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ABSTRACT

This thesis introduces some new results concerning linear differential equations

f (n) + An−1 f (n−1) + · · ·+ A1 f ′ + A0 f = An, (∗)

where n ≥ 2 and A0, . . . , An are analytic in a simply connected domain D of the
complex plane. Typically D is the unit disc. Before presenting these new results,
some background is recalled. Localization combined with known results implies
lower bounds for the iterated order of growth of solutions of (∗). Straightforward
integration combined with an operator theoretic approach yields sufficient condi-
tions for the coefficients which place all solutions of (∗) or their derivatives in a
general growth space H∞

ω (D). Moreover, the operator theoretic approach combined
with certain tools such as representation formulas and Carleson’s theorem indicates
sufficient conditions such that all solutions are bounded, or they belong to the Bloch
space or BMOA. The counterpart of the Hardy-Stein-Spencer formula for higher
order derivatives and the oscillation of solutions are also discussed.

MSC 2010: 30H10, 30H30, 34M10
Keywords: Bloch space, BMOA, bounded function, differential equation, growth
space, Hardy space, integration, localization, operator theory, order of growth, os-
cillation of solutions
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1 Introduction

The intention of this survey part of the thesis is to describe some methods used in
the study of complex linear ordinary differential equations (ODEs), in particular, in
the study of

f (k) + Ak−1 f (k−1) + · · ·+ A1 f ′ + A0 f = 0, (1.1)

where the coefficients Aj are analytic in a simply connected domain D ⊂ C and
k ∈ N \ {1}. It is well-known that in this case each solution f is analytic in D,
denoted by f ∈ H(D). Typically D is the whole complex plane C or the unit disc
D = {z ∈ C : |z| < 1}.

Localization is a general method, which allows us to implement known results
to new domains. Nevanlinna theory combined with the standard order reduction
method yields if-and-only-if relations between the iterated M-order of growth σM,n
of the coefficients and solutions, see [37], for example. One simple relation is that
all solutions f of (1.1) satisfy

σM,n+1( f ) ≤ max
0≤j≤k−1

σM,n(Aj), n ∈ N, (1.2)

and the equality is attained for some solution f . We describe a localization method
of linear ODEs and apply these known relations to equations of a special form, for
example, to the equation

f ′′ + A1(z) exp
(

a4

(1 − z)a3

)
f ′ + A0(z) exp

(
a2

(1 − z)a1

)
f = 0,

where A1, A0 are analytic in D ∪ {z ∈ C : |z − 1| < ε}, for some 0 < ε < ∞, and aj
is a non-zero complex constant for j = 1, 2, 3, 4.

An integration method proves to be an efficient tool, when all solutions of (1.1)
or their derivatives are forced in H∞

ω (D) by giving a sufficient condition on the coef-
ficients Aj. This kind of conditions have earlier been given by Gröhn, Heittokangas,
Korhonen and Rättyä in [26,38–40] by using Picard’s successive approximations and
integral estimates based on Gronwall’s lemma or Herold’s comparison theorem. In
particular, our elementary integration method gives sharp results for the second
order equation

f ′′ + A f = 0, (1.3)

where A is analytic in D. Moreover, it yields in C a classical relation analogous
to (1.2).

An operator theoretic approach, originating from Pommerenke [57], is based on
the fact that if X ⊂ H(D) is an admissible normed space, f is a solution of (1.3) and

SA( f )(z) = −
∫ z

0

(∫ ζ

0
f (w)A(w) dw

)
dζ,

with an operator norm ∥SA∥X→X < 1, then

f (z) = SA( f )(z) + f ′(0)z + f (0) and ∥ f ∥X ≤ C( f )
1 − ∥SA∥X→X

< ∞.
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Here X is some function space such as H∞, BMOA or the Bloch space. This approach
is implicitly behind the integration method.

Finally, we consider the analogue of the Hardy-Stein-Spencer formula of Hardy
spaces for the higher order derivatives. This analogue, combined with the opera-
tor theoretic approach, gives information about the case when all solutions of (1.3)
belong to Hp. Moreover, we study the zero separation of solutions of the equation

f ′′′ + A2 f ′′ + A1 f ′ + A0 f = 0

by using localization and a known integral estimate. Zeros of solutions of differ-
ential equations of order k ≥ 3 are hard to study due to lack of sufficient tools.
Nevertheless, the geometrical distribution of zeros of solutions, the growth of the co-
efficients and the growth of solutions are fundamental aspects to consider when (1.1)
is studied.

The remainder of this survey is organized as follows. In Section 2, we discuss
complex ODEs in general and consider means to measure the growth of their solu-
tions and coefficients. In Section 3, we discuss certain function spaces and the zero
separation results for solutions of (1.3). In Section 4, we first describe the general
outline of localization and then discuss pseudo-hyperbolic discs, which are an im-
portant localization domain. Second, we describe some integral estimates, which
precede our integration method. Third, we describe the operator theoretic approach
applied in Paper III. Finally, in Section 5 the essential contents of Papers I-III are
summarized.
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2 Differential equations and growth of solutions

In this section, we discuss certain facts about differential equations and present some
means to measure the growth of their coefficients and solutions.

We discuss the analyticity of solutions of (1.1) and claim that certain rates of
growth for the coefficients Aj could be peculiarly interesting. Moreover, we define a
general growth space and discuss some norm equivalences.

We define the iterated order of growth σM,n( f ), which asymptotically measures
the growth of the maximum modulus function M(r, f ) = max|z|=r | f (z)|, of an an-
alytic function f . The meaning of the number σM,n( f ) is discussed by comparing it
to certain quantities which are present in Nevanlinna and Wiman-Valiron theories,
on which we take a brief look. Then, we present results which utilize σM,n to relate
the growth of solutions of (1.1) to the growth of the coefficients Aj.

We present some of Hamouda’s results on differential equations with coefficients
of a particular form. These equations are considered in Paper I, where their analysis
is made straightforward by the localization method for linear ODEs.

2.1 OBSERVATIONS RELATED TO DIFFERENTIAL EQUATIONS

Consider a complex differential equation of order k ∈ N in a domain D ⊂ C. If D
is simply connected, the coefficients are analytic in D and the equation is linear,
then it is well-known that all solutions are analytic. If any of these assumptions
are removed, the analyticity of solutions can be lost. First, the fact that D is simply
connected is seen to be necessary. For example, the coefficient 1/z of the linear
equation

f ′′ +
1
z

f ′ = 0

is analytic in the annulus D =
{

z ∈ C : 1
2 < |z| < 1

}
, but one solution of this equa-

tion is log(z), which is not analytic in D. Second, if the coefficients are not analytic,
then the solutions need not to be even meromorphic. For example, the linear equa-
tion

f ′′ +
1
z2 f ′ − 2

z3 f = 0

has the solution f (z) = exp(1/z), which is not meromorphic in any neighbourhood
of the essential singularity z = 0. Third, the function log(z) is a solution of the
non-linear equation

f ′′ + ( f ′)2 = 0,

whose coefficients are analytic in D. Here D = {z ∈ D : |z| < 1} is the unit disc of
the complex plane and T = ∂D is its boundary.

Due to these notions, it is reasonable to restrict the study to linear differential
equations with coefficients analytic in some simply connected domain.

While considering the equation

f (k) + A f = 0,
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the interesting growth rate for A is roughly

∥A∥H∞
k
= sup

z∈D

|A(z)|(1 − |z|)k < ∞.

This is due to the fact that if A ∈ H∞
k+ε \ H∞

k+ε/2 then some solution is of exponential
growth, but in the case A ∈ H∞

k−ε all solutions are bounded [38, Corollary 3.16].
If ∥A∥H∞

2
< p(p + 1), for 0 < p < ∞, then all solutions of (1.3) belong to H∞

p ,
see [57, Example 1] and [43, Example 5]. Conditions supz∈D |A(z)|(1 − |z|2)2 ≤ 1
and ∥A∥H∞

2
< ∞ imply, respectively, that each solution of (1.3) has at most one zero,

and that the zeros of each solution are separated in the hyperbolic metric, see [50]
and [60, Theorems 3–4]. If

sup
z∈D

|A(z)|(1 − |z|)2 log
e

1 − |z| < 1,

then all solutions f belong to the Bloch space B, which consists of f ∈ H(D) such
that supz∈D | f ′(z)|(1 − |z|2) < ∞ [43, Corollary 4 and Example 5].

2.2 GENERAL GROWTH SPACE

The general growth space H∞
ω (D) consists of functions f analytic in a simply con-

nected domain D ⊂ C, such that

∥ f ∥H∞
ω (D) = sup

z∈D
| f (z)|ω(z) < ∞.

Here the function ω : D → (0, ∞) is bounded and measurable, therefore integrable.
If D = D, we write H∞

ω = H∞
ω (D). Moreover, if ω(z) = ω(|z|) for all z ∈ D, we

call ω radial. If ω is a classical weight, that is, ω(z) = (1 − |z|)p, for p ∈ (0, ∞), we
write H∞

ω = H∞
p . Note that we put |z| instead of the usual |z|2 in the definition of ω;

hence, some calculations in Paper II will be simpler. A function f belongs to the
Korenblum space

A−∞ =
∪

0<p<∞
H∞

p

if and only if

inf {α ≥ 0 : f ∈ H∞
α } = lim sup

r→1−

log+ M(r, f )
− log(1 − r)

(2.1)

is finite.

Some equivalent norms

The Fundamental Theorem of Calculus

f (z) =
∫ z

0
f ′(ζ) dζ + f (0), z ∈ D, (2.2)

and the Cauchy Integral Formula

f (n)(z) =
n!

