
SOME BANACH SPACES OF ANALYTIC FUNCTIONS 

N. DANIKAS 

In the following we denote by D the unit disk { z E C: lzl < 1} and by 8D its 
boundary { z E C : I z I = 1 } . 

1. The Bloch space 8 

A function f is called a Bloch function if it is analytic in D and 

sup(1-lzl2 )lf'(z)l < +oo. (1) 
xED 

By Schwarz's lemma it is very easy to see that all bounded analytic functions in D 
are Bloch functions. 

The typical example of an unbounded Bloch function is the logarithmic function 

.>.(z) = log(1- z), zED. 

This function is extremal in the Bloch space with respect to its growth: For a 
Bloch function f and a z = lzlei-6 E D we have 

t rlzl 
f(z)- f(O) = lo /'(() d( = ei-o Jo f'(teiiJ) dt, 

so that 

1
1zl 1 11zl 1 

lf(z)l ~ 1/(0)I + M --2 dt ~ lf(O)I + M - dt 
0 1-t 0 1-t 

1 
= 1/(0)I + Mlog 1 -lzl = 1/(0)I + MI.X(Izl)l, 

where M is a constant. 
An important property of the condition (1) is its conformal invariance. This is 

easy to see by calculation: For an arbitrary conformal mapping <p of D onto itself 
we have 

z+~ 
w = t.p(z) =a----

1 +~z 

for some a E 8D and some~ ED. Iff is analytic in D and f(w) = h(z), then we 
get 

(1-lzl 2)lh'(z)l = (1- lwl 2)1/'(w)l 

Typeset by AM> '!EX 

9 
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for all zED. 
We denote by B the family of all Bloch functions. We show first that B equipped 

with the norm 
IIIIIs = 1/(0)1 + sup(1 -lzl2)1/'(z)i 

zED 

is a Banach space. 
The only nontrivial step in the proof is to show that B is complete in the metric 

defined by its norm. 
Let {In} be a Cauchy sequence of Bloch functions. We prove that there is an 

analytic function f such that 11/n - fils ~ 0 as n ~ oo. For a sufficient large n 
we then have llfn -fils < 1, or In - f E B, which implies f E B, since B is linear. 

Let now e > 0 andrE (0, 1). For n, m > N = N(e) it is 11/n- /mils< e. From 
this and the growth condition it follows that 

ifn(z)- fm(z)i :S 11/n- !mils (log 1 ~ r + 1) < e (log 1 ~ r + 1) 

for all z with izl :S r and all n, m > N. Hence the sequence {/n} converges 
uniformly on compacta in D. By the Weierstrass theorem the limit function f is 
analytic in D and f~(z) ~ f'(z), zED, as n ~ oo. 

For n, m >Nand every zED it is now 

(1-lzl 2)1/~(z)- J:n(z)i + ifn(O)- fm(O)i <e. 

Letting m ~ oo we obtain 
11/n- fils< c 

for n > N. 
There are "much too much" functions in the space B, in the sense that B is not 

separable. In order to see this, we construct an uncountable set E C B, such that 
llx- Ylls > o for a o > 0 and for all x, y E E, x =f. y. If there is a countable set 
{ 'Pn}, 'Pn E B, n E N, which is everywhere dense in B, then to every x E E there 
is an 'Pn with llx- IPnlls < !· The correspondence is one to one, since for ayE E, 
y =f. x, with 1111'- IPnlls < ~' we would have llx- Ylls < o, which is impossible. 

The set E consists of the functions 

e-it ( 1 + e-itz) 
ft(z) = 2log 1- e-itz ' zED, 0 < t < ~. - - 2 

Obviously the function ft(z) is analytic in D for every t. Further it is 

2 ' 1 -lzi2 
(1-lzl )ift(z)i = 11- e-2itz21 :S 1, zED, 

i.e. ft E B, 0 :S t < 27T. If t, r E [0, ~), t =f. r, and z = reit ED, we have 

(1 -lzi2)IJ;(z)- f~(z)i = (1- lzl
2
) 11 _e:~::tz2 - 1 _e:~::,.z21 

2 I e-2it e-2ir I 2 1 
= (1- r ) 1- r2 - 1- r2e2i(t-r) ;::: 1- (1- r ) 11- r2e2i(t-r) I" 

Letting r ~ 1 we obtain lift- /,-lis ;::: 1, which completes the proof. 
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Bloch functions do not form an algebra respecting the multiplication. For ex­
ample g(z) = log2(1- z) ~ B, although f(z) = log(l - z) E B. 

The Bloch condition describes a restriction for the growth of the derivative of 
an analytic function in D. It is interesting that this condition is equivalent to an 
analogous condition for the nth derivative. 

Theorem 1. For every fEB and every n EN, n;::: 2, it is 

sup(l-lzl2)nlf(nl(z)l :5 (n -1)! 22nllfiiB· 
zED 

Conversely, if for a function f analytic in D and for annE N, n ;::: 2, we have 

sup(l -lzl2)nlf(n)(z)l < +oo, 
zED 

then fEB. 

