2
dt

=
ρ

2π

∫ 2π

0

f(ρei(t+θ))ei(t−θ)

(ρeit − r)2
dt.

(5.6)

This and the Minkowski's inequality in continuous form then gives∫ 2π

0

∣∣f ′(reiθ)
∣∣p dθ = ∫ 2π

0

∣∣∣∣ ρ2π
∫ 2π

0

f(ρei(t+θ))ei(t−θ)

(ρeit − r)2
dt

∣∣∣∣p dθ
≤
∫ 2π

0

(
1

2π

∫ 2π

0

|f(ρei(t+θ))|
|ρeit − r|2

dt

)p
dθ

≤

(
1

2π

∫ 2π

0

(∫ 2π

0

(
|f(ρei(t+θ))|
|ρeit − r|2

)p
dθ

) 1
p

dt

)p

=

 1

2π

∫ 2π

0

(∫ 2π

0
|f(ρei(t+θ))|pdθ

) 1
p

|ρeit − r|2
dt


p

=

∫ 2π

0

|f(ρeiϕ)|pdϕ
(

1

2π

∫ 2π

0

dt

|ρeit − r|2

)p
=

∫ 2π

0

|f(ρeiϕ)|pdϕ
(

1

ρ2 − r2

)p
=

∫ 2π

0

|f(ρeiϕ)|pdϕ
(

1

(ρ− r)(ρ+ r)

)p

(5.7)

24



2

6 Coe�cient estimates for the class S, Part 2

Theorem 6.1 Let f ∈ S and f(z) = z + a2z + . . . for all z ∈ D. Then

|an| ≤ e2
n(n+ 1)

4
≤ 3

8
e2n2

for all n ∈ N.

Proof. The coe�cients in the Maclaurin series of f are given by

an =
1

2πi

∫
|z|=r

f(z)

zn+1
=

1

2π

∫ 2π

0

f(reit)

(reiθ)n
dθ, 0 < r < 1.

Theorem 5.3 yields

|an| ≤
1

2π

∫
|z|=r

|f(z)|
|z|n+1

|dz| ≤ 1

2π

r

(1− r)2
1

rn+1
2πr =

1

(1− r)2rn−1
, 0 < r < 1.

For n ∈ N \ {1}, the function φn : (0, 1) → (0,∞), φn(r) = r1−n(1 − r)−2 satis�es
φ′
n(r) = r−n(1− r)−2 [(1− n) + 2r(1− r)−1] = 0 if and only if

r =
n− 1

n+ 1
,

and one may deduce by the monotonicity of 2r
1−r that φn attains its minimum at rn =

(n− 1)/(n+ 1). This choice gives

|an| ≤ φn(rn) =

(
n+ 1

n− 1

)n−1(
1− n− 1

n+ 1

)−2

=

(
n+ 1

n

)n(
n

n− 1

)n−1
n(n+ 1)

4

for n ∈ N \ {1}. Since
(
m+1
m

)m
< e for all m ∈ N (and in fact limm→∞

(
m+1
m

)m
= e) we

deduce

|an| ≤ e2
n(n+ 1)

4
≤ e2

3

2
n21

4
=

3

8
e2n2,

because n(n+ 1) ≤ 3
2
n2 for all n ∈ N \ {1}. 2

By Section 3 we know that the estimate in Theorem 6.1 is not sharp; it is not even of
the correct order of magnitude. In the proof we passed the modulus inside the integral
and applied the pointwise growth estimate inside the integral. This is of course a rough
estimate. By estimating L1-means, we get the correct order of magnitude |an| = O(n),
n→ ∞.

For 0 < p <∞, denote

Mp
p (r, f) =

1

2π

∫ 2π

0

|f(reiθ)|pdθ, 0 < r < 1.

The Hardy space Hp consists of f ∈ H(D) such that

∥f∥Hp = sup
0<r<1

Mp(r, f) = lim
r→1−

Mp(r, f) <∞.
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Theorem 6.2 (Littlewood 1925) Let f ∈ S. Then

M1(r, f) ≤
r

1− r
, 0 < r < 1.

Proof. Let f(z) = z +
∑∞

n=2 anz
n, and let g(z) =

√
f(z2) =

∑
cnz

n be the square root
transformation of f . Then g ∈ S is odd, and so g(0) = 0, c1 = 1 and c2n = 0 for all
n ∈ N. By Theorem 5.3,

|f(z)| ≤ |z|
(1− |z|)2

, z ∈ D,

and hence

|g(z)| = (f(z2))1/2 ≤
(

|z|2

(1− |z|2)2

)1/2

=
|z|

1− |z|2
≤ r

1− r2
, z ∈ D(0, r), r ∈ (0, 1).

Therefore

g(D(0, r)) ⊆ D

(
0,

r

1− r2

)
,

which implies that

area (g(D(0, r))) ≤ area

(
D

(
0,

r

1− r2

))
= π

r2

(1− r2)2
.

On the other hand,

area(g(D(0, r))) =

∫
g(D(0,r))

dA(w) =

∫
D(0,r)

|g′(z)|2dA(z)

=

∫ r

0

∫ 2π

0

|g′(seiθ)|2dθρdρ

=

∫ r

0

∫ 2π

0

∣∣∣∣∣∑
n=1

ncnρ
n−1ei(n−1)θ

∣∣∣∣∣
2

dθρdρ

=

∫ r

0

∫ 2π

0

∞∑
n,m=1

nmcncmρ
n−1ρm−1ei(n−1)θe−i(m−1)θdθρdρ

=

∫ r

0

∞∑
n=1

n2|cn|2ρ2n−22πρdρ

= π
∞∑
n=1

n2|cn|2
r2n

n
= π

∞∑
n=1

n|cn|2r2n,

(6.1)

and hence

π
∞∑
n=1

n|cn|r2n = area(g(D(0, r))) ≤ area

(
g

(
D

(
0,

r

1− r2

)))
= π

r2

(1− r2)2
, 0 < r < 1.
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By dividing this by πr and integrating from 0 to R with respect to r we deduce

1

2

∞∑
n=1

|cn|R2n =

∫ R

0

∞∑
n=1

n|cn|2r2n−1dr ≤
∫ R

0

r

(1− r2)2
dr

=

[
1

2(1− r2)

]R
r=0

=
R2

2(1−R2)
, 0 < R < 1.

(6.2)

Now the left-hand side equals to the L2-mean of g (by the Parseval's formula):

1

2π

∫ 2π

0

|g(Reiθ)|2dθ = 1

2π

∫ 2π

0

∞∑
n,m=1

cncmR
nRm =

∫ ∞

n=1

|cn|2R2n, 0 < R < 1,

so

M2
2 (R, g) =

∞∑
n=1

|cn|2R2n ≤ R2

1−R2
, 0 < R < 1.

But g(z)2 = f(z2) for all z ∈ D, g is odd and thus |g| is even, and therefore

M1(R
2, f) =

1

2π

∫ 2π

0

|f(R2eiθ)|dθ = 1

2π

∫ 2π

0

|g(Rei
θ
2 )|2dθ

=
2

2π

∫ π

0

|g(Reit)|2dt = 1

2π

∫ 2π

0

|g(Reit)|2dt

=M2
2 (R, g) ≤

R2

1−R2
, 0 < R < 1.

(6.3)

From here we �nally deduce

M1(R, f) ≤
R

1−R

for all 0 < R < 1. 2

In the proof we used the proof of Parseval's formula which is a generalization of
Pythagoras' theorem.

Let X be a vector space and let ⟨·, ·⟩ : X ×X → C satisfy

(i) ⟨x, x⟩ = 0 if and only if x = 0;

(ii) ⟨x, y⟩ = ⟨x, y⟩ for x, y ∈ X;

(iii) ⟨αx+ y, z⟩ = α ⟨x, z⟩+ ⟨y, z⟩ for x, y, z ∈ X and α ∈ C.

Then ⟨·, ·⟩ is called an inner product and (X, ⟨·, ·⟩) is an inner product space. Now the
inner product induces a norm to X:

∥x∥2 = ⟨x, x⟩ , x ∈ X,

and the norm induces a metric to X:

d(x, y) = ∥x− y∥ , x, y ∈ X.
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If (X, d) is complete, then we say that (X, ⟨·, ·⟩) is a Hilbert space.
Let D be a domain and let A2 consist of f ∈ H(D) such that∫

D

|f(z)|2dA(z) <∞.

Now ⟨·, ·⟩A2 : A2 × A2 → C,

⟨f, g⟩ =
∫
D

f(z)g(z)dA(z)

is an inner product on A2 and (A2, ⟨·, ·⟩) is a Hilbert space.
If ⟨x, y⟩ = 0, then x and y are orthogonal.

Parseval's formula Let X be a Hilbert space with an orthogonal basis {en}n∈N. Now if

f =
∞∑
n=0

cnen,

then

∥f∥2 =
∞∑
n=0

|cn|2 ∥en∥2 .

Proof. By the properties of the inner product

∥f∥2 = ⟨f, f⟩ =

⟨
∞∑
n=0

cnen,

∞∑
m=0

cmem

⟩
=

∞∑
n=0

∞∑
m=0

cncm ⟨en, em⟩ =
∞∑
n=0

|cn|2 ∥en∥2 .

2

The set {en}n∈N0
for en = zn is a orthogonal basis for A2(D(0, r)). Moreover,

∥en∥2A(D(0,r)) =

∫
D(0,r)

|z|2dA(z) =
∫ r

0

∫ 2π

0

ρ2ndθρdρ = 2π
r2n+2

2n+ 2
=
πr2n+2

n+ 1
.

Hence for

g′(z) =
∞∑
n=1

ncnz
n−1

we have ∫
D(0,r)

|g′(z)|dA(z) = ∥g′(z)∥A2(D(0,r)) =
∞∑
n=1

n2|cn|2
∥∥zn−1

∥∥2
=

∞∑
n=1

n2|cn|2
πr2n

n
= π

∞∑
n=1

n|cn|2r2n.
(6.4)

Corollary 6.3 Let f ∈ S and f(z) = z +
∑∞

n=2 anz
n for all z ∈ D. Then |an| ≤ en for

all n ∈ N.
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Proof. By Theorem 6.2,

|an| ≤
1

rn
M1(r, f) ≤

1

rn−1(1− r)
= ψn(r), n ∈ N, r ∈ (0, 1).

The function ψn : (0, 1) → (0,∞) attains its minimum at rn = n−1
n
, and hence

|an| ≤
1

rn−1
n (1− rn)

=

(
n

n− 1

)n−1

n < en, n ∈ N \ {1} .

2

7 Estimates of integral means

Let us begin with discussing the sharpness of Littlewood's result (Theorem 6.2):

M1(r, k) =
1

2π

∫ 2π

0

|k(reiθ)|dθ = 1

2π

∫ 2π

0

r

|1− reiθ|2
dθ

=
r

1− r2
1

2π

∫ 2π

0

1− r2

|1− reiθ|2
dθ =

r

1− r2
<

r

1− r
,

(7.1)

by the properties of the Poisson kernel.
[Note that we have by Parseval's formula for f(z) =

∑∞
n=0 anz

n

M2
2 (r, f) =

1

2π

∫
0

2π|f(reiθ)|2dθ =
∞∑
n=0

|an|2 ∥zn∥2L2(∂(D(0,r)))

=
∞∑
n=0

|an|2
1

2π

∫ 2π

0

|reiθ|2dθ =
∞∑
n=0

|an|2r2n.
(7.2)

Hence for g(z) = 1
1−z =

∑∞
n=0 z

n, we have

1

2π

∫ 2π

0

r

|1− reiθ|2
dθ = rM2

2 (r, g) = r

∞∑
n=0

r2n =
r

1− r2

for r ∈ (0, 1).]
In the last step we used the �rough� estimate r2 < r. Therefore we observe that

Littlewood's result is not sharp for the Köbe function. In 1974 Baernstein proved that
the Köbe function is extremal in the integral means estimates, that is, if f ∈ S, then

Mp(r, f) ≤Mp(r, k)

for all r ∈ (0, 1) and 0 < p <∞ (the case p = ∞ is already known by the Growth theorem
or can be deduced from here since limp→∞Mp(r, f) = M∞(r, f)). In fact, Baernstein
proved much more; he showed that∫ 2π

0

Φ
(
± log |f(reiθ)|

)
dθ ≤

∫ 2π

0

Φ
(
± log |k(reiθ)|

)
, r ∈ (0, 1), f ∈ S,
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for any increasing and convex function Φ with equality for some r ∈ (0, 1) and a strictly
convex Φ only if f is a rotation of Köbe. By choosing Φ(x) = epx we deduce Mp(r, f) ≤
Mp(r, k).

At this point we do not prove Baernstein's theorem, but we observe that it implies

|an| ≤ r−nM1(r, f) ≤ r−nM1(r, k) = r1−n(1− r2)−1, r ∈ (0, 1).

This implies |an| < e
2
n, which improves Corollary 6.3, but does not prove Bieberbach's

conjecture.
By a result of Hardy and Littlewood,∫ r

0

Mp
∞(ρ, f)dρ ≤ πMp

p (r, f), f ∈ H(D). (∗)

The converse of this inequality is totally false. It is �easy� to construct (by using lacunary
series or in�nite products) analytic functions such that their maximum modulus grows
arbitrarily slowly to in�nity, but which fails to have radial limit on a set of positive
measure.

For univalent functions, however, a kind of a converse of (∗) is true by a result due to
Prawitz.

Lemma 7.1 Let f ∈ H(D) and 0 < p <∞. Then

d

dr

(
r
d

dr
Mp

p (r, f)

)
=
p2r

2π

∫ 2π

0

|f(reiθ)|p−2|f ′(reiθ)|2dθ, 0 < r < 1.

Proof. By direct calculation

r
∂

∂r
|f(reiθ)| = r

∂

∂r

[
f(reiθ)f(reiθ)

]1/2
=
r

2

1

|f(reiθ)|

[
f ′(reiθ)eiθf(reiθ) + f(reiθ)f ′(reiθ)e−iθ

]
=

1

2|f(reiθ)|

[
reiθf ′(reiθ)f(reiθ) + re−iθf(reiθ)f ′(reiθ)

]
= |f(reiθ|Re

(
reiθf ′(reiθ)f(reiθ)

|f(reiθ)|2

)

= |f(reiθ)|Re
(
reiθ

f ′(reiθ)

f(reiθ)

)
.

(7.3)

and

∂

∂θ
|f(reiθ)| = 1

2|f(reiθ)|
2Re (f ′(reiθ)reiθif(reiθ))

= −|f(reiθ)|Re

(
−f

′(reiθ)reiθif(re
iθ)

|f(reiθ)|2

)

= −|f(reiθ)| Im
(
f ′(reiθ)reiθ

f(reiθ)

) (7.4)
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so

|z| ∂
∂|z|

|f(z)| = |f(z)|Re
(
z
f ′(z)

f(z)

)
and

∂

∂ arg z
|f(z)| = −|f(z)| Im

(
z
f ′(z)

f(z)

)
.

It follows that

r
∂

∂r
|f(z)|p = p|f(z)|p−1r

∂

∂r
|f(z)| = p|f(z)|pRe

(
z
f ′(z)

f(z)

)
and

∂

∂θ
|f(z)|p = p|f(z)|p−1r

∂

∂θ
|f(z)| = −p|f(z)|p Im

(
z
f ′(z)

f(z)

)
.

Consequently,

r
∂

∂r

(
r
∂

∂r
|f(z)|p

)
=

∂

∂r

(
p|f(z)|pRe

(
z
f ′(z)

f(z)

))
= p2|f(z)|p

(
Re

(
z
f ′(z)

f(z)

))2

+ p|f(z)|pr ∂
∂r

(
Re

(
z
f ′(z)

f(z)

)) (7.5)

and

∂2

∂θ2
|f(z)|p = ∂

∂θ

(
−p|f(z)|p Im

(
z
f ′(z)

f(z)

))
= p2|f(z)|p

(
Im

(
z
f ′(z)

f(z)

))2

− p|f(z)|p ∂
∂θ

(
Im

(
z
f ′(z)

f(z)

))
.

(7.6)

The Cauchy-Riemann equations in the polar coordinates read as

ur =
1

r
vθ, vr = −1

r
uθ, F = u+ iv.

Therefore, by considering F (z) = z f
′(z)
f(z)

, we deduce

r
∂

∂r

(
r
∂

∂r
|f(z)|p

)
+

∂2

∂θ2
|f(z)|p = p2|f(z)|p

∣∣∣∣z f ′(z)

f(z)

∣∣∣∣2
= p2|f(z)|p−2|f ′(z)|2.

(7.7)

Hence

r
∂

∂r

(
r
∂

∂r
Mp

p (r, f)

)
=

1

2π

∫ 2π

0

r
∂

∂r

(
r
∂

∂r
|f(reiθ)|p

)
dθ

=
p2

2π

∫ 2π

0

|f(reiθ|p
∣∣∣∣reiθ f ′(reiθ)

f(reiθ)

∣∣∣∣2 dθ, (7.8)

which is equivalent to the claim. 2
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Theorem 7.2 Let f ∈ S and 0 < p <∞. Then

Mp
p (r, f) ≤ p

∫ r

0

Mp
∞(ρ, f)

dρ

ρ
, 0 < r < 1.

Proof. By Lemma 7.1,

r
d

dr
Mp

p (r, f) =

∫ r

0

d

ds

(
s
d

ds
Mp

p (s, f)

)
ds

=

∫ r

0

p2s

2π

∫ 2π

0

|f(seiθ)|p−2|f ′(seiθ)|2dθds

=
p2

2π

∫
D(0,r)

|f(z)|p−2|f ′(z)|2dA(z)

=
p2

2π

∫
f(D(0,r))

|w|p−2dA(w)

≤ p2

2π

∫
D(0,M∞(r,f))

|w|p−2dA(w)

= p2
∫ M∞(r,f)

0

tp−1dt

= pMp
∞(r, f), 0 < r < 1.

(7.9)

By integrating this and noting that f(0) = 0, we deduce

Mp
p (r, f) =

∫ r

0

d

ds
Mp

p (s, f)ds ≤
∫ r

0

p
M∞(ρ, f)

ρ
dρ, 0 < r < 1.

2

The Hardy-Littlewood inequality (∗) combined with Prawitz' theorem shows that a
univalent function f in D belongs to Hp if and only if∫ 1

0

Mp
∞(r, f)dr <∞, 0 < p <∞.

Prawitz' theorem also gives the following.

Theorem 7.3 Let f ∈ S. Then the following assertions hold:

(i) f ∈ Hp for all p ∈ (0, 1/2);

(ii) M1(r, f) ≤ r
1−r for all r ∈ (0, 1);

(iii) M1/2
1/2 (r, f) ≤ C log 1

1−r , r → 1−;

(iv) Mp
p (r, f) ≤ C 1

(1−r)2p−1 for all r ∈ (0, 1) when p > 1/2.
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Proof. (i) Let us show that each univalent function f in D belongs to Hp for all 0 < p <
1/2. By the inequality (x+ y)p ≤ xp + yp, x, y ≥ 0 and 0 < p < 1, Prawitz' theorem and
Theorem 5.3,

Mp
p (r, f) =Mp

p (r, f − f(0) + f(0))

≤ |f(0)|p +Mp
p

(
r,
f − f(0)

f ′(0)

)
|f ′(0)|p

≤ |f(0)|p + |f ′(0)|pp
∫ r

0

dρ

(1− ρ)2pρ1−p

≤ |f(0)|p + |f ′(0)|ppC(p),

(7.10)

where C(p) depends only on p.
[Recall that the beta and gamma functions satisfy

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 =
Γ(x)Γ(y)

Γ(x+ y)
, Re (x), Re (y) > 0,

and

Γ(t) =

∫ ∞

0

xt−1e−xdx, Re (x) > 0.

Hence

C(p) =

∫ 1

0

ρp−1(1− ρ)1−2p−1dρ = B(p, 1− 2p).

Of course the value of the constant C(p) does not matter here.]
Hence Mp(r, f) is uniformly bounded, and thus f ∈ Hp for all 0 < p < 1/2.
(ii) Theorem 5.3 yields

M1(r, f) ≤
∫ r

0

M∞(ρ, f)
dρ

ρ
≤
∫ r

0

dρ

(1− ρ)2
=

[
1

1− ρ

]r
ρ=0

=
1

1− r
− 1 =

r

1− r
.

(iii) As above, for r ≥ 1
2

M
1/2
1/2 (r, f) ≤

1

2

∫ r

0

M1/2
∞ (ρ, f)

dρ

ρ
≤ 1

2

∫ r

0

dρ

(1− ρ)ρ1/2

=
1

2

∫ 1/2

0

dρ

(1− ρ)ρ1/2
+

1

2

∫ r

1/2

dρ

(1− ρ)ρ1/2

≤
∫ 1/2

0

dρ

ρ1/2
+

1√
2

∫ r

1/2

dρ

1− ρ

=
[
2ρ1/2

]1/2
ρ=0

+
1√
2

[
log

1

1− ρ

]r
ρ=1/2

=
√
2 +

1√
2

(
log

1

1− r
− log 2

)
=

√
2− log 2√

2
+

1√
2
log

1

1− r

(7.11)
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and the assertion for the limit r → 1− follows.
(iv) As above,

Mp
p (r, f) ≤ · · · ≤ p

∫ r

0

dρ

(1− ρ)2pρ1−p
≤ · · · ≤ C

(1− r)2p−1
.

2

By the proof it is clear that (i), (iii) and (iv) are valid for all univalent functions in D.
Moreover, (ii) is Littlewood's theorem, Theorem 6.2, so Prawitz' estimate is better than
Littlewood's inequality. The Köbe function does not belong to H1/2, hence (i) is sharp.
The Köbe also shows the sharpness of (iii) and (iv).

The right hand side of the identity of Lemma 7.1 is an important object in complex
analysis. Recall that:

(1) Cauchy-Riemann equations read ux = vy, uy = vx for f(z) = u(x, y) + iv(x, y),
z = x+ iy.

(2) The Wirtinger operators are

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
and satisfy

∂z

∂z
= 0 =

∂z

∂z
and f is analytic in an open set U ⊆ C if and only if

∂f

∂z
= 0

in U .

(3) For a realvalued C2-function u in an open set U ⊆ C, the Laplacian of u is

∆u =

(
∂2

∂x2
+

∂2

∂y2

)
u.

If ∆u ≡ 0, then u is a harmonic function.

(4) ∆u = 4
∂

∂z

∂

∂z
u = 4

∂

∂z

∂

∂z
u and ∆|f |p = 4p2|f |p−2|f ′|2.

Lemma 7.1 can be written as

∂

∂r

(
r
∂

∂r
Mp

p (r, f)

)
=

r

8π

∫ 2π

0

∆|f |p(reiθ)dθ = r

4
M1(r,∆|f |p).

Lemma 7.1 has an important consequence regarding to Hardy space norms. Namely,
two integrations and Fubini's theorem show that

Mp
p (r, f) =

1

4

∫
D(0,r)

∆|f |p(z) log r

|z|
dA(z) + |f(0)|p,
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which leads to

∥f∥pHp =
1

4

∫
D
∆|f |p(z) log 1

|z|
dA(z) + |f(0)|p

= p2
∫
D
|f(z)|p−2|f ′(z)|2 log 1

|z|
dA(z) + |f(0)|p.

The right hand side of the formula contains the Jacobian |f ′(z)|2 and the formula is useful
when for example the composition operator Cϕ(f) = f ◦ ϕ is studied.

We next consider the integral means of derivatives of univalent functions. The deriva-
tive of the Köbe function is

k′(z) =
1 + z

(1− z)3

and k′ ∈ Hp for all p ∈ (0, 1/3). Moreover,

M
1/3
1/3 (r, k

′) ≍ log
1

1− r
, r → 1−,

and

Mp
p (r, k

′) ≍ 1

(1− r)3p−1
, r → 1−.

It is natural to ask if Theorems 7.2 and 7.3 have analogues for higher order derivatives.
Of course, de Brange's theorem (|an| ≤ n) implies for f(z) =

∑∞
n=0 anz

n in S, that

M2
2 (r, f

′) =
∞∑
n=1

n2|an|2r2(n−1) ≤
∞∑
n=1

n2n2r2(n−1) =M2
2 (r, k

′), 0 < r < 1

and further
M2N

2N (r, f ′) ≤M2N

2N (r, k′), 0 < r < 1, f ∈ S, N ∈ N.

We begin with the integrability of the Laplacian of |f |p.

Theorem 7.4 Let 0 < p <∞. Then there exists a constant C = C(p) > 0 such that∫ 2π

0

∆|f |p(reiθ)dθ ≤ C
M∞(r, f)p

1− r
,

1

2
≤ r < 1,

for all f ∈ S.

To prove this, we will need the following lemma.

Lemma 7.5 The inequality

|f(ρeiθ)− f(reiθ)| ≤ log 3

2
∥f∥B , r ≤ ρ ≤ 1 + r

2
, 0 < r < 1, θ ∈ R,

holds for all f ∈ H(D).
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Proof. Let f ∈ B, for otherwise there is nothing to prove. Let 0 < r < 1 and θ ∈ R, and
let r ≤ ρ ≤ 1+r

2
. Then

|f(ρeiθ)− f(reiθ)| =

∣∣∣∣∣
∫ ρeiθ

reiθ
f ′(ξ)dξ

∣∣∣∣∣ ≤
∫ r

0

|f ′(teiθ)|dt

≤ sup
z∈D

|f ′(z)|(1− |z|2)
∫ 1+r

2

r

dt

1− t2

≤ ∥f∥B
[
log

1 + t

1− t
+

1

2

] 1+r
2

t=r

=
∥f∥B
2

log
3 + r

1 + r
≤ ∥f∥B

log 3

2
.

(7.12)

2

Corollary 7.6 There exists a constant C > 0 such that

1

C
≤
∣∣∣∣f ′(ρeiθ)

f ′(reiθ)

∣∣∣∣ ≤ C, r ≤ ρ ≤ 1 + r

2
, 0 ≤ r < 1, θ ∈ R,

and
1

C
≤
∣∣∣∣f(ρeiθ)f(reiθ)

∣∣∣∣ ≤ C, r ≤ ρ ≤ 1 + r

2
,

1

2
≤ r < 1, θ ∈ R,

for f ∈ S.

Proof. By Theorem 5.1, log f ′ ∈ B with ∥log f ′∥B ≤ 6. Hence Lemma 7.5 yields

log

∣∣∣∣f ′(ρeiθ)

f ′(reiθ)

∣∣∣∣ ≤ ∣∣∣∣f ′(ρeiθ)

f ′(reiθ)

∣∣∣∣ = ∣∣log f ′(reiθ)− log f ′(reiθ)
∣∣

≤ log 3

2
∥log f ′∥B ≤ log 3

2
· 6 = 3 log 3.

(7.13)

Since ∣∣∣∣log f ′(ρeiθ)

f ′(reiθ)

∣∣∣∣ = ∣∣∣∣log f ′(reiθ)

f ′(ρeiθ)

∣∣∣∣ ,
the �rst chain of inequalities follows.

Since f ∈ S, f(z)/z de�nes a non-vanishing analytic function in D which attains the
value 1 at the origin. Consider the analytic function

g(z) = log
f(z)

z
.

Then

g′(z) =
z

f(z)

f ′(z) · z − f(z)

z2
=

1

z

(
z
f ′(z)

f(z)
− 1

)
, z ∈ D.
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Therefore, by Theorem 5.4,

|g′(z)| ≤ 1

|z|

(∣∣∣∣z f ′(z)

f(z)

∣∣∣∣+ 1

)
≤ 1

|z|

(
1 + |z|
1− |z|

+ 1

)
=

2(1 + |z|)
|z|(1− |z|2)

,

and consequently,

M∞(r, g′)(1− r2) ≤ 2(1 + r)

r
, 0 < r < 1. (∗)

It follows that

sup
R≤|z|<1

|g′(z)|(1− |z|2) ≤ 4

R
, 0 < R < 1.

On the other hand, if r ≤ R, we have

M∞(r, g′)(1− r2) ≤M∞(R, g′) =
M∞(R, g′)(1−R2)

1−R2

(∗)
≤ 2

R(1−R)
,

and hence

∥g∥B ≤ 2

R(1−R)
= 8 R =

1

2
,

since g(0) = log 1 = 0. Lemma 7.5 yields

log

(∣∣∣∣f(ρeiθ)f(reiθ)

r

ρ

∣∣∣∣) ≤
∣∣∣∣log f(ρeiθ)reiθf(reiθ)ρeiθ

∣∣∣∣ = ∣∣log g(ρeiθ)− log g(reiθ)
∣∣ ≤ log 3

2
· 8 = 4 log 3

and the second chain of inequalities follows. 2

Note that Corollary 7.6 implies

{
M∞(r, f ′) ≍M∞(ρ, f ′), 0 < r ≤ ρ ≤ 1+r

2
< 1,

M∞(r, f) ≍M∞(ρ, f), 1
2
≤ r ≤ ρ ≤ 1+r

2
< 1, f ∈ S.

Proof of Theorem 7.4. By Corollary 7.6 there exists a constant C = C(p) > 0 such that

∆|f |p(reiθ) ≤ C∆|f |p(ρeiθ), 1

2
≤ r ≤ ρ ≤ 1 + r

2
< 1, θ ∈ R,
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for all f ∈ S. This implies

r

(
1 + r

2
− r

)∫ 2π

0

∆|f |p(reiθ)dθ = r

∫ 1+r
2

r

dρ

∫ 2π

0

∆|f |p(reiθ)dθ

≤ Cr

∫ 1+r
2

r

∫ 2π

0

∆|f |p(ρeiθ)dθdρ

≤ C

∫
A(0;r; 1+r

2 )
∆|f |p(z)dA(z)

≤ C

∫
D(0, 1+r

2 )
∆|f |p(z)dA(z)

= 4p2C

∫
f(D(0, 1+r

2 ))
|w|p−2dA(w)

≤ 4p2C

∫
D(0,M∞( 1+r

2
,f))

|w|p−2dA(w)

= 4p2C2π

∫ M∞( 1+r
2
,f)

0

sp−1ds

=
4p2C2π

p
M∞

(
1 + r

2
, f

)
= 8πpCMp

∞

(
1 + r

2
, f

)
.

(7.14)

Since M∞((1 + r)/2, f) ≍ M∞(r, f) by Corollary 7.6 and (1 + r)/2 − r = (1 − r)/2, we
deduce the assertion. 2

Now we can prove the following result due to Feng and MacGregor, which shows that

Mp(r, f
′) ≤ CMp(r, k

′)

for p > 2
5
and all f ∈ S.

Theorem 7.7 (Feng-MacGregor 1976) Let 2
5
< p <∞. Then there exists a constant

C = C(p) > 0 such that

Mp
p (r, f

′) ≤ C

(1− r)3p−1
, 0 < r < 1,

for all f ∈ S.

Proof. Let f ∈ S and, without loss of generality, consider the value 1
2
≤ r < 1. If p ≥ 2,
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then Theorems 5.4, 7.4 and 5.3 yield

2πMp
p (r, f

′) =

∫ 2π

0

|f(reiθ)|p−2|f ′(reiθ)|2
∣∣∣∣f ′(reiθ))

f(reiθ)

∣∣∣∣p−2

dθ

5.4
≤ 1

r

(
1 + r

1− r

)p−2 ∫ 2π

0

|f(reiθ)|p−2|f ′(reiθ)|2dθ

7.4
≤ C(p)

rp−2

Mp
∞(r, f)

(1− r)p−1

5.3
≤ C(p)r2

(1− r)3p−1
.

(7.15)

Let now 0 < p < 2. Write p = α + β, where α, β ≥ 0. Then

Mp
p (r, f

′) =
1

2π

∫ 2π

0

∣∣∣∣f ′(reiθ)

f(reiθ)

∣∣∣∣p |f(reiθ)|α+βdθ.
The Hölder's inequality with indices 2/p and 2/(2− p) gives

2πMp
p (r, f

′) ≤
(∫ 2π

0

∣∣∣∣f ′(reiθ)

f(reiθ)

∣∣∣∣p |f(reiθ)|α+βdθ)(∫ 2π

0

|f(reiθ)|β
2

2−pdθ

) 2−p
p

=

(∫ 2π

0

|f(reiθ)|α
2
p
−2|f ′(reiθ)|2dθ

)(∫ 2π

0

|f(reiθ|
2β
2−pdθ

) 2−p
2

= I · II.

(7.16)

Theorems 7.4 and 5.3 give

I .
[
M∞(r, f)α

2
p

1− r

] p
2

≤ 1

(1− r)
p
2(4

α
p
+1)

=
1

(1− r)2α+
p
2

.

Moreover, if 2β/(2− p) > 1
2
, then Theorem 7.2 yields

II . 1

(1− r)−
2−p
2 ( 4β

2−p
−1)

=
1

(1− r)2β−1+ p
2

.

Consequently,

Mp
p (r, f) ≤ I · II . 1

(1− r)2α+
p
2
+2β−1+ p

2

=
1

(1− r)3p−1
.

This gives the desired estimate provided

2β

2− p
>

1

2
, that is, β >

2− p

4
.

But 0 ≤ α = p− β, and hence

0 ≤ p− β < p− 2− p

4
=

5p− 2

4
.
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We deduce that such β exists only if p > 2
5
. 2

In the proof of Theorem 7.7 we did not keep track on the constant C = C(p) > 0.
It is worth mentioning that for certain range of values of p one can prove Theorem 7.7
by using Prawitz' result. Namely, the Cauchy's integral formula together with Fubini's
theorem (p = 1) and Minkowski's inequality (p > 1) shows that

Mp
p (r, f

′) ≤Mp
p (ρ, f)

1

(ρ2 − r2)p
, r < ρ < 1, f ∈ H(D), 1 ≤ p <∞,

from which Theorem 7.2 gives

Mp
p (r, f

′) ≤ p

∫ ρ

0

Mp
∞(s, f)

ds

s
· 1

ρ2 − r2
, f ∈ H(D).