2πi

∫
C

f (ζ)
(ζ − z)n+1 dζ, z ∈ D, n ∈ N,

2



express f ∈ H(D) by means of its derivative and vice versa. Here the integration
paths are a linear segment from 0 to z and a simple closed curve C around z and
contained in D, respectively. By using these results, it can be seen that

∥ f ∥H∞
p = sup

z∈D

| f (z)|(1 − |z|)p ≍ sup
z∈D

| f ′(z)|(1 − |z|)p+1 + | f (0)|, (2.3)

for f ∈ H(D), where the constants depend on p. Here A ≍ B is used to denote
the fact that C−1B(r) ≤ A(r) ≤ CB(r) for some constant 0 < C < ∞ as r varies.
In addition, A . B denotes the fact that the quotient A(r)/B(r) is bounded from
above. If A(r)/B(r) → 0 as r → 1−, we write A(r) = o(B(r)).

After some simplification, [43, Lemmas 9 and 10] in Paper II imply

∥ f ∥H∞
p ≤ Γ(p)

Γ(p + n)
∥ f (n)∥H∞

p+n
+

n−1

∑
j=0

Γ(p)
Γ(p + j)

| f (j)(0)|, (2.4)

and
∥ f (n)∥H∞

p+n
≤ e2n(n + 1)!∥ f ∥H∞

p , (2.5)

respectively, for 0 < p < ∞ and n ∈ N.
As (2.3) shows, in order to study the finiteness of supz∈D | f ′(z)|(1− |z|)α + | f (0)|

for f ∈ H(D) and 1 < α < ∞ it is enough to consider supz∈D | f (z)|(1 − |z|)α−1.
However, for 0 < α ≤ 1 it is necessary to study the derivative itself. The α-Bloch
space Bα, α ∈ (0, 1], consists of g ∈ H(D) such that

∥g∥Bα = sup
z∈D

|g′(z)|(1 − |z|)α < ∞.

Here ∥g∥Bα is a semi-norm, which can be made a norm simply by adding |g(0)| to
it. If α = 1, then Bα is the classical Bloch space B. As a generalization of Bα, we can
consider the space of such functions f ∈ H(D) for which f ′ belongs to a general
growth space H∞

ω for some ω.
For p = 0, inequalities (2.4) and (2.5) take the form

sup
z∈D

| f (z)− f (0)|
(

log
1

1 − |z|

)−1
≤ ∥ f ∥B ≤ 2∥ f ∥H∞ , (2.6)

where ∥ f ∥H∞ = supz∈D | f (z)|. By inequality (2.6), we see that H∞ ⊂ B ⊂ H∞
p for

all 0 < p < ∞, and f (z) = log((1+ z)/(1− z)) is an unbounded Bloch function with
maximal growth. Inequality (2.6) shows also that each Bloch function is a Lipschitz
map from (D, dH) to (C, de). In fact, the converse is also true. Here de denotes the
Euclidean metric. Moreover,

dH(z, w) =
1
2

log
1 + dp(z, w)

1 − dp(z, w)
, z, w ∈ D, (2.7)

is the hyperbolic metric defined by using the pseudo-hyperbolic metric

dp(z, w) = |φz(w)| =
∣∣∣∣ z − w
1 − zw

∣∣∣∣ , z, w ∈ D.

3



2.3 ITERATED ORDER OF GROWTH OF SOLUTIONS

The iterated M-order of growth for f ∈ H(D) is defined as

σM,n( f ) = lim sup
r→1−

log+
n+1 M(r, f )

− log(1 − r)
, n ∈ N ∪ {0} . (2.8)

Here log+
1 x = log+ x = max {log x, 0} for x ∈ (0, ∞), log+ 0 = 0 and we set in-

ductively log+
n+1 x = log+(log+

n x) for n ∈ N. The function expn x is defined in an
analogous way. If n = 1, we drop the index and write σM,1( f ) = σM( f ), for example.

The number (2.1) equals to σM,0( f ), defined in (2.8). Clearly, if f ∈ A−∞,
then σM,1( f ) = 0. However, the the converse implication does not hold, as the
example f (z) = exp(−(log(1 − z)−1)α), 1 < α < ∞, shows.

The following if-and-only-if relation between the growth of coefficients of (1.1)
and the growth of solutions was given in [37, Theorem 1.1].

Theorem 2.1. Let n ∈ N, α ≥ 0 and A0, . . . , Ak−1 ∈ H(D). Then all solutions f of (1.1),
satisfy σM,n+1( f ) ≤ α if and only if σM,n(Aj) ≤ α for j = 0, . . . , k − 1. Moreover, if q ∈
{0, . . . , k − 1} is the largest index for which σM,n(Aq) is equal to max0≤j≤k−1

{
σM,n(Aj)

}
,

then there are at least k − q linearly independent solutions f of (1.1) such that σM,n+1( f ) =
σM,n(Aq).

Theorem 2.1 can be refined by means of the n-type, defined as

τM,n( f ) = lim sup
r→1−

(1 − r)σM,n( f ) log+
n M(r, f ) (2.9)

for f ∈ H(D) and n ∈ N, when 0 < σM,n( f ) < ∞.

Theorem 2.2. [30, Theorem 3] Let n ∈ N and A0, . . . , Ak−1 ∈ H(D). Assume that
σM,n(Aj) ≤ σM,n(A0) for all j = 1, . . . , k − 1, and

max
{

τM,n(Aj) : σM,n(Aj) = σM,n(A0)
}
< τM,n(A0).

Then each non-trivial solution f of (1.1) satisfies σM,n+1( f ) = σM,n(A0).

Assume that for some n ∈ N both σM,n( f ) and τM,n( f ) are positive and finite. In
this case, the numbers n, σM,n( f ) and τM,n( f ) describe how fast f grows. Namely,
let
{

rj
}∞

j=1 be an increasing sequence of numbers in (0, 1) along which the limes
superior in (2.9) is attained. Then we have

log+
n M(rj, f ) ∼ τM,n( f )

(
1

1 − rj

)σM,n( f )

, j → ∞.

By exponentiating, we see that M(rj, f ) grows asymptotically as

expn

τM,n( f )

(
1

1 − rj

)σM,n( f )
 .

This growth of M(r, f ) is attained in a larger set than just a sequence
{

rj
}∞

j=1, but
we do not enter into this topic.

4



In the case of non-constant entire functions, the iterated M-order and type are
defined as

ρk( f ) = lim sup
r→∞

logk+1 M(r, f )
log r

and τk( f ) = lim sup
r→∞

logk M(r, f )
rρk( f )

,

respectively for k ∈ N. These definitions make sense also for k = 0; in this case,
condition 0 < ρ0( f ) < ∞ implies that f is a polynomial and ρ0( f ) = deg( f ).

Recall that the Nevanlinna characteristic function T(r, f ) is defined for a mero-
morphic function f as the sum of the proximity function

m(r, f ) =
1

2π

∫ 2π

0
log+ | f (reiθ)| dθ,

and and the counting function

N(r, f ) =
∫ r

0

n(t, f )− n(0, f )
t

dt + n(0, f ) log r,

for 0 < r < ∞ [48]. Here n(r, f ) is the number of poles of f in the disc |z| ≤ r.
Hence, T(r, f ) = m(r, f ) for an entire function.

For f (z) = ∑∞
n=0 anzn ∈ H(D) the number σM( f ) describes the growth of M(r, f )

by definition. In addition, it describes the growth of T(r, f ), maximal term

µ(r, f ) = max
n≥0

|an|rn,

and central index
ν(r, f ) = max

{
k ≥ 0 : |ak|rk = µ(r, f )

}
of f . Indeed, replace log+ M in the definition of σM( f ) by T, log+ µ or ν, to obtain
the quantities σT( f ), σµ( f ), σν( f ). Then

σM( f ) = σµ( f ) = max(0, σν( f )− 1),

by [45, pp. 43–45], and

λ( f ) ≤ σT( f ) ≤ σM( f ) ≤ σT( f ) + 1. (2.10)

Here λ( f ) is the exponent of convergence of the zeros {zn} of f , that is, the infimum
of α > 0 satisfying

∞

∑
n=1

(1 − |zn|)α+1 < ∞. (2.11)

First inequality in (2.10) is due to [63, Theorem V.11]. Last two inequalities in (2.10)
follow from [48, Proposition 2.2.2], according to which

T(r, f ) ≤ log M(r, f ) ≤ R + r
R − r

T(R, f ), 0 < r < R < ∞,

which implies also that σT,n( f ) = σM,n( f ) for n ≥ 2.

5



Tools for differential equations

The proof of Theorem 2.1 relies on Nevanlinna theory combined with order reduc-
tion method. In general, Nevanlinna theory is an important tool in the study of
differential equations [48]. One useful fact is that the function m(r, f (j)/ f ) grows
slower than m(r, f ), which is made precise in the next lemma [34, Lemma 1.1.3].

Theorem 2.3 (Lemma on the generalized logarithmic derivative). Let f be a transcen-
dental meromorphic function in D. Then m(r, f (k)/ f ) = S(r, f ) as r → 1−. If σT( f ) < ∞
then m(r, f (k)/ f ) = O(− log(1 − r)).

In Theorem 2.3, S(r, f ) denotes a quantity satisfying

S(r, f ) . log+ T(r, f ) + log
1

1 − r
(2.12)

as r → 1− outside a possible exceptional set E ⊂ [0, 1) of finite logarithmic measure∫
E

1
1 − r

dr < ∞.