Proof. a) For a zED consider the circle C = { ( llz-(1 = 1-;lzl }. From Cauchy's 
formula for the derivative f'(z) it follows 

(1-lzl2)nlf(nl(z)l = (1-lzl2)nl (n- ~)! J f'(() d(l 
27rt ((- z)n 

c 

:5 (1-lzl2t(n- 1)! 2n-1 sup 1/'(()1 ( Ill) _1 (EC 1- Z n 

:5 (n- 1)! 22n-2(1- lzl 2) sup 1/'(~)1 
1~1= l+J=I 

1-lzl<2(1-l~l 2 ) 
-::=; (n-1)!22n{(l-l~l 2 ) sup 1/'(~)1} 

~~~= l+rl 

b) Suppose now that f is analytic in D and that for an n E N, n ;::: 2, we have 

sup(l-lzl2)nlf(nl(z)l = K < +oo. 
zED 

For zED it is 

so that 

lf(n-1l(z)- f(n-1)(0)1 < lzl111f(nl(tz)l dt < k11 lzl dt 
- o - o (1 - tlzl)n 

k 
= (n- 1)(1- lzl)n-1' 

(1- lzl2)n-11f(n-1l(z)l :5 ~2n-1 + lf(n-1)(0)1. 
n-1 

By applying this procedure n - 1 times we finally get 

sup(l-lzl2)1/'(z)l < C(f,k,n) < +oo. 
zED 

From the first part of the foregoing theorem it follows for the nth Taylor co-
1,<n>rml 22n . 

efficient of a Bloch function f that lanl = ~ :5 n-llfiiB· By usmg a more 
refined method we can prove that in fact the Taylor coefficients an are bounded 
for all n. 
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Theorem 2. Suppose that 

00 

l(z) = 2.: anZn E B. 
n=O 

Then lanl = ~IIliis, n = 0, 1, 2, ... , where the constant ~ is best possible. 

Proof. For n = 0, 1, the estimate follows immediately from the definition of the 
Bloch norm. For n 2:: 2 we use Cauchy's formula for the derivative f'(z). We 
obtain 

Ia I= ll(nl(o)l = ,.!__1 f J'(() d(l < IIliis 1 
n n! n 21l"i (n - n rn-1(1- r 2 ) 

lt:l=r 

for every r E (0, 1). 
It is easy to calculate that 

r~~/n-1(1- r2) = (~~ ~) Y (1- ~~ ~) = (~~ ~) Y n! 1, 

from which it follows 

1 ( 1)(n+1)"2"
1 

lanl $ 2 1 + -;:; n _ 1 llflls, 

We set now 
z:-1 %-1 

~(x)=~(1+;) (:~~)-2 =~(1+;)(1+x:1)-2, X 2:: 2, 

and we observe first that 
e 

~(n)--+ 2' as n--+ oo. 

Moreover, 

1 (X+ 1) "'2
1 

1 [ { l ( 2 ) 1 } 1] ~ (x) = X- 1 2x (x + 1) zlog 1 +X- 1 - X+ 1 -; > 0, 

because 

( 
2 ) 2 2 

log 1+x-1 >2x;1+1 =;, X 2:: 2, 

as we can see by elementary arguments. 
It follows that 

sup~(1+.!.) (n+ 1)Y =~, n;?:2 n n- 1 2 
which completes the proof of the theorem. 

A characteristic property of Bloch functions is that the distance of two arbitrary 
values of them is less than the non-euclidean distance of the preimages multiplied 
by a constant. 
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Theorem 3. Iff E B, then for z, wED it is 

lf(z)- f(w)l :5 llfllsd(z, w), 

1 +I z-_w I 
where d(z, w) denotes the non-euclidean distance ~log 

1 
_ I~ 

1
. 

1-Zw 
Conversely, if for all z, wED and for a constant M, 

lf(z)- f(w)l :5 Md(z,w), 

then fEB with llflla :5 M. 

13 

Proof. a) Let z, wE D. Consider the Mobius transformation cp(() = 1~-2(' (ED. 

We have cp- 1 (z) = 0 and cp- 1 (w) =~ED. Iff o cp = g, then llflla = llglla· We 
write now 

lf(z)- f(w)l = lg(O)- g(~)l = 11~ g'(s) dsl :5 1~1fo
1

1g'(~t)l dt 

{
1 dt 1 1 + 1~1 1 1 + 1~1 

:5 l~lll9lls lo 1 -l~l2t2 = 2llgllslog 1 _ 1~ 1 = 2llfllslog 1 _ 1 z-.:!!' 1· 
1-Zw 

b) For z =I= w we have 
lf(z)- f(w)l < M. 

d(z, w) -

This implies 

lim lf(z)- f(w)l = lim lf(z)- f(w)llz- wl = lf'(z)l(1 -lzl2):::; M, 
w-tz d(z,w) w-+z lz-wl d(z,w) 

for every zED. 

We have already mentioned that the Bloch space contains the unbounded func­
tion A(z) = log(1- z), z E D. The following result provides a family of unbounded 
Bloch functions in form of certain power series. 

Theorem 4. Let f(z) = 2::;:'=1 bkznk, z E D, where nk E N, n~: 1 
;:::: a > 1 and 

lbkl :5 M for all k. Then fEB. 

Power series of the form 2::;:'=1 bkznk with n~: 1 
;:::: a > 1 (a typical example is 

nk = 2k, k E N) are called lacunary series; they play an important role in several 
areas in the theory of complex functions. 

Proof. Without restricting generality we may take M = 1. Since 

lf(z)l :5 lzl + lzl2 + · · · + lzln + .. · = 1 ~~lzl' zED, 

our function f is analytic in D. 
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We prove now that f satisfies the Bloch condition in the form 

izf'(z)i < C izi 
1 - izi - (1 - izi) 2 ' 

(2) 

where z E D and C is an absolute constant. In this inequality we can use more 
efficiently the lacunarity condition. 

First we note that for n 8 :5 n < ns+l it is 

For an arbitrary z E D we have now 

which proves our theorem. 