By choosing ρ = r+ (1− r)K for K ∈ (0, 1) [this gives 1− ρ = (1− r)(1−K)] and using
Theorem 5.3 and elementary estimates, one obtains

Mp
p (r, f

′) ≤ p

(1− r)pKp(2r + (1− r)K)p

∫ ρ

0

ds

(1− s)2ps1−p

≤ · · ·

≤ 1

(1− r)3p−1

p

2p− 1

1

K2p(1−K)2p−1
, 0 < r < 1, 1 ≤ p <∞, f ∈ S.

(7.17)

By minimizing the last factor on (0, 1), one gets Theorem 7.7 for p ≥ 1 with a numerical
constant. For example, the case p = 1 gives

M1(r, f
′) ≤ 27

4

1

(1− r)2
, 0 < r < 1, f ∈ S.

In general for p, q > 0 we have

Mp(r, f) = O

(
1

(1− r)q

)
if and only if Mp(r, f

′) = O

(
1

(1− r)q+1

)
, f ∈ H(D),

by [2, Theorem 5.5]. Therefore Theorem 7.7 is of interest only when p ≤ 1
2
, i.e. p ∈ (2

5
, 1
2
].

8 Maximum modulus of univalent functions

In this section we will discuss a re�nement of Theorem 5.3. Let f ∈ S and ψ = ψf :
(0, 1) → (0,∞),

ψ(r) =
1

r
(1− r)2M∞(r, f).

The Hayman index of f is
α(f) = lim

r→1
ψf (r).

We don't know that this limit exists, but the following result shows that this is indeed
the case.
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Theorem 8.1 If f ∈ S is not a rotation of the Köbe function, then ψf is strictly de-
creasing on (0, 1) and hence tends to a limit as r → 1−.

Proof. By Theorem 5.4,

∂ log |f(reiθ)|
∂r

= Re

∣∣∣∣ ∂∂r log f(reiθ)
∣∣∣∣ ≤ ∣∣∣∣∂ log f(reiθ)∂r

∣∣∣∣ = ∣∣∣∣f ′(reiθ)

f(reiθ)

∣∣∣∣ ≤ 1 + r

r(1− r)
,

for r ∈ (0, 1). If f is not a rotation of Köbe, then strict inequality holds above. Integrating
this inequality from r1 to r2, where 0 < r1 < r2 < 1, we obtain

log

∣∣∣∣f(r2eiθ)f(r1eiθ)

∣∣∣∣ < ∫ r2

r1

1 + r

r(1− r)
dr =

[
log

r

(1− r)2

]r2
r=r1

= log
(1− r1)

2r2
(1− r2)2r1

Therefore

(1− r2)
2

r2
|f(r2eiθ)| <

(1− r1)
2

r1
|f(r1eiθ)|, 0 < r1 < r2 < 1, θ ∈ R.

Choose θ = θ(r2) = θ(f, r2) such that |f(r2eiθ)| =M∞(r2, f). Then

(1− r2)
2

r2
M∞(r2, f) <

(1− r1)
2

r1
|f(r1eiθ)| ≤

(1− r1)
2

r1
M∞(r1, f), 0 < r1 < r2 < 1.

Hence ψf is strictly decreasing on (0, 1) unless f ∈ S is a rotation of Köbe. By Theo-
rem 5.3,

α(f) = lim
r→1−

(1− r)2

r
M∞(r, f) < 1.

Of course, if f ∈ S is a rotation of Köbe, then ψf ≡ 1 and α(f) = 1. 2

Krzyz proved a corresponding result in the other direction for the derivative of f ∈ S.

Theorem 8.2 (Krzyz, 1963?) If f ∈ S is not a rotation of the Köbe function, then
the function

M∞(r, f ′)
(1− r)3

1 + r

is strictly decreasing on (0, 1). Moreover, the limit

lim
r→1−

M∞(r, f ′)(1− r)3 = β(f)

exists and β(f) ∈ [0, 2]. Equality β(f) = 2 occurs if and only if f is a rotation of Köbe.

Proof. By Theorem 5.1 and direct calculation,∣∣∣∣f ′′(reiθ)

f ′(reiθ)

∣∣∣∣ ≤ 2r + 4

1− r2
=

d

dr
log

1 + r

(1− r)3
, θ ∈ R, r ∈ (0, 1).
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Moreover, equality can occur for some r and θ if and only if f is a rotation of Köbe. Both
|f ′(reiθ)|(1− r)3/(1+ r) for a �xed θ and M∞(r, f ′)(1− r)3/(1+ r) are strictly decreasing
(Exercise) on (0, 1) unless f is a rotation of Köbe. Since

lim
r→0+

M∞(r, f ′)
(1− r)3

1 + r
= 1,

we deduce, by Theorem 5.2,

lim
r→1−

M∞(r, f ′)
(1− r)3

1 + r
=

1

2
lim
r→1−

M∞(r, f ′)(1− r)3 =
β(f)

2
≤ 1.

Clearly, β(f) = 2 if and only if f is a rotation of Köbe. 2

We give the following result, the proof of which is an easy geometric argument and
left as an exercise.

Theorem 8.3 Let f be univalent in D. Then

M∞(r, f) ≤ πrM1(r, f
′) + |f(0)|, 0 < r < 1.

Proof. Let f ∈ S and Cr = ∂D(0, r) for r ∈ (0, 1). Now

ℓ(Cr) =

∫ 2π

0

|f ′(reiθ)|dθ =M1(r, f
′), 0 < r < 1,

is the length of the curve Cr. Clearly dist(0, Cr) ≤ ℓ(Cr)/2, that is,

M∞(r, f) ≤ 1

2
· 2πrM1(r, f

′) = πrM1(r, f
′), 0 < r < 1.

The general case follows. 2

Theorem 8.4 If f ∈ S and

lim
r→1−

M∞(r, f)(1− r)2 = 0,

then

lim
r→1−

M1(r, f)(1− r) = 0.

Proof. By the proof of Prawitz' theorem,

d

dr
M1(r, f) ≤

M∞(r, f)

r
=

ψ(r)

(1− r)2
,

where

ψ(r) =
M∞(r, f)(1− r)2

r
, 0 < r < 1,
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is strictly decreasing on (0, 1) by Theorem 8.1 and the hypothesis M∞(r, f)(1− r)2 → 0.
Integration from r1 to r2 produces

M1(r2, f)−M1(r1, f) ≤
∫ r2

r1

ψ(r)

(1− r)2
dr ≤

∫ r2

r1

dr

(1− r)2
= ψ(r1)

[
1

1− r2
− 1

1− r1

]
,

which is equivalent to

M1(r2, f)(1− r2) ≤M1(r1, f)(1− r2) + ψ(r1)

[
1− 1− r2

1− r1

]
≤M1(r, f)(1− r1) + ψ(r1).

Hence

lim sup
r2→1−

M1(r2, f)(1− r2) ≤ ψ(r1) =
M∞(r1, f)(1− r1)

2

r1
, 0 < r1 < 1,

and by letting r1 → 1−, we obtain the assertion. 2

[How could one show that

lim
r→1

M∞(r, f)(1− r)2 = 0 does not in general imply lim
r→1

M1(r, f)(1− r) = 0?

It's possible to use a derivative of a Blaschke product or a lacunary series, since for a
lacunary series

M∞(r, f) ≍Mp(r, f), r → 1−, 0 < p <∞.

Does the fact
lim
p→∞

Mp(r, f) =M∞(r, f), 0 < r < 1,

play any role here?]

Corollary 8.5 If f ∈ S, f(z) =
∑∞

n=1 anz
n, and α(f) = 0, then

lim
n→∞

|an|
n

= α(f) = 0.

Proof. By the Cauchy, |an| ≤ r−nM1(r, f) for all 0 < r < 1. Choose

r = rn = 1− 1

n

to obtain
|an|
n

≤
(
1− 1

n

)−n

(1− rn)M1(r, f) → e · 0 = 0, n→ ∞,

where the last step follows by Theorem 8.4. 2

Hayman's regularity theorem (1955) states that for each f ∈ S with f(z) =
∑∞

n=1 anz
n

we have

lim
n→∞

|an|
n

= α(f) ≤ 1

and α < 1 unless f is a rotation of Köbe. We do not prove the more involved case α > 0
now.
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9 Coe�cient estimates for odd univalent functions

By Theorem 1.2 the square root transformation of each f ∈ S is an odd function in S and
conversely, every odd function in S is the square root transform of f ∈ S. The set of all
odd functions in S is denoted by S(2). The square root transform of the Köbe function is

z

1− z2
= z + z3 + z5 + · · · ,

and, as expected, this function plays a role in S(2) similar to that of k in S.

Theorem 9.1 Let h ∈ S(2). Then

|z|
1 + |z|2

≤ |h(z)| ≤ |z|
1− |z|2

, z ∈ D,

and
1− |z|2

(1 + |z|2)2
≤ |h′(z)| ≤ 1 + |z|2

(1− |z|2)2
, z ∈ D.

Proof. The proof is left as an exercise. 2

In general, one can show that if f ∈ S, has the N -fold symmetry, denoted by f ∈ S(N),
then

|z|
(1 + |z|)2/N

≤ |f(z)| ≤ |z|
(1− |z|N)2/N

, z ∈ D.

We omit the details.
In view of Theorem 9.1 it is reasonable to expect the coe�cients of functions in S(2)

to be bounded.

Theorem 9.2 There exists C > 0 such that |cn| ≤ C for all n = 3, 5, 7, . . . for all h ∈ S(2)

with h(z) = z + c3z
3 + c5z

5 + . . ..

Proof. Each h ∈ S(2) is of the form h(z) =
√
f(z2) for some f ∈ S. Two more square

root transforms produce the univalent function

g(z) = (h(z4))
1
4 = f(z8)

1
8 , z ∈ D. (∗)

Since g4(z) = h(z4), we obtain by di�erentiating 4g3(z)g′(z) = h′(z4)4z3, which gives

h′(z4) =
g3(z)g′(z)

z3
, z ∈ D.

The Cauchy-Schwarz inequality gives

M1(r
4, h′) =

∫ 2π

0

|g(reiθ)|3|g′(reiθ)|
r3

dθ

2π

≤ 1

r3

(∫ 2π

0

|g(reiθ)|6 dθ
2π

) 1
2
(∫ 2π

0

|g′(reiθ)|2 dθ
2π

) 1
2

=
1

r3
M3

6 (r, g)M2(r, g
′), 0 < r < 1.

(9.1)
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By Prawitz' theorem and Theorem 9.1

M6
6 (r, g) ≤ 6

∫ r

0

M6
∞(ρ, g)

dρ

ρ

(∗)
= 6

∫ r

0

M3/4
∞ (ρ8, f)

dρ

ρ

≤ 6

∫ r

0

(
ρ8

1− ρ16

)3/4
dρ

ρ

≤ 6

∫ r

0

dρ

(1− ρ)3/4
. 1

(1− r)1/2
.

(9.2)

On the other hand, the integral means Mp(r, g
′) are non-decreasing and hence

M2
2 (r, g

′) =
1

2π

∫ 2π

0

∫ 2π

0

|g′(reiθ)|2dθ

=
4

π(1− r)(1 + 3r)

∫ 1+r
2

0

ρdρ

∫ 2π

0

|g′(ρeiθ)|2dθ

≤ 4

π(1− r)

∫
D(0, 1+r

2 )
|g′(z)|2dA(z)

=
4

π(1− r)
area

(
g

(
D

(
0,

1 + r

2

)))
≤ 4

1− r
M2

∞

(
1 + r

2
, g

)
(∗)
=

4

1− r
M

1
4∞

((
1 + r

2

)8

, f

)
Thm5.3
. 1

(1− r)3/2
, r → 1−.

(9.3)

Combining these restimates we deduce

M1(r
4, h′) .M3

6 (r, g)M2(r, g
′) . 1

((1− r)1/4)

1

(1− r)3/4
=

1

1− r
, r → 1−.

Finally, by the Cauchy integral formula, n|cn| ≤ r1−nM1(r, h), and hence, by choosing
r = rn = 1− 1

n
we deduce

|cn| ≤
1

n
(1− 1

n
)1−nM1

(
1− 1

n
, h′
)

≤ 1

n

(
1− 1

n

)1−n

· n . 1,

and the theorem is proved. 2

10 Nehari's theorem

Let An = sup {|an|
∑
ajzj ∈ S}. Hayman (1958) proved an existence of the limit

λ = lim
n→∞

An
n
.
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The Bieberbach conjecture (=de Branges theorem) asserts that An = n for all n, while the
asymptotic Bieberbach conjecture is the weaker assertion that λ = 1. Littlewood (1925)
posed another conjecture: If f ∈ S and f(z) ̸= w for all z ∈ D, then |an| ≤ 4|w|n for
all n ∈ N. Nehari showed that the asymptotic Bieberbach conjecture implies Littlewoods
conjecture.

Theorem 10.1 (Nehari 1927) Let f ∈ S with f(z) =
∑
anz

n and suppose that w ∈ C
such that f(z) ̸= w for all z ∈ D. Then |an| ≤ 4|w|λn for all n = 2, 3, . . ., where
λ = limn→∞

An

n
.

We will need the following lemma.

Lemma 10.2 Let g be analytic and univalent in D with g(0) = 0 and g(z) ̸= 1 for all
z ∈ D. Then the function G de�ned by

G(z) = 2g(z2)−
(
g(z2)(g(z2)− 1)

) 1
2

has the same properties as g.

Proof. Let g(z) =
∑∞

j=1 cjz
j, z ∈ D. Note �rst that

h(z) =
[
g(z2)(g(z2)− 1)

] 1
2 =

[
c21z

4 + 2c1c2z
6 + c2z

8 + . . .− c1z
2 − c2z

4 − . . .
]
= ic

1
2
1 z+. . .

(∗)
is an odd analytic function in D which vanishes only at the origin. This because g(z) ̸= 1

for all z ∈ D, g is univalent and g(0) = 0; hence (g(z2)− 1)
1
2 has an analytic branch and

an analytic branch of
√
g(z2) can be found by writing

f(z) =
∞∑
j=0

a2j+1z
2j+1

and working out the coe�cients from

f(z)2 = a21z
2 + 2a1a3z

4 + a23z
6 + . . . = c1z

2 + c2z
4 + c3z

6 + . . . = g(z2)

inductively. Suppose now that G(z) = G(ξ) for some z, ξ ∈ D. Then, by denoting
g(z2) = a and g(ξ2) = b, we have

a− b = h(z)− h(ξ),

which implies

a2 − 2ab+ b2 = h(z)2 − 2h(z)h(ξ) + h(ξ)2 = a2 − a− 2h(z)h(ξ) + b2 − b,

which is equivalent to
a+ b− 2ab = −2h(z)h(ξ),

which gives
a2 + 2ab+ b2 − 4(a+ b)ab+ 4a2b2 = 4h(z)2h(ξ)2.
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By simplifying, we get

a2 + 2ab+ b2 − 4a2b− 4b2a+ 4a2b2 = 4(a2 − a)(b2 − b) = 4a2b2 − 4a2b− 4ab2 + 4ab,

that is,
a2 + 2ab+ b2 = 4ab,

which gives
a2 − 2ab+ b2 = (a− b)2 = 0 = (g(z2)− g(ξ2))2.

Since g is univalent, this implies z = ±ξ. But h is an odd function with h(z) ̸= 0 for
z ̸= 0, and so

G(z)−G(−z) = 2g(z2)− 2h(z)− (2g(z2)− 2h(−z)) = −2h(z) + 2h(−z)?− 4h(z) ̸= 0,

unless z = 0. Thus z = ξ, which proves that G is univalent. If G(z) = 1 for some z ∈ D,
then

a− 1

2
= [a(a− 1)]

1
2 , a = g(z2),

which implies

a2 − a+
1

4
= a2 − a,

which is equivalent to 0 = 1
4
. This contradiction shows that G(z) ̸= 1. 2

Proof of Theorem 10.1 If f ∈ S and f(z) ̸= w for all z ∈ D, then

g(z) =
1

w
f(z) = c1z + c2z

2 + . . .

satis�es the hypotheses of Lemma 10.2. The operation of the lemma may be iterated to
produce a sequence of functions

gk(z) = c
(k)
1 z + c

(k)
2 z2 + . . . , k = 0, 1, 2, . . . ,

where g0 = g and

gk+1(z) = 2gk(z
2)− 2

[
gk(z

2)(gk(z
2)− 1)

] 1
2 , k = 0, 1, . . . .

Since z 7→ 2 [gk(z
2)(gk(z

2)− 1)]
1
2 is an odd function, we have

c
(k+1)
2n = 2c(k)n , n ∈ N, (†)

and further, by (∗),
c
(k+1)
1 = −2i(c

(k)
1 )

1
2 , (#)

which implies ∣∣∣c(k+1)
1

∣∣∣ = 2
∣∣∣c(k)1

∣∣∣ 12 , k ∈ N0,

where c(0)n = cn = an
w
. Now

|c(0)1 | =
∣∣∣∣ 1w
∣∣∣∣ ≤ 4
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by the Köbe 1/4-theorem, and it follows inductively from (#) that |c(k)1 | ≤ 4 for all k ∈ N.
Since gk/c

(k)
1 ∈ S, we deduce

|c(k)m | ≤ |c(k)1 |Am ≤ 4Am, m ∈ N \ {1} .

For an arbitrary n ∈ N \ {1}, the iteration of (#) now yields

cn =
1

2
c
(1)
2n =

1

22
c
(2)
4n = . . . =

1

2k
c
(k)

2kn

and hence
2k|cn| =

∣∣∣c(k)2kn

∣∣∣ ≤ 4A2kn, k ∈ N, n ∈ N \ {1} .

Consequently

|an| = |w||cn| ≤ 4|w|2−kA2kn = 4|w|nA2kn

2kn
, k ∈ N,

and the desired result follows as k → ∞. 2

11 Nehari's univalence criteria

A meromorphic function f in D belongs to the restricted class R if f has only simple poles
and f ′(z) ̸= 0 for all z ∈ D. [It's the class of locally univalent meromorphic functions.
See exercises.] The Schwarzian derivative of f ∈ R is

Sf (z) =

(
f ′′(z)

f ′(z)

)′

− 1

2

(
f ′′(z)

f ′(z)

)2

=
f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

, z ∈ D.

Analytic functions f in R are those that are locally univalent (⇔ f ′(z) ̸= 0 for all z ∈ D),
and hence Sf is a well-de�ned analytic function whenever f is a locally univalent function.
One can actually show that a meromorphic function f in D belongs to R if and only if f
is locally univalent (Ex). If f has a simple pole at z0 ∈ D, then

f(z) =
c

z − z0
+ g(z)

for all z in a neighbourhood D of z0, where c ∈ C \ {0} and g is analytic.

f ′(z) =
−c

(z − z0)2
+ g′(z); f ′′(z) =

2c

(z − z0)3
+ g′′(z); f ′′′(z) =

−6c

(z − z0)4
+ g′′′(z).

For

Sf =
f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

=
1

2

2f ′f ′′′ − 3(f ′′)2

(f ′)2

we obtain
f ′(z)2(z − z0)

4 = (−c+ (z − z0)
2g′(z))2
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and[
2f ′(z)f ′′′(z)− 3(f ′′(z))2

]
(z − z40)

= 2

(
−c

(z − z0)2
+ g′(z)

)(
−6c+ (z − z0)

4g′′′(z)
)
− 3

(
2c

z − z0
+ (z − z0)

2g′′(z)

)2

=
12c2

(z − z0)2
− 12cg′(z)− c(z − z0)

2g′′′(z) + g′(z)(z − z0)
4g′′′(z)

− 12c2

(z − z0)2
− 12(z − z0)g

′′(z)− 3(z − z0)
4g′′(z)2

= −12cg′(z)− c(z − z0)
2g′′′(z) + g′(z)(z − z0)

4g′′′(z)

− 12(z − z0)g
′′(z)− 3(z − z0)

4g′′(z)2.

(11.1)

Therefore

lim
z→z0

Sf (z) =
1

2

−12cg′(z0)

(−c)2
=

−6g′(z0)

c
∈ C.

Thus Sf has a removable singularity at z0, and therefore Sf ∈ H(D) when f ∈ R.

Lemma 11.1 Let f ∈ R and φ : D→ D analytic and locally univalent. Then

Sf◦φ = Sf ◦ φ · (φ′)2 + Sf

in D.

Proof. Denote F = f ◦ φ. Then

F ′ = f ′ ◦ φ · φ′; F ′′ = f ′′ ◦ φ(φ′)2 + φ′′f ′(φ).

Hence F ′ does not vanish in D. Moreover, since φ − a, a ∈ D, has only simple zeros, F
has only simple poles. Thus F ∈ R. Now

F ′′

F ′ =
f ′′ ◦ φ(φ′)2 + φ′f ′(φ)

f ′(φ)φ′ =
f ′′ ◦ φ
f ′ ◦ φ

φ′ +
φ′′

φ′ .

[Here we see that the pre-Schwarzian sf = f ′′/f ′ has the similar property

sf◦φ = sf (φ)φ
′ + sφ.

Of course we can consider higher order di�erential operators of the same kind and try
to produce nice formulas for them too. Maybe we can have pre-Schwarzian, Schwarzian,
1-post Schwarzian, 2-post Schwarzian etc.] Hence [whenever the image of T is contained
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in the domain of f ]

Sf =

(
F ′′

F ′

)′

− 1

2

(
F ′′

F ′

)2

=

(
f ′′(φ)φ′

f ′(φ)

)′

− 1

2

((
f ′′(φ)

f ′(φ)

)2

(φ′)2 + 2
f ′′(φ)

f ′(φ)
φ′′

)
+ Sφ

=
(f ′′′(φ)(φ′)2 + f ′′(φ)φ′′)f ′(φ)− f ′′(φ)φ′f ′′(φ)φ′

(f ′(φ)2)

− 1

2

(
f ′′(φ)

f ′(φ)

)2

(φ′)2 − f ′′(φ)

f ′(φ)
φ′′ + Sφ

=
f ′′′(φ)

f ′(φ)
(φ′)2 − 3

2

(
f ′′(φ)

f ′(φ)

)2

(φ′)2 + Sφ

= Sf (φ)(φ
′)2 + Sφ.

(11.2)

2

If T is a nondegenerate linear fractional transformation

T (z) =
az + b

cz + d
, ad− bc ̸= 0,

then

T ′(z) =
ad− bc

(cz + d)2
, T ′′(z) =

−2c(ad− bc)

(cz + d)3
T ′′′(z) =

6c2(ad− bc)

(cz + d)4
,

and hence
ST◦f = ST ◦ f(f ′)2 + Sf = Sf

by Lemma 11.1 because ST ≡ 0. On the other hand, Sf◦T = Sf ◦ T (T ′)2 also by
Lemma 11.1.

The problem of �nding functions of prescribed Schwarzian derivative has a simple
solution.

Theorem 11.2 Let p ∈ H(D). Then, for any two linearly independent solutions g1 and
g2 of the linear di�erential equation

g′′ + pg = 0 (11.3)

the quotient f = g1/g2 ∈ R and Sf = 2p.
Conversely, let f ∈ R and p = 1

2
Sf . Then p ∈ H(D) and (11.3) admits two linearly

independent solutions g1 and g2 such that f = g1/g2.

To prove this, we will need the following result of di�erential equations.

Theorem 11.3 Let g1, g2 be any linearly independent solutions of (11.3).

50



(i) All the zeros of g1g2 are simple;

(ii) An arbitrary solution g of (11.3) has unique representation g = c1g1 + c2g2, where
c1, c2 ∈ C.

Proof. (i) The Wronskian determinant

W (g1, g2) = g1g
′
2 − g2g

′
1 =

∣∣∣∣ g1 g′1g2 g
′
2

∣∣∣∣
satis�es

D(W (g1, g2)) = D(g1g
′
2 − g2g

′
1) = g1g

′′
2 − g2g

′′
1 = −g1pg2 + g2pg1 ≡ 0.

Hence W (g1, g2) is a non-zero constant for if W (g1, g2) ≡ 0, g1 and g2 would be linearly
dependent [4]. From

g1g
′
2 − g2g

′
1 = c ̸= 0,

we deduce the following things:

(i) |g1(z)|+ |g2(z)| = 0 is impossible for all z ∈ D and therefore g1 and g2 do not have
common zeros, that is, g1g2 has only simple zeros. Therefore both g1 and g2 have
only simple zeros;

(ii) |g1(z)|+|g′1(z)| = 0 is impossible for all z ∈ D and therefore g1 has only simple zeros,
that is, all nontrivial solutions have only simple zeros (this was already included in
(i));

(iii) |g′1(z)|+ |g′2(z)| = 0 is impossible for all z ∈ D and therefore g′1 and g
′
2 do not have

common zeros, that is, g′1g
′
2 has only simple zeros.

[In the lectures: Further

g′2
g2

− g′1
g1

=
g1g

′
2 − g2g

′
1

g1g2
=
W (g1, g2)

g1g2
.

All poles of the meromorphic function g′j/gj are simple, and hence the zeros of g1g2 must
be simple as well.]

(ii) Fix z0 ∈ D. The linear system of equations{
c1g1(z0 + c2g2(z0) = g(z0)

c1g
′
1(z0) + c2g

′
2(z0) = g′(z0)

where c1 and c2 are unknown has a unique solution, since the determinant of the coe�cient
matrix W (g1, g2) ̸= 0 by the proof of (i). We see that c1g1+c2g2 is a solution of the initial
value problem

f ′′ + pf = 0, f(z0) = g(z0), f ′(z0) = g′(z0), (11.4)

since
c1g

′′
1 + c2g

′′
2 + pc1g1 + pc2g2 = c1g

′′
1 + pc1g1 + c2(g

′′
2 + pg2) = 0.
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Since g is also a solution of (11.4) and (11.4) posesses a unique solution in D, g = c1g1+c2g2
in D. 2

Proof of Theorem 11.2. Let p ∈ H(D) and f = g1/g2, where g1 and g2 are linearly
independent solutions of (11.3). By the proof of Theorem 11.3, W (g1, g2) ∈ C \ {0}. Now

f ′ =
g′1g2 − g′2g1

g22
=
W (g1, g2)

g22
,

and

f ′′ = −2W (g1, g2)
g′2
g32
,

f ′′

f
= −2

g′2
g2
,

and hence f is meromorphic in D such that f ′(z) ̸= 0 for all z ∈ D and all poles of f are
simple (as zeros of g2) by Theorem 11.3(i). Moreover,

Sf =

(
f ′′

f ′

)′

−
(
f ′′

f ′

)2

= −2
g′′2g2 − (g′2)

2

g22
− 1

2
· 4(g

′
2)

2

g22
= −2

g′′2
g2

= 2p,

proving the �rst part of the assertion.
Conversely, let f ∈ R and p = 1

2
Sf . Then p ∈ H(D), see the beginning of the section.

De�ne g = (f ′)−1/2, where the branch is �xed, for example, such that
√
1 = 1. Then

g ∈ H(D). Now g′ = −1
2
(f ′)−3/2f ′′ which implies

2f ′g′ + f ′′g = 2f ′(−1

2
)(f ′)−3/2f ′′ + f ′′(f ′)−1/2 = 0

so g is a nontrivial solution of
2f ′g′ + f ′′g = 0. (11.5)

Hence

2g′ +
f ′′

f ′ g = 0,

which implies

2g′′ +

(
f ′′

f ′

)
g +

(
f ′′

f ′

)
g′ = 0.

But (11.5) implies

g′ = −g
2

f ′′

f ′ ,

which gives

2g′′ +

(
f ′′

f ′

)′

g +

(
f ′′

f ′

)(
−g
2

f ′′

f

)
= 0,

that is,

2g′′ + g

((
f ′′

f ′

)′

− 1

2

(
f ′′

f ′

)2
)

= 0,

or equivalently 2g′′ + 1
2
Sfg = 0. Thus g is a nontrivial solution of (11.3).
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To get the other solution, consider h = fg. Since

h′′ + ph = f ′′g + 2f ′g′ + fg′′ + pfg

f ′′g + 2f ′g′ + f(g′′ + pg)

= f ′′g + 2f ′
(
−g
2

f ′′

f ′

)
+ 0 = 0,

so h is also a solution of (11.3). Since all solutions are analytic, h ∈ H(D). If g and h
were linearly dependent, f = h/g would be a constant, which is impossible, since f ′′ ̸≡ 0
for all z ∈ D. Thus f is a quotient of two linearly independent solutions of (11.3).

Lemma 11.4 For each pair of distinct points z1 and z2 in D, there exists a linear frac-
tional map (an automorphism of D)

φ(z) = ξ
a− z

1− az
, z ∈ D, a ∈ D, ξ ∈ T,

such that 0 < φ(z1) = −φ(z2).

Lemma 11.5 Let u ̸≡ 0 be a real-valued continuously di�erentiable function on [−1, 1]
such that u(x) = O(1− x) as x→ 1−, and u(x) = O(1 + x) as x→ −1+. Then∫ 1

−1

u(x)2

(1− x2)2
dx <

∫ 1

−1

u′(x)2 dx.

Proof. Observe that

0 <

∫ 1

−1

(
xu(x)

1− x2
+ u′(x)

)2

dx =

∫ 1

−1

x2u(x)2

(1− x2)2
dx+ 2

∫ 1

−1

xu(x)u′(x)

1− x2
dx+

∫ 1

−1

u′(x)2 dx.

(11.6)
Integrate the second term by parts to obtain

2

∫ 1

−1

xu(x)u′(x)

1− x2
dx =

[
xu(x)2

1− x2

]1
x=−1

−
∫ 1

−1

u(x)2
1− x2 + 2x2

(1− x2)2
dx = −

∫ 1

−1

u2(x)
1 + x2

1− x2
,

hence

0 <

∫ 1

−1

x2u(x)2

(1− x2)2
dx−

∫ 1

−1

u2(x)
1 + x2

(1− x2)2
dx+

∫ 1

−1

u′(x)2 dx,

which is equivalent to ∫ 1

−1

u(x)2

(1− x2)2
dx <

∫ 1

−1

u′(x)2 dx.

Note that equality in (11.6) occures only if

xu(x)

1− x2
+ u′(x) = 0, x ∈ (−1, 1).

It is easy to see that the unique solution of this separable di�erential equation is u(x) =
(1− x2)1/2 which does not satisfy the hypotheses of the lemma. 2
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Theorem 11.6 (Nehari's univalence criterion 1949) If f ∈ R satis�es |Sf (z)|(1 −
|z|2)2 ≤ 2 for all z ∈ D, then f is univalent (injective) in D.

Proof. First observe that it su�ces to prove f(r) ̸= f(−r) for 0 < r < 1 under the
hypothesis |Sf (z)|(1 − |z|2)2 ≤ 2. Indeed, if f(z1) = f(z2) for z1, z2 ∈ D, then by
Lemma 11.4 some automorphism T of D produces a function F = f◦T with F (r) = F (−r)
and with the Schwarzian derivative SF = Sf (T )(T

′)2 by Lemma 11.1. The assumption
and the Schwarz-Pick lemma therefore give

|SF (z)| = |Sf (T (z))||T ′(z)|2 ≤ 2
|T ′(z)|2

(1− |T (z)|2)2
S-P
≤ 2

(1− |z|2)2
, z ∈ D.

Thus F also satis�es the assumption, and hence it su�ces to prove f(r) ̸= f(−r) for
all r ∈ (0, 1). In view of Theorem 11.2, it is equivalent to prove that if p ∈ H(D) such
that |p(z)|(1 − |z|2)2 ≤ 1 for all z ∈ D, then the ratio g1/g2 of two linearly independent
solutions of g′′+pg = 0 takes di�erent values at ±r for each r ∈ (0, 1). If, on the contrary

g1(r)

g2(r)
=
g1(−r)
g2(−r)

= α ∈ C

for some r ∈ (0, 1), then g = g1 − αg2 satis�es

g(r) = g1(r)− αg2(r) = g1(r)

(
1− α

g2(r)

g1(r)

)
= 0 = g(−r).

[Here it was assumed that g1(r) ̸= 0. If g1(r) = 0, then we have g2(r) ̸= 0 and we can do
a similar argument.]

Conversely, if some nontrivial solution of g′′ + pg = 0 vanishes at ±r, that is,

g(±r) = g1(±r) + βg2(±r) = 0,

we deduce
g1(r)

g2(r)
= −β =

g1(−r)
g2(−r)

for suitably chosen base functions g1 and g2. The theorem is therefore equivalent to the
statement that if p satis�es |p(z)|(1− |z|2)2 ≤ 1 for all z ∈ D, then no nontrivial solution
of g′′ + pg = 0 can vanish at both ±r for any r ∈ (0, 1).

Suppose, on the contrary, that there exists a nontrivial solution of g′′ + pg = 0 and
r ∈ (0, 1) such that g(r) = 0 = g(−r). Then

0 ≡ g′′ + rg

implies

0 =

∫ r

−r
g′′(x)g(x) dx+

∫ r

−r
p(x)|g(x)|2 dx

=
[
g′(x)g(x)

]r
x=−r

−
∫ r

−r
g′(x)g′(x) dx+

∫ r

−r
p(x)|g(x)|2 dx

= 0− 0−
∫ r

−r
|g′(x)|2 dx+

∫ r

−r
p(x)|g(x)|2 dx.

(11.7)
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Now |p(z)|(1− |z|2)2 ≤ 1 implies∫ r

−r
|g′(x)|2 dx =

∫ r

−r
p(x)|g(x)|2 dx ≤

∫ r

−r

|g(x)|2

(1− x2)2
dx.

Hence ∫ 1

−1

|g′(rt)|2r2 dt ≤
∫ 1

−1

|g(rt)|2r2

(1− r2t2)2
dt ≤

∫ 1

−1

|g(rt)|2r2

(1− t2)2
dt,

so by denoting g(rt) = u(t) + iv(t), we have∫ 1

−1

(u′(t)2 + v′(t)2) dt ≤
∫ 1

−1

u(t)2 + v(t)2

(1− t2)2
dt.

This contradicts Lemma 11.5. 2

One may write Nehari's criterion in the following form: If f is meromorphic in D and
satis�es |Sf (z)|(1− |z|2)2 ≤ 2 for all z ∈ D, then f is univalent in D.

The constant 2 in Nehari's theorem is the best possible and cannot be replaced by any
larger number. This is seen by considering the function

f(z) =

(
1 + z

1− z

)α
, α ∈ C,

for which

Sf (z) =
2(1− α2)

(1− z2)2
, z ∈ C.