Theorem 2.3 is not delicate enough for meromorphic functions which grow slowly
in the sense of log+ T(r, f ) . (− log(1 − r)), due to the second term in (2.12).

To give a straightforward application of Theorem 2.3, note that (1.1) implies

|A0| ≤
k−1

∑
j=1

|Aj|
∣∣∣∣∣ f (j)

f

∣∣∣∣∣+
∣∣∣∣∣ f (k)

f

∣∣∣∣∣ ,

and by the properties of log+, we obtain

m(r, A0) ≤ log+ k +
k−1

∑
j=1

m(r, Aj) +
k

∑
j=1

m

(
r,

f (j)

f

)
.

Hence, if A0 grows faster than A1, . . . , Ak−1, then all solutions must grow fast. For
example, if there does not exist C ∈ (0, ∞) such that

m(r, A0)−
k−1

∑
j=1

m(r, Aj) ≤ C log
e

1 − r
, r → 1−,

then σT( f ) = ∞ by Theorem 2.3.
Wiman-Valiron theory is based on the use of functions µ(r, f ) and ν(r, f ) defined

in Section 2.3 [44, 48]. For Wiman-Valiron theory in the unit disc, see [18] by Fenton
and Rossi, for example. As Rossi mentioned in a talk1, Wiman-Valiron theory tries
to answer the question: “How much of the power series of an analytic function can
we throw away and still get a good estimate near maximum modulus points?” If f
is entire, then a key inequality is

|ak+N |rk+N

µ(r, f )
≤ exp

(
−1

2
b(|k|+ N)k2

)
, (2.13)

1The 2015 work shop on “Complex Differential Equations and Value Distribution Theory” in Joensuu,
Finland
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which holds for r outside a set of finite logarithmic measure. Here N = ν(r, f ) and b
is a certain decreasing function, see [31, Theorem 2]. Inequality (2.13) implies that
the terms |ak+N |rk+N are small when compared to |aN |rN for large k. In the proof
of (2.13), the sequences |an| and rn are elaborately compared to certain well-chosen
sequences αn and ρn of positive numbers.

Moreover, for an entire function f , an estimate

M(r, f ) < (1 + ε)µ(r, f )
(

2π

b(N)

)1/2

holds for certain r large enough, see [31, Theorem 5] for details.
Wiman-Valiron theory has been developed also for the unit disc. We mention

two key results: in the cases σM( f ) > 0 and σM( f ) = 0, respectively,

f (q)(z) = (1 + o(1))
(

ν(|ζ|, f )
ζ

)q
f (z), |ζ| → 1−, (2.14)

and
f (q)(ζ)

f (ζ)
.
(

1
1 − |ζ|

)q+η

, |ζ| → 1−, (2.15)

for q ∈ N, η > 0, provided that | f (ζ)| is large enough, see [18] for details. For a
monomial f (z) = zN the power series is just one term and equation (2.14) reads

f (q)(z) =
N(N − 1) · · · (N − q + 1)

zq f (z).

Condition (2.15) suggests that | f (q)(z)|(1 − |z|)q would behave like | f (z)| near the
maximum modulus points of f .

2.4 EQUATIONS WITH COEFFICIENTS OF A PARTICULAR FORM

We consider the order of growth of solutions of differential equations, whose coeffi-
cients have a particular form. In the plane, the equation

f ′′ + A(z)eaz f ′ + B(z)ebz f = 0 (2.16)

where A and B are entire functions with order less than 1 and a, b ∈ C has been
studied, for example, in [5, 9, 10]. Since the coefficients of (2.16) are transcendental,
some solutions of (2.16) must be of infinite order by classical theorems of Frei and
Wittich, see [19, 64], for example. This leads to asking what conditions on the co-
efficients will guarantee that all solutions are of infinite order? This happens, for
example, if ab ̸= 0 and arg(a) ̸= arg(b) or a/b ∈ (0, 1) [9, Theorem 2].

Equation (2.16) gave the inspiration for [29], in which some particular differen-
tial equations in D were studied by techniques inherited from the plane case and
analogous to those used in [9]. As Hamouda [29] refers, [11, 24, 37, 46] are based on
the dominance of some coefficient.

In the unit disc, we may consider the equation

f ′′ + A1(z) exp
(

b1

(1 − z)q1

)
f ′ + A0(z) exp

(
b0

(1 − z)q0

)
f = 0, (2.17)
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where A1, A0 ∈ H(D ∪ {|z − 1| < ε}) for some ε > 0, b1, b0, q1, q0 are non-zero
complex numbers, A0 ̸≡ 0 and Re (q0) > 0. We define the power zp by taking the
principal branch, when z belongs to a simply connected domain D ⊂ C \ {0} and
p ∈ C \ Z. Analogously as for (2.16), since the coefficients of (2.17) are not in the
Korenblum space, some solutions of (2.17) must be of infinite order.

The next theorems consider special cases of equation (2.17). In Paper II, we
consider more general cases.

Theorem 2.1. [29, Theorem 1.6] Let q0 = q1 > 1 and b1 = 0 ̸= b0 in (2.17). Then every
non-trivial solution of (2.17) is of infinite order.

Theorem 2.2. [29, Theorem 1.8] Let q0 = q1 > 1, b0, b1 ̸= 0 and arg b0 ̸= arg b1
in (2.17). Then every non-trivial solution of (2.17) is of infinite order.

We have simplified the statements of Theorems 2.1–2.3 without loss of generality.
It is enough to consider the term (1 − z)µ in equation (2.17) instead of the more
general (z0 − z)µ as the change of variable z 7→ z0z shows.

We can also consider the higher order equation

f (k) +
k−1

∑
j=0

Aj(z) expnj

( bj

(1 − z)q

)
f (j) = Ak(z) expnk

(
bk

(1 − z)qk

)
, (2.18)

where k ∈ N, Aj ∈ H(D ∪ {|z − 1| < ε}) for some ε > 0, q, qk ∈ C \ {0}, nj ∈ N,
and bj ∈ C for j = 0, 1, . . . , k. The next theorem considers a special case.

Theorem 2.3. [29, Theorem 1.11] Let Ak ≡ 0, q > 1 and nj = 1 for all j = 0, 1, . . . , k − 1
in (2.18). Moreover, let b0 ̸= 0 and assume that bj/b0 ∈ [0, 1) for all j = 1, . . . , k − 1
with at most one exception bj = bm for which arg(bm) ̸= arg(b0). Then every non-trivial
solution is of infinite order.

The next theorem considers equation (1.1) without assuming a special form for
the coefficients Aj.

Theorem 2.4. [30, Theorem 2] Let A0, . . . , Ak−1 ∈ H(D). If there exists ω0 ∈ T and a
curve γ ⊂ D tending to ω0 such that

lim
z→ω
z∈γ

∑k−1
j=1 |Aj(z)|+ 1

|A0(z)|
expn

(
λ

(1 − |z|)µ

)
= 0,

where n ≥ 1 is an integer, and λ > 0 and µ > 0 are real constants, then every non-trivial
solution f of (1.1) satisfies σM,n( f ) = ∞, and furthermore σM,n+1( f ) ≥ µ.

Theorem 2.4 implies Theorem 2.2. Theorems 2.1 and 2.2 can be obtained in a
straightforward manner from Theorem 2.1 by localization, as we show in Paper I.
Localization is a general method, which has been used for example in [20, 22].
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3 Function spaces and zero separation of solutions

In this section, we define the classical Hardy space Hp and its subspace BMOA.
We discuss some equivalent norms and define the QK spaces, which for certain K
coincide with B, BMOA or the classical Dirichlet space. We present some suffi-
cient conditions, found by Li and Wulan [49], for the coefficients Aj, which place
the solutions of (1.1) in QK. The presented results should be valid under weaker
assumptions. This was shown to be true in Paper II by using a method based on
integration.

Next, we briefly discuss briefly results on separation of zeros and critical points
(zeros of the first derivative) of solutions of the second order equation (1.3). Paper III
contains a result on the zero separation of higher order differential equations. Fi-
nally, we state some facts about the relation of univalent functions to the oscillation
theory and function spaces.

3.1 HARDY AND QK SPACES

Hardy spaces

The Hardy space Hp, 0 < p < ∞, consists of f ∈ H(D) for which

∥ f ∥p
Hp = sup

0≤r<1

1
2π

∫ 2π

0
| f (reiθ)|p dθ < ∞. (3.1)

The integral in (3.1), denoted by Mp
p(r, f ), is an increasing function of r. Note that,

for f ∈ H(D) and 0 ≤ r < 1 fixed, Mp(r, f ) → M(r, f ) as p → ∞. For fundamental
facts about Hardy spaces, see [15].

The space H∞ consists of bounded analytic functions in D. In addition, the
Nevanlinna class N consists of those functions f meromorphic in D for which T(r, f )
remains bounded as r → 1−. Sincelog+ x ≤ p−1xp for 0 < p < ∞, we have Hp ⊂ N
for 0 < p ≤ ∞. In fact, the class N consists of quotients f /g, where f , g ∈ H∞

and g ̸≡ 0. For f ∈ N, the radial limit f (eiθ) = limr→1− f (reiθ) exists almost
everywhere and we have ∥ f ∥Hp = Mp(1, f ) for f ∈ H(D).

The zeros of functions in N are neatly characterized: a sequence {zn} ⊂ D is the
zero sequence of some f ∈ N if and only if (2.11) holds for α = 0, that is, {zn} is a
Blaschke sequence.