The classical geometric characterization of Bloch functions involves the radius 
dJ(z) of the largest schlicht disk around the point f(z) on the Riemann image 
surface by f . It is f E B if and only if 

b = sup d1(z) < +oo. 
zED 

This is equivalent to a well-known theorem of Bloch. In quantitative terms, 

zED, 

where B is an absolute constant with 1 < B < 0.472. The name "Bloch function" 
derives from the connection to the constant B, which is known as the "Bloch 
constant". We omit the proof of the above characterization, which is not very 
useful in the praxis. 

Instead of this we prove a very simple geometric characterization of univalent 
Bloch functions . 

Theorem 5. Let f be analytic and univalent in D and let a,(z) = dist(/(z), af(D)). 
Then fEB if and only if a,(z) is bounded for all zED. 

In other words, an analytic and univalent function f in D is Bloch if and only 
if f(D) contains no arbitrarily large disks. 

Proof. Let z0 ED. We show that 
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We consider the Koebe transform hoff: 

f( z+_.=o ) - f(zo) 
h( ) _ l+Zoz 

z - (1- lzol 2)f'(zo) ' 
zED. 

Clearly his analytic and univalent in D, with h(O) = 0 and h'(O) = 1. 
By Koebe's distortion theorem we get 

lh'(O)I 1 < I h(z)- h(O) I in D. 
(1- lzl) 2 - z 

Let now { (n} be a sequence of points in D with l(n I -t 1 as n -t oo. If 
(n = t!ioz;n , then Zn E D and lzn I -t oo. We have 

-! (1- lzol 2
) lf'(zo) I ~ liminf If ( Zn + zo ) - f(zo) I = liminf lf((n) - f(zo) I, 

lzn l--+1 1 + ZoZn l(n l--+1 

which implies that 

-!C1-Izol2 )lf'(zo)l ~ liminflf(()- f(zo)l = 8t(zo). 
1(1--+1 

The function g(z) = !!:if. is analytic and =f. 0 in D with g(O) = 1. Apply now 
the minimum principle to the function g; then 

min lg(z) I ~ lg(O) I = 1 
lzl=r 

for all r, 0 < r < 1. It follows that there exists a sequence {(n}, (nED, l(nl-t 1, 
with 

lh((n)l ~ I h~~n) I ~ 1, 

or 
lf((n)- f(zo)l ~ (1-lzol2 )lf'(zo)l for all n. 

Hence 
8t(zo) = liminflf(()- f(zo)l ~ (1-lzol 2 )lf'(zo)l. 

1(1--+1 

At the end of this section we mention the little Bloch space, denoted by Bo. 
The space B0 consists of all functions f analytic in D, with 

as lzl-t 1. 

A Bloch function is in Bo if and only if llf(rz) - f(z) lis -t 0 as r -t 1-. It 
follows easily that B0 is the closure in B of the polynomials. In particular, Bo is a 
separable Banach space. 

Bo contains bounded as well as unbounded analytic functions in D. 
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All functions analytic in D and continuous on D belong to 80 : It is well known 
that such a function f is the uniform limit in D of some polynomials Pn. We write 

f(z) = Pn (z) + <pn (z ). 

Since <pn ~ 0 uniformly in D as n ~ oo, there is for an arbitrary r;; > 0 an N = 
N(r::) such that supzED \<pN(z)\ < ~· Further there exists an R = R(N) = R(r::) 
with (1- \z\2)\p]v(z)\ < ~ for R < \z\ < 1. It follows that 

(1 -\z\2)\/'(z)\ S:. +sup \<pN(z)\ < r:: 
2 zED 

for R < \z\ < 1. 
However, there are bounded analytic functions in D, which are not in the 

space 8 0 . A typical example is 

l±.:. 
f(z) = e- 1-=' zED. 

Lacunary series of the form f(z) = :E~=l bkzn«, z E D, where nk E N, n~:1 ?: 
a > 1 and bk ~ 0 as k ~ oo, are typical examples of unbounded analytic functions 
in the space Bo. 

About the Taylor coefficients of functions in 8 0 we can prove the following 
theorem. 

Theorem 6. If an is the nth Taylor coefficient of a function f E Eo, then an ~ 0 
as n ~ oo. 

Proof. Let r;; > 0. There is an R = R(r::) such that (1- r 2 ) maxlzl=r \f'(z)\ < c for 
1 

all r E (R, 1). For this R there is anN= N(R) = N(r::) such that Tn = (~~i) 2 E 
(R, 1) for n > N. From Cauchy's formula for the derivative it follows 

Further, it is for n ?: 3, 

n-1 

-- <e-r n-1 =e<--. (
n + 1) -r n-1 (n+1_1) 4n 
n-1 n+1 

or 

( 
n - 1 ) !!.j-1 2n 1 
n+1 n+l>2· 

From this we obtain \an\ < 2r;; for n > N, which proves the theorem. 
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2. HP spaces 

The HP spaces are in function theory something analogous to the LP spaces in real 
analysis. We give here only a short overview of those aspects of the theory which 
we need for the next section. 

Let f be analytic in D, r E [0, 1) and p > 0. We say that f E HP if 

where 

sup Mp(f, r) < +oo, 
O~r<l 

Mp(f, r) = [2~ fo2" IJ(reit)IP dt] ~. 