The function f is univalent in D or, equivalently, wα is univalent in the right half-plane
if and only if α = a + ib satis�es a2 + b2 ≤ 2|a|. The choice α = ib gives a non-univalent
function f with

|Sf (z)| ≤
2(1 + b2)

(1− |z|2)2
, z ∈ D.

Theorem 11.7 (Kraus 1932, Nehari 1949) Let f ∈ H(D) be univalent in D. Then
|Sf (z)| ≤ 6 for all z ∈ D.

Proof. Let

Fa(z) =
f(ψa(z))− f(a)

f ′(a)(1− |a|2)
= z + A2z

2 + A3z
3 + . . . , a ∈ D.

Then Ga(z) = Fa(1/z)
−1 = z + B0 + B1z

−1 + · · · belongs to Σ, and so B1 = A2
2 − A3

satis�es |B1| ≤ 1 by Corollary co:b1 estimate. But

B1 = −1

6
Sf (a)(1− |z|2)2,

and the assertion follows. See the exercises for details. 2
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Stowe-Chuaqui conjecture

In their paper [1], Dennis Stowe and Martin Chuaqui considered the equation

f ′′ + Af = 0

in the case, when there exists some C > 0 such that

|A(z)| ≤ 1 + C(1− |z|)
(1− |z|2)2

, z ∈ D. (∗)

If C = 0, then Nehari applies: each solution f of f ′′+Af = 0 can vanish at most once
in D.

Does ∗ imply that each solution has at most �nitely many zeros? Equivalently, does

|Sf (z)| ≤
2 +M(1− |z|)
(1− |z|2)2

imply that f is of �nite valence?
If

|A(z)| ≤ 1 + η(|z|)
(1− |z|2)2

,
η(|z|)
1− |z|

→ ∞, |z| → 1−,

then f ′′ + Af = 0 might have solutions of in�nite valence.
In fact, (∗) implies that f has only one zero in a pseudo-hyperbolic disc ∆(z0, R), for

all z0 ∈ D, for some R = R(C) → 1−, C → 0+
If {zn} is a zero sequence of f , we may consider many conditions. For example

sup
a∈D

(1− |φa(zn)|)1/2 <∞,

the Blaschke condition ∑
zn

(1− |zn|) <∞,

condition about uniform separation etc.

12 Sharpened forms of the Schwarz lemma

Let f ∈ H(D) such that |f(z)| < 1 for all z ∈ D. If f(0) = 0, the Schwarz lemma says
that |f(z)| ≤ |z| for all z ∈ D and |f ′(0)| ≤ 1. In more general terms, the Schwarz-Pick
theorem asserts that ∣∣∣∣∣ f(z)− f(ξ)

1− f(ξ)f(z)

∣∣∣∣∣ ≤
∣∣∣∣ z − ξ

1− ξz

∣∣∣∣ , z, ξ ∈ D, (12.1)

and
|f ′(z)|(1− |z|2) ≤ 1− |f(z)|2, z ∈ D.

A more careful analysis leads to sharper results on the region of values of both f(z0)
and f ′(z0) at the �xed point z0 ∈ D.
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Theorem 12.1 (Dieudonné 1931) Let z0, w0 ∈ D, z0 ̸= 0. Then

{f ′(z0) : f ∈ H(D), f(D) ⊂ D, f(0) = 0, f(z0) = w0}

= D

(
w0

z0
,
|z0|2 − |w0|2
|z0|(1− |z0|2)

)
.

(12.2)

Proof. By (12.1), the function g de�ned by

f(z)− w0

1− w0f(z)
=
z − w0

1− z0z
g(z),

that is,

g(z) =
f(z)− w0

1− w0f(z)

1− z0z

z − w0

satis�es |g(z)| ≤ 1 for all z ∈ D. Thus an application of (12.1) to g gives∣∣∣∣∣ g(z0)− g(0)

1− g(0)g(z0)

∣∣∣∣∣ ≤ |z0|.

But since f(0) = 0 implies g(0) = w0/z0 (note that z0 ̸= 0), this inequality shows that
g(z0) belongs to D(γ, ρ) where

γ =
1− |z0|2

1− |g(0)|2|z0|2
g(0) =

1− |z0|2

1− |w0|2
|z0|2 |z0|

2

w0

z0
=

1− |z0|2

1− |w0|2
w0

z0

and

ρ =
1−

∣∣∣w0

z0

∣∣∣2
1− |w0|2

|z0| =
|z0|2 − |w0|2

|z0|(1− |w0|2)
by Lemma A1. Since

f ′(z)(1− w0f(z)) + wf ′(z)(f(z)− w0)

(1− w0f(z))2
=

1− z0z + z0(z − z0)

(1− z0z)2
g(z) + g′(z)

z − z0
1− z0z

,

we deduce, by choosing z = z0,

f ′(z0)(1− |w0|2)
(1− |w0|2)2

=
1− |z0|2

(1− |z0|2)2
g(z0),

that is,

f ′(z0) =
1− |w0|2

1− |z0|2
g(z0).

This is equivalent to saying that f ′(z0) belongs to

D

(
w0

z0
,
|z0|2 − |w0|2
|z0|(1− |w0|2)

)
.
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To see that the whole disc is covered, let

β =
α− w0

1− w0α
, |α| ≤ 1,

and let f be de�ned by

f(z)− w0

1− w0f(z)
=

z − z0
1− z0z

w0 + z0βz

z0 + w0βz
.

The �rst factor on the right hand side has modulus less than one for z ∈ D. On the other
hand,

w0 + z0βz

z0 + w0βz
=
z0

(
βz + w0

z0

)
z0
(
1 + w0

z
βz
) =

z0
z0

βz + f(z0)
z0

1 + βz f(z0)
z0

belongs to D and we deduce |f(z)| < 1 for all z ∈ D. If z = 0, then we have

f(0)− w0

1− w0f(0)
= −z0

w0

z0
= −w0,

which implies f(0) = 0, and if z = z0,

f(z0)− w0

1− w0f(z0)
= 0,

which implies f(z0) = w0. Moreover, a direct calculation gives

f ′(z0) =
w0

z0
+

|z0|2 − |w0|2

z0(1− |z0|2)
α.

Since α ∈ D was arbitrary, this completes the proof. 2

Corollary 12.2 If f ∈ H(D), f(D) ⊂ D and f(0) = 0, then

|f ′(z)| ≤

{
1, r = |z| ≤

√
2− 1;

(1+r2)2

4r(1−r2) , r ≥
√
2− 1.

This bound is sharp for each r ∈ (0, 1).

Proof. For z ∈ D �xed, let r = |z| and R = |f(z)|. Then R ≤ r and Theorem 12.1 gives

|f ′(z)| ≤ R

r
+

r2 −R2

r(1− r2)
=
R(1− r2) + r2 −R2

r(1− r2)
=

ψ(R)

r(1− r2)
.

The function ψ attains its maximum at R = 1
2
(1− r2):

ψ′(R) = −2R + 1− r2 = 0
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is equivalent to

R =
1− r2

2
< r, r >

√
2− 1.

The maximum is

ψ

(
1− r2

2

)
= −(

1− r2

2
)2 + (1− r2)

1− r2

2
+ r2 =

1− 2r2 + r4

4
+ r2 =

(1 + r2)2

4
.

Therefore

|f ′(z)| ≤
ψ
(

1−r2
2

)
r(1− r2)

=
(1 + r2)2

4r(1− r2)
, r ≥

√
2− 1.

For r ≤
√
2− 1, ψ(R) ≤ ψ(r) = r(1− r2) on [0, r], so |f ′(z)| ≤ 1 there.

The sharpness is clear, since every value f ′(z) in the disc given by Theorem 12.1 is
attained for some function f . 2

The next result may also be viewed as a sharpened form of the Schwarz lemma. For
z0 ∈ D \ {0} �xed, let ∆z0 denote the closed region containing the disc D(0, |z0|2) and
bounded by an arc of the circle ∂D(0, |z0|2) and the two circular arcs γz0 and γ̃z0 joining
z0 to the respective points i|z0|z0 and −i|z0|z0, and tangent to the circle ∂D(0, |z0|2) at
these points.

Theorem 12.3 (Rogozinski 1934) Let z0 ∈ D \ {0} be �xed. Then

{f(z0) : f ∈ H(D), f(D) ⊂ D, f(0) = 0, f ′(0) ≥ 0} = ∆z0 .

Proof. Apply (12.1) with ξ = 0 and with f(z) replaced by f(z)/z ̸≡ 1 to obtain∣∣∣∣f(z)− f ′(0)z

z − f ′(0)f(z)

∣∣∣∣ ≤ |z|.

This places w0 = f(z0) in the disc Dt de�ned by∣∣∣∣w − tz0
z0 − tw

∣∣∣∣ ≤ |z0|, t = f ′(0),

where t ∈ [0, 1] by the Schwarz lemma. Since∣∣∣∣w − tz0
z0 − tw

∣∣∣∣ =
∣∣∣∣∣
w
z0
− t

1− w
z0
t

∣∣∣∣∣ ,
we see that w/z0 belongs to the pseudohyperbolic disc centered at t and of radius z0 = r0.
Therefore w belongs to the Euclidean disc of radius

1− t2

1− t2r20
r0 · r0 =

1− t2

1− t2r20
r20, r0 = |z0|,

and center
1− r20
1− t2r20

tz0.
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This center point traverses the line segment from 0 to z0 as t increases from 0 to 1.
The union of the discs

∪
0≤t≤1Dt equals to ∆z0 . To see this, write the equation fro the

boundary of Dt in the form

F (w, t) = Re

(
log

w − tz0
z0 − tw

)
− log |z0| = log

∣∣∣∣w − tz0
z0 − tw

∣∣∣∣ /|z0| = 0.

A curve C in C is an envelope of the family {F (w, t) = 0 : 0 ≤ t ≤ 1} if at each point of
C at least one member of the family is tangent to C, di�erent members being tangent
in di�erent points of C. One can show that the envelope of {F (w, t) : 0 ≤ t ≤ 1} is
determined by the pair of equations F (W, t) = 0 and

∂F

∂t
= Re

(
z0 − tw

w − tz0

)(
−z0(z0 − tw) + w(w − tz0)

(z0 − tw)2

)
= Re

(
w

z0 − tw
− z0
w − tz0

)
= 0.

See [9]. Now

Re

(
w

z0 − tw
− z0
w − tz0

)
= Re

(
w

z0 − tw

)
− z0
w − tz0

= Re

(
|w|2 − tz0w − |z0|2 + tz0w

(z0 − tw)(w − tz0)

)
= (|w|2 − |z0|2)Re

(
z0 − tw

|z0 − tw|2(w − tz0)

)
=

|w|2 − |z0|2

|z0 − tw|2
Re

(
z0 − tw

w − tz0

)
,

(12.3)

so that the envelope is de�ned by

F (w, t) = 0 and Re

(
z0 − tw

w − tz0

)
= 0.

Thus the envelope is given by

w − t0
z0 − tw

F (w,t)=0
= ±ir0 = ±i|z0|,

which is equivalent to

w =
t± ir0
1± itr0

z0 = w(t), 0 ≤ t ≤ 1.

This equation de�nes the circular arcs γz0 , γ̃z0 which comprise part of the boundary of
∆z0 .

To see that the entire ∆z0 is covered, consider the function

f(z) = z
αz + t

1 + tαz
, α ∈ D, 0 ≤ t ≤ 1.

Then f(D) ⊂ D for all α and t. Moreover, f(0) = 0,

f ′(z) =
αz + t

1 + tαz
+ z

α(1 + tαz)− tα(αz + t)

(1 + tαz)2
; f ′(0) = t,
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and

w0 = f(z0) = z0
αz0 + t

1 + tαz0
,

that is,

αz0 =
w0 − tz0
z0 − tw0

.

Since Dt is de�ned by the condition∣∣∣∣w − tz0
z0 − tw

∣∣∣∣ ≤ |z0|, t = f ′(0),

and α ∈ D, this shows that every point in the disc Dt is the image of z0 under some f
with the required properties. 2

13 Hyperbolic metric

The hyperbolic arc length element is de�ned by

dξ =
|dz|

1− |z|2
.

If γ, parametrized by z(t) : [a, b] → D is di�erentiable arc or curve in D, then for z = z(t)
|dz| = |z′(t)|dt, the hyperbolic length of γ is biven by

λ(γ) =

∫
γ

dξ =

∫ b

a

|z′(t)|dt
1− |z(t)|2

.

Lemma 13.1 Let γ be a di�erentiable arc or curve in D and φ : D→ D conformal. Then
λ(φ(γ)) = λ(γ), i.e. φ is length-preserving.

Proof. Each conformal map from D onto D is of the form ξ a−z
1−az for ξ ∈ T and a ∈ D, and

hence |φ′(z)|(1− |z|2) = 1− |φ(z)|2 for all z ∈ D. Hence

λ(φ(γ)) =

∫
φ(γ)

dξ =

∫
φ(γ)

|dw|
1− |w|2

=

∫
γ

|φ′(z)||dz|
1− |φ(z)|2

∗
=

∫
γ

|dz|
1− |z|2

= λ(γ).

2

[Note that if φ : D→ D is analytic, then by inequality (12.1) given by the Schwarz-Pick
theorem gives ≤ instead of an equality in ∗. Thus in this case, we obtain λ(φ(γ)) ≤ λ(γ).]

The geodesic between z1, z2 ∈ D, z1 ̸= z2 is a curve joining z1 and z2 in D of minimal
hyperbolic length.

Lemma 13.2 The geodesic between 0 and r ∈ (0, 1) is the line segment [0, r] from 0 to r.
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Proof. Clearly, [0, r] can be parametrized as z(t) = t, 0 ≤ t ≤ r, so

λ([0, r]) =

∫
[0,r]

dξ =

∫ r

0

dt

1− t2

=
1

2

∫ r

0

1

(1− t)
+

1

1− t
dt

=
1

2
(− log(1− r) + log(1 + r)) =

1

2
log

1 + r

1− r
.

(13.1)

Let γ be an arbitrary di�erentiable arc in D joining 0 and r, parametrized by z(t) =
x(t) + iy(t), 0 ≤ t ≤ r. Then

λ(γ) =

∫ r

0

|z′(t)|dt
1− |z(t)|2

≥
∫ r

0

x′(t)dt

1− x(t)2

=
1

2
log

1 + x(r)

1− x(r)
− 1

2
log

1 + x(0)

1− x(0)
=

1

2
log

1 + r

1− r
.

(13.2)

Whence the assertion. 2

Note that the inequality in the proof of Lemma 13.2 is strictly less unless y(t) = 0 for
all t ∈ [0, r], so that the geodesic joining 0 and r ∈ (0, 1) is unique.

Lemma 13.3 The geodesic between z1, z0 ∈ D, z1 ̸= z2, is a circular arc joining them,
which, if extended, meets the unit circle orthogonally.

Proof. Let F : D → D, F (D) = D be a Möbius transformation such that F (z1) = 0
and F (z2) = r ∈ (0, 1). The geodesic connecting z1 and z2 is the inverse image of [0, r],
since F is length-preserving by Lemma 13.1. This inverse transformation is a Möbius
transformation of D, that takes circles onto circles, regarding a straight line as a special
case of a circle. Furthermore, since the mapping is conformal and [0, r] is orthogonal to
T if extended untill T, so is the geodesic joining z1 and z2. 2

Write ⟨z1, z2⟩ for the geodesic joining z1 and z2 in D (circular arc, hyperbolic segment).
For many authors �a geodesic� is a hyperbolic line in D, i.e. a circular arc in D that meets
T in two points and is orthogonal to T.

Lemma 13.4 Let z1, z2 ∈ D. Then

λ(⟨z1, z2⟩) =
1

2
log

1 + |φz1(z2)|
1− |φz1(z2)|

, φa(z) =
a− z

1− az
, a, b ∈ D.

Proof. Let

φ(z) =
z − z1
1− z1z

, z ∈ D.

Then φ is a Möbius transformation such that φ(z1) = 0 and |φ(z2)| = r ∈ (0, 1) if z1 ̸= z2.
Now

λ(⟨z1, z2⟩) = λ(φ(⟨z1, z2⟩)) =
1

2
log

1 + r

1− r
=

1

2
log

1 + |φz1(z2)|
1− |φz1(z2)|

.
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2

Write ρh(z1, z2) = λ(⟨z1, z2⟩) for all z1, z2 ∈ D. As ρh(z1, z2) represents the length of
⟨z1, z2⟩, ρh de�nes a metric in D. This is called the hyperbolic metric or the Poincaré
metric. Note that ρh is additive on hyperbolic lines, so along geodesics the equality in the
triangle inequality occures.

Hyperbolic disc with hyperbolic center z0 ∈ D and hyperbolic r ∈ (0,∞) is de�ned by

∆h(z0, r) = {z ∈ D : ρh(z0, z) < r}

= ∆ph(z0, tanh r) = ∆ph

(
z0,

e2r − 1

e2r + 1

)
=

{
z ∈ D : ρph(z0, z) =

∣∣∣∣ z0 − z

1− z0z

∣∣∣∣ < e2r − 1

e2r + 1

}
,

(13.3)

where ρph is called the pseudohyperbolic metric. The fact that ρph is a metric is inherited
from the properties of the hyperbolic metric. In particular,

ρh(z1, z2) =
1

2
log

1 + ρph(z1, z2)

1− ρph(z1, z2)
, z1, z2 ∈ D.

The hyperbolic metric is one of the most natural and important metrics in D. It is clear
by the de�nition that ρh(z, w) ∈ [0,∞). Moreover, for any �xed w ∈ D, |φz(w)| → 1−, as
|z| → 1−, and hence ρh(z, w) → ∞. This means that T is "in�nitely far away" from each
point of D.

It is immediate that both metrics dh and dph are conformally invariant; for each auto-
morphism ψ of D,

dh(ψ(z), ψ(w)) = dh(z, w) and dph(ψ(z), ψ(w)) = dph(z, w).

Moreover, the topologies induced by dh, dph and the Euclidean metric de(·, ·) = | · − · |
coincide; the corresponding collections of open sets are the same.

We will use the following notations for Euclidean, hyperbolic and pseudohyperbolic
discs, respectively:

D(a, r) = {z ∈ C : |a− z| < r}, a ∈ C, r ∈ (0,∞);

∆h(a, r) = {z ∈ D : dh(a, z) < r}, a ∈ D, r ∈ (0,∞);

∆ph(a, r) = {z ∈ D : dph(a, z) < r}, a ∈ D, r ∈ (0, 1).

We will prove two basic lemmas that show that each pseudohyperbolic disc is an
Euclidean disc and, of course, vice versa.

Lemma 13.5 Let a ∈ D and r ∈ (0, 1). Then ∆ph(a, r) is the Euclidean disc D(C,R),
where

C =
1− r2

1− r2|a|2
a and R =

1− |a|2

1− r2|a|2
r.
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Lemma 13.6 Let C ∈ D \ {0} and R ∈ (0, 1− |C|). Then the Euclidean disc D(C,R) is
the pseudohyperbolic disc ∆ph(a, r), where

a =
(1 +R2 − |C|2)−

√
(1 +R2 − |C|2)2 − 4|C|2
2|C|2

C

and

r =
(1 +R2 − |C|2)−

√
(1 +R2 − |C|2)2 − 4R2

2R
.

Proof of Lemma 13.5. We start by deriving two equations, namely (13.4) and (13.5). Let
α, β ∈ C. Now

|α− β|2 = (α− β)(α− β) = |α|2 − (αβ + βα) + |β|2.

Since z + z = 2Re (z) = 2Re (z) for all z ∈ C, we get

|α|2 + |β|2 − |α− β|2 = 2Re (αβ) = 2Re (αβ). (13.4)

This is actually the law of cosines. Namely, if α = aeit ja β = beis, where a, b > 0
and t, s ∈ R, and we denote γ = s − t and c = |α − β| we get the familiar equation
c2 = a2 + b2 − 2ab cos γ.

Let z ∈ C be arbitrary. By substituting α = 1 and β = az to (13.4) we get

1 + |a|2|z|2 − |1− az|2 = 2Re (az).

On the other hand, by substituting α = z and β = a to (13.4) we get

|z|2 + |a|2 − |z − a|2 = 2Re (az).

By substracting last two equations we get

1− |z|2 − |a|2 + |a|2|z|2 − |1− az|2 + |z − a|2 = 0,

which simpli�es to
|1− az|2 = |z − a|2 + (1− |a|2)(1− |z|2). (13.5)

Let z ∈ D be arbitrary. Now by equation (13.5) we have

|φa(z)|2 =
|z − a|2

|1− az|2
=

|z − a|2

(1− |a|2)(1− |z|2) + |z − a|2
= r2.

This is equivalent to

|z − a|2(1− r2) = (r2 − |a|2r2)(1− |z|2),

and hence

|z − a|2 = r2 − |a|2r2

1− r2
− r2 − |a|2r2

1− r2
|z|2.
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Now by equation (13.4) we have

|z|2 + |a|2 − 2Re (az) =
r2 − |a|2r2

1− r2
− r2 − |a|2r2

1− r2
|z|2,

which gives

|z|2
(
1 +

r2 − |a|2r2

1− r2

)
− 2Re (az) =

r2 − |a|2r2

1− r2
− |a|2,

which simpli�es to

|z|2
(
1− |a|2r2

1− r2

)
− 2Re (az) =

r2 − |a|2

1− r2
.

Multiplication by factor

A =
1− r2

1− |a|2r2
> 0

gives

|z|2 − 2Re (Aaz) =
r2 − |a|2

1− |a|2r2
.

Therefore

|z|2 − 2Re (Aaz) + |Aa|2 = r2 − |a|2

1− |a|2r2
+ A2|a|2.

and by equation (13.4) we obtain

|z − Aa|2 = r2 − |a|2

1− |a|2r2
+ A2|a|2.

That is,

|z − Aa|2 = (r2 − |a|2)(1− |a|2r2) + (1− r2)2|a|2

(1− |a|2r2)2
,

hence

|z − Aa|2 = r2 − |a|2r4 − |a|2 + |a|4r2 + |a|2 − 2|a|2r2 + r4|a|2

(1− |a|2r2)2
,

which simpli�es to

|z − Aa|2 = r2(1− |a|2)2

(1− |a|2r2)2
.

Now C = Aa, the right hand side is R2 and the proof is complete. 2

Proof of Lemma 13.6. Let �rst C ∈ [0, 1) so that a ∈ [0, 1). By Lemma 13.5,

C =
1− r2

1− r2a2
a and R =

1− a2

1− r2a2
r,

and hence

C +R =
a− r2a+ r − ra2

1− r2a2
=

(a+ r)(1− ra)

(1− ra)(1 + ra)
=

a+ r

1 + ra
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and

C −R =
a− r2a− r + ra2

1− r2a2
=

(a− r)(1 + ra)

(1− ra)(1 + ra)
=

a− r

1− ra
.

Therefore
a+ r = C +R + raC + raR

and
a− r = C −R− raC + raR.

By adding these equations and dividing by 2 we get

a = C + raR. (13.6)

By subtracting the equations and dividing by 2 we get

r = R + raC. (13.7)

Equations (13.6) and (13.7) are in some sence symmetrical. Namely, let P (x1, x2, x3, x4) =
x2+x3x1x4−x1. Now (13.6) is P (a, C, r, R) = 0 and equation (13.7) is P (r, R, a, C) = 0.

By solving r from equation (13.7) we get

r =
R

1− aC
.

Substituting this to (13.6) we have

a = C +
R2a

1− aC
.

Multiplying both sides with 1− aC we get

a− a2C = C − aC2 +R2a,

which gives a quadratic equation for the center a, that is,

0 = Ca2 − (1 +R2 − C2)a+ C.

Quadratic formula gives

a = a± =
(1 +R2 − C2)±

√
(1 +R2 − C2)2 − 4C2

2C
.

A direct calculation shows that a+ > 1, and hence

a =
(1 +R2 − C2)−

√
(1 +R2 − C2)2 − 4C2

2C
.

Solving for a in equation (13.6) gives

a =
C

1− rR
.
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Susbstituting this to (13.7) we have

r = R +
C2r

1− rR
.

Multiplying both sides with 1− rR we get

r − r2R = R− rR2 + C2r,

which gives a quadratic equation for the radius r, that is,

0 = Rr2 − (1 +R2 − C2)r +R.

Quadratic formula gives

r± =
(1 +R2 − C2)±

√
(1 +R2 − C2)2 − 4R2

2R
,

of which the acceptable one is r−, and thus

r =
(1 +R2 − C2)−

√
(1 +R2 − C2)2 − 4R2

2R
.

The general case follows by rotating the center of the Euclidean disc to the segment [0, 1).
2

14 Two-point distortion results

Theorem 5.3 gives the necessary condition

|z|
(1 + |z|)2

≤ |f(z)| ≤ |z|
(1− |z|)2

, z ∈ D,

for f ∈ H(D) with f(0) = 0 and f ′(0) = 1 to be univalent, but this condition is of course
not su�cient. We next give a necessary and su�cient condition for univalence in terms
of two-point distortion.

De�ne the di�erential operator D, on H(D) by

D1(f)(z) = f ′(z)(1− |z|2), z ∈ D.

This operator satis�es

D1(f)(z) = (f ◦ ψz)′(0), ψz(ξ) =
ξ + z

1 + zξ
, ξ ∈ D.

Theorem 14.1 (Kim-Minda 1994) Let f ∈ H(D). Then f is univalent if and only if

|f(a)− f(b)| ≥ sinh(2ρh(a, b))

2 exp(2ρh(a, b))
·max{|D1(f)(a)|, |D2(f)(b)|}, a, b ∈ D. (14.1)

Moreover, there exists a, b ∈ D, a ̸= b, for which equality holds if and only if f = Φ◦k ◦T ,
where Φ is an automorphism of C, k is the Köbe function, and T is an automorphism of
D.
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Proof. Let T be the automorphism given by

T (z) =
z + a

1 + az
, z ∈ D,

and let

g(z) =
f(T (z))− f(T (0))

(f ◦ T )′(0)
=
f
(
z+a
1+az

)
− f(a)

f ′(a)(1− |a|2)
, z ∈ D.

Then g ∈ S and Theorem 5.3 gives

|g(z)| ≤ |z|
(1 + |z|)2

=
sinh(2ρh(0, z))

2 exp(2ρh(0, z))
, z ∈ D, (14.2)

and because 2ρh(0, z) = log 1+|z|
1−|z| ,

sinh(2ρh(0, z)) =

1+|z|
1−|z| −

1−|z|
1+|z|

2
=

1

2

(1 + |z|)2 − (1− |z|)2

1− |z|2
=

2

1− |z|2

and

2 exp(2ρh(0, z)) = 2
1 + |z|
1− |z|

,

thus
sinh(2ρh(0, z))

2 exp(2ρh(0, z))
=

2|z|
2(1− |z|)2

1− |z|
1 + |z|

=
|z|

(1 + |z|)2
, z ∈ D.

Let z ∈ D such that T (z) = b, that is, z = b−a
1−ab . Then (14.2) becomes

|f(b)− f(a)| ≥ sinh(2ρh(a, b))

2 exp(2ρh(a, b))
|D1(f)(a)|

because the hyperbolic metric is invariant under T by Lemma 13.1. Interchanging the
roles of a and b leads to

|f(a)− f(b)| ≥ sinh(2ρh(a, b))

2 exp(2ρh(a, b))
|D1(f)(b)|,

and (14.1) follows.
The condition under which equality in (14.1) holds can be deduced from the fact that

equality in the lower estimate |z|/(1 + |z|)2 ≤ |f(z)| holds only for rotations of the Köbe
function. Details are omitted.

It remains to show that (14.1) implies univalence. Let f ∈ H(D) be nonconstant such
that f(a) = f(b) for a, b ∈ D, a ̸= b, and it satis�es (14.1). Then f ′(a) = f ′(b) = 0 and
hence f is not univalent in any neighbourhood of a or b. Hence we �nd sequences {an}
and {a′n} of distinct points in D such that

lim
n→∞

an = a, lim
n→∞

a′n = a

and f(an) = f(a′n) for all n ∈ N. Then (14.1) implies f ′(an) = 0 for all n ∈ N. Then (14.1)
implies f ′(an) = 0 for all n ∈ N, and hence f is constant. This contradicts the hypothesis,
and we conclude that f is univalent. 2

Blather proved the following result in 1978.
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Theorem 14.2 Let f ∈ H(D). Then f is univalent if and only if

|f(a)− f(b)|2 ≥ sinh2(2ρh(a, b))

8 cosh(4ρh(a, b))
· (|D1(f)(a)|2 + |D1(f)(b)|2), a, b ∈ D. (14.3)

Moreover, there exists a, b ∈ D, a ̸= b, for which equality holds if and only if f = Φ◦k ◦T ,
where Φ is an automorphism of C, k is the Köbe function, and T is an automorphism of
D.
Proof. We will not give a proof. It requires the estimates |a2| ≤ 2, |a3| ≤ 3 and
|a3 − a22| ≤ 1 valid for f(z) = z +

∑∞
n=2 anz

n in S. 2

We can prove an inequality of type (14.3) with a nonsharp constant. Let f be univalent
in D. Now (14.1) gives

|f(a)− f(b)|2 ≥ sinh2(2ρh(a, b))

4 exp(4ρh(a, b))
·max{|D1(f)(a)|2, |D2(f)(b)|2}, a, b ∈ D.

For x, y ∈ [0,∞), we have

coshx =
ex + e−x

2
≥ ex

2
;

1

ex
≥ 1

2 cosh x
; max

{
x2, y2

}
≥ x2 + y2

2
and hence we obtain

|f(a)− f(b)|2 ≥ sinh2(2ρh(a, b))

16 cosh(4ρh(a, b))
· (|D1(f)(a)|2 + |D2(f)(b)|2), a, b ∈ D,

which fails to be sharp by factor 2.
On the other hand, by

1

coshx
≥ 1

ex
, x ∈ [0,∞)

and
x2 + y2 ≥ max

{
x2, y2

}
,

we get from (14.3)

|f(a)− f(b)|2 ≥ sinh2(2ρh(a, b))

8 cosh(4ρh(a, b))
· (|D1(f)(a)|2 + |D1(f)(b)|2)

≥ |f(a)− f(b)|2 sinh
2(2ρh(a, b))

8 exp(4ρh(a, b))
·max

{
|D1(f)(a)|2, |D1(f)(b)|2

}
,

(14.4)

which implies

|f(a)− f(b)| ≥ sinh(2ρh(a, b))

2
√
2 exp(2ρh(a, b))

·max {|D1(f)(a)|, |D1(f)(b)|} , a, b ∈ D,

which fails to be sharp by a factor
√
2.

Actually, Theorems 14.1 and 14.2 are special cases of a more general result where (14.3)
is replaced by

|f(a)− f(b)| ≥ sinh(2ρh(a, b))

2(2 cosh(2pρh(a, b)))1/p
, p ≥ 1,

due to Kim and Minda (1994) and Jenkins (1998). The case p = ∞ corresponds to
Theorem 14.1 while p = 2 is Theorem 14.2. For upper estimates for |f(a) − f(b)|, see
Jenkins (1998) and Ma and Minda (1999).

69



15 Bounded univalent functions

If f ∈ H(D), then the Cauchy integral formula shows that the coe�cients in the Maclaurin
series of f are given by

an =
1

2πi

∫
|z|=r

f(ξ)

ξn+1
dξ, 0 < r < 1,

the mean value of f(ξ)/ξn on the circle |z| = r. Hence, if f ∈ H∞,

|an| ≤
1

2π
∥f∥H∞

2πr

rn+1
=

∥f∥H∞

rn
→ ∥f∥H∞ , r → 1−,

and thus f has uniformly bounded coe�cients. However, if f is bounded univalent func-
tion in D, then f(D) has �nite area, and hence∫

D
|f ′(z)|2dA(z) = π

∞∑
n=1

n|an|2 <∞.

Therefore n|an|2 → 0, n→ ∞, implying

an = o
(
n−1/2

)
, n→ ∞.

Comparison test
Is the following reasoning correct? If not, where is the �aw?

Let bn, cn ∈ [0,∞) for all n ∈ N. Assume that

lim sup
n→∞

bn
cn

=M ∈ (0,∞).

Now for ε ∈ (0,∞) we �nd N = N(ε) ∈ N such that

bn
cn
< M + ε, n ≥ N,

that is,
bn < (M + ε)cn, n ≥ N.

Now if
∞∑
n=1

cn

converges, then
∞∑
n=1

bn

converges. This is the one-sided comparison test. Let now bn = 1
n
so that

∑
bn diverges.

Let f ∈ H(D) be a bounded univalent function, f(z) =
∑∞

n=0 anz
n and cn = n|an|2 so

that
∑
cn converges. We deduce

lim sup
n→∞

bn
cn

= lim sup
n→∞

1

n2|an|2
= ∞,
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that is,

lim sup
n→∞

1

n|an|
= ∞.]

Theorem 15.1 (Clunie and Pommerenke 1967) There exists α ∈ (0,∞) such that
an = O(n−1/2−α) for every bounded function f ∈ S with f(z) =

∑∞
n=1 anz

n.

Proof. For δ ∈ (0,∞), the Cauchy-Schwarz inequality gives∫ 2π

0

|f ′(reiθ)|1+δdθ ≤ (I(r)J(r))1/2, (15.1)

where

I(r) =

∫ 2π

0

|f ′(reiθ)|2δ; J(r) =

∫ 2π

0

|f ′(reiθ)|2dθ.

Since J(r) increases with r,

r(1− r)J(r) ≤
∫ 1

r

tJ(t)dt ≤
∫ 1

0

tJ(t)dt = π

∞∑
j=1

n|an|2 <∞.

Thus

J(r) = O

(
1

1− r

)
, r → 1−. (15.2)

The estimation of I(r) is more involved. Since f is locally univalent, the function

F (z) = (f ′(z))δ =
∞∑
n=1

cnz
n, c0 = 1,

is analytic in D (for a �xed branch), and

I(r) =

∫ 2π

0

|F (reiθ)|2dθ = 2π
∞∑
n=0

|cn|r2n.