The Hardy-Stein-Spencer formula

∥ f ∥p
Hp = | f (0)|p + p2

2

∫
D
| f (z)|p−2| f ′(z)|2 log

1
|z| dm(z), (3.2)

that holds for 0 < p < ∞ and f ∈ H(D), expresses ∥ f ∥Hp as an area integral. Here,
let dm(z) = 1

π dxdy be the normalized Lebesgue measure. Identity (3.2) is a corollary
of Green’s theorem. It can also be obtained from [32, Theorem 3.1] by integration.
In Paper III, we are interested whether or not we can replace the term | f ′(z)| with
the quantity | f ′′(z)|(1 − |z|2) in (3.2).
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If f ∈ H1, then the Cauchy integral formula takes the form

f (z) =
1

2π

∫ 2π

0

f (eit)

1 − e−itz
dt =

∫
T

dµ(ζ)

1 − ζz
, z ∈ D, (3.3)

where dµ(ζ) = f (ζ)(2πiζ)−1dζ [15, Theorem 3.6]. If in general, µ is a finite complex
Borel measure on T, then the right-hand-side of (3.3) is the Cauchy transform of µ,
denoted by Kµ [13]. The space of Cauchy transforms is normed by

∥ f ∥K = inf

sup
∞

∑
j=1

∣∣µ(Ej)
∣∣ : Kµ = f ,

∞∪
j=1

Ej = T

 .

In the definition, all representing measures µ of f are considered. The total variation
of µ is defined by using the partitions

{
Ej
}

of T. The norm ∥ f ∥K is the infimum of
these total variations. For more information, see Chapter 6 of [58].

The space BMOA consists of those functions in the Hardy space H2 whose
boundary values are of bounded mean oscillation and has the seminorm

∥ f ∥2
BMOA = sup

a∈D

∥ fa∥2
H2 ,

where fa(z) = f (φa(z))− f (a) and φa(z) = a−z
1−az is the automorphism of the unit

disc. Since ∥ fa∥H2 = M2(1, fa) ≥ M2(0, fa) = | f ′(a)|(1 − |a|2) for all a ∈ D, we
deduce BMOA ⊂ B with ∥ f ∥B ≤ ∥ f ∥BMOA for f ∈ H(D). By (3.2), with p = 2,
and [21, pp. 228–230], we obtain

∥ f ∥2
BMOA ≍ sup

a∈D

∫
D
| f ′(z)|2(1 − |φa(z)|2) dm(z)

for f ∈ H(D).
Some results which place solutions of differential equations in Hardy spaces are

discussed in the end of Section 4.3 and in Paper III.

Solutions in QK spaces

Let QK be the space of functions f ∈ H(D) such that

sup
a∈D

∫
D
| f ′(z)|2K(g(z, a)) dm(z) < ∞, (3.4)

where K : [0, ∞) → [0, ∞) is nondecreasing, g(z, w) = log
∣∣∣ 1−wz

w−z

∣∣∣ is Green’s function
and dm(z) is the Lebesgue area measure. For example, QK = BMOA if K(r) = r, by
the Hardy-Stein-Spencer formula (3.2).

If K grows fast, such that
∫ ∞

1 K(r)e−2r dr = ∞, then condition (3.4) forces f ′ to
vanish identically and QK contains only constant functions. If this is not the case,
then QK contains the Dirichlet space D, which consists of f ∈ H(D) for which∫

D
| f ′(z)|2 dm(z),

the area of f (D) counting multiplicities, is finite. In particular, Bα ⊂ D ⊂ QK for
parameters 0 < α1/2.
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If K(r) ̸→ 0 as r → 0, then QK = D. However, for α ∈ [ 1
2 , 1] the condition

∫ 1

0

K(− log r)
(1 − r)2α

r dr < ∞

is equivalent to Bα ⊂ QK. If K(r) = rp for p ∈ (0, ∞), then QK is the classical Qp
space. See [17] for the proofs of the above mentioned facts and more.

In [49], the authors gave sufficient conditions for the analytic coefficients of (1.1)
such that the solutions all belong to QK. The proofs involve Carleson measures,
which are defined in Section 4.3.

Theorem 3.1. [49, Theorem 2.4] Let A(z) = ∑∞
n=0 anzn, an ∈ C. If |an| ≤ 1 for all

n ∈ N ∪ {0}, then all solutions of (1.3) belong to the Dirichlet space.

Theorem 3.1 was generalized for the higher-order equation (1.1) by Xiao:

Theorem 3.2. [65, Theorem 1.12] Let Aj(z) = ∑∞
n=0 aj,nzn ∈ H(D), aj,n ∈ C. If

|aj,n| ≤ (n + 2)k−2−j for all j = 0, . . . , k − 1, n ∈ N ∪ {0}, then all solutions of (1.3)
belong to the Dirichlet space.

In Paper II, it was shown that Theorem 3.1 is not sharp. Namely, for 0 < α < 1/2,
there exists a condition on the Maclaurin coefficients ak, such that the assertion of
Theorem 3.1 follows even though |ak| ≍ kα → ∞ as k → ∞, see [43, Corollary 8(a)]
and the discussion after that.

Theorem 3.3. [49, Theorem 2.1] Let 1 < c < 3/2 and let K satisfy

∫ ∞

1

(
sup

0≤t≤1

K(st)
K(t)

)
s1−2c ds < ∞. (3.5)

Then there exists a constant α = α(n, c, K) > 0 such that if the coefficients Aj of (1.1)
satisfy ∥Aj∥H∞

n−j
≤ α, j = 1, . . . , n − 1, and ∥A0∥H∞

n−c
≤ α, then all solutions of (1.1)

belong to QK.

Theorem 3.4. [49, Theorem 2.6] Let (3.5) be satisfied with c = 1. Then there exists
a constant β = β(n, K) > 0 such that if ∥Aj∥H∞

n−j
≤ β, for all j = 1, . . . , n − 1, and

∥A0∥H∞
n−1

≤ β, then all solutions of (1.1) belong to QK.

It seems reasonable that Theorem 3.3 holds when the condition ∥A0∥H∞
n−c

≤ α is
replaced by ∥A0∥H∞

n ≤ α. Similarly, Theorem 3.4 should hold when ∥A0∥H∞
n−1

≤ β is
replaced by ∥A0∥H∞

n ≤ β. The heuristic principle behind these predictions is stated
as follows:

Remark 1. Conditions (2.15), (2.3) and notion [59, p. 787] give the vague idea that
the term | f (j)(z)| grows roughly as | f (k)(z)|(1 − |z|2)k−j. If we want the terms f (k)

and Ak−1 f (k−1), . . . , A0 f in equation (1.1) to have equal growth, then |Aj(z)| should
grow roughly as (1 − |z|2)j−k. In this case, none of the terms Ak−1 f (k−1), . . . , A0 f
and f (k), could be immediately neglected while considering (1.1).
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3.2 SEPARATION OF ZEROS AND CRITICAL POINTS

For a non-constant f ∈ H(D) the zeros do not have an accumulation point inside
of D. Moreover, the subset of T, where the boundary function f (eiθ) exists and
vanishes, cannot be an arc on T due to the Schwarz reflection principle and cannot
have a positive measure by Privalov’s theorem. These observations hold for the
critical points of f as well.

If f and g are linearly independent solutions of

f ′′ + A f = 0, (3.6)

where A ∈ H(D), then the Wronskian determinant W( f , g) = f g′ − f ′g is a non-
zero constant. Consequently, the zeros of each solution of (3.6) are simple and the
zeros (resp. critical points) of two different solutions are distinct, since | f (z)|+ |g(z)|
and | f (z)|+ | f ′(z)| are non-vanishing. In contrast to these observations, note that it
is not clear how often | f (z)|+ |g′(z)| can vanish.

The zeros of any non-trivial solution of (3.6) are simple. Analogously, the zeros
of any non-trivial solution of the kth order differential equation (1.1) are at most of
order k − 1.

If f is a non-trivial solution of (3.6), the separation of its zeros and critical points
is of interest. If ψ : [0, 1) → (0, 1) is a non-decreasing function such that

K = sup
0≤r<1

ψ(r)

ψ
(

r+ψ(r)
1+rψ(r)

) < ∞,

and A is an analytic function satisfying

sup
z∈D

|A(z)|
(

ψ(|z|)(1 − |z|2)
)2

= M < ∞,

then any two distinct zeros ζ1, ζ2 ∈ D of any non-trivial solution of (5.17) are sepa-
rated in the hyperbolic metric by

dH(ζ1, ζ2) ≥ log
1 + ψ(|th(ζ1, ζ2)|)/ max

{
K
√

M, 1
}

1 − ψ(|th(ζ1, ζ2)|)/ max
{

K
√

M, 1
} ,

see [12, Theorem 11]. Here dH is the hyperbolic metric defined in (2.7), and th(ζ1, ζ2)
denotes the hyperbolic midpoint of ζ1 and ζ2. In particular, if A ∈ H∞

2 , then (2.7)
takes the form

dH(ζ1, ζ2) ≥ log
1 + 1/ max

{√
M, 1

}
1 − 1/ max

{√
M, 1

} ,

since we may choose ψ ≡ c for an arbitrary 0 < c < 1. Hence, we obtain the result
originally proved by Schwarz in [60, Theorems 3–4] that the zeros of each solution
of (1.3) are separated in the hyperbolic metric if and only if ∥A∥H∞

2
is finite. This is

equivalent to the existence of δ > 0 such that each solution of (1.3) has at most one
zero in each disc ∆(a, δ) for a ∈ D. Here

∆(a, δ) =

{
z ∈ D : |φa(z)| =

∣∣∣∣ a − z
1 − az

∣∣∣∣ < δ

}
12



is a pseudo-hyperbolic disc with center a ∈ D and radius 0 ≤ δ ≤ 1.
Zeros and critical points are hyperbolically separated from each other. Let ψ, K

and M be as above. If f is a non-trivial solution of (5.17), and f (z) = f ′(a) = 0 for
some z, a ∈ D, then

dH(z, a) ≥ 1
2

log
1 + ψ(|a|)/ max

{
K
√

2M, 1
}

1 − ψ(|a|)/ max
{

K
√

2M, 1
} ,

see [26, Theorem 1]. This implies the classical result of Taam [41, Theorem 8.2.2]: if
we have A ∈ H∞

2 , then the hyperbolic distance between any zero and any critical
point of any non-trivial solution of (5.17) is uniformly bounded away from zero.