If Mr = maxlzl=r lf(z)l, then for every r it is 

To see this consider for an c > 0 a 8 > 0, such that 

for all t with to-% < t <to+%, where Mr = lf(reito)l. Then 

By letting p ...-.+ oo we get 

Mr- c::; liminf Mp(f, r) ::; limsupMp(f, r) ::; Mr. 
p-+oo p-+oo 

After this remark it is natural to define M 00 (f, r) =Mr. So the space H 00 consists 
of the analytic functions in D with supzED lf(z)l < +oo. 

For 0 < p' < p it is HP c HP'. To see this it suffices to observe that 

for every x ~ 0. 
It is obvious that H 00 C HP for every p > 0. However, all HP spaces contain 

unbounded analytic functions as well. 
For example the function 

.A(z) = log(1 - z) 

belongs to np>OHP\H00
• Since 1>-(r)l =log l.:.r ...-.+ +oo as r ...-.+ 1-, it is.>. fj. H 00

• 

Further we have 
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This together with the inequality 

Ia + W S (lal + lbi)P S (max{21al, 2lbl} )P = 2P max{laiP, IW} S 2P(JaJP + IW) 

for a, b E C and p > 0, gives for every r 

We now prove that suprE(!,l) M$(-A, r) < +oo for every p > 0. 

An elementary estimate shows that for r E (~,I) and ltl < 1r it is 

Set 

Then 

y'2 2 . ltl . 
-ltl S -vrltl < 2yrsm-

2 
S II- re'tl < 2 <e. 

7r 7r 

A= { 0 < t < 1r : II- reitl ;:::: I}, 
B = { 0 < t < 1r: II- reitl <I}. 

I !1f I11f -2 jlog II- reitllp dt = - jlog II- reitw dt 
7r -7f 7r 0 

= ~ jpog II- reitw dt + ~ jpog II- reitw dt 
A B 

I 1,. { I }p 111' { 7r }p S I + - log I .t I dt S I + log rr; dt < +oo. 
1r 0 I - re• o v 2ltl 

It follows that .A E HP for every p > 0. 
The spaces HP, I S p < oo, are of special interest, because they have the 

structure of a Banach space. In order to see this we first prove a theorem about 
the Taylor coefficients of these functions. 

Theorem 7. Suppose f(z) = E:=o O'nZn E HP for some p 2:: 1. Then 

for n = 0, I, 2, . . .. Further it is 

lf(z)l S C(f,p) 
I-lzl 
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for every zED. 

Proof. From Cauchy's formula and from Holder's inequality it follows for every 
r E (0, 1) 

We complete the proof by letting r -+ 1. 

For z E D it is now 

lf(z)l S ~ lanllzln S C(f,p)(1 + lzl + lzl 2 + · · ·) = ~~'~:? · 
The spaces HP, 1 S p S oo, equipped with the norm 

II!IIP = sup Mp(f, r) if 1 S p < oo, 
O<r<l 

llflloo = sup f(z) if p = oo 
zED 

are Banach spaces. The proof is completely analogous to the same proof in the case 
of the Bloch space. As additional arguments we need the Minkowski inequality 

1 S p < oo, for the proof of the triangle inequality II!+ giiP S II fliP + llgiiP, 
1 S p < oo, as well as Theorem 7, for the proof of the locally uniform convergence 
of the Cauchy sequence {in}· 

In the following we mention some basic facts about HP spaces, most of them 
without proof. 

1) Iff E HP for some p > 0, then the nontangentiallimit f(eit) exists almost 
everywhere, and f(eit) E V(8D). 

If f(eit) = 0 on a set of positive measure, then f = 0 (uniqueness theorem). 
We call j(t) = f(eit) the boundary function of f(z). 
For 0 < p < oo it is 

so that for 1 S p < oo 
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From 1) we first deduce that the HP condition is conformally invariant. To see 
this, we note first that if w =a~ for a E aD,~ ED, and if f(w) = h(z), then 

l+~z 
h(z) has a.e. on aD nontangentiallimits if and only if the same is true for f(z). 
Further we have 

for every 0 < p < oo. 
For p = oo the conformal invariance is obvious. 
Another consequence of 1) is that all spaces HP, 1 :::; p < oo, are separable. 

Proof. Let f(z) E HP for a p, 1 :::; p < oo. Consider the map f(z) ~ j(t) = f(eit), 
where j{t) is the boundary function of f(z). By the uniqueness theorem this map 
is injective. Further it is j E LP([O, 21r]). It follows that there is an injection 
between HP and a subset of the separable space LP([O, 21r]). 

However, the space H 00 is not separable. The proof is similar to that for the 
Bloch space. We consider here the uncountable set of Blaschke products 

oo I (19) (19) 

B ( ) = B( { (19)}) = II ~ Zn - Z 
19 Z z, Zn (19) (t9) ' 

n=l Zn 1- Zn Z 

zED, 

where z~t9) = ( 1 - (n.;l)'i) eit9, n E N, {) E [0, 27r ). 

Obviously we have for cp, {) E [0, 21r), cp =1- {), 

as n ~ oo, 

so that I/Bt9- B191/oo ~ 1. 
2) Let f E HP, 1 :::; p :::; oo. Then f is the Poisson integral of its boundary 