It follows that

I ′′(r) = 2π
∞∑
n=2

|cn|22n(2n− 1)r2n−2 ≤ 8π
∞∑
n=1

|cn|2n2r2n−2.

On the other hand, ∣∣∣∣f ′′(z)

f

′

(z)

∣∣∣∣ ≤ 6

1− |z|
, z ∈ D,

for all f ∈ S by Theorem 5.1, and so

2π
∞∑
n=1

n2|cn|2r2n−2 =

∫ 2π

0

|F ′(reiθ)|2dθ

δ2
∫ 2π

0

∣∣∣∣f ′′(reiθ)

f ′(reiθ)

∣∣∣∣2 |f ′(reiθ)|2δdθ ≤ 36δ2

(1− r)2
I(r).
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Combining these inequalities, we get

(log I(r))′′ =

(
I ′(r)

I(r)

)′

=
I ′′(r)

I(r)
−
(
I ′(r)

I(r)

)2

≤ I ′′(r)

I(r)

≤ 8π
∑∞

n=1 n
2|cn|2r2n−2

I(r)
≤ 144δ2

(1− r)2
I(r)

I(r)
=

144δ2

(1− r)2
.

Hence I(0) = 2π|c0|2 = 2π; I ′(0) = 0;

(log I(r))′ =
I ′(r)

I(r)
;

I ′(0)

I(0)
= 0 = (log I(r))

∣∣∣∣
r=0

.

Two integrations from 0 to r yield∫ r

0

((log I(s))′ − 0)ds = log I(r)− log 2π ≤ 144δ2
∫ r

0

∫
0

s
dt

(1− t)2
ds

= 144δ2
∫ r

0

(
1

1− s
− 1

)
ds

≤ 144δ2 log
1

1− r
,

and thus
log I(r) ≤ log 2π − 144δ2 log(1− r),

that is,
I(r) ≤ 2π(1− r)−144δ2 . (15.3)

The estimates (15.1)-(15.3) give∫ 2π

0

|f ′(reiθ)|1+δdθ

(15.1)

≤ (I(r)J(r))1/2

(15.2)

. I(r)1/2
1

(1− r)1/2

(15.3)

. 1

(1− r)1/2+72δ2
, r → 1−.

(15.4)

For γ ∈ (0, 1/2), let

E1 = E1(γ, r) =
{
θ : |f ′(reiθ)| ≤ (1− r)−γ

}
and

E2 = E2(γ, r) =
{
θ : |f ′(reiθ)| > (1− r)−γ

}
= [0, 2π] ≤ E1.

Then, by (15.3),∫ 2π

0

|f ′(reiθ)|dθ =
∫
E1

|f ′(reiθ)|dθ +
∫
E2

|f ′(reiθ)|1+δ−δdθ

≤ 2π

(1− r)γ
+ (1− r)γδ

∫ 2π

0

|f ′(reiθ)|1+δdθ

. 1

(1− r)γ
+

1

(1− r)1/2+72δ2−γδ , r → 1−.
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The exponent 1/2 + 72δ2 − γδ attains the minimum

1

2
− γ2

288

at
δ =

γ

144
.

[h(δ) = 72δ2 − γδ + 1/2, h′(δ) = 144δ − γ = 0 ⇔ δ = γ/144.]
This minimum is smaller than γ if γ is su�ciently close to 1/2. [0.49913 ≈ 12(

√
145−

12) < γ < 1/2] Thus for some γ < 1/2, we have∫ 2π

0

|f ′(reiθ)|dθ . 1

(1− r)γ
, r → 1−.

The Cauchy integral formula yields

n|an| ≤
1

2πrn−1

∫ 2π

0

|f ′(reiθ)|dθ . 1

rn(1− r)γ
,

and the choice r = 1− 1
n
therefore gives

|an| = O
(
nγ−1

)
.

Since γ < 1/2, the theorem is proved.
[γ = 12(

√
145− 12); α = 1

2
− γ = (289− 24

√
145)/2 ≈ 0.000865] 2

The best value of α is unknown. Theorem 15.1 has a close connection to the asymptotic
coe�cient problem for the class Σ of univalent functions

g(z) = z +
∞∑
n=0

bnz
−n, z ∈ C \ D.

By Corollary 2.2,
∑∞

n=1 n|bn|2 ≤ 1, so |bn| = o(n−1/2), n → ∞. By a method parallel
to that used in the proof of Theorem 15.1, Clunie and Pommerenke improved this to
|bn| = o(n−1/2−β) for some β > 0 (the best value of β is again unknown). This actually
implies 15.1; in fact, one can show that α ≥ β. More precisely, we have

Theorem 15.2 (Pommerenke 1967) If β > 0 and the coe�cients bn of each function
g ∈ Σ satisfy |bn| = O(n−1/2−β+ε) for every ε > 0, then |an| = O(n−1/2−β+ε) for the
coe�cients an of each bounded univalent function f ∈ S.

Proof. Suppose on the contrary, that

|an| ̸= O(n−1/2−β+2ε)

for some bounded f ∈ S and ε > 0. Consider the cube-root transform (Theorem 1.3)

h(z) = (f(z3))1/3 =
∞∑
n=0

cnz
3n+1, c0 = 1.
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We claim that |cn| ̸= O(n−1/2−β+ε). Otherwise, since for i+j+k = n we havemax(i, j, k) ≥
n/3, we could deduce

|an+1| ≤
∑

i+j+k=n

|cicjck|

≤
(
3

n

)1/2+β−ε ∑
j+k≤n

|cjck|

. 1

n1/2+β−ε

∑
j+k≤n

|cjck|

=
1

n1/2+β−ε

n∑
k=0

|ck|
n−k∑
j=0

|cj|

≤ 1

n1/2+β−ε ,

(15.5)

because the Cauchy-Schwarz inequality yields

n∑
k=1

|ck| ≤

(
n∑
k=1

1

k

)1/k( n∑
k=1

k|ck|2
)1/2

. (log n)1/2 · 1.

Here we used the facts that
n∑
k=1

1

k
≍ log n

and
∞∑
k=1

k|ck|2 ≍ 2π
∞∑
k=0

|ck|2
(3k + 1)2

6k + 2
=

∫
D
|h′(z)|dA(z) <∞.

Let M > 0 such that h(z) < M for all z ∈ D and consider ψ(w) = w
M2 + 1

w
in D(0,M).

Now ψ is univalent in D(0, w), since

ψ(a)− ψ(b) =
a− b

M2
− a− b

ab
=

(a− b)(ab−M2)

M2ab
, a, b ∈ D(0,M)

Thus g(ξ) = ψ(h(1/ξ)) belongs to Σ, and

g(ξ) =
h(1/ξ)

M2
+

1

h(1/ξ)
= ξ +

∞∑
v=1

dvξ
−3v+1 +

1

M2

∞∑
v=0

cvξ
−3v−1 = ξ + b0 +

∞∑
v=1

bvz
−v.

In particular, b3v+1 =
cv
M2 , so bv ̸= O(v−1/2−β+ε). 2

Theorem 15.3 (Pommerenke 1967) For each m ∈ N, there exists a bounded univalent
function

f(z) =
∞∑
v=0

amv+1z
mv+1, z ∈ D,

with f(D) ⊂ D, an ≥ 0 and an ̸= O(n−0.83), n→ ∞.
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Proof. We will use the notation

∞∑
n=0

αnz
n ≪

∞∑
n=0

βnz
n

if αn ≤ βn for all n ∈ N ∪ {0}. Let

p(z) = 1 +
∞∑
n=1

cnz
n

be analytic in D and have the properties Re (p(z)) > 0, cn ≥ 0 for all n ∈ N and

λ =
∞∑
n=1

cn
n
<∞.

Choose q ∈ N \ {1} and form the functions

ϕk(z) = ze
− λ

mqk eψk(z),

where

ψk(z) =
1

mqk

∞∑
n=1

cn
n
znmq

k

, k ∈ N.

Clearly,

Re (ψk(z)) ≤ |ψk(z)| <
1

mqk

∞∑
n=1

cn
n

=
λ

mqk

and therefore

|ϕk(z)| = |z|
∣∣∣eψk(z)− λ

mqk

∣∣∣ = |z| exp
(
Re (ψk(z))−

λ

mqk

)
< |z|e0 = |z| < 1,

for z ∈ D. [Thus ψk satis�es the assumptions of the Schwarz lemma and is a so-called
Schwarz function.] Also

ψk(z) =
1

mqk

∞∑
m=1

cn
n
znmq

k ≫ c1
mqk

zmq
k

, z ∈ D,

and so

ϕk(z) = z
eψk(z)

e
λ

mqk

≫ z

e
λ

mqk

(1 + ψk(z)) ≫
z

e
λ

mqk

(
1 +

c1
mqk

zmq
k

)
. (15.6)

Further,

ψ′
k(z) =

eψk(z)

e
λ

mqk

+ z
eψk(z)ψ

′
k(z)

e
λ

mqk

75



and hence

z
ϕ′
k(z)

ϕk(z)
=

(
z
eψk(z)

e
λ

mqk

+ z2
eψk(z)ψ′

k(z)

e
λ

mqk

)/
z
eψk(z)

e
λ

mqk

= 1 + zψ′
k(z)

= 1 + z
1

mqk

∞∑
n=1

cn
n
nmqkznmq

k−1

= 1 +
∞∑
n=1

cnz
nmqk = p(zmq

k

).

Theorem 17.1 shows that ϕk is starlike and therefore univalent in D. De�ne f1(z) = z
and fk+1(z) = fk(ϕk(z)) for k ∈ N and z ∈ D. Then

fk+1(z) = fk(ϕk(z)) = fk−1(ϕk−1(ϕk(z)))

= f1(ϕ1(ϕ2(. . . (ϕk(z)))))

= (ϕ1 ◦ ϕ2 ◦ . . . ◦ ϕk)(z), z ∈ D.

Let fk(z) =
∑∞

n=1 ak,nz
n. Since φk(D) ⊆ D for all k ∈ N, fk(D) ⊆ D for all k ∈ N.

Moreover, since cn ≥ 0 for all k ∈ N, ψk has nonnegative coe�cients, and therefore
ak,n ≥ 0 for all n, k ∈ N. Moreover, as ϕk has �gaps� in its Maclaurin series, we see that
ak,n ̸= 0 only if n = mv + 1, that is, each fk has m-fold symmetry.

Observe that

fk+1(z) = fk(ψk(z)) ≫ ak,n(ψk(z))
n ≫ ak,n

(15.6)
≫ ak,n

zn

e
λn

mqk

(
1 +

c1
mqk

zmq
k

)n
≫ ak,n

zn

e
λn

mqk

(
1 +

c1n

mqk
zmq

k

)
, n ∈ N.

(15.7)

De�ne

nk = 1 +m(1 + q + . . .+ qk−1) = 1 +m
qk − 1

q − 1
,

so that

nk+1 = 1 +m
qk+1 − 1

q − 1
= nk +mqk.

Then, by (15.7),

∞∑
j=1

ak+1,jzj ≫ ak,n
zn

e
λn

mqk

+ ak,n
c1n

e
λn

mqk ·mqk
zn+mq

k

(15.8)

and hence
ak+1,nk+1

≥ ak,nk

c1nk

e
λnk
mqk ·mqk

.
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Denote Ak = nkak,nk
. Then this becomes

Ak+1 ≥ Ak
c1nk+1

e
λnk
mqk ·mqk

= Ak
c1

(
1 +m qk−1−1

q−1

)
mqk

· e−
λnk
mqk

≥ Ak
c1q

q − 1

(
1− 1

qk+1

)
exp

(
− λ

mqk

(
1 +m

qk − 1

q − 1

))
= Ak

c1q

q − 1

(
1− 1

qk

)
exp

(
− λ

mqk
− λ

q − 1

qk−1

qk

)
≥ Ak

c1q

q − 1

(
1− 1

qk+1

)
exp

(
− λ

mqk
− λ

q − 1

)
.

(15.9)

Now de�ne β by

qβ =
c1q

q − 1
exp

(
− λ

q − 1

)
and conclude from (15.9) that

Ak ≥ Ak−1
c1q

q − 1
exp

(
− λ

q − 1

)(
1− q−k

)
exp

(
−λq

−k+1

m

)
= Ak−1q

β(1− q−k) exp

(
−λq

−k+1

m

)
≥ Ak−2q

β(1− q−k+1) exp

(
−λq

−k+2

m

)
· qβ(1− q−k) exp

(
−λq

−k+1

m

)
= Ak−2q

2β(1− q−k+1)(1− q−k) exp

(
− λ

m
(q−k+2 + q−k+1)

)
≥ . . .

≥ A2q
β(k−2)

k∏
j=2

(1− q−j) exp

(
− λ

m

k−1∑
j=1

q−j

)

≥ A2q
β(k−2)

∞∏
j=1

(1− q−j) exp

(
− λ

m

∞∑
j=1

q−j

)

= A2q
β(k−1)

∞∏
j=1

(1− q−j) exp

(
− λ

m

1

q − 1

)
,

where

A1

∞∏
j=1

(1− q−j) exp

(
− λ

m

1

q − 1

)
= B > 0.

Since

nk = 1 +m
qk − 1

q − 1
≍ mqk

q − 1
, k ∈ N,

this implies [nβk ≍ qβk]
Ak = nkak,nk

≥ Bqβ(k−1),

77



that is,

ak,nk
≥ Bqβ(k−1)

nk
=
B

qβ
qβk

nk
≍ B

qβ
nβ−1
k ,

and thus
ak,nk

≥ Cnβ−1
k , k ∈ N, (15.10)

for some constant C > 0. It follows by (15.10) that

ak+1,nj
≥ ak,nj

exp

(
−λnj
qkm

)
,

and hence

ak,nj
≥ ak−1,nj

exp

(
− λnj
qk−1m

)
≥ ak−2,nj

exp

(
−λnj
m

(
1

qk−1
+

1

qk−2

))
≥ . . .

≥ aj,nj
exp

(
−λnj
m

k−1∑
l=j

1

ql

)

≥ aj,nj
exp

(
−λnj
m

∞∑
l=j

1

ql

)

= aj,nj
exp

(
− λnj
mqj

q

q − 1

)
≥ Dnβ−1

j , 1 ≤ j ≤ k,

(15.11)

by (15.8) and the fact nj ≍ qj.
Since f(D) ⊆ D, some subsequence converges uniformly on compacta to an analytic

function of the form

f(z) =
∞∑
v=0

amv+1z
mv+1.

The limit function is not constant because

f ′
k(0) = ak,1 ≥ exp

(
− λ

m(q − 1)

)
> 0.

Thus f is univalent and f(D) ⊆ D. Since ak,n → an for all n, it follows from (15.11) that

anj ≥ Dnβ−1
j , j ∈ N. (15.12)

The �nal step is to make an appropriate choice of the function p upon which the conclusion
is made. Fix τ ∈ (0, π) and let

p(z) = 1 +
4

τ 2

∞∑
n=1

1− cosnτ

n2
zn, z ∈ D.
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Then

Re (p(eiθ)) =

{
2π
τ2
(τ − |θ|) , |θ| ≤ τ

0 , τ ≤ |θ| ≤ π.

[Use Fourier series to obtain this.] In particular, Re (p(z)) > 0 for all z ∈ D. Now choose
τ = π/3 and compute [since p(z) = 1 +

∑∞
n=1 cnz

n]

c1 =
4

τ 2
1− cos τ

12
=

36

π2
(1− cos

π

3
) =

18

π2

and

λ =
∞∑
n=1

cn
n

=
4

τ 2

∞∑
n=1

n−3(1− cosnτ) =
36

π2
ζ(3)− 36

π2

∞∑
n=1

cosnπ/3

n3
.

Now
∞∑
n=1

cosnπ/3

n3
=

∞∑
v=1

(−1)v

(3v)3
+

∞∑
v=0

(−1)v

2(3v + 1)3
+

∞∑
v=0

(−1)v+1

2(3v + 2)3

and hence

λ =
36

π2

(
ζ(3) +

∞∑
n=1

(−1)n−1

(3n)3

)
− 18

π2

∞∑
n=0

(−1)n
[

1

(3n+ 1)3
− 1

(3n+ 2)3

]

<
36

π2

(
ζ(3) +

∞∑
n=1

(−1)n−1

(3n)3

)
− 18

π2

[
(1− 2−3)− (4−3 − 5−3)

]
< 2.93.

Now choose q = 14 to obtain from

qβ =
c1q

q − 1
exp

(
− λ

q − 1

)
that β > 0.17. Hence (15.12) shows that an ̸= O(n−0.83) 2

16 Functions with positive real part

We begin with the following auxiliary result.

Theorem 16.1 (Helly selection theorem) Let {αn} be a sequence of nondecreasing
functions on a bounded interval [a, b], with αn(a) = 0 and αn(b) = 1. Then some subse-
quence {αnk

} converges everywhere in [a, b] to a nondecreasing function α and for each
continuous function ϕ on [a, b]

lim
k→∞

∫ b

a

φ(t)dαnk
(t) =

∫ b

a

φ(t)dα(t).
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Proof. By a diagonalization process we may extract from {αn} a subsequence {βn} such
that βn(t) → α(t) for every t ∈ [a, b] ∩Q. For an arbitrary t ∈ [a, b], let

α∗(t) = lim inf
n→∞

βn(t), α∗(t) = lim sup
n→∞

βn(t).

Then α∗(t) = α∗(t) = α(t) for each t ∈ [a, b] ∩ Q. The functions α∗ and α∗ are nonde-
creasing because each βn is nondecreasing and therefore di�erentiable (thus continuous
as well) aside from a set of measure zero. By Froda's theorem monotone functions are
continuous aside of a possible exceptional set E ⊂ [a, b] that is countable. For each t /∈ E,
it is clear that α∗(t) = α∗(t) because the rational numbers are dense in [a, b]:

α∗(t) = lim
s→t

α∗(s) = lim
s→t
s∈Q

α∗(s) = lim
s→t
s∈Q

α∗(s) = lim
s→t
s∈Q

α∗(s) = α∗(t).

Thus the subsequence {βn(t)} converges for each t /∈ E. Another diagonalization process
applied to {βn} now produces a further subsequence {αnk

} which converges everywhere on
the countable set E. The function α(t) = limk→∞ αnk

(t) is therefore the desired function
on [a, b] with α(a) = 0 and α(b) = 1.

To prove the statement concerning integrals, we take advantage of the uniform conti-
nuity of ϕ at [a, b]. Given ε > 0, choose a partition

a = t0 < t1 < t2 < . . . < tn = b

such that |ϕ(t) − ϕ(tj)| < ε for tj−1 ≤ t ≤ tj, j = 1, 2, . . . , n. Let M = maxt∈[a,b] |ϕ(t)|.
Then∣∣∣∣∫ b

a

ϕ(t)dαnk
(t)−

∫ b

a

ϕ(t)dα(t)

∣∣∣∣ ≤ m∑
j=1

∫ tj

tj−1

|ϕ(t)− ϕ(tj)|dαnk
(t)

+
m∑
j=1

∫ tj

tj−1

|ϕ(tj)− ϕ(t)|dα(t)

+
m∑
j=1

∫ tj

tj−1

|ϕ(tj)| |d(αnk
(t)− α(t))|

≤ ε

∫ b

a

dαnk
(t) + ε

∫ b

a

dα(t)

+M
m∑
j=1

|αnk
(tj)− α(tj)− αnk

(tj−1) + α(tj−1)|

= 2ε+M

m∑
j=1

|αnk
(tj)− α(tj)− αnk

(tj−1) + α(tj−1)| .

Since αnk
(t) → α(t) for all t ∈ [a, b] as k → ∞, we may choose k su�ciently large so that

the last term is at most ε. This completes the proof. 2

Recall that the Poisson kernel of D is

P (r, θ) =
1− r2

1− 2r cos θ + r2
= Re

1 + reiθ

1− reiθ
, 0 ≤ r < 1, θ ∈ R.
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Theorem 16.2 (Herglotz representation theorem) Let u be a positive harmonic func-
tion in D with u(0) = 1. Then there exists a unique positive unit measure µ such that

u(reiθ) =

∫ 2π

0

P (r, θ − t)dµ(t), 0 ≤ r < 1, θ ∈ [0, 2π).

Proof. For 0 ≤ r < 1, de�ne

µr(t) =
1

2π

∫ t

0

u(reiθ)dθ.

Then µr is an increasing function with µr(0) = 0 and µr(2π) = u(0) = 1 by the mean value
property of harmonic functions. By the Helly selection theorem, there exists a sequence
of radii rn increasing to 1 and nondecreasing function µ on [0, 2π] for which µrn(t) → µ(t)
as n→ ∞, for all t ∈ [0, 2π]. By the Poisson integral formula

u(rnz) =
1

2π

∫ 2π

0

P (r, θ − t)u(rne
it)dt =

∫ 2π

0

P (r, θ − t)dµrn(t), z = reiθ.

By letting n → ∞ and appealing to the integration part of Helly selection theorem, we
obtain

u(z) =

∫ 2π

0

P (r, θ − t)dµ(t), z = reiθ,

which is the desired representation because µ is a unit measure, i.e.,
∫ 2π

0
dµ = 1.

To prove the uniqueness of the representing measure, assume that there exists positive
measures µ1 and µ2 such that∫ 2π

0

P (r, θ − t)dµ1(t) = u(reiθ) =

∫ 2π

0

P (r, θ − t)dµ2(t), reiθ ∈ D.

Then µ = µ1−µ2 is the di�erence of positive unit measures such that the real part of the
analytic function ∫ 2π

0

eit + z

eit − z
dµ(t), z ∈ D,

equals to ∫ 2π

0

P (r, θ − t)dµ(t) =

∫ 2π

0

P (r, θ − t)dµ1(t)−
∫ 2π

0

P (r, θ − t)dµ2(t)

= u(reiθ)− u(reiθ) = 0, reiθ ∈ D.

Hence, for some γ ∈ R,

0 =

∫ 2π

0

eit + z

eit − z
dµ(t) + iγ =

∫ 2π

0

(
1 + 2

∞∑
n=1

e−intzn

)
dµ(t) + iγ

and hence, by conjugation as µ is real, we deduce∫ 2π

0

eintdµ(t) = 0, n ∈ Z.
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Hence µ annihilates every trigonometric polynomial. By the Weierstrass approximation
theorem, it must therefore annihilate every continuous periodic function. Since the charac-
teristic function of any interval can be approximated in L1

µ-norm by a continuous periodic
function, this shows that the µ-measure of each interval is zero. Thus µ is the zero measure
and µ1 = µ2. 2

Corollary 16.3 Let f ∈ H(D) such that Re f(z) ≥ 0 for all z ∈ D. Then there exists
an increasing function µ : [0, 2π] → [0,∞) such that µ(2π)− µ(0) = Re f(0) and

f(z) =

∫ 2π

0

eit + z

eit − z
dµ(t) + i Im f(0).

Proof. Consider the harmonic function u = Re f . By the proof of Theorem 16.2, there
exists an increasing function µ : [0, 2π] → [0,∞) such that µ(2π)− µ(0) = Re f(0) and

u(reiθ) =

∫ 2π

0

Re

(
1 + rei(θ−t)

1− rei(θ−t)

)
dµ(t)

=

∫ 2π

0

Re
eit + reiθ

eit − reiθ
dµ(t)

= Re
∫ 2π

0

eit + reiθ

eit − reiθ
dµ(t), 0 < r < 1.

Therefore the analytic function f and

z 7→
∫ 2π

0

eit + reiθ

eit − reiθ
dµ(t)

have the same real part. Thus

f(z)−
∫ 2π

0

eit + reiθ

eit − reiθ
dµ(t) = iγ

for some γ ∈ R. But

f(0)−
∫ 2π

0

eit + 0

eit − 0
dµ(t) = f(0)− Re f(0) = i Im f(0),

and the assertion is proved. 2

Theorem 16.4 Let f ∈ H(D) with

f(z) = 1 +
∞∑
n=1

anz
n

and Re f(z) ≥ 0 for all z ∈ D. Then the following assertions hold:

(i) (Re a1)
2 ≤ 2 + Re a2;
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(ii) |an| ≤ 2, n ∈ N;

(iii) |f(z)| ≤ 1+|z|
1−|z| , z ∈ D;

(iv) |f ′(z)| ≤ 2
(1−|z|)2 , z ∈ D.

All these inequalities are sharp.

Proof. Since w 7→ 1−w
1+w

maps the right half-plane {z = x+ iy : x > 0} conformally onto
D,

h(t) =
1− f(z)

1 + f(z)
, z ∈ D,

sends D into D with h(0) = 0. Hence, by the Schwarz lemma,∣∣∣∣1− f(z)

1 + f(z)

∣∣∣∣ ≤ |z|, z ∈ D.

Moreover, if equality occures for some z ∈ D, then

1− f(z)

1 + f(z)
= ξz, ξ ∈ T,

that is,

f(z) =
1− ξz

1 + ξz

and hence f maps D onto the right half plane. In this case

|f(z)| ≤ 1 + |z|
1− |z|

, f ′(z) =
−2ξ

(1 + ξz)2
, |f ′(z)| ≤ 2

(1− |z|)2
.

Now

f(z) = 1 +
∞∑
n=1

(−1)n2(ξz)n

implies |an| ≤ 2 for all n ∈ N and

(Re a1)
2 ≤ 2 + Re a2

if and only if
Re (−2ξ)2 ≤ 2 + Re (2ξ2),

that is, for ξ = x+ iy ∈ T,
(−2x)2 ≤ 2 + 2(x2 − y2),

which is equivalent to
4x2 ≤ 2 + 2x2 − 2y2

and
x2 + y2 ≤ 1,

and thus (i)-(iv) are satis�ed. This also shows that (i)-(iv) are sharp.
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We may now assume that |(1− f(z))/(1 + f(z))| < |z| for all z ∈ D. Then

ψ(z) =
1

z

1− f(z)

1 + f(z)
, z ∈ D, ψ(0) = −a1

2

is analytic in D and ψ(D) ⊂ D. The Schwarz-Pick theorem yields |ψ′(0)| ≤ 1 − |ψ(0)|2.
Now

ψ′(0) = lim
z→0

ψ(z)− ψ(0)

z
= lim

z→0

1
z
1−f(z)
1+f(z)

+ a1
2

z

= lim
z→0

2− 2f(z) + a1z + a1zf(z)

2z2(1 + f(z))

= lim
z→0

2− 2− 2a1z − 2a2z
2 − . . .+ a1z + a1z + a21z

2 + . . .

2z2(1 + 1 + a1z + . . .)

= −a2
2

+
a21
4
,

and hence ∣∣∣∣a22 − a21
4

∣∣∣∣ ≤ 1− |a1|2

4
;

∣∣∣∣a2 − a21
2

∣∣∣∣ ≤ 2− |a1|2

2
.

This implies (by taking the negative real part on the left)

−Re a2 +
Re (a1)2

2
≤ 2− |a1|2

2
,

that is,

2 + Re a2 ≥
1

2
Re (a1)

2 +
|a1|2

2
= (Re a1)

2

and thus (i) is proved.
(ii) By Corollary 16.3 there exists an increasing µ : [0, 2π] → [0,∞) such that µ(2π)−

µ(0) = Re f(0) = 1;

f(z) =

∫ 2π

0

eit + z

eit − z
dµ(t) + i Im f(0).

Since
eit + z

eit − z
= 1 + 2

∞∑
n=1

e−intzn,

we deduce

an = 2

∫ 2π

0

e−itndµ(t), n ∈ N,

so

|an| ≤ 2

∫ 2π

0

|e−itn|dµ(t) = 2(µ(2π)− µ(0)) = 2.

(iii) Using the notation above,

|f(z)| ≤
∫ 2π

0

∣∣∣∣eit + z

eit − z

∣∣∣∣ dµ(t) ≤ ∫ 2π

0

1 + |z|
1− |z|

dµ(t) =
1 + |z|
1− |z|

, z ∈ D.
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(iv) Since

f ′(z) =

∫ 2π

0

2eit

(eit − z)2
dµ(t), z ∈ D,

we have

|f ′(z)| ≤
∫ 2π

0

2

|eit − z|2
dµ(t) ≤ 2

(1− |z|)2
, z ∈ D.

2

17 Convex and starlike functions

A set E ⊆ C is starlike with respect to w0 ∈ E if the linear segment joining w0 to every
point w ∈ E lies entirely in E. This means that every point of E is �visible� from w0.
The set E is convex if it is starlike with respect to each of its points, that is, the linear
segment joining any two points of E lies entirely in E.

A convex function is one which maps D conformally onto a convex domain. A starlike
function is a conformal map which maps D onto a domain starlike with respect to
the origin. The classes of convex and starlike functions in S are denoted by C and S∗

respectively. Thus C ⊆ S∗ ⊆ S. The Köbe function

k(z) =
z

(1− z)2
=

1

4

(
1 + z

1− z

)2

− 1

4
, z ∈ D

is starlike but not convex. The identity mapping f(z) = z, z ∈ D, is convex.
Let P denote the class of f ∈ H(D) such that Re f(z) ≥ 0 for all z ∈ D and f(0) = 1.

According to the Herglotz formula, every f ∈ P can be represented as (a Poisson-Stieltjes
integral)

f(z) =

∫ 2π

0

eit + z

eit − z
dµ(t) + i Im f(0) =

∫ 2π

0

eit + z

eit − z
dµ(t),

where µ : [0, 2π] → [0, 1] is an increasing function such that µ(2π)− µ(0) = 1.

Theorem 17.1 Let f ∈ H(D) with f(0) = 0 and f ′(0) = 1. Then f ∈ S∗ if and only if

z f
′(z)
f(z)

∈ P.

Proof. Let �rst f ∈ S∗. We claim that f maps each D(0, ρ), ρ ∈ (0, 1), onto a starlike
domain. An equivalent assertion is that fρ is starlike. To see this, we must show that
for each �xed t ∈ (0, 1) and for each z ∈ D, tfρ(z) ⊆ fρ(D) = f(D(0, ρ)). But since
f ∈ S∗, tf(z) ∈ f(D) and hence ω(f) = f−1(tf(z)) is analytic, maps D into D and �xes
the origin: ω(0) = f−1(tf(0)) = f−1(0) = 0. Hence the Schwarz lemma gives |ω(z)| ≤ |z|
for all z ∈ D. Thus tfρ(z) = tf(ρz) = f(ω(ρz)) = fρ(ω1(z)), where ω1(z) = ω(ρz)/ρ and

|ω1(z)| ≤
ρ|z|
ρ

= |z|
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for all z ∈ D. This shows that f maps each circle |z| = ρ ∈ (0, 1) onto a curve Cρ that
bounds a starlike domain. It follows that arg f(z) increases as z moves around the circle
|z| = ρ in the positive direction. In other words,

∂

∂θ
(arg f(ρeiθ)) ≥ 0.

But

∂

∂θ
(arg f(ρeiθ)) = Im

(
∂

∂θ
log f(ρeiθ)

)
= Im

(
f ′(ρeiθ)ρeiθi

f(ρeiθ)

)
= Re

(
z
f ′(z)

f(z)

)
,

for all z = ρeiθ and since limz→0 z
f ′(z)
f(z)

= 1, we deduce z f
′(z)
f(z)

∈ P .
Conversely, let f ∈ H(D) such that f(0) = 0, f ′(0) = 1 and z f

′(z)
f(z)

∈ P . Then f has
a simple zero at the origin and no other zeros in D. By the calculation above and the
observation just after the de�nition of P ,

∂

∂θ
(arg f(ρeiθ)) > 0, 0 ≤ θ ≤ 2π.

Thus as z runs around the circle |z| = ρ in the counter-clockwise direction, the point
f(z) traverses a closed curve Cρ with increasing argument. Because f has exactly one
zero inside the circle |z| = ρ, the argument principle tells us that Cρ surrounds the origin
exactly once. But if Cρ winds around the origin only once with increasing argument, it
can have no self-intersections. Thus Cρ is a simple closed curve, which bounds a starlike
domain Dρ and f assumes each value w ∈ Dρ exactly once in D(0, ρ). Since this is true
for every ρ ∈ (0, 1), it follows that f is univalent and starlike in D. 2

Theorem 17.2 Let f ∈ H(D) with f(0) = 0 and f ′(0) = 1. Then f ∈ C if and only if(
1 + z

f ′′(z)

f ′(z)

)
∈ P .

Proof. Let �rst f ∈ C. We claim that f maps each D(0, r), r ∈ (0, 1) onto a convex
domain. To see this, let z1, z2 ∈ D(0, r) with |z1| ≤ |z2|. Let wj = f(zj), and

w0 = tw1 + (1− t)w2, 0 < t < 1.

Since f is convex, there exists a unique z0 ∈ D such that f(z0) = w0. We have to show
that |z0| < r. The function

g(z) = tf

(
z1
z2
z

)
+ (1− t)f(z), z ∈ D,

is analytic in D with
g(0) = tf(0) + (1− t)f(0) = 0

and
g(z2) = tf(z1) + (1− t)f(z2) = w0.
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Since f ∈ C, the function f−1(g(z)) is well-de�ned. Since h(0) = f−1(g(0)) = f−1(0) = 0
and |h(z)| = |f−1(g(z))| < 1 for all z ∈ D, the Schwarz lemma implies |h(z)| ≤ |z| for all
z ∈ D. Thus

|z0| = |f−1(w0)| = |f−1(g(z2))| = |h(z)| ≤ |z2| < r

which was to be shown. Hence f maps each circle |z| = r onto a curve Cr which bounds a
convex domain. The convexity implies that the slope of the tangent to Cr is nondecreasing
as the curve is traversed in the positive direction. Analytically this means that

∂

∂θ

(
arg

(
∂

∂θ
f(ρeiθ)

))
≥ 0, 0 ≤ θ ≤ 2π.