In comparison to the case of two zeros, or a zero and a critical point, the critical
points can have an arbitrary multiplicity and they do not have to be separated,
see [26, Example 1].

In addition to hyperbolic separation, we define another concept: a sequence
{zn}∞

n=1 in D is uniformly separated if

inf
k∈N

∏
n∈N\{k}

∣∣∣∣ zn − zk
1 − znzk

∣∣∣∣ > 0.

The next example is originally due to Hille [41, p. 552]. The example is discussed
also in [60, p. 162] and in [35, Example 11].

Example 3.1. Let γ > 0 and A(z) = (1 + 4γ2)/(1 − z2)2, z ∈ D. Then the functions

f j(z) =
√

1 − z2 exp
(
(−1)jγi log

1 + z
1 − z

)
, j = 1, 2.

are linearly independent solutions of (5.17). Each f j, j = 1, 2, is bounded and has no
zeros. However, the bounded function

f (z) = f2(z)− f1(z) = 2i
√

1 − z2 sin
(

γ log
1 + z
1 − z

)
, z ∈ D,

has infinitely many zeros. The zeros of f are simple and real, and moreover, the
hyperbolic distance between two consecutive zeros is precisely δγ = π/(2γ). If, for
example, g(z) = f2(z) + f1(z), then the Wronskian W( f , g) = f g′ − g f ′ = 8iγ. Note
that, if γ → ∞ then ∥A∥H∞

2
→ ∞, |W( f , g)| → ∞ and ∥ f j∥H∞ → ∞, j = 1, 2, whereas

the separation constant δγ → 0.

The aforementioned results are related to the second order equation (3.6). The
analysis of higher order equations is harder because there are not enough sufficient
tools. Some progress was obtained, for example, by Kim and Lavie in the seventies
and eighties. In Paper III, a new zero separation result is obtained.

It is well-known that if f and g are any linearly independent solutions of (1.3),
then 2A = S(h), where h = f /g. Here

S(h) =
(

h′′

h′

)′
− 1

2

(
h′′

h′

)2

is the Schwarzian derivative of a locally univalent function h and h′′/h′ is called the
pre-Schwarzian derivative of h. Moreover, h is univalent in a set Ω ⊂ D if and only
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if each solution c1 f + c2g has at most one zero in Ω. Due to these two facts, the
zeros of solutions of (1.3) and the univalence of h are closely related.

For a moment, let α(z) = (1 − |z|2) and β(z) = (1 − |z|2)2. By Nehari’s re-
sult [50], ∥A∥H∞

β
= 2∥S(h)∥H∞

β
≤ 2 implies that h is univalent and equivalently each

non-trivial solution of (1.3) has at most one zero. Indeed, also in the case when h
is locally univalent and meromorphic, ∥S(h)∥H∞

β
≤ 1 implies that h is univalent,

see [55, Corollary 6.4]. If h ∈ H(D), then

∥S(h)∥H∞
β
≤ 4∥h′′/h′∥H∞

α
+

1
2
∥h′′/h′∥2

H∞
α

by Cauchy’s integral formula and

∥h′′/h′∥H∞
α
≤ 2 + 2

√
1 +

1
2
∥S(h)∥H∞

β

by [54, p. 133]. Hence, h is univalent if ∥h′′/h′∥H∞
α

is sufficiently small. The best
constant is due to Becker [6]: if h ∈ H(D) is locally univalent and

sup
z∈D

∣∣∣∣ zh′′(z)
h′(z)

∣∣∣∣ (1 − |z|2) ≤ 1,

then h is univalent in D.
Conversely, if f ∈ H(D) is univalent, then it satisfies the growth estimate

| f ′(0)| |z|
(1 + |z|)2 ≤ | f (z)− f (0)| ≤ | f ′(0)| |z|

(1 − |z|)2

which implies ∥ f ∥H∞
2

≤ | f (0)| + | f ′(0)|. Moreover, converse Becker’s condition
∥P( f )∥H∞

α
≤ 6 and Kraus’ condition ∥S( f )∥H∞

β
≤ 6 hold, see [55, p. 21] and [47,

p. 23].
For a locally univalent meromorphic function h in D, the quantity ∥S(h)∥H∞

β
is

finite if and only if h is uniformly locally univalent. Moreover, if h ∈ H(D), then
this is equivalent to the finiteness of ∥h′′/h′∥H∞

α
, see [66, Theorem 2].

Univalent functions are related to inclusions of function spaces. If f ∈ H(D)
is univalent, then it is well-known that f ∈ B if and only if f (D) does not contain
arbitrarily large discs. Moreover, univalent functions in B, BMOA and the spaces
Qp, for parameters 0 < p < ∞, are the same. Each univalent function belongs to the
Hardy space Hp for all 0 < p < 1/2. For these facts and refinements, see [53] and
the references therein.
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4 Tools for the study of ODEs

In this section, we describe some methods, which are useful in the study of dif-
ferential equations. We state the basic outline of localization, which leads to the
localization method for linear ODEs in Paper I. Since a pseudo-hyperbolic disc is
an important localization domain, the relationship of its center and radius to the
Euclidean center and radius is discussed in detail.

We state some integral estimates for the maximum modulus function of a so-
lution of (1.1). These growth estimates are related to Picard’s iterations, Gronwall
lemma and Herold’s comparison theorem and have resemblance to the integration
methods used in Paper II. However, the integration methods in Paper II are more
elementary and straightforward.

We describe an operator theoretic approach, which is used in both Papers II
and III. This method originates from Pommerenke’s result [57, Theorem 2] and its
improvement which are presented. A generalization of the Hardy-Stein-Spencer
formula to higher order derivatives improves these results, see Section 5.3.1 in the
summary of Paper III.

4.1 LOCALIZATION AND PSEUDO-HYPERBOLIC DISCS

A function f ∈ H(D) can be studied locally in a simply connected domain Ω ⊂ D

by localization: consider an analytic bijection ϕ : D → Ω and then study g = f ◦ ϕ
in D. By the Riemann mapping theorem, such a localization map ϕ always exists
and is essentially unique. The domain Ω and the map ϕ have to be chosen in a
suitable way so that ϕ preserves the properties of interest.

The most simple localization maps are the dilatation z 7→ rz, 0 < r < 1, the
translation z 7→ a + (1 − |a|)z, a ∈ D \ {0}, and the automorphism φa : D → D,

φa(z) =
a − z

1 − az
,

for a ∈ D. The composition ϕ(z) 7→ φa(rz) of the automorphism and dilatation
sends D to a pseudo-hyperbolic disc ∆(a, r) and is important when considering the
zero distribution of solutions of differential equations, see Paper III.

The Euclidean center and radius of a pseudo-hyperbolic disc

A pseudo-hyperbolic disc ∆(a, r), with center a ∈ D and radius 0 ≤ r < 1, consists
of z ∈ D, for which |φa(z)| < r. In fact, ∆(a, r) is a Euclidean disc with center and
radius

C =
1 − r2

1 − r2|a|2 a and S =
1 − |a|2

1 − r2|a|2 r, (4.1)

respectively [21, p. 3]. To see this by a direct calculation, let |φa(z)| = r and, for
simplicity, denote A = (1 − r2)/(1 − r2|a|2). Then

1 − r2

r2 =
(1 − |a|2)(1 − |z|2)

|z − a|2 ,
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which implies

|z|2 + |a|2 − 2 Re (az) = |z − a|2 =
r2 − |a|2r2

1 − r2 − r2 − |a|2r2

1 − r2 |z|2.

By re-organizing terms, we obtain

|z|2
A

− 2 Re (az) =
r2 − |a|2

1 − r2 .

If we multiply both sides with A, the obtained equation yields

|z − Aa|2 = |z|2 − 2 Re (Aaz) + |Aa|2 =
r2 − |a|2

1 − |a|2r2 + A2|a|2

=
(1 − |a|2)2

(1 − |a|2r2)2 r2,

which implies (4.1).
Note that the permutation

(a, C, r, S) 7→ (r, S, a, C) (4.2)

is very useful in this context, since it transforms the formulas in (4.1) to each other.

Supplementary formulas for condition (4.1)

Next, we supplement (4.1) by expressing a number x ∈ {a, C, r, S} in terms of two
other numbers of the same set. In particular, S is given by formulas (4.7) and (4.9)
below, and r is given in formulas (4.10)–(4.12). To obtain a formula for C or a, apply
the permutation (4.2).

Without loss of generality, let a, r ∈ (0, 1) and let ∆(a, r) = D(C, S). Now, condi-
tion (4.1) implies

C ± S =
a ± r

1 ± ra
,

which gives a ± r = C ± S ± raC + raS. Hence, we deduce the useful equations

a = C + raS (4.3)

and
r = S + raC. (4.4)

First, solve C from (4.4) and substitute to (4.3) to obtain

r = S(1 − a2r2) + ra2, (4.5)

which implies

S =
1 − a2

1 − a2r2 r.