function, i.e. 
1 1271" 1 - lzl2 . 

f(z) = -
2 

I .t 12 f(ett) dt, 
1r 0 z- e' 

zED. 

3) Let (HP)* denote the space of all bounded linear functionals on HP. Suppose 
that cp E (HP)*, where 1 < p < oo. Then there is a unique function g E Hq, 
l + l = 1 with p q , 

for all f E HP. 
Since HP is a Banach space for p > 1, there exists an injective map of (HP)* 

on Hq, linear and continuous in both directions. We say that (HP)* and Hq are 
topologically equivalent, and we write 

Now p ~ 1 implies q ~ oo; thus the space (H 1 )* must be located "near" to H 00
• 

(H 1 )* is topologically equivalent to BMOA, the space we describe in the next 
section. 
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4) Very useful for the praxis is the space H 2. It has the structure of a Hilbert 
space with the inner product 

1 121rlo21r . -(!,g)=- f(e't)g(eit) dt. 
2tr 0 0 

The norm of H 2 is a concrete expression of the coefficients. Iff ( z) = E:'=o an zn, 
z ED, then from Parseval's identity we get 

for every r E (0, 1). It follows that 

00 

II/II~= L lanl 2
· 

n=O 

3. The space BMOA 

For f E H 2 and ( E D we consider the auxiliary function 

(z+() 
fc;(z) = f 

1 
+ (z - /((), zED. 

Clearly fc: is analytic in D with fc:(O) = 0. We calculate its H 2-norm: 

life: II~= 2_ r Jt ( s + 5) -!(()1
2 

ldsl (s+C:)/(~+(s)=w 
2tr lan 1 + (s 

= 2_ r lf(w)- /(()12 1 - l(l: ldwl = 
2tr lan lw- (I 

= 2~ ian lf(wW ~~ --~~~~: ldwl-1!(()12 < +oo 

for every (ED. 
The space BMOA is defined to be the space of functions f E H 2 such that 

sup llfc:ll2 < +oo. 
(ED 

The name BMOA comes from Bounded Mean Oscillation Analytic. 
We say that a function f(eit) E L 1(8D) is of bounded mean oscillation in 8D, 

if 

s~p l~lhlf(eit)- I(!) I dt < +oo, 
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where the supremum is taken over all intervals I c 8D, III is the length of I and 
I(!) denotes the integral average of f(eit) over I, i.e. 

We write f(eit) E BM0(8D). 

1 ! 't I(!) = TJT 
1 

f(e' ) dt. 

It can be proved that a function f(z) E H 2 is in BMOA if and only if its 
boundary function f(eit) is in BM0(8D). Like the Bloch and the HP condition, 
the BMOA condition is also conformally invariant: 

We consider again an arbitrary conformal mapping cp of D onto itself. It is 
cp(z) = a z+J for some a E 8D and some ~ E D. It suffices to prove that for the 

l+€z 
function f ( cp ( z)) = h( z) and for every ( E D we have 

f lh(z)- h(<:W ~ -1~:~ ldzl = f lf(w)- J(vW t -lv\: ldwl j 8D Z - j 8D W - V 

where v = cp((). 
Set w = cp((). Then the left hand side is equal to 

f lf(w)- f(vW 1 -1<:12 11 + ~zl2 ldwl. 
laD lz- (12 1-l€12 

An easy calculation shows that 

which completes the proof. 
Another basic property of BMOA functions is that they are Bloch functions. If 

f E BMOA, then for every ( E D 

zED, 

with 

From 
00 

ja~0 ! 2 ~ 2:: ja~<)j2 = llfzetall~ ~sup llhll~ < +oo 
n=l <ED 

we get 

Thus BMOA c 13. 

sup(1-j(l2 )lf'(()l < +oo. 
<ED 

Obviously it is H 00 c BMOA. A typical example of an unbounded BMOA 
function is again the logarithmic function 

>.(z) = log(1- z), zED. 
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To see this we calculate 

( 
z + ( ) ( 1 - () ->.((z) =log 1- --- -log(1- ()=log 1- z-- -log(1 + (z) 

1 + (z 1- ( 
00 

1 [ ( 1 _ () n _ l = ~;;: - 1- ( + ( -()n zn, 

so that 

n>.dl! ~; :, 1- (: =~r + H'J·I' 5; ~ < +oo 

It follows that >. E BMOA. 
The family BMOA equipped with the norm 

\\!\\. = \/(0)\ +sup \\/dl2 
(ED 

is a Banach space. We only prove here that BMOA is complete. 
Let {/n} be a Cauchy sequence of BMOA functions. As in the case of the 

Bloch space, it suffices to show that there is an analytic function f such that 
\\fn- !\\. -t 0 as n -too. 

Let e > 0. For n, m > N = N(e) it is \\fn- fm\\. <e. If r E (0, 1), this implies 

\fn(z)- fm(z)\ ~ \\fn- fm\\B (log 1 ~ r + 1) 

~ \\fn- fm\\. (log 1 ~ r + 1) < e (log 1 ~ r + 1), 

for all z with \z\ ~ r and all n, m > N. Hence the sequence {fn} converges 
uniformly on compacta in D. By the Weierstrass theorem the limit function f is 
analytic in D. 

For an arbitrary r E (0, 1) and form, n > N, (ED, it is 

Letting m -t oo we obtain 

12
1'0 \fn((reit) - /((reitW dt < 27re2

, 

for n >Nand for every r E (0, 1), (ED. We let now r tend to 1. We get 