But

∂

∂θ

(
arg

(
∂

∂θ
f(reiθ)

))
=

∂

∂θ

(
arg
(
f ′(reiθ)reiθ

))
=

∂

∂θ
Im

(
log
[
ireiθf ′(reiθ)

])
=

∂

∂θ
Im

(
log(ir) + iθ + log f ′(reiθ)

)
= Im

(
i+

f ′′(reiθ)reiθi

f ′(reiθ)

)
= Re

(
1 + z

f ′′(z)

f ′(z)

)
≥ 0, z = reiθ,

(17.1)

and thus 1 + z f
′′(z)
f ′(z)

∈ P .
Conversely, let f ∈ H(D) with f(0) = 0, f ′(0) = 1 and 1 + z f

′′(z)
f ′(z)

∈ P . The above
calculation shows that the slope of the tangent to the curve Cr increases monotonically.
But as a point makes a complete circuit of Cr, the argument of the tangent vector has
the total change∫ 2π

0

∂

∂θ

(
arg

(
∂

∂θ
f(reiθ)

))
dθ = Re

∫ 2π

0

(
1 + reiθ

f ′′(reiθ)

f ′(reiθ

)
dθ = 2π + 0.

This shows that Cr is a simple closed curve bounding a convex domain. This being true
for all r ∈ (0, 1) implies that f is univalent with convex range. 2

Theorem 17.3 (Alexander 1915) Let f ∈ H(D) with f(0) = 0 and f ′(0) = 1. Then
f ∈ C if and only if zf ′(z) ∈ S∗.

Proof. If g(z) = zf ′(z) for all z ∈ D, then

zg′(z)

g(z)
=
zf ′(z) + z2f ′′(z)

zf ′(z)
= 1 +

zf ′′(z)

f ′(z)
, z ∈ D.

Thus the left-hand function is analytic and has positive real part in D if and only if the
same is true for the right-hand function. Hence

f ∈ C 17.2⇔ 1 +
f ′′(z)

f ′(z)
∈ P ⇔ zg′(z)

g(z)
∈ P 17.1⇔ zf ′(z) ∈ C,
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because f(0) = 0 and f ′(0) = 1 and thus g(0) = 0 and g′(0) = f ′(0) + 0 · f ′′(0) = 1. 2

Near the origin f ∈ S is close to the identity mapping. It is to be expected that f
will map small circles |z| = ρ, ρ ∈ (0, 1), onto curves which bound convex domains. The
following theorem expresses this in quantitative terms.

Theorem 17.4 Let ρ ∈ (0, 2 −
√
3). Then f ∈ S maps D(0, ρ) onto a convex domain.

This is false for every ρ > 2−
√
3.

Proof. By Theorem 5.1,

−Re

(
1 + z

f ′′(z)

f ′(z)

)
+

1 + |z|2

1− |z|2
≤
∣∣∣∣Re (1 + z

f ′′(z)

f ′(z)

)
− 1 + |z|2

1− |z|2

∣∣∣∣
≤
∣∣∣∣1 + z

f ′′(z)

f ′(z)
− 1 + |z|2

1− |z|2

∣∣∣∣
=

∣∣∣∣z f ′′(z)

f ′(z)
− 2|z|2

1− |z|2

∣∣∣∣
≤ 4|z|

1− |z|2
, z ∈ D,

(17.2)

and hence

Re

(
1 + z

f ′′(z)

f ′(z)

)
≥ 1− 4|z|+ |z|2

1− |z|2
, z ∈ D.

But 1− 4r+ r2 ≥ 0 for 0 ≤ r ≤ 2−
√
3, so f must map such a disc D(0, r) onto a convex

domain by Theorem 17.2. The Köbe function, for which

1 + z
k′′(z)

k′(z)
=

1 + 4z + z2

1− z2
, z ∈ D,

shows that the bound 2−
√
3 is sharp. 2

The number 2 −
√
3 ≈ 0.267 is the radius of convexity for the class S. The radius

of starlikeness is tanh π
4
≈ 0.655. The proof of this fact is harder (Löwner chains for

example).

Theorem 17.5 (Nevanlinna 1920) Let f ∈ S∗ with f(z) =
∑
anz

n. Then |an| ≤ n
for all n ∈ N. Strict inequality holds for all n ≥ 2 unless f is a rotation of the Köbe
function.

Proof. Let f ∈ C and de�ne

φ(z) = z
f ′(z)

f(z)
= 1 +

∞∑
n=1

cnz
n.
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Then φ ∈ P by Theorem 17.2, and |cn| ≤ 2 by Theorem 16.4(ii). Write zf ′(z) = φ(z)f(z)
and compare coe�cients of zn to see that

z +
∞∑
n=2

nanz
n =

(
1 +

∞∑
n=1

cnz
n

)(
∞∑
n=1

anz
n

)
∞∑
n=1

anz
n +

∞∑
n=1

cnz
n

∞∑
n=1

anz
n

=
∞∑
n=1

anz
n +

∞∑
n=2

zn
n−1∑
j=1

cn−jaj,

(17.3)

which is equivalent to

nan = an +
n−1∑
j=1

cn−jaj, n ∈ N,

where a1 = 1. The proof now proceeds by induction. Suppose we have proved |ak| ≤ k
for k = 1, 2, . . . , n− 1, where n ≥ 2. Then

(n− 1)|an| ≤
n−1∑
j=1

|cn−j||aj| ≤ 2
n−1∑
j=1

j = n(n− 1), (17.4)

which proves |an| ≤ n. According to Theorem 3.1, |a2| < 2 unless f is a rotation of Köbe.
It then follows from (17.4) that |an| < n for all n ≥ 2 if f ∈ S∗ and f is not a rotation of
the Köbe function. 2

Corollary 17.6 If f ∈ C with f(z) =
∑
anz

n, then |an| ≤ 1 for n = 2, 3, . . .. Strict
inequality holds for all n unless f is a rotation of the function ℓ de�ned by ℓ(z) = z(1−z)−1

for all z ∈ D.

Proof. If f ∈ C, then zf ′(z) ∈ S∗ by Theorem 17.3, so n|an| ≤ n by Theorem 17.5. The
function

ℓ(z) =
z

1− z
=

∞∑
n=1

zn

satis�es zℓ′(z) = k(z) and maps D onto the half plane Re w > −1/2, a convex region. 2

Various inequalities for S, such as the growth and distortion theorems, remain sharp
in S∗ because the Köbe function is starlike and is extremal in S. However, these estimates
can be improved for the class C, which excludes the Köbe function. As may be expected,
the half-plane mapping ℓ is the typical extremal function in C. The following theorem
improves upon the Köbe one-quater theorem.

Theorem 17.7 The range of every f ∈ C contains D(0, 1/2).
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Proof. If f ∈ C and f(z) ̸= w for all z ∈ D, then g(z) = (f(z)−w)2 is univalent. Indeed,

g(a)− g(b) = (f(a)− w)2 − (f(b)− w)2 = (f(a)− f(b))(f(a) + f(b)− 2w)

and (f(a) + f(b))/2 = w is impossible for a convex function f which omits the value w.
Thus

h(z) =
w2 − g(z)

2w
, z ∈ D,

belongs to S. But h(z) ̸= w/2 because g(z) ̸= 0, so it follows from the Köbe one-quater
theorem that |w|/2 ≥ 1/4, or |w| ≥ 1/2. The function ℓ shows that the radius 1/2 is the
best possible. 2

18 Close-to-convex functions

An analytic function f in D is close-to-convex if there exists a convex function such that

Re

(
f ′(z)

g′(z)

)
> 0, z ∈ D.

The class of close-to-convex functions f normalized by f(0) = 0 and f ′(0) = 1 is denoted
by K.

Note that f is not required a priori to be univalent and the associated function need
not be normalized. The additional condition g ∈ C (convex, univalent, g(0) = 0, g′(0) = 1)
de�nes a proper subclass of K which will be denoted by K0.

The class K was introduced by Kaplan in 1952.
Every convex function is obviously close-to-convex (take g = f). More generally, every

starlike function is close-to-convex. Indeed, each f ∈ S∗ has the form f(z) = zg′(z) for
some g ∈ C [Exercise] and

Re

(
f ′(z)

g′(z)

)
= Re

(
z
f ′(z)

f(z)

)
> 0, z ∈ D,

by Theorem 17.1. Therefore we have

C ⊆ S∗ ⊆ K0 ⊆ K.

Ever close-to-convex map is univalent. This follows from the following result.

Theorem 18.1 (Noshiro-Warschawski) If f is analytic in a convex domain D and
Re (f ′(z)) > 0 there, then f is univalent in D.

Proof. Let z and w be distinct points in D. Then f is de�ned on the linear segment
joining z and w, and

f(z)− f(w) =

∫ w

z

f ′(ζ) dζ = (z − w)

∫ 1

0

f ′(tw + (1− t)z) dt ̸= 0,

since Re f ′(z) > 0. 2
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Theorem 18.2 Close-to-convex functions are univalent.

Proof. If f is close-to-convex, then Re (f ′(z)/g′(z)) > 0 for all z ∈ D for some convex
function g by the de�nition. Let D denote the range of g and consider the function

h(w) = f(g−1(w)), w ∈ D.

Then

h′(w) =
f ′(g−1(w))

g′(g−1(w))
=
f ′(z)

g′(z)
, z = g−1(w),

so Re (h′(z)) > 0 in D. Thus h is univalent by Theorem 18.1, and so f is univalent. 2

Close-to-convex functions can be characterized by a geometric condition somewhat
similar to the de�ning properties of convex and starlike functions. To do this, the following
lemma is needed.

Lemma 18.3 Let ϕ : R→ R be continuous such that

ϕ(t+ 2π) = ϕ(t) + 2π, t ∈ R,

and
ϕ(t1)− ϕ(t1) > −π, t1 < t2. (18.1)

Then there exists a continuous nondecreasing function ψ : R→ R such that

ψ(t+ 2π) = ψ(t) + 2π, t ∈ R,

and |ϕ(t)− ψ(t)| ≤ π/2.

Proof. Consider the function

ψ(t) = max
s≤t

ϕ(s)− π

2
.

Clearly, ψ : R→ R is continuous and nondecreasing. In view of properties of ϕ,

ψ(t+ 2π) = max
s≤t

ϕ(s+ 2π)− π

2
= max

s≤t
[ϕ(s) + 2π]− π

2
= ψ(t) + 2π

and

ϕ(t)− π

2
≤ max

s≤t
ϕ(s) = ψ(t)

(18.1)

≤ [ϕ(t) + π]− π

2
= ϕ(t) +

π

2
,

and thus the lemma is proved. 2

Let f ∈ H(D) and let Cr = {f(z) : |z| = r}, where r ∈ (0, 1). Roughly speaking, f is
close-to-convex if and only if none of Cr makes a �reverse hairpin turn�. More precisely,
the requirement is that as θ increases, the tangent direction

arg

(
∂

∂θ
f(reiθ)

)
should never decrease by as much as π from any previous value.

Because

∂

∂θ

(
arg

(
∂

∂θ
f(reiθ)

))
= Re

(
1 + z

f ′′(z)

f ′(z)

)
, z = reiθ, (18.2)

by the proof of Theorem 17.2, this theorem can be stated as follows.
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Theorem 18.4 Let f ∈ H(D) be locally univalent. Then f is close-to-convex if and only
if ∫ θ2

θ1

Re

(
1 + z

f ′′(z)

f ′(z)

)
dθ > −π, z = reiθ, (18.3)

for each r ∈ (0, 1) and for each pair of real numbers θ1 and θ2 with θ1 < θ2.

Proof. First suppose that f is close-to-convex, and let g be the associated function. Then,
as Re f ′/g′ > 0, for a suitable choice of arguments,

|arg f ′(z)− arg g′(z)| < π

2
. (18.4)

Let

F (r, θ) = arg

(
∂

∂θ
f(reiθ)

)
= arg

(
f ′(reiθ)reiθi

)
= arg

(
f ′(reiθ)

)
+
π

2
+ θ

and

G(r, θ) = arg

(
∂

∂θ
g(reiθ)

)
= arg

(
g′(reiθ)

)
+
π

2
+ θ.

Since g is convex, G(r, θ) is an increasing function of θ, see the proof of Theorem 17.2.
By (18.4)

|F (r, θ)−G(r, θ)| < π

2
.

Thus, for θ1 < θ2,

F (r, θ2)− F (r, θ1) = [F (r, θ2)−G(r, θ2)] + [G(r, θ2)−G(r, θ1)]

+ [G(r, θ1)− F (r, θ1)]

> −π
2
+ 0− π

2
= −π,

(18.5)

which is equivalent to (18.3) by (18.2).
Conversely, suppose f is locally univalent function with the property (18.3), and let

ϕr(t) =

∫ t

0

Re

(
1 +

zf ′′(z)

f ′(z)

)
dθ, z = reiθ.

Since f ′(z) ̸= 0 for all z ∈ D, arg f ′(z) is a periodic function of θ and so

ϕr(t+ 2π)− φr(t) =

∫ t+2π

0

Re

(
1 +

zf ′′(z)

f ′(z)

)
dθ −

∫ t

0

Re

(
1 +

zf ′′(z)

f ′(z)

)
dθ

(18.3)
=

[
arg

(
∂

∂θ
f(reiθ)

)]t+2π

θ=0

−
[
arg

(
∂

∂θ
f(reiθ)

)]t
θ=0

= [F (r, θ)]t+2π
θ=0 − [F (r, θ)]t0

= F (r, t+ 2π)− F (r, 0)− F (r, t) + F (r, 0)

= F (r, t+ 2π)− F (r, t)

= arg f ′(rei(t+2π)) +
π

2
+ t+ 2π −

[
arg f ′(reit) +

π

2
+ t
]
= 2π.

(18.6)
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The condition (18.3) takes the form

φr(t2)− φr(t1) =

∫ t2

0

Re ()dθ −
∫ t1

0

Re ()dθ =
∫ t2

t1

Re ()dθ > −π, t1 < t2.

By Lemma 18.3 there exists a continuous nondecreasing function ψr : R → R such that
ψr(t+ 2π) = ψr(t) + 2π and |φr(t)− ψr(t)| ≤ π/2.

For ρ ∈ (0, 1), de�ne hρ ∈ H(D(0, ρ)) by the Poisson integral

hρ(z) =
1

2π

∫ 2π

0

ρeit + z

ρeit − z
(ψρ(t)− t)dt, z ∈ D(0, ρ).

Then

Re (hρ(re
iθ)) =

1

2π

∫ 2π

0

Pρ(r, θ − t)(ψρ(t)− t)dt,

where

Pρ(r, θ) =
ρ2 − r2

ρ2 − 2rρ cos θ + r2

is the Poisson kernel for D(0, ρ). Since ψρ(t)− t is periodic,

ψρ(t+ 2π)− (t+ 2π) = ψρ(t) + 2π − (t+ 2π) = ψρ(t)− t,

and ψρ is nondecreasing, an integration by parts gives

∂

∂θ
Re

(
hρ(re

iθ)
)
=

1

2π

∫ 2π

0

∂

∂θ
Pρ(r, θ − t)(ψρ(t)− t)dt

= − 1

2π

∫ 2π

0

∂

∂t
Pρ(r, θ − t)(ψρ(t)− t)dt

= − 1

2π

∫ 2π

0

Pρ(r, θ − t)(ψρ(t)− t) +
1

2π

∫ 2π

0

P(r, θ − t)(dψρ(t)− dt)

periodicity
= 0 +

1

2π

∫ 2π

0

Pρ(r, θ − t)dψρ(t)− 1 > −1.

(18.7)

Applying this to the analytic function

gρ(z) = eiαρ

∫ z

0

eihρ(w)dw, z ∈ D(0, ρ),

where αρ ∈ R will be chosen later, we �nd

Re

(
1 +

zg′′ρ(z)

g′ρ(z)

)
= 1 + Re

(
zeiαρeihρ(z)ih′ρ(z)

eiαρeihρ(z)

)
= 1 + Re

(
izh′ρ(z)

)
= 1 + Re

(
ireiθh′ρ(zre

iθ)
)

= 1 + Re

(
∂

∂θ
hρ(re

iθ)

)
= 1 +

∂

∂θ
Re

(
hρ(re

iθ)
)
> 0.

(18.8)
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Thus gρ is convex in D(0, ρ) by Theorem 17.2. Furthermore,

arg g′ρ(z) = arg
(
eiαρeihρ(z)

)
= arg

(
eiαρeiRe hρ(z)− Im hρ(z)

)
= Re (hρ(z)) + αρ

(18.9)

and
arg f ′(reiθ) = F (r, θ)− π

2
− θ = ϕr(θ) + F (r, θ)− π

2
− θ.

But arg f ′(z) is the imaginary part of the analytic function log f ′(z), thus a harmonic
function, so it can be expressed as a Poisson integral:

arg f ′(reiθ) =
1

2π

∫ 2π

0

Pρ(r, θ − t) arg f ′(ρeit) dt r < ρ.

We now choose αρ = F (r, θ)− π
2
and obtain for z ∈ D(0, ρ),

arg f ′(z)− g′ρ(z) =
1

2π

∫ 2π

0

Pρ(r, θ − t) arg f ′(ρeit) dt− arg
(
ei(F (ρ,0)−π

2
)eihρ(re

iθ)
)

=
1

2π

∫ 2π

0

Pρ(r, θ − t)ϕρ(t) dt+ F (ρ, 0)− π

2
− θ

− 1

2π

∫ 2π

0

Pρ(r, θ − t)t dt−
(
F (ρ, 0)− π

2
+ Re

(
hρ(re

iθ)
))

=
1

2π

∫ 2π

0

Pρ(r, θ − t) (ϕρ(t)− ψρ(t)) dt, z = reiθ.

(18.10)

Since |ϕρ(t)− ψρ(t)| ≤ π
2
by Lemma 18.3, it follows that∣∣arg f ′(z)− arg g′ρ(z)

∣∣ ≤ π

2
, z ∈ D(0, ρ).

Finally, we observe that gρ(0) = 0 and g′ρ(0) = eiαρeihρ(0) ∈ T, 0 < ρ < 1. Now a normal
family argument gives the claim. 2

19 Spiral-like functions (Juha-Matti)

Domain D ⊆ C is convex if the line segment [z, w] ⊂ D for all z, w ∈ D. On the other
hand, D is starlike, if there exists z0 ∈ D such that the line segment [z0, w] ⊂ D for all
w ∈ D. Figuratively speaking in a convex set all points �see each other� and in a starlike
set there is �one police man� who �sees� the other points. Here two points �see� each
other if there exists a straight segment belonging to the domain between the points. How
about, if we considered some other curves?

A logarithmic spiral is a curve

w(t) = ww0,λ(t) = w0e
−λt, t ∈ R,
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for w0, λ ∈ C, Re λ ̸= 0. Here Re λ ̸= 0 ensures that {|w(t)| : t ∈ R} = (0,∞). [If it
were that Re λ = 0, Im λ ̸= 0, we would obtain a circle D(0, |w0|) and in the case λ = 0
we would obtain a point w0 ∈ C.]

We may assume that λ = eiα for some α ∈ (−π/2, π/2). [We could also assume
w0 ∈ T, for example.] Now, we call the curve

w(t) = ww0,α(t) = w0e
−eiαt, t ∈ R,

where w0 ∈ C \ {0}, α ∈ (−π/2, π/2) an α-spiral. Since eiα = cosα + i sinα and
α ∈ (−π/2, π/2), we have a = Re (eiα) ∈ (0, 1) and b = Im (eiα) ∈ (−1, 1). Hence

w(t) = w0e
−at(cos bt− i sin bt).

Therefore limt→∞ e−at = 0 and �the curve goes counter clockwise as t→ ∞ if and only if
b < 0, that is, α ∈ (−π/2, 0). [To see this, recall that

log z = log |z|+ i arg z,

which implies
arg z = Im log z,

so that (
arg e−ibt

)′
= Im

(e−ibt)′

e−ibt
= Im

(
−ibe−ibt

e−ibt

)
= −b > 0

if and only if b < 0.]
Denote the whole spiral by

W (w0, α) = {ww0,α(t) : t ∈ R} ,

the �positive part� by
W+(w0, α) = {ww0,α(t) : t ∈ [0,∞)}

and the �negative part� by

W−(w0, α) = {ww0,α(t) : t ∈ (−∞, 0]} .

A domain D, 0 ∈ D ⊆ C, is α-spiral-like if W+(w0, α) ⊆ D for all w0 ∈ D \ {0}. [Thus D
is α-spiral-like if for each point w0 ̸= 0 in D the arc of the α-spiral from w0 to the origin
lies entirely in D.]

A function f ∈ U(D) = {f ∈ H(D) univalent } with f(0) = 0 is α-spiral-like if f(D)
is α-spiral-like. Let

Dα = {D a α− spiral-like domain }
and

Fα = {f a α− spiral-like function }
and set

D =
∪

α∈(−π/2,π/2)

Dα, F =
∪

α∈(−π/2,π/2)

Fα.

Now each D ∈ D is simply connected. Moreover, F0 is the class of starlike functions.
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Theorem 19.1 Let f ∈ H(D), f(0) = 0, f ′(0) ̸= 0, f(z) ̸= 0 for 0 < |z| < 1 and
α ∈ (−π/2, π/2). Now f ∈ Fα if and only if

Re

{
e−iα

zf ′(z)

f(z)

}
> 0, z ∈ D. (19.1)

Note that by Theorem 19.1, (19.1) implies that f is univalent.

Lemma 19.2 Let φ ∈ H(D), Re φ(z) > 0, z ∈ D, ζ ∈ D. Now the solution of

dz

dt
= −zφ(z), z(0) = ζ, (19.2)

satis�es
|z(t1)| > |z(t2)|, 0 ≤ t1 < t2 <∞

and limt→∞ |z(t)| = 0.

Proof. Since
log z = log |z|+ i arg z,

we have
z′(t) = −z(t)φ(z(t)),

which implies
z′(t)

z(t)
= −φ(z(t)),

that is,
(log z(t))′ = −φ(z(t)),

which gives
(log |z(t)|)′ = −Re φ(z(t)) < 0

so log |z| as well as |z| decreases as t increases. The solution z(t) is therefore de�ned for
all t ∈ [0,∞) and |z(t)| ≤ |ζ|, for t ∈ [0,∞). Now h(w) = Re φ(w) is harmonic. Since
Re φ(w) > 0, w ∈ D, Re φ(w) ≥ δ, w ∈ D for some δ > 0. We deduce that

Re φ(z(t)) ≥ δ, t ∈ [0,∞).

Hence
(log |z(t)|)′ < −δ, t ∈ [0,∞),

that is,
log |z(t)| < −δt+ C0,

which gives
|z(t)| < eC0e−δt = |ζ|e−δt → 0,

as t→ ∞. 2

Proof of Theorem 19.1. Suppose that f satis�es (19.1). Let

φ(z) =
λf(z)

zf ′(z)
, λ = eiα,
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so that Re φ(z) > 0 for all z ∈ D.
Let ζ ∈ D be arbitrary, z a solution of (19.2) and de�ne w(t) = f(z(t)). Now

w(0) = f(ζ) by (19.2) and

w′(t) = f ′(z(t))z′(t) = −z(t)φ(z)f ′(z(t)) = λf(z(t)) = −λw(t).

Hence
w′(t)

w(t)
= −λ,

giving
w(t) = eC0e−λt = f(ζ)e−λt, t ∈ [0,∞).

Hence, since λ = eiα,
W+(f(ζ), α) ⊆ f(D)

and f ∈ Fα.
We claim that f is univalent. Let f(a) = f(b) for some a, b ∈ D. Now wf(a),α(0) =

wf(b),α(0) and thus wf(a),α(t) = wf(b),α(t) for all t ∈ [0,∞). Since f ′(0) ̸= 0, function f is
univalent in some disc D(0, ε). By the lemma,

|z(t; a)|, |z(t; b)| < ε

for all t > t0 for some t0. It follows that z(t; a) = z(t; b) for all t > t0, and so by uniqueness
that z(t; a) = z(t; b) for t ∈ [0,∞). In particular z(0; a) = z(0; b), which means that
a = b. This proves the univalence of f in D. Conversely, let f ∈ Fα (univalent) for some
α ∈ (−π/2, π/2). Now for each ζ ∈ D,

W+(ζ, α) ⊆ f(D),

that is,
w(t) = f(ζ)e−λt ∈ f(D), t ∈ [0,∞),

where again λ = eiα. We can de�ne

z(t) = z(t, ζ) = f−1(f(ζ)e−λt), t ∈ [0,∞). (19.3)

Clearly z(0) = ζ. For a �xed t ∈ [0,∞), g(ζ) = z(t; ζ) is analytic and |g(ζ)| < 1 and
g(0) = 0. Thus |g(ζ)| ≤ |ζ| by the Schwarz lemma.

On the other hand, (19.3) implies

f ′(z(t; ζ))zt(t; ζ) = −λe−λtf(ζ)

so the proof of (19.1) reduces to showing

Re

(
1

λ

zf ′(z)

f(z)

)
> 0,

which is equivalent to

0 < Re

(
λ
f(z)

zf ′(z)

)
= Re

(
−eλt zt

z

)
,
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which is equivalent to

Re

(
zt(0; ζ)

z(0; ζ)

)
= Re

(
1

ζ
zt(0; ζ)

)
≤ 0.

This is equivalent to

lim
t→0

1

t
Re

(
z(t; ζ)

ζ
− 1

)
≤ 0,

but since |z(t; ζ)| ≤ |ζ|, this is clear. Thus f satis�es (19.1).
Geometric interpretation of (19.1). The radial angle of w = w(t) is

arg

(
w′(t)

w(t)

)
, w(t) ̸= 0.

Image of C(0, r) = {z ∈ C : |z| = r} is {w(t) = f(reit) : t ∈ [0, 2π)}. Hence for C(0, r)
the radial angle is

A(z) = arg

(
izf ′(z)

f(z)

)
, z = w(t).

Thus (19.1) is equivalent to A(z) ∈ (α, α + π). On the other hand, W+(ζ, α), ζ ∈ C, is
a curve with constant radial angle α. Thus an univalent f satis�es (19.1) if and only if
level curves Cr intersect all α-spiral-s at angles between 0 and π. Thus Theorem 19.1 is
geometrically obvious.

20 Typically Real functions (Kian)

A function f(z) = z +
∑∞

n=2 anz
n in the class S is said to be a typically real univalent

function if all the coe�cients an belong to R, we will denote this class by SR.

Lemma 20.1 For f(z) =
∑∞

n=1 anz
n ∈ S, the following statements are equivalent:

1. f ∈ SR.

2. f(z) = f(z).

3. f(z) ∈ R if and only if z ∈ R.

Proof. Lets suppose f ∈ SR, then

f(z) =
∞∑
n=1

anz
n =

∞∑
n=1

anz
n =

∞∑
n=1

anz
n = f(z).

Now let us assume f(z) = f(z), if z ∈ R then f(z) = f(z) = f(z), hence f(z) ∈ R. On
the other hand if f(z) ∈ R we have f(z) = f(z) = f(z), and since f is univalent we get
z = z, hence z ∈ R.
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Finally if we suppose f(z) ∈ R if and only if z ∈ R, and de�ne g(z) = f(z), we have
that g is analytic and g(x) = f(x) for all x ∈ (−1, 1), so by Wierstrass identity we obtain

∞∑
n=1

anz
n =

∞∑
n=1

anz
n = g(z) = f(z) =

∞∑
n=1

anz
n,

and hence an ∈ R for all n. 2

Using the characterization of the functions in the class SR, we can see that the image
set of these functions is symmetric with respect to the real line, more particularly these
functions will send the upper semi disk D+ = {z ∈ D : Im z > 0} in to the upper half
plane C+ = {z ∈ C : Im z > 0}.

We will consider the functions f analytic on D, such that f(0) = 0, f ′(0) = 1 and
satisfying f(z) ∈ R if and only if z ∈ R, as to be the class of typically real functions, and
denote them by T . These functions still satisfy the property f(D+) ⊂ C+, which can be
expressed in the following way

Im z · Im f(z) > 0 for all z ∈ D \ R. (20.1)

Theorem 20.2 Given f(z) = z+
∑∞

n=2 anz
n analytic, the following statements are equiv-

alent:

1. f ∈ T .

2. φ(z) = 1−z2
z
f(z) ∈ P and an ∈ R for all n (we denote this class of functions as PR).

3. There exists an unique µ probability measure on [−1, 1] such that

f(z) =

∫ 1

−1

z

1− 2xz + z2
dµ(x).

Proof. Lets suppose �rst that f ∈ T , looking at the proof of the characterization for
typically real univalent functions we know that an ∈ R for all n. Let us denote h(z) = 1−z2

z
,

which has a simple pole at 0, and boundary values h(eiθ) = −2i sin θ. For 0 < ρ < 1 we
de�ne φρ(z) = h(z)f(ρz) which is analytic in D since it has a removable singularity at 0.

Re φρ(e
iθ) = Re h(eiθ)Re f(ρeiθ)− Im h(eiθ) Im f(ρeiθ)

= 2 sin θ Im f(ρeiθ) =
2

ρ
Im ρeiθ Im f(ρeiθ) ≥ 0,

due to (20.1).Since φρ is analytic, Re φρ(eiθ) ≥ 0 and φρ(0) = ρ > 0 we can conclude
Re φρ(z) > 0 for z ∈ D, and by taking limit we have limρ→1 φρ(z) = φ(z), which preserves
the property Re φ(z) > 0 and φ(0) = 1, hence φ ∈ P .

For 0 < ρ < 1 we de�ne fρ(z) = φ(ρz)
h(z)

which is analytic in D except for simple
poles at z = ±1. Since φ ∈ PR we know that fρ(z) ∈ R when z ∈ R and f ′

ρ(z) =

limz→0
φ(ρz)z
z(1−z2) = φ(0) = 1, so fρ is univalent in a neighbourhood of 0, and by the same

arguments as in 20.1 we have fρ(D+) ⊂ C+. Lets suppose f is univalent in D(0, ϵ), we
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consider gρ(z) = 1
fρ(z)

= h(z)ψ(ρz) which is analytic in D except for a simple pole at 0,
and with boundary values

Im gρ(e
iθ) = Re h(eiθ) Im ψ(ρeiθ) + Im g(eiθ)Re ψ(ρeiθ) = −2 sin θRe ψ(ρeiθ), (20.2)

so Im gρ(e
iθ) < 0 for θ ∈ (0, π), so for each s < ϵ we denote D+

s = {z ∈ D : s < |z|, Im z >
0}, we know that Im gρ(z) ≤ 0 for all z ∈ ∂D+

s = {z ∈ D : s < |z|, Im z > 0} for all
s < ϵ, since fρ(D+) ⊂ C+. Hence taking limit when s → 0 we obtain Im gρ(z) < 0 for
z ∈ D+, which implies Im fρ(z) > 0 for z ∈ D+, and by taking limit when ρ → 1, we
conclude that f ∈ T .

Now we shall suppose that f ∈ T and prove the existence and uniqueness of said
measure, for this we shall use the previously proven equivalence, and the 16.3, allows the
following identity

f(z) =
1

2

(
f(z) + f(z)

)
=

z

2(1− z2)

[
φ(z) + φ(z)

]
=

iz

2(1− z2)

(∫ 2π

0

eit + z

eit − z
dµ(t) +

∫ 2π

0

eit + z

eit − z
dµ(t)

)

=

∫ 2π

0

z

1− 2 cos(t)z + z2
dµ(t) =

∫ 1

−1

z

1− 2tz + z2
dν(t),

(20.3)

where ν is de�ned on the segment [−1, 1], such that ν(A) = µ(
{
eiθ : cos(θ) ∈ A

}
). This

proves the existence of said measure, and the uniqueness of ν follows from the uniqueness
of µ given by 16.3.

Reciprocally suppose that f satis�es said representation , in that case

Im f(z) = Im

(∫ 1

−1

z

1− 2xz + z2
dµ(x)

)
=

∫ 1

−1

Im

(
z

1− 2xz + z2

)
dµ(x), (20.4)

together with Im z
1−2xz+z2

= 1−|z|2
|1−2xz+z2|2 Im z , we obtain

Im f(z) Im z =

∫ 1

−1

1− |z|2

|1− 2xz + z2|2
( Im z)2dµ(x) ≥ 0,

hence f ∈ T by 20.1. 2

Now due to Theorem 20.2, we can prove that SR  T , since f(z) = z + z3 = z
1−z2 (1−

z4) ∈ T , because φ(z) = 1 − z4 ∈ PR. But f /∈ S, since f ′(z) = 1 + 3z2 has zeros at
z = ± i√

3
.

Yet by Theorem 20.2 we also have that T is convex, since PR is also convex, and this
property is preserved. This contrast with the fact that SR is not convex since k, kπ ∈ SR,
but we know that g(z) = 1

2
(k(z) + kπ(z)) =

1
2
(k(z)− k(−z)) /∈ S.
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Theorem 20.3 Let f ∈ T and f(z) = z +
∑∞

n=2 anz
n for all z ∈ D. Then

|an+2 − an| ≤ 2

for all n ∈ N.

Proof. Using 20.2, we have that

φ(z) =
1− z2

z
f(z) = 1 +

∞∑
n=2

anz
n−1 −

∞∑
n=1

anz
n+1 = 1 +

∞∑
n=0

(an+2 − an) z
n+1,

and the result follows directly from theorem 16.4. 2

This last result is stronger than Bieberbach's conjecture, hence all f ∈ T , satisfy
Bieberbach's Conjecture.

To �nish this section we will prove the Köbe's 1/4-theorem, for functions in the class
T . In order to prove this we will use two auxiliary results, one of which we will take for
granted.

Theorem 20.4 Given f ∈ T , and z = reiθ, the following assertions hold

1. If Re
(
z + 1

z

)
≥ 2 then |f(z)| ≥ |z|

|1+z|2

2. If Re
(
z + 1

z

)
≤ −2 then |f(z)| ≥ |z|

|1−z|2

3. If −2 ≤ Re
(
z + 1

z

)
≤ 2 then |f(z)| ≥ |z|(1−|z|2)| sin θ|

|1−z|2

The proof of this theorem can be found in [8].

Lemma 20.5 Let C1 denote the arc |z + i| =
√
2 on which Im z ≥ 0. For z = reiθ ∈ C1

we have |Re
(
z + 1

z

)
| ≤ 2.

Proof. First we denote s = 1
2

(
r + 1

r

)
. If z ∈ C1, then 2r sin θ = 1− r2, since

2 = |z + i|2 = r2 cos2 θ + (1 + r sin θ)2 = 1 + r2 + 2r sin θ

hence cos2 θ = 1− sin2 θ = 1−
(

1−r2
2r

)2
= 2− s2.