Second, solve r from (4.4) and substitute to (4.3) to obtain

a = C +
aS2

1 − aC
, (4.6)
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which gives

S =

√
(a − C)(1 − aC)

a
. (4.7)

Third, apply the permutation (4.2) to (4.6) to obtain

rS2 − (1 − r2)S + (1 − C2)r = 0, (4.8)

which gives

S =
1 − r2

2r
−

√(
1 − r2

2r

)2

− (1 − C2). (4.9)

Also, formulas for r can be obtained. Equation (4.8) yields

r =
1 + S2 − C2

2S
−

√(
1 + S2 − C2

2S

)2

− 1. (4.10)

Apply the permutation (4.2) to (4.5) and solve for r to obtain

r =

√
a − C

a(1 − aC)
. (4.11)

Finally, solve r from (4.5) to obtain

r =

√(
1 − a2

2Sa2

)2

+ a2 − 1 − a2

2Sa2 . (4.12)

4.2 INTEGRAL ESTIMATES

Research in [25] concerns the use of Picard iterations f−1 ≡ 0,

fn(z) =
k−1

∑
j=0

j

∑
n=0

dj,n

∫ z

z0

(z − ζ)k−j+n−1 A(n)
j (ζ) fn−1(ζ) dζ

+
k−1

∑
n=0

cn(z − z0)
n, n ∈ N ∪ {0} ,

(4.13)

to study equation (1.1). Here the integration is done along the straight line segment
from z0 to z. The constants dj,n are given by

dj,n =
(−1)n( j

n)

(k − j + m − 1)!
, 0 ≤ n ≤ j ≤ k − 1,

and the constants cn ∈ C, which depend on the initial values of f at z0, are given by
an inductive formula in [25]. See also [14], for an application of Picard iterations.

If the iterations fn converge to an analytic function f , then (4.13) yields the rep-
resentation formula [36, Theorem 3.1], which together with the classical Gronwall
lemma [48, Lemma 5.10] implies Theorem 4.2.
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Lemma 4.1. Let u and v be nonnegative integrable functions in [1, t0] and let c > 0 be a
constant. If

u(t) ≤ c +
∫ t

1
u(s)v(s) ds, t ∈ [1, t0],

then

u(t) ≤ c exp
(∫ t

1
v(s) ds

)
, t ∈ [1, t0].

Theorem 4.2. [36, Theorem 4.1(a)] Let f be a solution of (1.1) where Aj ∈ H(D), for
all j = 0, . . . , k − 1. Then there exist a constant C1 = C1(k) > 0 depending on the initial
values of f at the origin, and a constant C2 > 0 depending on k, such that the following
estimates hold:

(i) Function f satisfies

M(r, f ) ≤ C1 exp

(
C2

k−1

∑
j=0

j

∑
n=0

∫ r

0
M(s, A(n)

j )(1 − s)k−j+n−1 ds

)
, (4.14)

for all 0 ≤ r < 1.

(ii) If Aj ∈ H(∆(0, R)) for some R ∈ (1, ∞), then

M(r, f ) ≤ C1rk−1 exp

(
C2

k−1

∑
j=0

j

∑
n=0

∫ r

0
M(s, A(n)

j )sk−j+n−1 ds

)
, (4.15)

for all 1 < r < R.

Herold’s comparison theorem can be summarized as follows [36, Theorem H].
Let v be a solution of

v(k) −
k

∑
j=1

pj(x)v(k−j) = 0, x ∈ [a, b),

where each pj : [a, b) → C. Let E ⊂ [a, b) be a set of finitely many points. Now,
replace each pj by Pj which, outside of E, is continuous and satisfies |pj(x)| ≤ Pj(x).
Let V be a solution of the new equation outside of E such that |v(j)(a)| ≤ V(j)(a),
for all j = 0, . . . , k − 1. Then

|v(j)(x)| ≤ V(j)(x), x ∈ [a, b) \ E, j = 0, . . . , k − 1.

Herold’s comparison theorem leads to the following theorem.

Theorem 4.3. [36, Theorem 5.1] Let f be a solution of (1.1) where Aj ∈ H(D), for
all j = 0, . . . , k − 1, and Aj(zθ) ̸= 0 for some 0 ≤ j ≤ k − 1 and zθ = νeiθ ∈ D. Then

M(r, f ) ≤ C exp

(
k
∫ r

ν

k−1

∑
j=0

M(s, Aj)
1

k−j ds

)
, (4.16)

where C depends on the values of f (j) and Aj at zθ .
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4.3 OPERATOR THEORETIC APPROACH

If f is a solution of
f ′′ + A f = 0, (4.17)

where A ∈ H(D), then

f (z) = SA( f )(z) + f (0) + f ′(0)z, z ∈ D,

where the operator

SA( f )(z) = −
∫ z

0

(∫ ζ

0
f (w)A(w) dw

)
dζ, z ∈ D,

maps H(D) into itself. If X ⊂ H(D) is an admissible normed space and the operator
norm ∥SA∥X→X satisfies

∥SA∥X→X = sup
f∈X

∥SA( f )∥X
∥ f ∥X

< 1,

we deduce

∥ f ∥X ≤ C( f )
1 − ∥SA∥X→X

< ∞.

This operator theoretic approach is behind many results which give condition for A
such that all solutions belong to some function space of analytic functions.

The approach is related the classical integral operator

Tg( f )(z) =
∫ z

0
f (ζ)g′(ζ) dζ,

which has been studied, for example, by Pommerenke, Aleman, Cima and Siskakis,
see [2–4,56]. The application of the operator theoretic approach may be difficult due
to the lack of equivalent norms (H∞) and because Carleson measures still remain
unknown (BMOA and B). However, the duality relations (H1)∗ ≃ BMOA, A∗ ≃ K
and (A1

ω)
∗ ≃ B suggest how to proceed.

To apply the operator theoretic approach, we usually need to utilize the dilata-
tion fr, defined by fr(z) = f (rz) for r ∈ (0, 1). Then at the end of the proof, we can
use facts such as ∥ f ∥Hp = limr→1−∥ fr∥Hp and ∥ f ∥2

BMOA ≤ sup0≤r<1∥ fr∥2
BMOA. For

a corresponding lemma about the norm of H∞
ω , see [43, Lemma 11].

A seminal discovery was [57, Theorem 2], where Pommerenke gives a sharp suf-
ficient condition for the analytic coefficient A, which places all solutions f of (4.17)
to the classical Hardy space H2. To do this, Pommerenke writes the H2-norm of f in
terms of f ′′ by using Green’s formula, employs (4.17), and then applies Carleson’s
theorem for the Hardy spaces [15, Theorem 9.3].

A finite positive Borel measure µ on D is called a q-Carleson measure for an ad-
missible normed space X ⊂ H(D) if X is continuously embedded into Lq

µ. This
means that the identity operator Id : X → Lq

µ satisfies

∥ f ∥Lq
µ
≤ ∥Id∥X→Lq

µ
∥ f ∥X , f ∈ X,

where the operator norm ∥Id∥X→Lq
µ

is a finite number. The term Carleson measure
is named after L. Carleson who obtained a characterization for such measures in the
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case where X = Hp and q = p. Namely, for a finite positive Borel measure µ on D

and 0 < p < ∞,(∫
D
| f (z)|p dµ(z)

) 1
p
≤ ∥Id∥Hp→Lp

µ
∥ f ∥Hp , f ∈ Hp, (4.18)

where
∥Id∥p

Hp→Lp
µ
≍ ∥µ∥Carleson, 0 < p < ∞.

Here ∥µ∥Carleson is the Carleson norm of µ defined by

∥µ∥Carleson = sup
a∈D

µ(Sa)

1 − |a| = sup
a∈D

∫
Sa

dµ(z)
1 − |a| < ∞,

see [67, Theorem 9.12] and [15, Theorem 9.3]. The sets

Sa =

{
reiθ : |a| < r < 1, |θ − arg(a)| ≤ 1 − |a|

2

}
, a ∈ D \ {0} ,

and S0 = D are called Carleson squares.
We have

∥µ∥Carleson ≍ sup
a∈D

∫
D
|φ′

a(z)| dµ(z). (4.19)

To get an upper estimate for ∥µ∥Carleson, note that

1
1 − |a| .

1 − |a|2
|1 − az|2 = |φ′

a(z)|, z ∈ Sa, a ∈ D,

by |1 − az| ≤ |1 − |a|2|+ ||a|2 − az| . (1 − |a|) for z ∈ Sa. For the other direction,
apply (4.18) for p = 1 to φ′

a, and note that ∥φ′
a∥H1 = 1 for all a ∈ D. See [23, p. 101].

Now we state Pommerenke’s original theorem.

Theorem 4.1. [57, Theorem 2] If A ∈ H(D) such that ∥µA∥Carleson is small enough for
dµA = |A(z)|2(1 − |z|2)3 dm(z), then every solution of (4.17) belongs to H2.

A refinement of Theorem 4.1 shows that only the behavior of A close to bound-
ary T matters: There exists an absolute constant 0 < β < ∞ such that if

sup
|a|≥δ

µA(Sa)

1 − |z| ≤ β,

for any 0 ≤ δ < 1, then all solutions of (4.17) belong to H2, see [57, Theorem 3].
Theorem 4.2 generalizes Theorem 4.1 for the case of the higher order equation (1.1)
and general 0 < p < ∞.