or 
\\fn( - fd\2 ~ e 

for n > N and for all z E D. The proof is now complete. 
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Essentially in the same way as in the case of the Bloch space, we can show 
that BMOA is not separable. To see this, we consider the uncountable family of 
functions 

fa(z) = log(ei"- z), 

For every o it is f" E BMOA. 

zED, 0 So < 21r. 

Now for o =/= f3 we have 

llfa(z)- f.a(z)JJ. ~ llfa(z)- f.a(z)JJB > 1, 
since 

for z = rei", r --+ 1. 
The subspace of BMOA corresponding to B0 is the space VMOA, that is the 

space of analytic functions of vanishing mean oscillation. VMOA consists of all 
functions in H 2 with 

as J(J --+ 1, 

where fc: is as in the definition of BMOA. A BMOA function is in VMOA if and 
only if llf(rz) - f(z)JJ. --+ 0 as r--+ 1-. 

It follows that VMOA is the closure in BMOA of the polynomials; in particular, 
VMOA is a separable Banach space. From the definition it easily follows that 
VMOA C B0 • It is not true that H00 C VMOA, because it is not true that 
H00 C B0 (see page 16). However, VMOA contains a very well known subspace of 
Hoo. 

Theorem 8. Let A be the family of all functions analytic in D and continuous 
on D. Then A c VMOA. 

Proof. Iff E A, then f is the uniform limit in 15 of some polynomials Pn· We set 

f(z) = Pn(z) + <pn(z), 

so that <pn --+ 0 uniformly on D as n --+ oo. This implies that for an e > 0 there 
is anN= N(e), so that JJ<pNJioo < ~· 

Now we have 

2 [ 1 1 2 1 - J(J2 2] JJ<pNJJ. =sup -2 J<pN(w)J J (J 2 JdwJ- J<pN(()J 
(ED 7r aD W-

S sup [JJ<pNJJ~ { J<pN(wW t -J~JJ: JdwJ-J<pN((W] 
(ED laD W-

=sup [IJ<pNJJ~- J<pN(CW] S JJ<pNJJ~, 
(ED 

and consequently JJ<pNJJ. < ~· 
On the other hand, the polynomial PN is in VMOA, since this is true for every 

monomial p,(z) = zm, mEN. To show this, it suffices to note that for every (ED 
it is 
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It follows that there exists an R = R(N) = R(c) with 

for R < 1(1 < 1. 

Finally we get 
c c 

llfd2 ~ IIPNd2 + llrpNII· < 2 + 2 = c 

for R < I( I < 1. The proof is now complete. 

In the following we give a theorem about lacunary power series in the spaces 
H 2 , BMOA and VMOA. In the proof we will use a non-trivial VMOA condition, 
which we formulate as a separate lemma. 

Lemma. Let f be analytic in D and let rp be a monotone increasing function of r 
in (0, 1) such that 

1/'(z)l ~ rp(r) 
for lzl = r, 0 < r < 1. If in addition 

then f E VMOA. 

Proof. We start from the identity 

where dzrl = dx dy if z = x + iy. 
We prove the lemma in two steps: First we set ( = 0 and we write both expres­

sions in terms of the Taylor coefficients of f. Next we apply the transformation 
~ = z-S, zED. 

1-(z 
For technical reasons we replace the variable z by zei"', where ( = pei"'. We get 

We set now 

E1 = {zED, 1

1
p -_p; I < 2}' 

E2 = D\E1• 

For z E E 1 it is 

1 
1
1- pz I 11- pz I ( I p- z 1

2
) (1 _ p2)(1 _ lzl2) og--<---1<41--- =4 . 

p- z p- z 1 - pz 11 - pzl2 
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This implies 

The last integral exists for every p E (0, 1) since J0\1- r 2)cp2 (r) dr < +oo and 

1 :_ ~g~2 < 1. Further the integrand tends to zero for every r E ( 0, 1) as p --7 1- . 
By Lebesgue's dominated convergence theorem, we obtain 

as P = J(J --7 1. 
We now consider the points z in E2 • It is easy to calculate that 

1 +2p maxJzJ = -
2
--. 

zEE2 + p 

By the monotonicity of cp we have 

where Cis an absolute constant. For every r E (0, 1) it is 

11 

(1- t2)cp2 (t) dt ~ cp2 (r) 11 

(1- t2
) dt 

1-r 
cp2(r)-

3
-(2- r- r 2

) > ~cp2 (r)(1- r) 2 • 

This and the convergence of the integral I imply that 

as r --7 1, 
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or 

2 (1+2p) (1-1+2p)
2 

= 2 (1+2p) (1-p)
2 ~0 

<p 2+p 2+p <p 2+p (1+p) 2 

as p ~ 1. Hence 

asp~ 1, 

and the proof of the lemma is complete. 

Theorem 9. Let f(z) = 2::.,1 bkznk, z E D, where nk E N and n~:' ;::: a: > 1 
for all k. Then the following are equivalent: 

(i) f E BMOA; 
(ii) f E VMOA; 

(iii) f E H 2
• 

Proof. Since VMOA C BMOA C H 2 , we only need to prove that (iii) ==> (ii). 
Consider the function 

00 

<p(r) = 2:: nk\bk\rnk-1, O<r<l. 
k=1 

It is 

\f'(rei19 )\ = ~~ nkbkrnk-11:::; <p(r) 

for all{} E [0, 21r) . Further <pis monotone increasing in (0, 1). 