Now z satis�es |Re
(
z + 1

z

)
| = | cos θ|

(
r + 1

r

)
≤ 2 if and only if | cos θ| ≤ 1

s
. which is

true for z ∈ C1, since 2− s2 ≤ 1
s2

. 2

Theorem 20.6 Let f ∈ T then

D

(
0,

1

4

)
⊂ f (D) .
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Proof. First suppose that f is continuous in D. Let z ∈ C1, with z ̸= ±1. Using the
Lemma and the distortion theorem, we obtain that

|f(z)| ≥ |z|(1− |z|2) sin θ
|1− z2|2

=
1

4
,

since 2r sin θ = 1− r2 and

|1− z2|2 = (1− r2 cos(2θ))2 + (r2 sin(2θ))2 = 1 + r4 − 2r2 cos(2θ) = 2(1− r2)2. (20.5)

and for real z, we have |f(z)| ≥ |z|
(1+|z|2)2 , hence |f(±1)| ≥ 1

4
.

Now by the same argument on the curve C2 = {z : |z − i| =
√
2}, where we can use the

simmetry f(z) = f(z) for all f ∈ T , we get that in the curve C = C1 ∪C2, |f(z)| ≥ 1
4
, for

all z ∈ C, hence D
(
0, 1

4

)
⊂ f (D) due to Roche's theorem since f(0) = 0.

For general f , apply the previous result to fR(z) = 1
R
f(Rz), and take limit R → 1−. 2

21 Carathéodory convergence theorem

We begin with an auxiliary result which is of independent interest.

Theorem 21.1 (Vitali's theorem) Let fn be analytic and locally bounded in a domain
D for all n ∈ N, and suppose that {fn(z)} converges at each point of a set which has a
clusterpoint in D. Then fn converges uniformly on each compact subset of D.

Proof. Because the functions fn are locally bounded, they form a normal family. Extract
a subsequence {gn} which converges uniformly on each compact subset of D to an analytic
function g in D. If {fn} does not converge uniformly on compact subsets to g, then there
exists ε > 0, a compact set K ⊆ D, a subsequence {fnk

}, and a sequence of points zn ∈ K
such that

|fnk
(zk)− g(zk)| ≥ ε, k ∈ N. (21.1)

Extract a further subsequence of {fnk
} which converges uniformly on compact sets to a

function h. Then h = g because the two analytic functions agree on the set of points
where {fn} converges, which has a clusterpoint in D.

So a subsequence of {fnk
} converges uniformly on compact sets, in particular in K,

to g. This contradicts 21.1 and completes the proof. 2

Carathéodory gave a complete geometric characterization of the convergence of uni-
valent functions in terms of the convergence of their image domains.

Let {Ωn} be a sequence of simply connected domains in C with 0 ∈ Ωn and Ωn ̸= C
for n ∈ N. The kernel of {Ωn} is the set Ω de�ned as follows

(i) if 0 /∈ Int
∩
n∈NΩn, then Ω = {0} ;

(ii) if 0 ∈ Int
∩
n∈NΩn, then Ω is the set of all points w ∈ C such that there exists a

simply connected domain H containing 0 and w such that H ⊆ Ωn for all su�ciently
large n. In other words, each compact subset of Ω lies in all but �nite number of
domains Ωn.
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We say that Ωn converges to its kernel Ω if each subsequence {Ωnk
} of {Ωn} has the

same kernel Ω. In such a case, we write Ωn → Ω as n→ ∞.
If Ωn ⊆ Ωn+1 for all n, then Ω =

∪
n∈NΩn and Ωn → Ω, as n → ∞. [This would be

enough for our purposes here.]

Example 21.1 Let Γ be a (closed) Jordan curve enclosing 0 and let Ω be its inner domain

(bounded and connected component of C \ Γ). For a given w0 ∈ Γ, let Γ̃ be a Jordan arc
emanating from w0 to ∞ such that it does not intersect Ω \ {w0}.

Let {wn} ⊆ Γ be a sequence of distinct points such that wn traverses clockwise on Γ

and wn → w0, n→ ∞. Consider γn = Γ̃∪ {�part of Γ from w0 to wn�} and Ωn = C \ γn.
Then Ωn → Ω. [We introduced Γ̃ here so that we have a �slit domain�.]

Theorem 21.2 Let {Ωn}n∈N be a sequence of simply connected domains such that 0 ∈
Ωn ( C for all n ∈ N, and let Ω be the kernel of {Ωn}. Let fn : D→ Ωn be univalent and
onto such that fn(0) = 0 and f ′

n(0) > 0. Then fn converges uniformly on compact subsets
of D to f ∈ H(D) if and only if Ωn → Ω ̸= C, as n→ ∞. In the case of convergence there
are two possibilities. If Ω = {0}, then f ≡ 0. If Ω ̸= {0}, then Ω is simply connected,
f : D→ Ω is conformal, and f−1

n → f−1 uniformly on compact subsets of Ω, as n→ ∞.

Proof. Assume �rst that fn → f uniformly on compact subsets of D. Then f ∈ H(D) is
either constant function 0 or univalent in D.
Case I: f ≡ 0. We must show that Ω = {0}. Otherwise some disc D(0, ρ) is contained
in Ωn for all n ∈ N. The inverse functions f−1

n are then de�ned in D(0, ρ) and have
the properties f−1

n (0) = 0 and |f−1
n (w)| < 1 there. By considering gn(z) = f−1

n (ρz)
we may deduce by means of the Schwarz lemma that |g′n(0)| ≤ 1 or |f ′

n(0)| ≥ ρ > 0.
This contradicts the assumption that fn → 0 uniformly on compact subsets. The same
argument shows that every subsequence of {Ωn} has kernel {0}, so Ωn → Ω = {0}.
Case II: f ̸≡ 0. Then f is univalent and maps D conformally onto some domain ∆ ( C,
with f(0) = 0 and f ′(0) > 0. We must show that ∆ = Ω and Ωn → Ω.

We �rst show that ∆ ⊆ Ω. To do this, let E ⊆ ∆ be compact and surround E by a
recti�able Jordan curve Γ in ∆ \ E.

Let δ = dist(E,Γ) > 0 and let γ = f−1(Γ). We will now prove that E ⊆ Ωn for
all n su�ciently large. Fix w0 ∈ E and observe that |f(z)− w0| ≥ δ for all z ∈ γ. By
the uniform convergence |fn(z)− f(z)| < δ for all z ∈ γ and n su�ciently large, say
n ≥ N . Hence, by Rouché's theorem fn(z) − w0 = (f(z) − w0) + (fn(z) − f(z)) has
the same number of zeros inside γ as does f − w0; namely, one zero. [This is due to
|fn(z)− f(z)| < δ ≤ |f(z)− w0|.]

This shows that w0 ∈ Ωn for all n ≥ N , where N depends on E but not on w0. In
other words, E ⊆ Ωn for all n ≥ N . In view of the de�nition of the kernel Ω, this shows
that ∆ ⊆ Ω.

It follows from the reasoning above that the inverse functions ϕn = f−1
n are de�ned

for all n ≥ N on E and are uniformly bounded there: |ϕn(w)| ≤ 1. Now choose an
expanding sequence of compact sets Em ⊆ ∆ and apply a diagonal argument to extract a
subsequence {ϕnk

} which converges uniformly on each compact subset of ∆ to ϕ ∈ H(D)
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with ϕ(0) = 0 and ϕ′(0) ≥ 0 (this is inherited from f ′
n(0) > 0). In fact,

0 <
1

f ′(0)
= lim

n→∞

1

f ′
n(0)

= lim
n→∞

ϕ′
n(0) = ϕ′(0),

so ϕ is univalent in ∆.
The next step is to show that ϕ = f−1. Fix z0 ∈ D and let w0 = f(z0). Choose

ε > 0 su�ciently small so that C = {z : |z − z0| = ε} lies in D, let Γ = f(c), and let
δ = dist(w0,Γ) > 0.

Then |f(z)− w0| ≥ δ on C while |fnk
(z)− f(z)| < δ on C for all k su�ciently large,

say k ≥ k0, it follows from Rouché's theorem that fnk
(zk) = w0 for some zk inside C.

Thus |zk − z0| < ε and ϕnk
(w0) = zk. Therefore

|ϕ(w0)− z0| ≤ |ϕ(w0)− ϕnk
(w0)|+ |zk − z0| < 2ε.

for k su�ciently large, because ϕnk
→ ϕ uniformly on compact subsets of ∆. Letting

ε→ 0+ we deduce ϕ(w0) = z0. Because z0 ∈ D was arbitrary, this proves ϕ = f−1.
The preceding argument applies to every subsequence of {ϕn} and shows that some

further subsequence converges to f−1 uniformly on compact subsets. It follows that
ϕn → f−1 uniformly on each subset of ∆ (assume not and �nd a contradiction).

In fact, the same argument shows that ϕn converges uniformly on compact subsets of
Ω to a univalent function ψ which satis�es |ψ(w)| < 1 there. However, f−1 already maps
∆ conformally onto D, so ∆ = Ω.

It remains to show that Ωn → Ω. But the entire argument above can be carried over
for any subsequence {Ωnk

} to conclude that f maps D onto the kernel of {Ωnk
}, which

must therefore coincide with the kernel of {Ωn}. Hence Ωn → Ω, and Case II is done.
Conversely, suppose Ωn → Ω ( C.

Case I: Ω = {0}.
Case I: Ω = {0}. Then we claim that f ′

n(0) → 0. If not, there exists ε > 0 and a
subsequence {fnk

} such that f ′
nk
(0) ≥ ε. By the Köbe 1/4-theorem, each Ωnk

must contain
D(0, 1/4), contradicting the assumption that each subsequence of {Ωn} has kernel {0}.
Thus f ′

n(0) → 0, n→ ∞. On the other hand, Theorem 5.3 implies

|fn(z)| ≤ |f ′
n(0)|

|z|
(1− |z|)2

, z ∈ D. (21.2)

It follows that fn → 0 uniformly on compact subsets of D.

Case I: Ω ̸= 0, Ω ̸= C. Then we claim that {f ′
n(0)} is a bounded sequence. Indeed, if

f ′
nk
(0) → ∞ for some subsequence, the Köbe 1/4-theorem would imply that {Ωnk

} has
kernel C. This contradiction shows that {f ′

n(0)} is bounded. It follows by (21.2) that fn
are uniformly bounded on each compact subset of D and therefore constitute a normal
family. By Vitali's theorem, in order to conclude that fn converges uniformly on compact
subsets of D, it su�ces to show that it converges pointwise. Because {fn} is a normal
family, two subsequences with di�erent limits at z0 ∈ D would have further subsequences
fnk

and fmk
converging uniformly on compact sets to di�erent functions f and f̃ with

f(z0) ̸= f̃(z0). In view of what we have proved, the corresponding sequences {Ωnk
} and
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{Ωmk
} would then have di�erent kernels, the images of D under f and f̃ , respectively.

But this contradicts the hypothesis Ωn → Ω. Thus we have shown that fn → f uniformly
on compact subsets of D. 2

22 Bounded variation and absolute continuity

Let f : [a, b] → R and a = x0 < x1 < . . . < xk = b a partition of [a, b]. De�ne

p =
k∑
j=1

(f(xj)− f(xj−1))
+, r+ = max {r, 0} ,

and

n =
k∑
j=1

(f(xj)− f(xj−1))
−, r− = |r| − r+,

and

t = n+ p =
k∑
j=1

|f(xj)− f(xj−1)|

so that f(b)−f(a) = p−n. Let P = sup p, N = supn and T = sup t, where the supremum
is taken over all partitions of [a, b]. We clearly have P,N ≤ T ≤ P +N . P , N and T are
the positive, negative and total variation of f over [a, b]. We write T ba = T ba(f) and so on
to denote the dependance on a, b and f . If T <∞, f is of bounded variation over [a, b] in
which case we write f ∈ BV = BV (a, b).

Lemma 22.1 If f ∈ BV (a, b), then T ba(f) = P b
a(f) +N b

a(f) and f(b)− f(a) = P b
a(f)−

N b
a(f).

Proof. For any partition of [a, b], p = n+ f(b)− f(a), and it follows that P = N + f(b)−
f(a). Also

t = p+ n = p+ p− (f(b)− f(a)),

and thus
T = 2P − (f(b)− f(a)) = P +N.

2

Theorem 22.2 Let f : [a, b] → R. Now f ∈ BV (a, b) if and only if f is the di�erence of
two nondecreasing real-valued functions on [a, b].

Corollary 22.3 If f ∈ BV (a, b), then f ′(x) exists for almost all x ∈ [a, b].

Let f ∈ [a, b] → R. If for given ε > 0 there exists δ > 0 such that

n∑
j=1

|f(x′j)− f(xj)| < ε
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for every �nite collection{
(xj, x

′
j) : a ≤ xj < x′j ≤ b, j = 1, . . . , n

}
of pairwise disjoint intervals with

n∑
j=1

|x′j − xj| < δ,

then f is absolutely continuous on [a, b].

Lemma 22.4 If f is absolutely continuous on [a, b], then f ∈ BV (a, b).

Proof. Let δ be one corresponding to ε = 1 in the de�nition of the absolute continuity.
Each partition of [a, b] can be split, by inserting fresh partition points if necessary, into K
sets of intervals, each of total length less than δ, where K is the largest integer less than
1 + (b− a)/δ. Hence for any partition we have t ≤ K, and so T ≤ K. 2

Corollary 22.5 If f is absolutely continuous on [a, b], then f is di�erentiable almost
everywhere on [a, b].

Proof. This follows by Lemma 22.4 and Corollary 22.3. 2

23 Arzelá-Ascoli theorem

Let X be a metric space (or a topological space) and (Y, d) a metric space. F ⊆
{f : X → Y } is equicontinuous at x ∈ X if for given ε > 0 there exists an open set
Ox containing x such that d(f(x), f(y)) < ε for all y ∈ Ox and f ∈ F . F is equicontinu-
ous on X if it is equicontinuous at each point x ∈ X.

Lemma 23.1 Let {fn} be a sequence of mappings of a countable set D into a metric
space Y such that for each x ∈ D the closure of the set {fn(x) : n ∈ N} is compact. Then
there exists a subsequence {fnk

} that converges for each x ∈ D.

Proof. Let D = {xk}. Pick up a subsequence
{
fn1

k

}
of {fn} such that

{
fn1

k
(x1)

}
con-

verges. Pick up a subsequence
{
fn2

k

}
of
{
fn1

k

}
such that

{
fn2

k
(x2)

}
converges. Continuing

in this fashion we obtain a subsequence
{
fnj

k

}
convergent at x1, . . . , xj. The diagonal se-

quence
{
fn1

k

}∞

k=j
is a subsequence of

{
fnj

k

}
and thus

{
fnk

k
(xj)

}
converges for all j. We

deduce that
{
fnk

k

}
converges for each x ∈ D. 2

Lemma 23.2 Let X be a topological space and Y a complete metric space. Let
{fn : X → Y } be equicontinuous. If the sequence {fn(x)} converges at each point X of
a dense subset D of X, then {fn} converges at each point of X to a continuous function
f : X → Y .
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Proof. By the equicontinuity, for a given x ∈ X and ε > 0 there exists an open set
O = Ox,ε containing x such that d(fn(x), fn(y)) < ε/3 for all y ∈ D. Since D is dense,
there must be a point y ∈ D ∩O, and since {fn(y)} converges by the hypothesis, it must
be a Cauchy sequence, and we may choose N = N(ε) ∈ N such that

d(fn(y), fm(y)) <
ε

3
, m, n ≥ N.

Then

d(fn(x), fm(x)) ≤ d(fn(x), fn(y)) + d(fn(y), fm(y)) + d(fm(y), fm(x)) <
ε

3
· 3 = ε, (23.1)

for n,m ≥ N . Thus {fn(x)} is a Cauchy sequence in Y and converges because Y is
complete.

Let f(x) = limn→∞ fm(x) for all x ∈ X. To see that f is continuous at x, let ε > 0 be
given. By the equicontinuity, there exists an open set O = O(ε, x) containing x such that
d(fn(x), fn(y)) < ε for all n and y ∈ O. Hence, for all y ∈ O we have

d(f(x), f(y)) = lim
n→∞

d(fn(x), fn(y)) ≤ ε,

and thus f is continuous at x. 2

Lemma 23.3 Let K be a compact topological space and (Y, d) a metric space. Let
{fn : K → Y } be equicontinuous sequence of functions that converges at each point of
K to a function f . Then {fn} converges to f uniformly on K.

Proof. Let ε > 0. By the equicontinuity, each x ∈ K is contained in an open set Ox such
that d(fn(x), fn(y)) < ε/3 for all y ∈ Ox and n ∈ N. Hence d(f(x), f(y)) < ε/3 for all
y ∈ Ox.

By the compactness of K there exists a �nite collection {Ox, . . . , Oxk} of these sets
which covers K. Choose N su�ciently large so that for all n ≥ N we have

d(fn(xj), f(xj)) < ε/3

for all xj, j = 1, . . . , k. Then for any y ∈ K there exists j ∈ {1, . . . , k} such that y ∈ Oxj .
Hence

d(fn(y), f(y)) ≤ d(fn(y), fn(xj)) + d(fn(xj), f(xj)) + d(f(xj), f(y)) < ε, (23.2)

for n ≥ N . Thus fn → f uniformly on K. 2

Theorem 23.4 (Arzelá-Ascoli) Let X be a separable metric space and (Y, d) a complete
metric space. Let F be an equicontinuous family of functions f : X → Y . Let {fn} be a
sequence in F such that for each x ∈ X the closure of the set {fn(x) : n ∈ N} is compact.
Then there exists a subsequence {fnk

} that converges pointwise to a continuous function
f , and the convergence is uniform on compact subsets of X.
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Proof. Since X is separable, there exists a countable set D ⊆ X such that D = X. By
the hypothesis the closure of the set Zx = {fn(x) : n ∈ N} is compact for each x ∈ D (in
fact for all x ∈ X). By Lemma 23.1 there exists a subsequence {fnk

} that converges at
each x ∈ D. But Z =

∪
x∈X Zx is compact in Y and hence (Z, d) is complete. As {fnk

}
is equicontinuous (as a subsequence) family of functions from X to Z, we may apply
Lemma 23.2 and deduce that {fnk

} converges at each x ∈ X and the limit function is
continuous. Now, if K ⊆ X is compact, then Lemma 23.3 shows that fnk

→ f uniformly
on K. 2

Corollary 23.5 Let F be an equicontinuous family of real-valued functions on a separable
metric space X. Then each sequence {fn} in F which is bounded at each point (in a dense
subset) has a subsequence {fnk

} that converges pointwise to a continuous function, the
convergence is being uniform on compact subsets of X.

24 First steps in Löwner theory

Löwner's idea was to introduce a parameter in the Taylor coe�cients of a univalent
function without using the univalence and with some additional properties in order to be
able to di�erentiate with respect to the parameter and take advantage of such derivation.
He worked with Riemann maps of slit domains (C minus a Jordan arc ending at ∞). For
some applications this is not a real restriction because such family of functions is dense in
S in the topology of uniform convergence on compact subsets. Years later, Kufarev and
Pommerenke generalized Löwner's idea to general univalent functions. Here we will work
with this new point of view. The next de�nition is due to Pommerenke.

A (radial) Löwner chain is a family {ft} of analytic functions in D such that

(1) each ft is univalent for all 0 ≤ t <∞;

(2) {ft(D)} is an increasing family of simply connected domains, that is, fs(D) ⊂ ft(D)
for all 0 ≤ s < t <∞;

(3) ft(0) = 0 and f ′
t(0) = et for all t.

By (2) and (3) we can de�ne φs,t = f−1
t ◦ fs. Clearly, φs,t is univalent and

φ′
s,t(0) = (f−1

t )′(fs(0))f
′
s(0) = (f−1

t )′(0)es = (f−1
t )′(ft(0))e

s = es−t.

The biparameter family {φs,t} is the evolution family associated with the Löwner chain
{ft}.

Since e−tft ∈ §, Theorems 5.2 and 5.3 yield

et
|z|

(1 + |z|)2
≤ |ft(z)| ≤ et

|z|
(1− |z|)2

, z ∈ D, (24.1)

and

et
1− |z|

(1 + |z|)3
≤ |f ′

t(z)| ≤ et
1 + |z|

(1− |z|)3
, z ∈ D. (24.2)

Moreover, theorem 4.1 yields etD(0, 1/4) ⊆ ft(D) and hence
∪
t≥0 ft(D) = C.
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Lemma 24.1 Let {ft} be a Löwner chain with evolution family {φs,t}. Then

|ft(z)− fs(z)| ≤
8|z|

(1− |z|)4
(et − es), z ∈ D,

and

|φt,u(z)− φs,u(z)| ≤
2|z|

(1− |z|)2
(1− es−t), z ∈ D,

for all 0 ≤ s ≤ t ≤ u <∞.

Proof. Since φs,t : D → D is analytic and φs,t(0) = 0 for all s < t, the Schwarz lemma
implies |φs,t(z)| < |z| for all s < t. Therefore the function

p(z, s, t) =
1 + es−t

1− es−t
1− z−1φs,t(z)

1 + z−1φs,t(z)
, z ∈ D, (24.3)

has a positive real part. By Theorem 16.4(3)

|p(z, s, t| ≤ 1 + |z|
1− |z|

, z ∈ D,

and hence ∣∣∣∣z − φs,t(z)

z + φs,t(z)

∣∣∣∣ ≤ 1 + |z|
1− |z|

1− es−t

1 + es−t
, z ∈ D,

and

|z − φs,t(z)| ≤ 2|z|1 + |z|
1− |z|

1− es−t

1 + es−t
, z ∈ D.

Since |f ′
t(z)| ≤ 2et(1− |z|)−3, z ∈ D, by (24.2), we deduce

|ft(z)− fs(z)| = |ft(z)− ft(φs,t(z))|

=

∣∣∣∣∣
∫ z

φs,t(z)

f ′
t(ξ)dξ

∣∣∣∣∣
≤ |z − φs,t(z)|

2et

(1− |z|)3

≤ 2|z|1 + |z|
1− |z|

1− es−t

1 + es−t
2et

(1− |z|)3

=
4|z|(1 + |z|)
(1− |z|)4

et − es

1 + es−t

≤ 8|z|
(1− |z|)4

(et − es), 0 ≤ s ≤ t <∞.

(24.4)
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Similarly

|φt,u(z)− φs,u(z)| = |φt,u − φt,u(φs,t(z))|

=

∣∣∣∣∣
∫ z

φs,t(z)

φ′
t,u(ξ)dξ

∣∣∣∣∣
≤ |z − φs,t(z)|

1

1− |z|2

≤ 2|z|(1 + |z|)
1− |z|

1− es−t

1 + es−t
1

1− |z|2

≤ 2|z|
(1− |z|)2

(1− es−t),

(24.5)

because

|φ′
s,t(z)| ≤

1

1− |z|2
, z ∈ D,

by the Schwarz-Pick lemma. 2

To show that every f ∈ S can be embedded in a Löwner chain, we need the following
lemma. Note that the guess ft := fet doesn't work in general.

Lemma 24.2 Every sequence of Löwner chains {fnt }n∈N has a subsequence that converges
to a Löwner chain {ft} locally uniformly in D for each �xed t ≥ 0.

Proof. Write fnt (z) = fn(z, t) so that fn : D × [0,∞) → C for all n ∈ N. Lemma 24.1
implies

|fn(z, t)− fn(z, s)| ≤
8r

(1− r)4
(et − es), n ∈ N, z ∈ D(0, r), 0 ≤ s ≤ t <∞.

Moreover, (24.2) gives

|fn(z, t)− fn(ξ, t)| =
∣∣∣∣∫ z

ξ

∂

∂w
f ′
n(w, t)dw

∣∣∣∣
≤ |z − ξ|

∫ 1

0

|f ′
n((1− s)z + sξ, t)|ds

≤ et
1 + r

(1− r)3
|z − ξ|, n ∈ N, t ≥ 0, z, ξ ∈ D(0, r).

(24.6)

It follows that

|fn(z, t)− fn(ξ, s)| ≤ |fn(z, t)− fn(z, s)|+ |fn(z, s)− fn(ξ, s)|

≤ 8r

(1− r)4
(et − es) + es

1 + r

(1− r)3
|z − ξ|,

(24.7)

for n ∈ N, 0 ≤ s ≤ t < ∞ and z, ξ ∈ D(0, r) and hence {fn}n∈N is an equicontinuous
family on the compact set Kk =

{
(z, t) : |z| ≤ 1− 1

k
, 0 ≤ t ≤ k

}
for all k ∈ N \ {1}.

110



Since {fn}n∈N is also uniformly bounded in Kk by (24.1), we may apply Arzelá-Ascoli
theorem. It implies that for k ∈ N �xed, there exists a subsequence

{
fnp

}
p∈N which

converges pointwise in D×[0,∞), and furthermore the convergence is uniform on compact
subsets. In particular, the convergence is uniform on compact subsets of D for each �xed
t ≥ 0. Since the limit function ft(z) = f(z, t) satis�es f(0, t) = 0 and f ′(0, t) = et, it
follows that f ̸≡ 0, and hence f is univalent in D for each t ≥ 0.

To �nish the proof we must show that fs(D) ⊆ ft(D) for 0 ≤ s ≤ t <∞. Note if that

fnp(z, s) = fnp(φ
np

s,t(z), t), p ∈ N.

By Montel's theorem (or argumenting as above), there exists a subsequence of {np} that
we denote again by {np}, such that φnp

s,t converges to some φs,t uniformly on compact
subsets of D. The limit φs,t is univalent in D, �xes the origin, and φs,t− = es−t. Moreover,
ft ◦ φs,t = fs and |φs,t(z)| ≤ |z| by the Schwarz lemma, so fs(D) ⊆ ft(D). 2

Theorem 24.3 For any f ∈ S, there exists a Löwner chain {ft} such that f = f0.

Proof. First assume that f is analytic in D. Then the image of T under f is a closed
Jordan curve C. Let G and H denote the inner and the outer domains of C in the
extended complex plane Ĉ, respectively. Let g be a conformal map of Ĉ \D onto H such
that g(∞) = ∞.

For t ≥ 0 consider the closed Jordan curve Ct =
{
g(eteiθ) : 0 ≤ θ ≤ 2π

}
and its inner

domain G(t). Then G(0) = G = f(D) and the family {G(t)}t≥0 satis�es

0 ∈ G(s) ( G(t) ( C, 0 ≤ s < t <∞,

and
G(tn) → G(t0), tn → t0 ∈ [0,∞), (∗)

and G(tn) → C, tn → ∞.
Let gt map D onto G(t) such that gt(0) = 0 and β(t) = g′t(0) > 0. The function

g−1
t ◦ gs : D→ D, t > s, �xes the origin and hence the Schwarz lemma implies∣∣∣∣ ddz (g−1

t ◦ gs)(z)
∣∣∣∣
z=0

=
β(s)

β(t)
< 1.

By the uniqueness of the Riemann map gt, we have g0 = f . The Carathéodory kernel
theorem together with (∗) shows that the function β is continuous on [0,∞) and β(t) → ∞
as t→ ∞.

Set ft = gβ−1(et). Then

f ′
t(0) = g′β−1(et)(0) = β(β−1(et)) = et

and
ft(0) = gβ−1(et)(0) = 0

for all t. Moreover, fs(D) ( ft(D) for all 0 ≤ s < t < ∞ by the construction. Also
f0 = gβ−1(1) = g0 = f because f = g0 and thus g′0(0) = β(0) = 1.
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For the general case, let f be an arbitrary function in S. For each n ∈ N, let rn = 1− 1
n

and let fn(z) = r−1
n f(rnz). Then each fn ∈ S and is univalent in a neighbourhood of D.

By the proof above, there is a Löwner chain {fnt } with fn0 = fn.
By Lemma 24.2 there exists a subsequence {fnt } that converges to a Löwner chain

{ft} locally uniformly in D. Since, in particular, fnk
0 → f0 locally uniformly in D and

fnk
0 (z) = fnk

(z) = r−1
nk
f(rnk

z) → f(z), as nk → ∞, for each �xed z ∈ D, we deduce
f0 = f . 2

Theorem 24.4 Let {ft} be a Löwner chain. Then there exists a function p : D×[0,∞) →
C such that

(1) z 7→ p(z, t) is analytic for all t ≥ 0;

(2) t 7→ p(z, t) is measurable for all z ∈ D;

(3) p(0, t) = 1 for all t ≥ 0;

(4) Re p(z, t) > 0 for all z ∈ D and t ∈ (0,∞);

and, for almost all t,
∂ft(z)

∂t
= zf ′

t(z)p(z, t), z ∈ D. (24.8)

The exceptional set of measure zero is independent of z.

Proof. By Lemma 24.1, for 0 ≤ s ≤ t ≤ K ∈ N

|ft(z)− fs(z)| ≤
8|z|

(1− |z|)4
(et − es) ≤ 8eK

t− s

(1− |z|)4
, (∗)

since et − es =
∫ t
s
exdx ≤ (t − s)eK , and hence, for a �xed z ∈ D and arbitrary �nite

collection (tn, t
′
m) of pairwise disjoint intervals in [0, K], we have∑

m

∣∣ft′m(z)− ftm(z)
∣∣ .∑

m

(tm′ − tm),

so t 7→ ft(z) is absolutely continuous on each [0, K], K ∈ N, for each z ∈ D. Corollary 22.5
implies that for each K ∈ N, ∂ft(z)

∂t
exists for almost all t ∈ [0, K]. Since a countable union

of sets of zero measure is of measure zero, we deduce that there exists Ez ⊆ [0,∞) of
measure zero such that ∂ft(z)

∂t
exists for all t ∈ [0,∞) \ Ez. It follows that we can �nd

E ⊂ [0,∞) of measure zero such that ∂ft(1/k)
∂t

exists for all t ∈ [0,∞) \ E and all k ∈ N.
Fix s ∈ [0,∞)\E and let {tn} be a sequence of nonnegative numbers such that tn → s,

n → ∞, and tn ̸= t for all n ∈ N. By (∗), for a given compact set K ⊆ D, there exists
M =M(K, {tn}) such that ∣∣∣∣ftn(z)− fs(z)

tn − s

∣∣∣∣ ≤M, z ∈ K.
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The set {
z ∈ D : lim

n→∞

ftn(z)− fs(z)

tn − s
exists

}
contains the points 1/k for all k ∈ N, and thus it has a cluster point in D. By Theorem 21.1
(Vitali's theorem), there exists h ∈ H(D) such that

lim
n→∞

ftn(z)− fs(z)

tn − s
= h(z), z ∈ D.

Since {tn} was arbitrary,

lim
t→s

ft(z)− fs(z)

t− s
= h(z), z ∈ D.

By using that fs = ft ◦ φs,t we can write

ft(z)− fs(z)

t− s
=
et−s − 1

t− s

z + φs,t(z)

et−s + 1

ft(z)− fs(z)

z − φs,t(z)
p(z, s, t), z ∈ D, (24.9)

where p is de�ned by (22.3) and has non-negative real part.
Lemma 24.1 shows that ft → fs as t → s, locally uniformly in D and therefore also

f ′
t → f ′

s, as t→ s, uniformly on compact subsets of D. Since φs,t(z) = (f−1
t ◦ fs)(z) → z,

as t→ s, it follows that

ft(z)− fs(z)

z − φs,t(z)
=
ft(z)− ft(φs,t(z))

z − φs,t(z)

=

∫ 1

0
f ′
t(λz + (1− λ)φs,t(z)(z − φs,t(z)))dλ

z − φs,t(z)

=

∫ 1

0

f ′
t(λz + (1− λ)φs,t(z))dλ→ f ′

s(z), t→ s.

(24.10)

Take s /∈ E so that ∂fs(z)
∂s

exists. By letting t→ s in (24.9) and using (24.10), we obtain

∂fs(z)

∂t
= zf ′

s(z)p(z, s)

for some p analytic in D with respect to z which again has non-negative real part and
p(0, s) = 1. Such a function is measurable in s because p(z, s) is the limit of p(z, s, t) and
this function is continuous in s for all t. 2

A function p : D× [0,∞) → C satisfying conditions (1)-(4) of Theorem 24.4 is called
a Herglotz function, and Equation (24.8) is known as Löwner PDE.

25 The third coe�cient

Theorem 25.1 Let f(z) = z +
∑∞

n=2 anz
n be a function in S. Then |a3| ≤ 3.
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Proof. The function

g(z) = λf(λz) = z + λa2z
2 + λ2a3z3 + . . . , z ∈ D,

belongs to S for all λ ∈ T. For a suitable choice of λ the third coe�cient of g is nonneg-
ative. Therefore we may assume that a3 ≥ 0. By Theorem 24.3 there exists a Löwner
chain {ft} such that f0 = f . Let p : D × [0,∞) → C be a Herglotz function related to
{ft} in the sense of Theorem 24.4. Denote

ft(z) = etz + a2(t)z
2 + a3(t)z

3 + . . .

and

p(z, t) = 1 + c1(t)z + c2(t)z
2 + . . .

for all z ∈ D. Then (24.8) gives

etz + a′2(t)z
2 + a′3(t)z

3 + . . .

= z[1 + c1(t)z + c2(t)z
2 + . . .][et + 2a2(t)z + 3a3(t)z

2 + . . .]
(25.1)

and hence

a′2(t) = 2a2(t) + c1(t)e
t

and

a′3(t) = 3a3(t) + c1(t)a2(t) + c2(t)e
t.

By solving the �rst equation, we deduce

a2(t) = −e2t
(∫ ∞

t

e−xc1(x)dx+ C

)
.

Since e−tft ∈ S, we have

|e−ta2(t)| = et
∣∣∣∣∫ ∞

t

e−xc1(x)dx+ C

∣∣∣∣ ≤ 2

by Theorem 3.1. This implies C = 0. Similarly,

a3(t) = −e−3t

(∫ ∞

t

(
e−2xc2(x) + 2e−3xa2(x)c1(x)

)
dx+ C

)
.