Theorem 4.2. [59, Theorem 1] Let 0 ≤ δ < 1. For every 0 < p < ∞ there is a positive
constant α, depending only on p and k such that if the coefficients Aj ∈ H(D) of (1.1)
satisfy

sup
|a|≥δ

∫
D
|A0(z)|2(1 − |z|2)2k−1 1 − |a|2

|1 − az|2 dm(z) ≤ α

and
sup
|z|≥δ

|Aj(z)|(1 − |z|2)k−j ≤ α, 1, . . . , k − 1,

then all solutions of (1.1) belong to Hp ∩ H∞
p .
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5 Summary of papers

In the following summaries, the notation used in the original papers has been
changed to correspond to the previous sections.

5.1 SUMMARY OF PAPER I

We describe a general localization method, which can be applied to the study of
differential equations in simply connected domains D ( C. Then, as an example, we
define a particular localization mapping and apply known results for D to improve
Theorems 2.1–2.3.

5.1.1 The localization method for linear ODEs

In this section, we first state a general theorem about localization. Then, we intro-
duce a particular mapping which can detect exponential growth near the boundary
point z = 1.

Lemma 5.1. [42, Lemma 2.1] Let f be a solution of

f (k) + Ak−1 f (k−1) + · · ·+ A1 f ′ + A0 f = Ak,

where A0, A1, . . . , Ak ∈ H(D). Let T : D → D be locally univalent and g = f ◦ T. Then
function g is a solution of

g(k) + ck−1g(k−1) + · · ·+ c1g′ + c0g = ck, (5.1)

where cj ∈ H(D). Moreover,

σM,n(ck) = σM,n(Ak ◦ T), σM,n(cj) ≤ max
m≥j

{σM,n(Am ◦ T)},

τM,n(ck) = τM,n(Ak ◦ T), τM,n(cj) ≤ max
N∈Sj

{τM,n(AN ◦ T)},
(5.2)

where Sj = {N ∈ N : σM,n(AN ◦T) = maxm≥j{σM,n(Am ◦T)}}, for j = 0, 1, . . . , k− 1.

Proof of Lemma 5.1 follows easily, since by a straightforward calculation, g is a
solution of (5.1) where ck = (ak ◦ T)Pk,k(T),

cj =
1

Pj,j(T)

[
(Aj ◦ T)(T′)k − Pk,j(T)−

k−1

∑
m=j+1

cmPm,j(T)

]
,

for j = 0, 1, . . . , k − 1, and Pm,j(T) is defined by

g(m) =
m

∑
j=0

( f (j) ◦ T)Pm,j(T).
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Hence Pm,j(T) is a polynomial in T′, T′′, . . . , T(m) with integer coefficients, a so-called
Bell polynomial. We can inductively solve ck−1, ck−2, . . . , c0 and see that (5.2) holds.

Here we may mention that, in Paper III, the formulas

c0 = (A0 ◦ T)(T′)k, ck = (Ak ◦ T)(T′)k

ck−1 = (Ak−1 ◦ T)T′ − k(k − 1)
2

T′′

T′ ,

ck−2 = (Ak−2 ◦ T)(T′)2 − (Ak−1 ◦ T)T′′

+
k(k − 1)

2

(
T′′

T′

)2

− k(k − 1)(k − 2)
6

T′′′

T′ ,

(5.3)

which hold for a general k ∈ N, were used in the case k = 3.
We study equations (5.5), (5.7) and (5.8) via the localization map T : D → D,

defined by

T(z) = Tβ,γ(z) = 1 − sin(β/2)eiγ
(

1 − z
2

)p
, (5.4)

where β ∈ (0, π/2], p = p(β) = β(π − β)/π2 ∈ (0, 1/4] and γ ∈ (−π/2, π/2) such
that |γ| ≤ (π − β)2/2π ∈ (0, π/2). Here T(D) is a tear shaped region having a
vertex of angle pπ touching T at z = 1, see Figure 5.1. The domain T(D) has the
symmetry axis T((−1, 1)) which meets the real axis at angle γ. As β decreases, T(D)
becomes thinner, T((−1, 1)) becomes shorter and the angle γ can be set larger [42].

If g ∈ H(D) grows fast near the point z = 1 in terms of the iterated order of
growth, then T carries the property to g = f ◦ T, as the next lemma shows.

Figure 5.1: Domain T(D) with parameters β = 0.85 and γ = −0.75. In this case,
we have p = β(π − β)/π2 ≈ 0.197 and 2 sin(β/2) ≈ 0.825.

22



Lemma 5.2. [42, Lemma 2.2] Let f ∈ H(D) and g = f ◦ T, where T is defined by (5.4).
Then σM,n( f ) ≥ σM,n(g)/p for n ∈ N.

The proof of Lemma 5.2 is straightforward and follows from the definition of the
order σM,n and the geometric properties of the conformal map T. Note that f can
grow arbitrarily fast even when f ◦ T grows slowly.

5.1.2 Iterated order of growth of solutions

Second order equations

We apply the localization map T, defined in (5.4), to the equation

f ′′ + A1(z) exp
(

b1

(1 − z)q1

)
f ′ + A0(z) exp

(
b0

(1 − z)q0

)
f = 0, (5.5)

where A0, A1 ∈ H(D ∪ {|z − 1| < ε}), for some ε > 0 and, to avoid trivial cases,
A0 ̸≡ 0, b1, b0, q1, q0 ̸= 0, Re (q0) > 0. Earlier results concerning equation (5.5) were
discussed in Section 2.4.

Theorem 5.3. [42, Theorems 1.2 and 1.3] Let f be an arbitrary non-trivial solution of (5.5),
where q1 = q0 = q.

(i) If q ∈ (2, ∞) and arg(b1) ̸= arg(b0), then σM,2( f ) ≥ q.

(ii) If Im (q) ̸= 0 < Re (q) and |b1| < |b0|, then σM,2( f ) ≥ Re (q).

The case q ∈ (0, 2], which is not covered by Theorem 5.3(i), can be done with
stronger assumptions, see Theorem 5.6 below. For q ∈ (2, ∞), Theorem 5.3(i) im-
proves Theorem 2.2, and Theorem 5.6 improves [29, Theorem 1.11].

Theorem 5.4. [42, Theorem 1.4] Let q1 ̸= q0 in equation (5.5). Assume that either
q0, q1 ∈ (0, ∞) and

Re
(

b1

eiγq1

)
< 0 < Re

(
b0

eiγq0

)
, for some γ ∈

(
−π

2
,

π

2

)
, (5.6)

or Im(q0) ̸= 0 and Re (q1) < Re (q0). Then σM,2( f ) ≥ Re (q0) for all non-trivial
solutions f of (5.5).

In Paper II, we discuss in detail when (5.6) holds, see [42, Corollary 1.5] and the
discussion after that. See also Figure 5.2.

Higher order equations

Here, we consider some higher order differential equations.

Theorem 5.5. [42, Theorem 1.1] Let f be an arbitrary non-trivial solution of

f (k) + Ak−1(z) f (k−1) + · · ·+ A1(z) f ′ + A0(z) expn

(
b

(1 − z)q

)
f = 0, (5.7)

where k, n ∈ N, Aj ∈ H(D ∪ {|z − 1| < ε}), for some ε > 0, A0 does not vanish identi-
cally and b, q ∈ C \ {0}. Suppose that Im (q0) ̸= 0 or | arg(b0)| < π

2 (Re (q0) + 1). Then
σM,n+1( f ) ≥ Re (q0).
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Figure 5.2: The green area represents those pairs (q0, q1) ∈ [3, 10]× [1, 3] such that
condition 5.6 holds for any b0, b1 ∈ C \ 0. The sawteeth are bounded by the blue
curve q1 = q0/(q0 − 2) the red curve q1 = q0/(q0 − 1).

Theorem 5.5 implies Theorem 2.1 as a special case, by setting k = 2, n = 1 and
q ∈ (1, ∞). Next, we state two generalizations.

Theorem 5.6. [42, Theorem 2.3] Let f be an arbitrary non-trivial solution of

f (k) +
k−1

∑
j=0

Aj(z) exp
( bj

(1 − z)q

)
f (j) = 0, (5.8)

where k ∈ N, Aj ∈ H(D ∪ {|z − 1| < ε}) for some ε > 0, q ∈ (0, ∞) and bj ∈ C

for all j = 0, 1, . . . , k − 1. Let A0 ̸≡ 0 and b0 ̸= 0. Assume that bj/b0 ∈ [0, 1) for all
j = 0, 1, . . . , k − 1 with at most one exception bj = bm for which arg(bm) ̸= arg(b0).
Suppose that one of the conditions

(i) max (Re (bm), 0) < Re (b0);

(ii) 0 < Re (b0) ≤ Re (bm), arg
(

bm
b0

)
∈ (0, π) and arg

(
i

bm−b0

)
< π

2 q;

(iii) Re (b0) ≤ 0, arg
(

bm
b0

)
∈ (0, π] and arg

(
b0
i

)
< π

2 q

holds or that one of the conditions holds when b0 and bm are replaced by b0 and bm respec-
tively. Then σM,2( f ) ≥ Re (q).

For a non-homogenous version of Theorem 5.6, see [42, Theorem 2.4].
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5.2 SUMMARY OF PAPER II

We give sufficient conditions for the coefficients such that all solutions of

f (k) + Ak−1 f (k−1) + · · ·+ A1 f ′ + A0 f = Ak (5.9)

belong to H∞
ω (D). Here k ∈ N \ {1} and A0, A1, . . . , Ak are analytic in a simply con-

nected domain D, which is typically the unit disc D. In Theorem 5.2, the domain D
needs only to be starlike: 0 ∈ D and D contains the linear segment [0, z0] for all
points z0 ∈ D.