We now prove that 

We note first that 

{

1 

<p2 (r)(1- r 2) dr = {
1 [f nk\bk\rnk-1

] 

2 

(1- r 2 ) dr 
lo lo k=1 

= {1 [f n~\bk\2r2nk-2] (1- r2) dr 
lo k=1 

+ 211 

[ 2:: nkntlbk\\b,Jrnk+n1
-

2
] (1- r 2

) dr. 
0 1~k<l 

For the first summand we have 

(3) 

(4) 
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The interchanging of the integration and the summation is allowed by the mono­
tone convergence theorem. 

Using the Cauchy-Schwarz inequality we find for the second integral 

(5) 

From (4) and (5) it follows (3), which in combination with the lemma proves our 
theorem. 

4. The Dirichlet space 'D 

The Dirichlet space 'D consists of the functions f analytic in D with 

S = j L lf'(zW dz[! < +oo, (6) 

where dz[l = dxdy if z = x + iy. 
The integral S equals to the area of the image off, counting multiplicities. By a 

substitution of the variable z we immediately see that S is conformally invariant. 
S can be expressed by means of the Taylor coefficients of the function f. If 
f(z) = z=:,o anzn is analytic in D, then 

where the value of these expressions can be equal to +oo. 
For R E (0, 1) set DR = { z E C, JzJ < R }. By using Parseval's formula we 

obtain 

00 

= L nJanJ2R2n. 
n=l 

By letting R ~ 1- we immediately get our relation. 
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The Dirichlet space does not contain the space A of the functions which are 
analytic in D and continuous on 15. For example, the function 

00 

) '"' 1 2" f(z = ~ 2z , 
n 

n=l 

zED, 

obviously belongs to A, while it does not belong to 1J, because 

On the other hand, the example 

00 1 
f(z) = '"'-

1
-zn, 

~n ogn 
zED, 

shows that 1J also contains analytic functions unbounded in D. 
Before we show the Banach space property of 1J we prove a growth estimate for 

the functions in this space. If f E 1J, then for every z E D we have 

1 1 

if(z)i ~ if(O)i +(~)~(log 1 !lzl) ~, 

where S is as in (6). It is 

for every zED. From this we obtain 

1 1 

if(z)i ~ lf(O)I + ( ~) ~ (log 1 ~ lzl) ~, zED. 

We now show that 1J equipped with the norm 

is a Banach space. 
Also here the nontrivial step in the proof is to show that 1J is complete in the 

metric defined by its norm. 
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Let {fn}, n E N, be a Cauchy sequence of functions in 'D. If c: > 0, then 
llfn- fmii'D < c: for all n, m > N = N(c:). From the growth estimate it follows 
that 

1 1 

lfn(z)- fm(z)) ~ lfn(O)- fm(O)) + ( ~) 
2 

(log 1 ~ r) 
2 

for all z with lzl ~ r, r E (0, 1) and all n, m > N. Hence the sequence {fn} 
converges uniformly on compacta in D. By the Weierstrass theorem the limit 
function f is analytic in D and f~(z)-+ f'(z), zED, as n-+ oo. 

For n, m > N it is 

Letting m -+ oo and using Fatou's theorem we obtain 

for n > N. 
The Dirichlet space 'D has the structure of a Hilbert space with the inner product 

Since E~=l n)anl 2 ~ E~=1 )an) 2 , 'Dis contained in the space H 2
. In fact, 'Dis 

much "smaller": 

Theorem 10. 'D C VMOA. 

Proof. First we show that iff E H 2 and (ED, then 

(7) 

where C is an absolute constant and f< is defined as on page 21. Apply the 
transformation w = z-; , z E D. Then (7) takes the form 

1-.,z 

where 

cp(r) = r fo 2

7T lf((reitW dt, 

For r E (t, 1) we have 

r E [0, 1). 

1 1 2 
log- < -- 1 < 2(1- r ), 

r r 
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so that 
{

1 

<p(r) log~ dr :52 {
1 

<p(r)(I- r 2) dr. h r h 
By a well known theorem of Hardy, <p(p) is monotone increasing in [0, I). It 

follows that for an r E [0, ~], 

i<p(r) :5 ~<p(r) (I - r )2 :5 <p(r) 1
1 
(I - p2

) dp 

:511 <p(p)(I- p2) dp :5 fo1 <p(p)(I- p2) dp, 

or {! <p(r) log~ dr :56 {t log~ dr {
1 

<p(p)(I- /) dp :5 K {
1 

<p(r)(I- r 2) dr, 
Jo r lo r Jo lo 

which proves (8). 
We write now 

z-( 

I 1

2 

A((,z) = 1- --- , 
1- (z 

(,zED, 

and observe that A((, z) :5 1 and 

A((, z)-+ 0 as \(\-+ 1. 

By Lebesgue's dominated convergence theorem we obtain 

I L \f'(zWA((, z) dzO-+ 0 as\(\-+ I , 

which in combination with (7) proves the theorem. 

5. Carleson measures 

A very useful tool in the study of Banach spaces of analytic functions are the 
Carleson measures. We first give the definition. 

Let <p(z) be integrable in D with <p(z) 2: 0, zED. For 8 E (0, I) and '19 E [0, 21r] 