Repeating the argument, applying this time Theorem 3.2, we have again C = 0 (this can
be seen also by using the fact that {e−tft} is a normal family and hence their Taylor
coe�cients must be bounded). In particular,

a2 = a2(0) = −
∫ ∞

0

e−xc1(x)dx
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and

a3 = a3(0) = −
∫ ∞

0

(
e−2xc2(x) + 2e−3xa2(x)c1(x)

)
dx

= −
∫ ∞

0

e−2xc2(x)dx− 2

∫ ∞

0

e−3xc1(x)

[
−e2x

∫ ∞

x

e−sc1(s)ds

]
dx

= −
∫ ∞

0

e−2xc2(x)dx− 2

∫ ∞

0

(
−e−xc1(x)

) ∫ ∞

x

e−sc1(s)dsdx

= −
∫ ∞

0

e−2xc2(x)dx−
∫ ∞

0

(∫ ∞

x

e−sc1(s)ds

)2

dx

= −
∫ ∞

0

e−2xc2(x)dx+

(∫ ∞

0

e−xc1(x)dx

)2

.

(25.2)

Finally, we deduce by Theorem 16.4(1),(2) [(Re c1)2 ≤ 2 + Re c2]

a3 = Re a3 = Re

[
−
∫ ∞

0

e−2xc2(x)dx+

(∫ ∞

0

e−xc1(x)dx

)2
]

≤
∫ ∞

0

e−2x(2− (Re c1(x))
2)dx+

(∫ ∞

0

e−xRe c1(x)dx

)2

=

∫ ∞

0

2e−2xdx−
∫ ∞

0

e−2x(Re c1(x))
2dx+

(∫ ∞

0

e−x/2Re c1(x)e
−x/2dx

)2

C-S
≤ 1−

∫ ∞

0

e−2x(Re c1(x))
2dx

∫ ∞

0

e−x(Re c1(x))
2dx ·

∫ ∞

0

e−xdx

= 1−
∫ ∞

0

(
e−x − e−2x

)
(Re c1(x))

2dx

≤ 1 + 4

∫ ∞

0

(
e−x − e−2x

)
dx = 1 + 4

(
1− 1

2

)
= 3.

(25.3)

We are done. 2

26 Löwner theory and univalence criteria

In 1965 Pommerenke proved that the converse of Theorem 24.4 is true.

Theorem 26.1 Let p : D× [0,∞) → C be a Herglotz function. Then, for any z ∈ D and
s ∈ [0,∞), the initial value problem

dw

dt
= −wp(w, t) a.e t ∈ [s,∞), w(s) = z, (26.1)

has a unique absolutely continuous solution w, which is also Lipschitz continuous of t ∈
[0,∞) locally uniformly with respect to z.

[∀K ⊂ D,∃M(K, p) : |w(t1)− w(t2)| ≤M |t1 − t2|, z ∈ K.]

Write φs,t(z) = w(t). Then φs,t is univalent in D for all 0 ≤ s ≤ t <∞ and
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(1) φs,s = id;

(2) φs,t = φu,t ◦ φs,u, 0 ≤ s ≤ u ≤ t <∞;

(3) φs,t(0) and φ′
s,t(0) = es−t.

Proof. Let w0(z, t) ≡ 0 and

wn+1(z, t) = z exp

(
−
∫ t

s

p(wn(z, τ), τ)dτ

)
, n ∈ N ∪ {0} , t ∈ [s,∞), z ∈ D.

Then wn(0, t) = 0 and since the real part of p is positive,

|wn+1(z, t)| = |z| exp
(
−
∫ t

s

Re p(wn(z, τ), τ)dτ

)
≤ |z|, z ∈ D,

so the equality part of the Schwarz lemma gives |wn(z, t)| < |z| for all z ∈ D \ {0}. Take
ξ from the line segment [wn−1(z, τ), wn(z, τ)]. Then Theorem 16.4(4) yields

|p′(z, τ)| ≤ 2

(1− |ξ|)2
≤ 2

(1− |z|)2
,

because |ξ| ≤ max {|wn−1(z, τ)|, |wn(z, τ)|} ≤ |z|. On the other hand,

|e−a − e−b| =
∣∣∣∣∫ b

a

e−zdz

∣∣∣∣ ≤ |a− b| sup
z∈[a,b]

|e−z| = |a− b| sup
z∈[a,b]

exp(−Re z) ≤ |a− b|,

when Re a ≥ 0 and Re b ≥ 0. Hence

|wn+1(z, t)− wn(z, t)|

= |z|
∣∣∣∣exp(− ∫ t

s

p(wn(z, τ), τ)dτ

)
− exp

(
−
∫ t

s

p(wn−1(z, τ), τ)dτ

)∣∣∣∣
≤
∣∣∣∣∫ t

s

p(wn(z, τ), τ)dτ −
∫ t

s

p(wn−1(z, τ)τ)dτ

∣∣∣∣
≤
∫ t

s

|p(wn(z, τ), τ)− p(wn−1(z, τ), τ)| dτ

≤
∫ t

s

∣∣∣∣∣
∫ wn(z,τ)

wn−1(z,τ)

p′(ξ, τ)dξ

∣∣∣∣∣ dτ
≤ 2

(1− |z|)2

∫ t

s

|wn(z, τ)− wn−1(z, τ)| dτ.
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Applying the inequality we just established n− 1 more times, we deduce

|wn+1(z, t)− wn(z, t)|

≤ 22

(1− |z|)2·2

∫ t

s

∫ t1

s

|wn−1(z, τ)− wn−2(z, τ)|dτdt1

≤ . . .

≤ 2n

(1− |z|)2n

∫ t

s

∫ t1

s

· · ·
∫ tn−1

s

|w1(z, τ)− 0|dτdtn−1 · · · dt1

= . . .

=
2n

(1− |z|)2nn!
(t− s)n z ∈ D, n ∈ N ∪ {0} .

It follows that for m ≥ n we have

|wm(z, t)− wn(z, t)|
≤ |wm(z, t)− wm−1(z, t)|+ . . .+ |wn+1(z, t)− wn(z, t)|

≤
m−1∑
j=n

2j

(1− |z|)2jj!
(t− s)j

≤
m−1∑
j=n

2jT

(1− r)2jj!
, |z| ≤ r, s ≤ t ≤ T,

=
m−1∑
j=n

M j

j!
, M =

2T

(1− r)2

and so by the Stirling formula j! ∼ jje−j
√
2πj yields

|wm(z, t)− wn(z, t)| .
m−1∑
j=n

M j

jje−j
√
j

≤ 1√
n

m−1∑
j=n

(Me)j

jj

≤
m−1∑
j=n

(
Me

j

)j
. 1√

n
→ 0, n→ ∞.

We deduce that limn→∞wn(z, t) exists uniformly in D(0, r) × [0, T ] for every r ∈ (0, 1)
and T ∈ (0,∞). [Another way to see that the limit exists is to consider

wn =
n∑
j=1

(wj(z, t)− wj−1(z, t))

and to use the estimate

|wj+1(z, t)− wj(z, t)| ≤
2n

(1− |z|)2nn!
(t− s)n.]
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Denoting the limit by φs,t (wn depends on s also) we have found an analytic function in
z and continuous in t which satis�es

φs,t(z) = z exp

(
−
∫ t

s

p(φs,τ (z), τ)dτ

)
(26.2)

by Lebesgue's dominated convergence theorem. Now φs,t(0) = 0,

φs,s(z) = z exp(−0) = z, z ∈ D,

and

φ′
s,t(z) = exp

(
−
∫ t

s

p(φs,τ (0), τ)dτ

)
= exp

(
−
∫ t

s

dt

)
= es−t,

by case (3) of the de�nition of p. It remains to show that φs,t = φu,t ◦ φs,u for all
0 ≤ s ≤ u ≤ t <∞. It is clear that w(t) = φs,t(z) satis�es (24.8):

∂φs,t(z)

∂t
= z exp()(−1)p(φs,t(z), t) = −φs,t(z)p(φs,t(z), t) = −wp(w, t)

and w(s) = φs,s(z) = z. Moreover, (26) implies that w is locally absolutely continuous
function of t ∈ [s,∞). (CHECK). In addition, φs,t is a Lipschitz continuous function of t
locally uniformly with respect to z. Indeed, by Theorem 16.4(3)

|φs,t1(z)− φs,t2(z)| = |z|
∣∣∣∣exp(−∫ t

s

p()dτ

)
− exp

(
−
∫ t

s

p()dτ

)∣∣∣∣
≤ |z|

∫ t2

t1

|p(φs,τ (z), τ)| dτ

≤ r(1 + r)

1− r
(t2 − t1)

for |z| < r and s ≤ t1 ≤ t2 <∞.
We next show that the solution is unique. To this end, let u be another solution such

that u(s) = z. Now (26.2) yields

|u(t)− w(t)| = |z|
∣∣∣∣exp(− ∫ s

t

p(u(τ), τ)dτ

)
− exp

(
−
∫ s

t

p(w(τ), τ)dτ

)∣∣∣∣
≤ r

∣∣∣∣∫ t

s

p(u(τ), τ)dτ −
∫ t

s

p(w(τ), τ)dτ

∣∣∣∣
≤ r

∫ t

s

|p(u(τ), τ)− p(w(τ), τ)| dτ

≤ r

∫ t

s

∣∣∣∣∣
∫ u(τ)

w(τ)

p′(ξ, τ)dξ

∣∣∣∣∣ dτ
≤ 2r

(1− r)2

∫ t

s

|u(τ)− w(τ)|dτ, t ≥ s, |z| ≤ r.
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Consider a subinterval [s, t1] ⊆ [s,∞], and let M > 0 be such that |u(t)− w(t)| ≤ M on
[s, t1]. Then, for t ∈ [s, t1], we have

|u(t)− w(t)| ≤ 2rM

(1− r)2
(t− s).

By applying this together with the previous estimate, we deduce

|u(t)− w(t)| ≤ M

n!

(
2r

(1− r)2

)n
(t− s)n, t ∈ [s, t1], n ∈ N.

Note that the factor n! comes from the integrations. The Stirling formula yields u(t) =
w(t) for all t ∈ [s, t1], and thus the solution is unique.

The indentity φs,t = φu,t ◦ φs,u follows from the uniqueness of solutions: both sides
satisfy (26.1) and have the same value when t = u.

It remains to show that each φs,t is an univalent function when 0 ≤ s ≤ t < ∞. Let
t0 ≥ s and z1, z2 ∈ D such that

φs,t0(z1) = φs,t0(z2).

Let vj(t) = φs,t(zj) and denote

v(t) = v1(t)− v2(t) = φs,t(z1)− φs,t(z2).

Then v(t0) = 0. Since Re p(z, t) > 0 and p(0, t) ≡ 1, the Herglotz integral formula
(Corollary 16.3, Im f(0) = 0) gives the estimate

|z1p(z1, t)− z2p(z2, t)| ≤
1 + |z2|
1− |z2|

1 + |z1|
1− |z1|

|z1 − z2|

for z1, z2 ∈ D and t ≥ 0. Namely∣∣∣∣z1 ∫ 2π

0

eit + z1
eit − z1

dµ(t)− z2

∫ 2π

0

eit + z2
eit − z2

dµ(t)

∣∣∣∣
≤
∫ 2π

0

∣∣∣∣z1 eit + z1
eit − z1

− z2
eit + z2
eit − z2

∣∣∣∣ dµ(t)
≤ 1 + |z2|

1− |z2|
1 + |z1|
1− |z1|

|z1 − z2|(µ(2π)− µ(0))

=
1 + |z2|
1− |z2|

1 + |z1|
1− |z1|

|z1 − z2|

since µ(2π)− µ(0) = p(0, t) ≡ 1 and

a
c+ a

c− a
− b

c+ b

c− b
=

(a− b)(c+ a)(c+ b)

(c− a)(c− b)
, a, b, c ∈ C, (c− a)(c− b) ̸= 0.

Consequently,∣∣∣∣ ∂∂tv(t)
∣∣∣∣ = |v1(t)p(v1(t), t)− v2(t)p(v2(t), t)| ≤

1 + |z1|
1− |z2|

1 + |z2|
1− |z2|

|v(t)|, s ≤ t ≤ t0.
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Choose K > 0 such that |v(t)| ≤ K for s ≤ t ≤ t0. Then

|v(t)| =
∣∣∣∣∫ t0

t

∂

∂t
v(t)dτ

∣∣∣∣ ≤ K

∫ t0

t

1 + |z1|
1− |z2|

1 + |z2|
1− |z2|

dτ = K
1 + |z1|
1− |z2|

1 + |z2|
1− |z2|

(t0 − t).

Hence

|v(t)| =
∣∣∣∣∫ t0

t

∂

∂t
v(t)dτ

∣∣∣∣
≤
∫ t0

t

1 + |z1|
1− |z2|

1 + |z2|
1− |z2|

|v(t)|dτ

≤ K

(
1 + |z1|
1− |z2|

1 + |z2|
1− |z2|

)2 ∫ t0

t

(t0 − t)dτ

≤ K

(
1 + |z1|
1− |z2|

1 + |z2|
1− |z2|

)2
(t0 − t)2

2
.

By continuing in this fashion, we deduce

|v(t)| ≤
(
1 + |z1|
1− |z2|

1 + |z2|
1− |z2|

)n
(t0 − t)n

n!
, s ≤ t ≤ t0,

and thus v ≡ 0 on [s, t0] (the factorial does the job!). Hence

v(s) = v1(s)− v2(s) = φs,s(z1)− φs,s(z2) = z1 − z2 = 0

giving z1 = z2 as claimed. The proof is complete. 2

Corollary 26.2 Let p and φs,t = w(t) be as in Theorem 26.1. Then

fs(z) = lim
t→∞

etφs,t(z) (26.3)

exists uniformly on compact subsets of D, {ft} is a Löwner chain satisfying fs = ft ◦φs,t,
t ≥ s, and

∂

∂t
ft(z) = zf ′

t(z)p(z, t) a.e. t ≥ 0, z ∈ D.

Proof. By the proof of Theorem 26.1,

φs,t(z) = z exp

(
−
∫ t

s

p(φs,τ (z), τ)dτ

)
.

The function et−sφs,t belongs to S, so Theorem (5.3) gives

|φs,t(z)| ≤
|z|

(1− |z|)2
es−t, z ∈ D.

Fix r ∈ (0, 1) and let z ∈ D(0, r). Then |φs,t(z)| ≤ r (by the proof of Theorem 26.1) and

|1− p(φs,τ (z), τ)| =

∣∣∣∣∣
∫ φs,τ (z)

0

p′(ξ, τ)dξ

∣∣∣∣∣ ≤ 2

(1− r)2
|φs,τ (z)|

Th 16.4(iv)
≤ 2

(1− r)4
es−t
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by Theorem 16.4(iv). Let t, t′ ≥ s. Then∣∣∣et−sφs,t(z)− et
′−sφs,t′(z)

∣∣∣
=
∣∣et−sφs,t(z)∣∣ ∣∣∣∣1− et

′−s

et−s
φs,t′(z)

φs,t(z)

∣∣∣∣
=
∣∣et−sφs,t(z)∣∣

∣∣∣∣∣∣1−
z exp

(∫ t′
s
(1− p(φs,τ (z), τ)) dτ

)
z exp

(∫ t
s
(1− p(φs,τ (z), τ)) dτ

)
∣∣∣∣∣∣

=
∣∣et−sφs,t(z)∣∣

∣∣∣∣∣1− exp

(∫ t′

t

(1− p(φs,τ (z), τ)) dτ

)∣∣∣∣∣
≤ |z|

(1− |z|)2

[
exp

∣∣∣∣∣
∫ t′

t

(1− p(φs,τ (z), τ)) dτ

∣∣∣∣∣− 1

]

≤ r

(1− r)2

[
exp

(
|t′ − t|2e

s−min{t,t′}

(1− r)4

)
− 1

]
, z ∈ D(0, r),

and hence {et−sφs,t}t≥0 is Cauchy locally uniformly in z. Therefore the limit

fs(z) = lim
t→∞

etφs,t(z)

is well de�ned and exists locally uniformly in z. Moreover, if t > s, Theorem 26.1(2)
yields

fs(z) = lim
τ→∞

eτφs,τ (z) = lim
τ→∞

eτ (φt,τ ◦ φs,t)(z) = ft(φs,t(z)).

Also fs(0) = limt→∞ etφs,t(0) = 0 and [p(0, t) ≡ 1]

f ′
s(z) = lim

t→∞
et
(
exp

(
−
∫ t

s

p(φs,τ (z), τ)dτ

)
+ z(· · · )

)
,

so
f ′
s(0) = lim

t→∞
et · e−t+s = es.

Then, by Hurwitz's theorem ft is univalent in D for each t ≥ 0 and thus, by putting
everything together, {ft} is a Löwner chain.

We skip the proof of the fact that the PDE is satis�ed for a moment. 2

We next prove a characterization of Löwner chains, which is one of the main results
of the theory.

Theorem 26.3 The function f : D× [0,∞) → C with f(0, t) = ft(0) = 0 and f ′
t(0) = et,

t ≥ 0, is a Löwner chain if and only if the following conditions hold:

(i) There exists r ∈ (0, 1) and M > 0 such that ft is analytic in D(0, r) for each t ≥ 0,
locally absolutely continuous in t ≥ 0 locally uniformly with respect to z ∈ D(0, r)
and

|ft(z)| ≤Met, z ∈ D(0, r), t ≥ 0. (26.4)
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(ii) There exists a Herglotz function p : D× [0,∞) → C such that for all z ∈ D(0, r)

∂

∂t
f(z, t) = zf ′

t(z)p(z, t) a.e. t ≥ 0. (26.5)

(iii) For each t ≥ 0, ft is the analytic continuation of ft|D(0,r) to D, and further, this
analytic continuation exists under the assumptions (i) and (ii).

Proof. First assume that {ft} is a Löwner chain. Since e−tft ∈ S for each t ≥ 0,
Theorem 5.3 implies that for each r ∈ (0, 1) there exists M = M(r) > 0 such that
|ft(z)| ≤ Met for all z ∈ D(0, r) and t ≥ 0. Since the absolute continuity follows by
Lemma 22.1, (i) is proved. Part (ii) follows by Theorem 24.4.

We now prove the converse statement. Let r ∈ (0, 1),M > 0, ft(z) and p(z, t) satisfy
(i) and (ii). We show that ft is locally Lipschitz continuous in t locally uniformly with
respect to z ∈ D(0, r). To do this, let ρ ∈ (0, r) and T > 0. By using Cauchy integral
formula and (26.4), we �nd L = L(ρ, T ) such that

|f ′
t(z)| ≤ L, z ∈ D(0, ρ), t ∈ [0, T ]. (26.6)

2

This together with (26.5) and Theorem 16.4(iii) yields∣∣∣∣∂f(z, t)∂t

∣∣∣∣ = |z| |f ′
t(z)| |p(z, t| ≤ ρL

1 + ρ

1− ρ
= N = N(ρ, T ), z ∈ D(0, ρ), a.e. t ∈ [0, T ].

Further, since

ft2(z)− ft1(z) =

∫ t2

t1

∂f(z, t)

∂t
dt, 0 ≤ t1 ≤ t2 ≤ T,

we deduce

|ft1(z)− ft2(z)| ≤ N(t2 − t1), z ∈ D(0, r), 0 ≤ t1 ≤ t2 ≤ T. (26.7)

Since ρ ∈ (0, r) and T > 0 were arbitrary, ft is Lipschitz in t locally uniformly with
respect to z ∈ D(0, r).

Theorem 26.1 shows that the initial value problem

∂w

∂t
= −wp(w, t), a.e. t ∈ [s,∞), w(s) = z,

has a unique locally absolutely continuous solution w, w(t) = φs,t(z). Moreover, for all
s and t, φs,t is univalent and |φs,t(z)| ≤ |z| in D. For z ∈ D(0, r), s ≥ 0 and t ≥ s, let
g(z, s, t) = ft(φs,t(z)). Since φs,t(z) = w(t) is Lipschitz continuous in t ∈ [s,∞) locally
uniformly with respect to z ∈ D by the proof of Theorem 26.1, we easily deduce that
g(z, s, t) is locally Lipschitz continuous in t for t ∈ [s,∞) locally uniformly with respect
to z ∈ D(0, r) as well. Indeed, (26.6) implies

|ft(z)− ft(ξ)| ≤
∫ ξ

z

|f ′
t(τ)||dτ | ≤ L|z − ξ|
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for all t ∈ [0, T ], T > 0, z ∈ D(0, ρ), ξ ∈ D(0, ρ) and ρ ∈ (0, r). Hence, if s ≥ 0 and
T > s, the above inequality and (26.6) give

|g(z, s, t1)− g(z, s, t2)| = |ft1(φs,t1(z))− ft2(φs,t2(z))|
≤ |ft1(φs,t1(z))− ft2(φs,t1(z))|+ |ft2(φs,t1(z))− ft2(φs,t2(z))|
≤ N(t2 − t1) + L |φs,t1(z)− φs,t2(z)|
≤ N(t2 − t1) +R(t2 − t1)

for all z ∈ D(0, ρ) and s ≤ t1 < t2 ≤ T . It follows that for all z ∈ D(0, r) ∂
∂t
g(z, s, t)

exists for almost all t ≥ s and moreover,

∂

∂t
g(z, s, t) =

∂

∂t
ft(φs,t(z))

=
∂

∂t
(f(φs,t(z), t))

= f ′(φs,t(z))
∂

∂t
+

(
∂

∂t
ft

)
(φs,t(z))

(26.5)
= f ′

t(φs,t(z))

(
∂

∂t
φs,t(z) + φs,t(z)p(φs,t(z), t)

)
= 0 a.e. t ≥ s.

Because g(z, s, t) is locally absolutely continuous in t and φs,s(z) = z, we deduce that
g(z, s, t) is constant as a function of t and hence

ft(φs,t(z)) = fs(z) = f(s, z), z ∈ D(0, r), 0 ≤ s ≤ t <∞.

We next extend the function ft(z) = f(z, t) univalently to the whole disc D. By (26.4),
we have

|e−tf(z, t)− z| ≤ |e−tf(z, t)|+ 1 ≤M + 1, z ∈ D(0, r), t ≥ 0,

and since f ′
t(0) = et, e−tf(z, t)− z = a2(t)z

3 + . . ., and thus Schwarz lemma yields

|e−tf(z, t)− z| ≤ (M + 1)
|z|2

r2
, z ∈ D(0, r), t ≥ 0.

[Clearly ∣∣∣∣rz e−tf(rz, t)− rz

rz

∣∣∣∣ ≤M + 1, z ∈ D.

Therefore ∣∣∣∣re−tf(rz, t)− rz

rz

∣∣∣∣ ≤M + 1, z ∈ D.

Put z = w/r.]
Also since et−sφs,t ∈ S, Theorem 5.3 gives

|φs,t(z)| ≤
|z|

(1− |z|)2
es−t, z ∈ D, 0 ≤ s ≤ t <∞.
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Hence, the identity

f(φs,t(z), t) = f(z, s), z ∈ D(0, r), 0 ≤ s ≤ t <∞,

implies

|fs(z)− etφs,t(z)| = et|e−tf(φs,t(z), t)− φs,t(z)|

≤ et(M + 1)
|φs,t(z)|2

r2

≤ et(M + 1)
|z|2

(1− |z|)4
e2s−2t

r2

≤ (M + 1)e2s−t

(1− r)4
, z ∈ D(0, r).

From this we deduce
etφs,t(z) → fs(z), t→ ∞, (26.8)

uniformly on D(0, r).
On the other hand, if gs(z) = g(z, s) is the function de�ned by

gs(z) = lim
t→∞

etφs,t(z),

then this limit exists locally uniformly on D for each s ≥ 0, and g : D × [0,∞) → C is
a Löwner chain by Corollary 26.2. Moreover, g(z, s) = f(z, s) for z ∈ D(0, r) and s ≥ 0
by (26.8). By using (iii) and the identity theorem of analytic functions, we deduce g ≡ f
in D× [0,∞).

The reasoning in the next result completes the proof of Corollary 26.2.

Theorem 26.4 Let {ft} be a Löwner chain and φs,t the evaluation family associated with
{ft}. Then there exists a Herglotz function p such that

∂f(z, t)

∂t
= zf ′

t(z)p(z, t) a.e. t ≥ 0, z ∈ D. (26.9)

Moreover, for each s ≥ 0 and z ∈ D, φs,t is the unique locally absolutely continuous
solution of the initial value problem

∂w

∂t
= −wp(z, t), a.e. t ≥ s, w(s) = z, (26.10)

and the limit
lim
t→∞

etφs,t(z) = fs(z) (26.11)

exists locally uniformly on D.

Proof. The existence of p such that (26.9) holds follows from the proof of Theorem 26.3.
Let u = u(z, s, t) be the locally absolutely continuous solution of the initial value

problem
∂u

∂t
= −up(u, t), a.e. t ≥ s, u(z, s, s) = z,
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for each s ≥ 0 �xed and z ∈ D. Then |u(z, s, t)| ≤ |z| for all z ∈ D and u is univalent
for t ≥ s in D by the proof of Theorem 26.1. Since f(z, t) is locally absolutely continuous
in t, it is di�erentiable a.e. on [0,∞), and with a similar reasoning as in the proof of
Theorem 26.3 we deduce that f(u(z, s, t), t) is also locally absolutely continuous in t and
hence di�erentiable a.e. on [s,∞). Therefore (26.9) yields

∂

∂t
f(u(z, s, t), t) = f ′

t(u)
∂u

∂t
+ uf ′

t(u)p(u, t) = 0, a.e. t ≥ s.

Hence f(u(z, s, t), t) = f(u(z, t, s), s) = f(z, s) and thus

f(φs,t(z), t) = f(u(z, s, t), t), z ∈ D, t ≥ s.

[Continuos functions which agree a.e. are indentical.] Since ft is univalent in D, we must
have u(z, s, t) = φs,t(z) for all z ∈ D and 0 ≤ s ≤ t < ∞. Consequently, φs,t(z) satis�es
the initial value problem. Moreover, from Corollary 26.2, equation (26.11) follows. 2

Corollary 26.5 (Becker 1972) Let f ∈ H(D) with f ′(0) ̸= 0. If∣∣∣∣z f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) < 1, z ∈ D, (26.12)

then f is univalent in D.

Proof. We may assume that f(0) = 0 and f ′(0) = 1. By (26.12) we deduce f ′(z) ̸= 0 for
all z ∈ D. Let

ft(z) = f(e−tz) + (et − e−t)zf ′(e−tz), z ∈ D, t ≥ 0.

Then ft ∈ H(D), ft(0) = f(0) = 0,

f ′
t(0) = f ′(0)e−t + (et − e−t)[f ′(0) + 0] = et

for all t ≥ 0, and ft(z) is absolutely continuous on [0,∞) for each z ∈ D. Clearly, for
each r ∈ (0, 1) there exists M =M(r) > 0 such that |ft(z)| ≤Met for all z ∈ D(0, r) and
t ≥ 0.

[One may also see that

e−tft(z) = z +O(e−t), t→ ∞,

locally uniformly in z, and hence

lim
t→∞

e−tft(z) = z

locally uniformly in z. Consequently, {e−tft}t≥0 is a normal family, and for each r ∈ (0, 1)
there exists M =M(r) > 0 such that |ft(z)| ≤Met for all z ∈ D(0, r) and t ≥ 0.] Hence
(i) in Theorem 26.3 is satis�ed for each r ∈ (0, 1). To see (ii) note �rst that

∂ft(z)

∂t
= f ′(e−tz)(−e−tz) + etzf ′(e−tz) + etzf ′′(e−tz)(−e−tz)

+ e−tzf(e−tz)− e−tzf ′′(e−tz)(−e−tz)
= etzf ′(e−tz)− (1− e−2t)z2f ′′(e−tz)
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and

zf ′
t(z) = zf ′(e−tz)e−t + z(et − e−t)

[
f ′(e−tz) + zf ′′(e−tz)e−t

]
= etzf ′(e−tz) + (1− e−2t)z2f ′′(e−tz)

= etzf ′(e−tz) [1− E(z, t)] ,

where

E(z, t) = −(1− e−2t)e−t
zf ′′(e−tz

f ′(e−tz)
.

By using the hypothesis (26.12) and the inequality 1 − e−2t < 1 − |e−tz|2 for z ∈ D, we
deduce

|E(z, t)| = (1− e−2t)

∣∣∣∣e−t zf ′′(e−tz)

f ′(e−tz)

∣∣∣∣
< (1− |e−tz|)

∣∣∣∣e−tz f ′′(e−tz)

f ′(e−tz)

∣∣∣∣ < 1,

and hence f ′
t(z) ̸= 0 for all z ∈ D and t ≥ 0. De�ne

p(z, t) =
∂ft(z)
∂t

zf ′
t(z)

, z ∈ D, t ≥ 0.

Then

p(z, t)(1− E(z, t)) =
∂ft(z)
∂t

zf ′
t(z)

=
etzf ′(e−tz)− (1− e−2t)z2f ′′(e−tz)

etzf ′(e−tz)(1− E(z, t))
× (1− E(z, t))

=
etzf ′(e−tz)− (1− e−2t)z2f ′′(e−tz)

etzf ′(e−tz)

= 1− (1− e−2t)z2f ′′(e−tz)

etzf ′(e−tz)

= 1− (1− e−2t)e−tz
f ′′(e−tz)

f ′(e−tz)
= 1 + E(z, t),

that is,

p(z, t) =
1 + E(z, t)

1− E(z, t)
, z ∈ D, t ≥ 0,

and also p(0, t) = 1 for all t. It follows that p is Herglotz. Theorem 26.3 shows that {ft}
is a Löwner chain, in particular f0 = f is univalent. 2
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27 Baernstein's theorem on integral means of univalent

functions (Taneli)

One important problem in the theory of univalent functions is to �nd the sharp upper
bounds for the integral means

Mp(r, f) =

(
1

2π

∫ 2π

0

∣∣f (reiθ)∣∣p dθ)1/p

, 0 < r < 1,

for 0 < p < ∞. In the case p = 1 the problem is closely related to the Bieberbach
conjecture. The main step in Littlewood's proof that |an| ≤ en (Corollary 6.3) is to
obtain the estimate M1(r, f) ≤ r/(1− r) for all f ∈ S. Once this estimate is improved to

M1(r, f) ≤M1(r, k) =
r

(1− r2)
,

where k is the Köbe function, the proof gives |an| ≤ e
2
n. In 1973 Albert Baernstein showed

that Mp(r, f) ≤ Mp(r, k) for all 0 < p < ∞ and f ∈ S. In fact, he established a more
general inequality for the integral means de�ned in terms of an arbitrary convex function.
In the proof he used a remarkable fact that a certain maximal function, now known as
Baernstein star-function, is subharmonic.

Recall that a function ϕ continuous on R is said to be convex if ϕ
∣∣1
2
(x+ y)

∣∣ ≤ 1
2
(ϕ(x)+

ϕ(y)) for all x, y ∈ R. It is said to be strictly convex if strict inequality holds unless x = y.

Theorem 27.1 (Baernstein's theorem, 1973) Let ϕ : R −→ R be convex and nonde-
creasing. Then for each f ∈ S,∫ 2π

0

ϕ
(
log
∣∣f (reiθ)∣∣) dθ ≤ ∫ 2π

0

ϕ
(
log
∣∣k (reiθ)∣∣) dθ, 0 < r < 1,

where k is the Köbe function. If ϕ is strictly convex, then equality holds for some r only
if f is a rotation of k.

The choice ϕ(x) = epx gives the result mentioned above:

Corollary 27.2 For 0 < p <∞ and f ∈ S,

Mp(r, f) ≤Mp(r, k)

with equality only if f is a rotation of k.

As already mentioned, the proof of Baernstein's theorem involves a certain maximal
function, which we now proceed to de�ne. Let u be a real-valued function de�ned on
the annulus r1 < |z| < r2 such that ur ∈ L1(0, 2π), where ur(θ) = u

(
reiθ
)
, for each

r ∈ (r1, r2). The Baernstein star-function of u is

u∗(reiθ) = sup
|E|=2θ

∫
E

u
(
reit
)
dt, 0 ≤ θ ≤ π,

where |E| denotes the Lebesgue measure of the set E ⊂ [−π, π]. Baernstein showed that
the star-function has the following remarkable property.
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Lemma 27.3 If u is continuous and subharmonic in the annulus r1 < |z| < r2, then u
∗

is continuous in the semiannulus
{
reiθ : r1 < r < r2, 0 ≤ θ ≤ π

}
and subharmonic in the

interior.

To prove Lemma 27.3 we need the following more elementary properties of the star-
function, some of which will also be needed in the actual proof of Baernstein's theorem.
These are purely �real-variable� results which make no reference to complex function
theory.

We start with a simple representation formula for convex functions. For any real-
valued function g, we will use the notations g+(x) = [g(x)]+ = max{g(x), 0}.

Lemma 27.4 Let f : R −→ R be a convex function with ϕ(s) ≡ 0 on some interval
(−∞, s0). Then

ϕ(s) =

∫ ∞

−∞
[s− t]+ dµ(t)

for some nonnegative measure dµ.

Proof. A convex function satis�es a Lipschitz condition on each compact subinterval, and
so is absolutely continuous there. Thus

ϕ(s) =

∫ s

−∞
ϕ′(t) dt = −

∫ s

−∞
ϕ′(t) d(s− t).

Integration by parts now gives

ϕ(s) = − [ϕ′(t)(s− t)]
t=s
t=−∞ +

∫ s

−∞
(s− t) dϕ′(t) =

∫ ∞

−∞
[s− t]+ dϕ′(t)

because [s − t]+ = 0 for t > s. Since dϕ′(t) ≥ 0 because ϕ is convex, this is the desired
representation. 2

Let g be a real-valued function on (−π, π). The distribution function of g is

λ(t) = |{x : g(x) > t}|.

It is clear that λ is nonincreasing and right-continuous, that is, λ(t) = limh→0+ λ(t+h) =
λ(t+). By the de�nition of the Lebesgue integral,∫ π

−π
g(x) dx = −

∫ ∞

−∞
t dλ(t).

Two functions de�ned on the same set are said to be equimeasurable if they have the same
distribution function. Thus two equimeasurable functions have equal integrals.