we consider the set 

E = {zED: I- 8 < \z\ < I, \ arg z- '19\ < 0}. 

This set is called a Carleson box. 
Suppose that i JJE <p(z) dzO < M, where dzO = dxdy if z = x + iy and M 

is an absolute constant. Then we say that dJ.L = <p(z) dzO is a bounded Carleson 
measure. 

If t JJE <p(z) dzO -+ 0 as o -+ 0, we say that dJ.L = cp(z)dzO is a compact 
Carleson measure. 

Analogously we say for p > 0 that dJ.L = <p(z) dxdy is a bounded (resp. compact) 
p-Carleson measure if }P JJE <p(z) dzO < M, where M is an absolute constant 
(resp. if 0~ JJE <p(z) dzO-+ 0 as o-+ 0). 

With the aid of Carleson measures we may characterize some of the spaces we 
considered above. 

In order to give an idea of the methods used in this context we prove here the 
following theorem about the connection between Carleson measures and BMOA 
functions. 
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Theorem 11. Let f be analytic in D. Then f E BMOA if and only if 

is a bounded Carleson measure. 

Proof. The proof will be divided in two parts. We first give an equivalent definition 
of a bounded Carleson measure by using integration over the whole unit disk. 
This part does not involve any BMOA theory. The second part is an equivalent 
definition of BMOA functions and contains only BMOA theory. 

Part I: We show that dt-t is a bounded Carleson measure if and only if 

sup!' r 11- 1(1~2 dt-t(z) < 00. 
(ED jD 1- (z 

(9) 

i) Suppose that (9) is valid. We consider a Carleson box E and then the point 
s = (1 - o)ei19 • By elementary geometry we see that 

1 1- lsl 2 

- < c.,...---'-""'= o - 11- szl 2 ' 
z E E, 

where c is an absolute constant. This implies that 

~ j' f dt-t(z) $ cfr f 1 
-1(1

2 
dt-t(z) $ cf' f 1

- ICI
2 

dt-t(z) < M < oo. 
u jE jE 11- (zl2 jD 11- (zl2 

ii) Suppose now that dt-t is a bounded Carleson measure. Since JJD dt-t(z) < oo, 
and 

1 - 1(12 1 - 1(12 2 --:-'--- < < --
11- (zl2 (1 - ICI)2 1 - ICI for(, zED, 

it suffices to prove (9) for (near 8D. We consider now a (ED. We may assume 
that w E (0, 1). To this ( there is a p = p(() such that 11 - (zl2 > b for 
lz- 11 > p. If (is near to 1, then pis small enough, say p < ~-

Obviously it suffices to show that 

!. r 1 c2 
}A 11- (zl2 dt-t(z) < c, 

where A= {zED, lz- 11 < p }, and cis independent from(. 
Since p < ~' there is to every An, n = 1, 2, ... , m, the smallest Carleson 

box En which contains An· It is easy to see that 

(10) 

for every n = 1, 2, ... , m and for an absolute constant c. 
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We now write 

!" r 1 - (2 m !" r 1 - (2 
JA 11- (zl 2 dJJ.(z) = ~ }An\An-t 11- (zl 2 d{L(z), (11) 

and we observe that 

if z E An\ An-I' (12) 

where c is an absolute constant. 
From (10) and (12) we obtain that 

and consequently, by (11), 

!" r 1- (2 m 1 
}A 11- (zl2 dJJ.(z) :5 c ~ 2n :5 c, 

where the constant c does not depend on m, that is not on(. 
The proof of the first part is now complete. 

Part II: Here we prove that an analytic function f in D is in BMOA if and 
only if 

sup j" f 1- 1(1
2 

lf'(zW(1 -lzl2 ) dzn < oo. 
(ED JD 11- (zl 2 

We start from the characterization that f E BMOA if and only if 

sup /r r lf'(zW log 1
1
(- (z I dzn < 00 

(ED jD - Z 

for an f analytic in D (see the Lemma after Theorem 8 on page 25). 
It suffices to show that the expressions 

and 

(ED, 

are comparable. 
By a change of variables we see that it suffices to prove this for ( = 0. So we 

have to prove that 
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This relation follows from elementary estimates of the logarithm and from the fact 
that the expression J0

2
n If' ( reit) 12 dt increases with r. 

On this way we have completed also the second part of the proof. The assertion 
of Theorem 11 now immediately follows by combining the above two parts. 

Concluding we give without proof the characterizations for functions in the 
spaces VMOA, B and Bo in terms of Carleson measures. 

Let f be analytic in D. Then f E VMOA if and only if 

is a compact Carleson measure. 
Moreover, fEB (resp. f E Bo) if and only if 

is a bounded (resp. compact) 2-Carleson measure. 

FIGURE. The inclusions between the spaces A, V, H 00
, VMOA, B0 , 

BMOA, B and H 2 • 
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