One particular functions equimeasurable with g is of special importance. If λ is contin-
uous and strictly decreasing, the symmetric decreasing rearrangement of g is the function
G de�ned for 0 ≤ x ≤ π as the inverse of 1

2
λ, then extended to [−π, 0) as an even function:

G(−x) = G(x). In the general case, we must resort to the more technical de�nition

G(x) = min{t : λ(t) ≤ 2x}, 0 < x < π.
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G(0) is taken to be the essential supremum and G(π) the essential in�mum of g, and
again G(−x) = G(x). It is not di�cult to see that g and G are equimeasurable: If λ and
Λ are the distribution functions of g and G, respectively, then

Λ(t) = |{x : G(x) > t}| = 2|{x ≥ 0 : min{s : λ(s) ≤ 2x} > t}|

= 2|{x ≥ 0 : λ(t) > 2x}| = 2

∣∣∣∣[0, λ(t)2
)∣∣∣∣ = λ(t).

Now consider the star-function

g∗(θ) = sup
|E|=2θ

∫
E

g(x) dx, 0 ≤ θ ≤ π.

It is useful to note that �sup� may be replaced by �max�, that is, the supremum is always
attained, as the following lemma shows.

Lemma 27.5 For each θ ∈ [0, π] there exists a set E ⊂ [−π, π] of measure |E| = 2θ for
which g∗(θ) =

∫
E
g(x) dx.

Proof. For θ = 0 and for θ = π, the assertion is obviously true. For 0 < θ < π, choose
t such that λ(t) ≤ 2θ ≤ λ(t−). Let A = {x : g(x) > t} and B = {x : g(x) ≥ t}. Then
|A| = λ(t) and |B| = λ(t−). Choose a measurable set E with A ⊂ E ⊂ B and |E| = 2θ.
Then for any set F of measure |F | = 2θ,∫

F

g(x) dx =

∫
F

(g(x)− t) dx+ 2θt ≤
∫ π

−π
[g(x)− t]+ dx+ 2θt

=

∫
E

(g(x)− t) dx+ 2θt =

∫
E

g(x) dx,

because g(x)− t ≤ 0 for all x /∈ E and g(x)− t ≥ 0 for all x ∈ E by the choice of the set
E. This proves the lemma. 2

The star-function g∗ and the symmetric decreasing rearrangement G are closely re-
lated, as the following lemma shows.

Lemma 27.6 For each θ ∈ [0, π],

g∗(θ) =

∫ θ

−θ
G(x) dx.

Proof. For θ = 0, both sides vanish. For θ = π, both sides equal to
∫ π
−π g(x) dx. For

0 < θ < π, let E be the set of Lemma 27.5, and let t be determined by λ(t) ≤ 2θ ≤ λ(t−).
Then since [g(x)− t]+ and [G(x)− t]+ are equimeasurable,

g∗(θ) =

∫
E

g(x) dx =

∫ π

−π
[g(x)− t]+ dx+ 2θt =

∫ π

−π
[G(x)− t]+ dx+ 2θt.
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But it follows from the de�nition of G and the choice of t that

{x : G(x) > t} =

(
−λ(t)

2
,
λ(t)

2

)
⊂ (−θ, θ)

⊂
(
−λ(t−)

2
,
λ(t−)

2

)
= {x : G(x) ≥ t}.

Thus ∫ π

−π
[G(x)− t]+ dx+ 2θt =

∫ θ

−θ
(G(x)− t) dx+ 2θt =

∫ θ

−θ
G(x) dx.

2

The next lemma reveals the role of the star-function in the proof of Baernstein's
theorem.

Lemma 27.7 For g, h ∈ L1(−π, π), the following three statements are equivalent.

(a) For each function ϕ convex and nondecreasing of R,∫ π

−π
ϕ(g(x)) dx ≤

∫ π

−π
ϕ(h(x)) dx.

(b) For each t ∈ R, ∫ π

−π
[g(x)− t]+ dx ≤

∫ π

−π
[h(x)− t]+ dx.

(c) g∗(θ) ≤ h∗(θ) for all θ ∈ [0, π].

Proof. (a) ⇒ (b). This is trivial since ϕ(s) = [s− t]+ is convex and nondecreasing.
(b)⇒ (a). Since ϕmay be approximated by a monotonic sequence of lower truncations

(max{ϕ(x), α}, α ∈ R), there is no loss of generality in assuming that ϕ(s) ≡ α for all
s ≤ s0, where α and s0 are constants. Furthermore, since ϕ(s) = (ϕ(s)− α) + α, we may
assume α = 0. Then ϕ has the integral representation of Lemma 27.4 and hence∫ π

−π
ϕ(g(x)) dx =

∫ π

−π

∫ ∞

−∞
[g(x)− t]+ dµ(t) dx =

∫ ∞

−∞

∫ π

−π
[g(x)− t]+ dx dµ(t)

≤
∫ ∞

−∞

∫ π

−π
[h(x)− t]+ dx dµ(t) =

∫ π

−π
ϕ(h(x)) dx.

(b) ⇒ (c). Since (b) clearly implies that
∫ π
−π g(x) dx ≤

∫ π
−π h(x) dx, it is enough to

consider the case 0 < θ < π. Let v be the distribution function of h, and choose t to
that v(t) ≤ 2θ ≤ v(t−). Then as in the proof of Lemma 27.5, there is a set E of measure
|E| = 2θ such that h(x) ≥ t for all x ∈ E and h(x) ≤ 0 for all x /∈ E. Hence if F is any
set of measure |f | = 2θ,∫

F

g(x) dx =

∫
F

(g(x)− t) dx+ 2θt ≤
∫ π

−π
[g(x)− t]+ dx+ 2θt

≤
∫ π

−π
[h(x)− t]+ dx+ 2θt =

∫
E

(h(x)− t) dx+ 2θt

=

∫
E

h(x) dx ≤ h∗(θ).
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Since F is arbitrary, it follows that g∗(θ) ≤ h∗(θ).
(c) ⇒ (b). Let λ be the distribution function of g. Given t ∈ R, choose θ ∈ [0, π]

so that λ(t) ≤ 2θ ≤ λ(t−), and let E be a set of measure 2θ such that g(x) ≥ t on E
and g(x) ≤ t elsewhere. Appealing to Lemma 27.5, choose a set F with |F | = 2θ so that
h∗(θ) =

∫
F
h(x) dx. Then∫ π

−π
[g(x)− t]+ dx =

∫
E

(g(x)− t) dx ≤ g∗(θ)− 2θt

≤ h∗(θ)− 2θt =

∫
F

(h(x)− t) dx ≤
∫ π

−π
[h(x)− t]+ dx,

which completes the proof. 2

We now turn to the proof of Lemma 27.3, the main tool in the proof of Baernstein's
theorem.

Proof of Lemma 27.3. First we consider the assertion that u∗ is continuous in the given
semiannulus. Choose and arbitrary pair of points z = reiθ and z′ = r′eiθ

′
with r, r′ ∈

(r1, r2) and θ, θ′ ∈ [0, π]. By Lemma 27.5 there is a set E ⊂ [−π, π] of measure |E| = 2θ
for which

u∗
(
reiθ
)
=

∫
E

u
(
reit
)
dt.

Let E ′ ⊂ [−π, π] be an arbitrary set of measure |E ′| = 2θ′, chosen so that E ′ ⊂ E if θ′ ≤ θ
and E ⊂ E ′ if θ ≤ θ′. Then

u∗(z)− u∗(z′) ≤
∫
E

u
(
reit
)
dt−

∫
E′
u
(
r′eit

)
dt

=

∫
E

u
(
reit
)
dt−

∫
E′
u
(
reit
)
dt+

∫
E′

(
u
(
reit
)
− u

(
r′eit

))
dt

≤
∫
F

∣∣u (reit)∣∣ dt+ ∫ π

−π

∣∣u (reit)− u
(
r′eit

)∣∣ dt,
where F = (E \ E ′) ∪ (E ′ \ E) has measure |F | = 2|θ − θ′|. Interchanging the roles of z
and z′ and recalling that u is continuous, we see that |u∗(z)− u∗(z′)| < ε if |z − z′| < δ.
Thus u∗ is continuous.

The subharmonicity of u∗ lies deeper. It is convenient to view the function u (reit) as
de�ned (for �xed r) on the unit circle T rather than on the interval [−π, π]. Let n be a
positive integer, and let

u∗n
(
reiθ
)
= sup

E

∫
E

u
(
reit
)
dt, 0 ≤ θ ≤ π,

where the supremum is taken over all sets E ⊂ T of measure |E| = 2θ which are the union
of at most n disjoint closed arcs. Clearly

u∗n
(
reiθ
)
≤ u∗n+1

(
reiθ
)
≤ u∗

(
reiθ
)
, n = 1, 2, . . . .

We will now check that u∗n
(
reiθ
)
→ u∗

(
reiθ
)
as n→ ∞.
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Let ε > 0 and let A ⊂ T be an open set such that A ⊃ T \ E =: EC and

2(π − θ) = |T \ E| ≤ |A| ≤ 2(π − θ) + ε.

Let Aj ⊂ T, j ∈ N, be disjoint open arcs such that A =
∪∞
j=1Aj. Take n ∈ N so large

that
∣∣A(n)

∣∣ ≥ |A|−ε, where A(n) =
∪n
j=1Aj, and denote B(n) = T\A(n) =

∩n
j=1A

C
j . Then∣∣E \B(n)

∣∣ = ∣∣E ∩ A(n)
∣∣ ≤ |E ∩ A| = |A \ (T \ E)| ≤ ε,

and thus

u∗n
(
reiθ
)
≥
∫
B(n)

u
(
reit
)
dt =

∫
E

u
(
reit
)
dt−

∫
E\B(n)

u
(
reit
)
dt ≥ u∗

(
reiθ
)
−Mε,

where M = maxt∈[−π,π] u (re
it) < ∞ by the continuity of u. Hence u∗n

(
reiθ
)
→ u∗

(
reiθ
)

as n→ ∞.
It now su�ces to show that each function u∗n, n = 1, 2, . . ., is subharmonic. The

preceeding argument may be adapted to show that u∗n is continuous, so we only have to
show that u∗n also has the local sub-mean-value property.

The proof will require some additional notation. For 0 < ρ < r, let

r + ρeiψ = r(ψ)eiα(ψ), |α(ψ)| < π

2
.

Note that r(−ψ) = r(ψ) and α(−ψ) = −α(ψ). For r1 < r < r2, 0 ≤ θ ≤ π and arbitrary
real φ, de�ne

v(r, θ, φ) =

∫ θ

−θ
u
(
rei(t+φ)

)
dt.

We will need the identity∫ π

−π
v(r(ψ), θ + α(ψ), φ) dψ =

∫ π

−π
v(r(ψ), θ, φ+ α(ψ)) dψ, 0 < θ < π, (27.1)

valid for ρ so small that r1 < r(ψ) < r2 and 0 < θ + α(ψ) < π. To prove (27.1), write∫ π

−π
v(r(ψ), θ + α(ψ), φ) dψ =

∫ π

−π
(J1(ψ) + J2(ψ)) dψ,

where

J1(ψ) =

∫ −θ+α(ψ)

−θ−α(ψ)
u
(
r(ψ)ei(t+φ)

)
dt

and

J2(ψ) =

∫ θ+α(ψ)

−θ+α(ψ)
u
(
r(ψ)ei(t+φ)

)
dt.

But
∫ π
−π J1(ψ) dψ = 0 since J1(−ψ) = −J1(ψ). On the other hand, the transformation

u = t− α(ψ) gives

J2(ψ) =

∫ θ

−θ
u
(
r(ψ)ei(u+φ+α(ψ))

)
du = v(r(ψ), θ, φ+ α(ψ)),
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which completes the proof of (27.1).
If I(φ, θ) denotes the closed arc of the unit circle described counterclockwise from

ei(φ−θ) to ei(φ+θ), we may write

v(r, θ, φ) =

∫
I(φ,θ)

u
(
reit
)
dt.

We are now ready to show that u∗n has the local sub-mean-value property. Fix reiθ

with r1 < r < r2 and 0 < θ < π. The supremum in the de�nition of u∗n is attained simply
because a continuous function on a compact subset of the torus T2n has a maximum there.
Thus there exists a set

E =
m∪
j=1

I(φj, θj),
m∑
j=1

θj = θ, m ≤ n,

composed of disjoint arcs I(φj, θj), for which

u∗n
(
reiθ
)
=

∫
E

u
(
reit
)
dt.

For 0 < ρ < r and −π ≤ ψ ≤ π, de�ne the set

E(ψ) = I(φ1, θ1 + α(ψ)) ∪
m∪
j=2

I(φj + α(ψ), θj).

Let ρ be chosen small enough to keep the arcs in E(ψ) disjoint for all ψ. Then E(ψ) has
measure |E(ψ)| = 2θ + 2α(ψ), so by the de�nition of u∗n,

u∗n
(
r(ψ)ei(θ+α(ψ))

)
≤
∫
E(ψ)

u
(
r(ψ)eit

)
dt

= v(r(ψ), θ1 + α(ψ), φ1) +
m∑
j=2

v(r(ψ), θj, φj + α(ψ)).

Since r(ψ)ei(θ+α(ψ)) = reiθ + ρei(θ+ψ), integration with respect to ψ and (27.1) now give∫ π

−π
u∗n
(
reiθ + ρeiψ

)
dψ =

∫ π

−π
u∗n
(
r(ψ)ei(θ+α(ψ))

)
dψ

≥
∫ π

−π
v(r(ψ), θ1 + α(ψ), φ1) dψ +

m∑
j=2

∫ π

−π
v(r(ψ), θj, φj + α(ψ)) dψ

=
m∑
j=1

∫ π

−π
v(r(ψ), θj, φj + α(ψ)) dψ.

But since u is assumed to be subharmonic,∫ π

−π
v(r(ψ), θj, φj + α(ψ)) dψ =

∫ θj

−θj

∫ π

−π
u
(
r(ψ)ei(t+φj+α(ψ))

)
dψ dt

=

∫ θj

−θj

∫ π

−π
u
(
rei(t+φj) + ρeiψ

)
dψ dt

≥ 2π

∫ θj

−θj
u
(
rei(t+φj)

)
dt.
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Thus for su�ciently small ρ,

1

2π

∫ π

−π
u∗n
(
reiθ + ρeiψ

)
dψ ≥

m∑
j=1

∫ θj

−θj
u
(
rei(t+φj)

)
dt

=

∫
E

u
(
reit
)
dt = u∗n

(
reiθ
)
.

This shows that each function u∗n has the local sub-mean-value property at each point
of the open semiannulus. Hence u∗n is subharmonic for each n, which implies that u∗ is
subharmonic in the semiannulus. This completes the proof.

2

We are now �nally ready to give the proof of Baernstein's result.

Proof of Theorem 27.1. In view of Lemma 27.7 ((b) ⇒ (a)), the inequality of Baernstein's
theorem will be established if we can show that∫ π

−π
log+

∣∣f (reiθ)∣∣
ρ

dθ ≤
∫ π

−π
log+

∣∣k (reiθ)∣∣
ρ

dθ, 0 < r < 1, (27.2)

for each ρ > 0 and for all f ∈ S.
The �rst step in the proof is to apply Jensen's theorem to obtain another expression

for the left-hand side of (27.2). Let f be an arbitrary analytic function, α ∈ C and let
n(f, α, r) be the number of points (counted according to multiplicity) in |z| ≤ r at which
f(z) = α. Assume f(0) ̸= α, and let

N(f, α, r) =

∫ r

0

n(f, α, t)

t
dt.

Then Jensen's theorem takes the form

1

2π

∫ π

−π
log
∣∣f (reiθ)− α

∣∣ dθ = N(f, α, r) + log |f(0)− α|.

If α = eiφ and f(0) = 0, this reduces to

1

2π

∫ π

−π
log
∣∣f (reiθ)− eiφ

∣∣ dθ = N
(
f, eiφ, r

)
.

Now integrate with respect to φ and use the simple identity

1

2π

∫ π

−π
log
∣∣β − eiφ

∣∣ dθ = log+ |β| (∗)

to obtain ∫ π

−π
N
(
f, eiφ, r

)
dφ =

1

2π

∫ π

−π

∫ π

−π
log
∣∣f (reiθ)− eiφ

∣∣ dθ dφ
=

∫ π

−π

1

2π

∫ π

−π
log
∣∣f (reiθ)− eiφ

∣∣ dφ dθ
=

∫ π

−π
log+

∣∣f (reiθ)∣∣ dθ.
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If f is replaced by f/ρ, this becomes∫ π

−π
log+

∣∣f (reiθ)∣∣
ρ

dθ =

∫ π

−π
N
(
f, ρeiφ, r

)
dφ. (27.3)

But by the de�nition of N , if f ∈ S and α ̸= 0 is in the range D of f , then

N(f, α, r) =

∫ r

0

n(f, α, t)

t
dt =

[∫ r

|f−1(α)|

dt

t

]+
= log+

r

|f−1(α)|
, 0 < r < 1. (27.4)

Now let u(ξ) = − log |f−1(ξ)| be the Green's function of D with singularity at 0. Extend
it to a continuous function in the punctured plane by setting u(ξ) = 0 for ξ /∈ D. Then
the formula (27.4) takes the form

N(f, ξ, r) = [u(ξ) + log r]+, 0 < r < 1,

for arbitrary ξ, and equation (27.3) becomes∫ π

−π
log+

∣∣f (reiθ)∣∣
ρ

dθ =

∫ π

−π

[
u
(
ρeiφ

)
+ log r

]+
dφ. (27.5)

Next let v(ξ) = − log |k−1(ξ)| for ξ in the range of the Köbe function k, and let v(ξ) = 0
elsewhere (i.e. for ξ ∈ (−∞, 1/4]). In view of (27.5), the inequality (27.2) can be recast
in the form∫ π

−π

[
u
(
ρeiφ

)
+ log r

]+
dφ ≤

∫ π

−π

[
v
(
ρeiφ

)
+ log r

]+
dφ, 0 < r < 1, 0 < ρ <∞.

But by Lemma 27.7 ((c) ⇒ (b)) this is implied by the inequality

u∗
(
ρeiφ

)
≤ v∗

(
ρeiφ

)
, 0 < ρ <∞, 0 ≤ φ ≤ π. (27.6)

The proof of (27.6) will make use of Lemma 27.3. The function u is continuous in
0 < |ξ| < ∞. In the domain D \ {0} it is positive and harmonic, and u ≡ 0 outside D.
In particular, u has the local sub-mean-value property at each point ξ /∈ D. This shows
that u is subharmonic in 0 < |ξ| < ∞. Hence it follows from Lemma 27.3 that u∗ is
subharmonic in the open upper half-plane.

The next step is to observe that v∗ is harmonic in the upper half-plane. First notice
that v (ρeiφ) = v (ρe−iφ) since k (z) = k(z). Also, v (ρeiφ) is a decreasing function of φ in
the interval (0, π). To see this, let z = k−1(ξ) and ξ = ρeiφ, and compute

∂

∂φ
v
(
ρeiφ

)
=

∂

∂φ

(
− log

∣∣z (ρeiφ)∣∣)
= −z

′ (ρeiφ) iρeiφz (ρeiφ) + z (ρeiφ) z′ (ρeiφ) iρeiφ

2 |z (ρeiφ)|2

= − i

2

(
z′(ξ)

z(ξ)
ξ −

(
z′(ξ)

z(ξ)
ξ

))
= Im

(
z′(ξ)

z(ξ)
ξ

)
.
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Since ξ = k(z) = z(1− z)−2, one can see that z(ξ) = 1+2ξ−
√
1+4ξ

2ξ
and thus

z′(ξ) =

(
2− 2√

1+4ξ

)
· 2ξ − 2

(
1 + 2ξ −

√
1 + 4ξ

)
4ξ2

=
1 + 2ξ −

√
1 + 4ξ

2ξ2
√
1 + 4ξ

=
z(ξ)

ξ
√
1 + 4ξ

.

Since
√
1 + 4ξ = 1+z

1−z , we obtain

∂

∂φ
v
(
ρeiφ

)
= Im

(
z(ξ)

z(ξ)ξ
√
1 + 4ξ

ξ

)
= Im

1− z

1 + z
< 0

for Im z > 0. It is now evident that

v∗
(
ρeiφ

)
=

∫ φ

−φ
v
(
ρeiψ

)
dψ, 0 < φ < π. (27.7)

This formula allows the direct calculation of the Laplacian

1

ρ2

(
∂2v∗

∂(log ρ)2
+
∂2v∗

∂φ2

)
.

Since v
(
ρeiψ

)
is harmonic for −π < ψ < π,

∂2v∗

∂(log ρ)2
(
ρeiφ

)
=

∫ φ

−φ

∂2v

∂(log ρ)2
(
ρeiψ

)
dψ = −

∫ φ

−φ

∂2v

∂φ2

(
ρeiψ

)
dψ

= −
(
∂v

∂φ

(
ρeiφ

)
− ∂v

∂φ

(
ρe−iφ

))
= −∂

2v∗

∂φ2

(
ρeiφ

)
.

Thus the Laplacian vanishes and v∗ is harmonic in the upper half plane.
It is also clear from (27.7) that v∗ is continuous int the closed upper half-plane, except

at the origin. By Lemma 27.3 the same is true for u∗. Near the origin, u has the form

u(ξ) = − log |ξ|+ u1(ξ), (27.8)

where u1 is harmonic and u1(0) = 0 (u1(ξ) = Re log ξ
f−1(ξ)

, ξ ∈ D \ {0}). Thus

u∗
(
ρeiφ

)
+ 2φ log ρ = sup

|E|=2φ

∫
E

(
u
(
ρeit
)
+ log ρ

)
dt = sup

|E|=2φ

∫
E

u1
(
ρeit
)
dt→ 0

as ρ→ 0, uniformly in φ, φ ∈ [0, π]. Since the same is true for v∗, it follows that

u∗
(
ρeiφ

)
− v∗

(
ρeiφ

)
→ 0

as ρ → 0, uniformly for φ ∈ [0, π]. As ξ → ∞, it is geometrically obvious that u(ξ) → 0,
thus u∗ (ρeiφ) → 0 as ρ→ ∞, uniformly in φ.

Since u∗ − v∗ is subharmonic in the upper half-plane and continuous in its closure,
the maximum principle reduces the proof of (27.6) to showing that u∗(ξ) ≤ v∗(ξ) on the
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real axis. On the positive real axis this is trivial since by de�nition u∗(ξ) = 0 = v∗(ξ) for
ξ > 0. Next let d be the distance from 0 to the complement of D. By Köbe 1/4-theorem
d ≥ 1/4. In the disc |ξ| < d u has the form (27.8), where u1 is harmonic in |ξ| < d and
u1(0) = 0. Thus

u∗
(
ρeiπ

)
=

∫ π

−π
u
(
ρeiφ

)
dφ = −2π log ρ, 0 < ρ ≤ d. (27.9)

In fact, since u is subharmonic in 0 < |ξ| < ∞, it is clear that u1 is subharmonic in the
whole plane. Applying this remark to

v(ξ) = − log |ξ|+ v1(ξ)

we see that

v∗
(
ρeiπ

)
= −2π log ρ+

∫ π

−π
v1
(
ρeiφ

)
dφ

≥ −2π log ρ+ v1(0) = −2π log ρ, 0 < ρ <∞.

(27.10)

In particular u∗(ξ) ≤ v∗(ξ) for −d ≤ ξ < 0.
The inequality is more di�cult to establish on the interval −∞ < ξ < −d. For this

purpose, we �x ε > 0 and consider the function

Q(ξ) = u∗(ξ)− v∗(ξ)− εφ, ξ = ρeiφ,

which is subharmonic in the upper half-plane and continuous in its closure, except at
ξ = 0. Since u∗(ξ)− v∗(ξ) → 0 as ξ → 0 and as ξ → ∞, it is clear that

lim sup
ξ→0

Q(ξ) ≤ 0 and lim sup
ξ→∞

Q(ξ) ≤ 0.

Let M be the maximum of Q in the closed upper half-plane. Then M ≥ 0, and the
maximum is attained somewhere on the real axis.

Suppose now that M > 0. Then, since u∗(ξ) ≤ v∗(ξ) on the interval −d ≤ ξ < ∞,
there is some point ξ0 = −ρ0 for which −∞ < ξ0 < −d and Q (ξ0) =M . Let G(φ) denote
the symmetric decreasing rearrangement of u (ρ0eiφ). In view of Lemma 27.6,

∂u∗

∂φ

(
ρ0e

iφ
)
=

∂

∂φ

(
2

∫ φ

0

G(θ) dθ

)
= 2G(φ), 0 ≤ φ ≤ π.

But because ρ0 > d, there is some point on the circle |ξ| = ρ0 which lies outside D, so

G(π) = inf
0≤φ≤π

u
(
ρ0e

iφ
)
= 0.

Applying the same argument to v∗ we conclude that

∂Q

∂φ
(ξ0) =

∂Q

∂φ

(
ρ0e

iπ
)
= −ε < 0.
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But this is impossible since Q has a relative maximum at ξ0. This contradiction shows
that M = 0, that is,

u∗(ξ) ≤ v∗(ξ) + εφ ≤ v∗(ξ) + επ, Im (ξ) ≥ 0.

Letting ε→ 0, we obtain (27.6). This completes the proof of the inequality in Baernstein's
theorem.

It now remains only to investigate the case of equality. Under the assumption that ϕ
is strictly convex, we will show that if f is not a rotation of k, then strict inequality holds.

Continuing with the same notation, we �rst note that if f is not a rotation of k, then
u∗(ξ) < v∗(ξ) throughout the upper half-plane. To see this, observe that v(ξ) fails to be
harmonic in any annulus 1/4 < |ξ| < ρ, since it is nonnegative there and equal to zero at
interior points of the annulus on the segment −ρ < ξ < −1/4. Thus v1(ξ) = log |ξ|+ v(ξ)
cannot be harmonic in the disc |ξ| < ρ if ρ > 1/4. If h is the function harmonic in |ξ| < ρ
and equal to v1 on |ξ| = ρ, it follows that v1(ξ) < h(ξ) in |ξ| < ρ. In particular,

0 = v1(0) < h(0) =
1

2π

∫ π

−π
v1
(
ρeiφ

)
dφ, ρ >

1

4
.

Comparing this with (27.9) and (27.10) and bearing in mind that d > 1/4 if f is not a
rotation of k, we conclude that u∗(ξ) < v∗(ξ) for −d < ξ < −1/4. Hence u∗ − v∗ is a
nonpositive subharmonic function in the upper half-plane, not identically zero. But by the
maximum principle, this implies u∗(ξ) < v∗(ξ) everywhere in the half-plane Im (ξ) > 0.

We now claim that∫ π

−π

[
u
(
ρeiφ

)
− t
]+

dφ <

∫ π

−π

[
v
(
ρeiφ

)
− t
]+

dφ

if 0 < λρ(t) < 2π, where
λρ(t) =

∣∣{φ : u
(
ρeiφ

)
> t
}∣∣ .

Indeed, since u∗ (ρeiφ) < v∗ (ρeiφ) for 0 < ρ <∞ and 0 < φ < 2π, this conclusion follows
easily from the proof of Lemma 27.7 ((c) ⇒ (b)). On the other hand, it is geometrically
clear that unless f(z) ≡ z there will correspond to each t > 0 an open interval I ⊂ (0,∞)
such that 0 < λρ(t) < 2π for all ρ ∈ I. Indeed, if this were not true, then for each ρ > 0
we would have either u (ρeiφ) > t for all φ ∈ (0, 2π) or u (ρeiφ) ≤ t for all φ ∈ (0, 2π), and
therefore u (ρeiφ) would be constant in φ for each ρ > 0. Since f ∈ S, this would imply
f(z) ≡ z. Thus, if f(z) ̸≡ z, there corresponds to each r ∈ (0, 1) an open interval Ir such
that ∫ π

−π

[
u
(
ρeiφ

)
+ log r

]+
dφ <

∫ π

−π

[
v
(
ρeiφ

)
+ log r

]+
dφ, ρ ∈ Ir;

or equivalently, in view of (27.5),∫ π

−π
log+

∣∣f (reiθ)∣∣
ρ

dθ <

∫ π

−π
log+

∣∣k (reiθ)∣∣
ρ

dθ, ρ ∈ Ir. (27.11)

But this inequality (27.11) obviously remains true even for f(z) ≡ z with Ir = (r, r+ε) for
su�ciently small ε > 0, since the left-hand side will be equal to zero while the right-hand
side is strictly positive.
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Now let ϕ be an arbitrary nondecreasing strictly convex function. Fix r ∈ (0, 1), let
Ir be the interval for which (27.11) holds, and let Jr be the interval log Ir. Let s0 be a
point to the left of Jr at which ϕ is di�erentiable. Decompose ϕ in the form

ϕ(s) = ϕ1(s) + ϕ2(s),

where

ϕ1(s) =

{
ϕ(s), s ≤ s0,

ϕ(s0) + ϕ′(s0)(s− s0), s ≥ s0.

Then ϕ1 and ϕ2 are nondecreasing convex functions on (−∞,∞), and ϕ2 is strictly in-
creasing on (s0,∞). By Lemma 27.4, ϕ2 has the form

ϕ2(s) =

∫ s

−∞
[s− t]+ dµ(t), dµ(t) ≥ 0. (27.12)

Since ϕ2 is strictly increasing on (s0,∞), µ(Jr) > 0. Rewriting (27.11) in the form∫ π

−π

[
log
∣∣f (reiθ)∣∣− t

]+
dθ <

∫ π

−π

[
log
∣∣k (reiθ)∣∣− t

]+
dθ, t ∈ Jr,

using the representation (27.12) and interchanging the order of integration, we obtain∫ π

−π
ϕ2

(
log
∣∣f (reiθ)∣∣) dθ = ∫ π

−π

∫ log|f(reiθ)|

−∞

[
log
∣∣f (reiθ)∣∣− t

]+
dµ(t) dθ

=

∫ ∞

−∞

∫ π

−π

[
log
∣∣f (reiθ)∣∣− t

]+
dθ dµ(t)

<

∫ ∞

−∞

∫ π

−π

[
log
∣∣k (reiθ)∣∣− t

]+
dθ dµ(t)

=

∫ π

−π
ϕ2

(
log
∣∣k (reiθ)∣∣) dθ.

But by Baernstein's theorem (the inequality part),∫ π

−π
ϕ1

(
log
∣∣f (reiθ)∣∣) dθ ≤ ∫ π

−π
ϕ1

(
log
∣∣k (reiθ)∣∣) dθ.

Adding these two inequalities, we conclude that strict inequality holds in Baernstein's
theorem for the function ϕ. This completes the proof. 2

Appendix: Proof of the identity (∗). First note that by the change of variable φ =
θ + arg β and 2π-periodicity∫ π

−π
log
∣∣β − eiφ

∣∣ dφ =

∫ π−arg β

−π−arg β

log
∣∣ei arg β (|β| − eiθ

)∣∣ dθ = ∫ 2π

0

log
∣∣|β| − eiθ

∣∣ dθ,
so we may assume β > 0 (the case β = 0 is trivial) and consider the integral from 0 to 2π.
Denote f(z) = log (β − eiz). Then f is analytic whenever β− eiz ̸= −x for x ≥ 0, that is,

z ̸= arg(β + x)− i log |β + x| = n2π − iy, n ∈ Z, y ≥ log β.
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From now on the proof is divided into two parts.
If β > 1, then f is analytic in a domain containing the closed upper half-plane

{ Im z ≥ 0}. Thus ∫
Γ

f(z) dz = 0,

where Γ is as in Figure 27. Since eiz = eixe−y, z = x + iy, is 2π periodic with respect to
x, we see that ∫

I1

f(z) dz = −
∫
I3

f(z) dz.

Because ei(x+iρ) = eixe−ρ → 0 as ρ→ ∞, we see that∫
I2

f(z) dz = −
∫ 2π

0

log
(
β − eixe−ρ

)
dx→ −2π log β

as ρ→ ∞. Hence ∫ 2π

0

log
(
β − eiθ

)
dθ = 2π log β,

and consequently∫ 2π

0

log
∣∣β − eiθ

∣∣ dθ = ∫ 2π

0

Re log
(
β − eiθ

)
dθ = 2π log β.

[Case β > 1.] [Case β ≤ 1.]

Figure 1: Integration paths.

If β ≤ 1, then f is analytic in C\{n2π − iy : n ∈ Z, y ≥ log β} which does not contain
the half-plane { Im z ≥ 0}. Thus, for a path Γ as in Figure 27, we have∫

Γ

f(z) dz = 0.

As in the case β > 1, we see that∫
I2

f(z) dz +

∫
I4

f(z) dz = 0

and ∫
I3

f(z) dz → −2π log β
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as ρ→ ∞. For the segments I1 and I5, we have∫
I1

f(z) dz +

∫
I5

f(z) dz =

∫ − log β

0

log
(
β − ei(2π−ε+iy)

)
i dy +

∫ 0

− log β

log
(
β − ei(ε+iy)

)
i dy

= i

∫ − log β

0

(
log
(
β − ei(2π−ε)e−y

)
− log

(
β − eiεe−y

))
dy

= −
∫ − log β

0

(
arg
(
β − ei(2π−ε)e−y

)
− arg

(
β − eiεe−y

))
dy

= −2

∫ − log β

0

arg
(
β − e−iεe−y

)
dy → 2π log β,

as ε→ 0 (see Figure 2). Finally, because

Figure 2: Points β − eiz for z ∈ I1 and z ∈ I5.

lim
z→−i log β

∣∣∣∣ β − eiz

z + i log β

∣∣∣∣ = lim
z→−i log β

∣∣∣∣−iβ(z + i log β) + β(z + i log β)2 + . . .

z + i log β

∣∣∣∣ = β,

so that |log (β − eiz)| ≍ |log(z + i log β)| as z → −i log β, we have that∣∣∣∣∫
C2

f(z) dz

∣∣∣∣ ≤ π

2
εmax
z∈C2

∣∣log (β − eiz
)∣∣→ 0

as ε→ 0. Similarly ∣∣∣∣∫
C1

f(z) dz

∣∣∣∣→ 0

as ε→ 0. Therefore ∫ 2π

0

log
(
β − eiθ

)
dθ =

∫
I

f(z) dz = 0.

2
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