5.2.1 Integration method involving multiple steps

Let a bounded, measurable and radial function ω : D → (0, ∞) satisfy

lim sup
r→1−

ω(r)
∫ r

0

ds
ω(s)(1 − s)

< M < ∞, (5.10)

for some M = M(ω) ∈ (0, ∞) and

lim sup
r→1−

ω(r)

ω
(

1+εr
1+ε

) < m (5.11)

for some constants ε ∈ (0, ∞) and m = m(ω, ε) ∈ (0, ∞). Then, by (5.10) there exists
constants Mk = Mk(ω, k) ∈ (0, M] and M0 = M0(ω) ∈ (0, ∞) such that

lim sup
r→1−

ω(r)(1 − r)k−1
∫ r

0

ds
ω(s)(1 − s)k < Mk, k = 1, . . . , n, (5.12)

and

ω(t)
∫ t

0

ds
ω(s)(1 − s)

< M0, t ∈ (0, 1).

Theorem 5.1. [43, Theorem 1] Let ω : D → (0, ∞) be radial and satisfy (5.10) and (5.11).
Then the following assertions hold:

(a) If the nth primitive of An belongs to H∞
ω and

E = Pn

(
∥A0∥H∞

n + m
n−1

∑
k=1

k!(1 + ε)k∥Ak∥H∞
n−k

)
< 1,

where Pn = ∏n
k=1 Mk with constants Mk as in (5.12) and m, ε are as in (5.11), then

all solutions of (1.1) belong to H∞
ω .

(b) If the (n − 1)th primitive of An belongs to H∞
ω and

F = Pn−1

(
sup
z∈D

|A0(z)|ω(z)(1 − |z|)n−1
∫ |z|

0

dr
ω(r)

+ ∥A1∥H∞
n−1

+ m
n−2

∑
k=1

k!(1 + ε)k∥Ak+1∥H∞
n−k−1

)
< 1,

where Pn−1 = ∏n−1
k=1 Mk with constants Mk as in (5.12) and m, ε are as in (5.11),

then the derivative of every solution of (1.1) belongs to H∞
ω .

25



Moreover, if we consider the equations

f (n) + A0 f = 0 and f (n) + A1 f ′ + A0 f = 0

in (a) and (b), respectively, then the assumption (5.11) regarding ω is not necessary.

In the proof of Theorem 5.1, an estimate for f in terms of f (n) is obtained step-
by-step by using the Fundamental Theorem of Calculus (2.2) with inequality (5.12)
for k = 1, . . . , n, see the proof of [43, Lemma 9]. In this way, the constants Mk can be
optimized on each step. If we use (2.2) multiple times before involving the weight ω
or if we use, for example, the representation formula [36, Theorem 3.1], the sharp
constants are lost.

Condition (5.10) implies that ω has to decrease quite fast. In particular, there
exists p ∈ (0, ∞) such that ω(r)/(1− r)p is bounded [61, Lemma 2]. Condition (5.11)
restricts the rate at which ω can decrease. If ω is nonincreasing, then (5.11) is

equivalent to the doubling condition: ω(r) ≤ mω
(

1+r
2

)
when r ∈ [0, 1) is close to

one.
Conditions (5.10) and (5.11) are independent. Namely, ω(r) = exp

(
− 1

1−r

)
satisfies (5.10) but fails (5.11). Conversely, ω(r) =

(
log e

1−r
)−1 satisfies (5.11) but

fails (5.10). For more properties on (5.10) and (5.11), see [43].

5.2.2 Integration method via a differentiation identity

In the proof of Theorem 5.1, the an upper bound is given to the terms Aj f (j), in
terms of Aj f , by using the Cauchy Integral Formula and (5.11). Meanwhile, in the
proof of Theorem 5.2 below, we use the identity

Am f (m) =
m

∑
j=0

(−1)j
(

m
j

)(
A(j)

m f
)(m−j)

,

and then remove the derivative on the right-hand side by integrating repeatedly
along a line segment. Consequently, the sufficient condition for the coefficients Aj
is an integral condition. Denote the generated quantities by

FK(m, ω)(z) =

∣∣∣∣∣ m

∑
j=1

(−1)m−j
(

n − K − j
m − j

)
A(m−j)

n−j (ξm)

∣∣∣∣∣ω(z)−1,

for K = 0, 1 and 1 ≤ m ≤ n, and the repeated integration along a line segment by

I0(F, z) = |F(z)| and In+1(F, z) =
∫ z

0
In(F, ζ) |dζ|

for n ∈ N and z ∈ D. Here F is a measurable function in a starlike domain D.

Theorem 5.2. [43, Theorem 2] Let D be a starlike domain and let ω : D → (0, ∞) be
a measurable and bounded function. Let the coefficients Aj ∈ H(D), j = 0, . . . , n, in
equation (5.9).

(a) If

E = sup
z∈D

ω(z)
n

∑
m=1

Im(F0(m, ω), z) < 1

and the nth primitive of An belongs to H∞
ω (D), then all solutions of equation (5.9)

belong to H∞
ω (D).
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(b) If

F = sup
z∈D

ω(z)
[

In−1(A0 I1(ω
−1), z) +

n−1

∑
m=1

Im(F1(m, ω), z),
]
< 1,

and the (n − 1)th primitive of An belongs to H∞
ω (D), then the derivative of every

solution of (5.9) belongs to H∞
ω (D).

Theorem 5.2 and condition (5.10) imply a version of Theorem 5.1, which is true
without the assumption (5.11), but where the sharp constants are lost, see [43, The-
orem 3]. Theorem 5.2 is more general than Theorem 5.1 also in the way that D

may be replaced by an arbitrary starlike domain. For more general domains, see the
discussion after [43, Theorem 2].

Consequences and sharpness of main results

If ω(z) = (1 − |z|)p for p ∈ (0, ∞), then the quantities E and F in Theorem 5.1 can
be chosen to be

E =
n

∏
j=1

1
p + j − 1

(
∥A0∥H∞

n +
n−1

∑
k=1

k!
(k + p)k+p

kk pp ∥Ak∥H∞
n−k

)

and

F =
n−1

∏
j=1

1
p + j − 1

(
sup
z∈D

|A0(z)|(1 − |z|)p+n−1
∫ |z|

0

dr
(1 − r)p

+ ∥A1∥H∞
n−1

+
n−2

∑
k=1

k!
(k + p)k+p

kk pp ∥Ak+1∥H∞
n−k−1

)
,

(5.13)

respectively. In this case, concrete upper bounds for ∥ f ∥H∞
p and ∥ f ∥Bα are found,

see [43, Corollary 4].
In the case of equation

f ′′ + A f = 0,

where A ∈ H(D), Theorem 5.1 is sharp in the sense that assumptions E < 1 and F <
1 cannot be replaced by E < 1 + ε or F < 1 + ε, respectively, for any ε ∈ (0, ∞),
see [43, Example 5].

Corollary 5.3. [43, Corollary 6] Let f be a solution of (1.1) where Aj ∈ H(D), for
all j = 0, . . . , n. Let An ≡ 0 and let F = F(p) be defined as in (5.13). Then the following
assertions hold:

(a) If F(p) < 1 holds with p = 1 and
∫ 1

0

K(− log r)
(1 − r)2 r dr < ∞, then f ∈ B = QK.

(b) If F(p) < 1 with p ∈ [ 1
2 , 1) and

∫ 1

0

K(− log r)
(1 − r)2p r dr < ∞, then f ∈ Bp ⊂ QK,0.

(c) If F(p) < 1 with p ∈ (0, 1
2 ), then f ∈ Bp ⊂ D ⊂ QK. Moreover, if K(0) = 0,

then f ∈ Bp ⊂ D ⊂ QK,0.
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Corollary 5.3 improves Theorems 3.3 and 3.4. Moreover, recall that if f ∈ Bp for
some 0 ≤ p < 1, then f is continuous in D and f (eit) ∈ Λ1−p, that is, f satisfies
a Lipschitz condition of order 1 − p, see [15, Theorem 5.1]. Hence, Corollary 5.3
implies also facts about the continuity of f .

Corollary 5.4. [43, Corollary 8] Let A(z) = ∑∞
k=0 akzk ∈ H(D) and let f be a solution

of (1.3). Then the following assertions hold:

(a) If α ∈ (0, 1) and |ak| < α(1 − α)
Γ(k + α + 1)
k! Γ(α + 1)

for k ∈ N ∪ {0}, then f ∈ Bα.

(b) If |ak| <
1
k!

∫ 2

1

Γ(k + x)
Γ(x)

dx for k ∈ N ∪ {0}, then f ∈ B.

(c) If α ∈ (1, ∞) and |ak| < α(α − 1)(1 + k) for k ∈ N ∪ {0}, then f ∈ Bα.

Corollary 5.4(a) partially improves Theorem 3.1, which requires

|ak| ≤ 1 = o
(

Γ(k + α + 1)
k! Γ(α + 1)

)
, k → ∞,

to yield that all solutions of (1.3) belong to the Dirichlet space.

5.2.3 A classical theorem in the plane

As a straightforward application of Theorem 5.2, we obtain a part of [48, Theo-
rem 8.3]. See [48] for a proof in terms of the Wiman-Valiron theory.

Theorem 5.5. [43, Theorem A] Let the coefficients A0, . . . , An−1 of (5.9) be polynomials
and An an entire function with a finite order of growth ρ(An). Then all solutions of (5.9)
are entire functions of finite order. Moreover,

ρ( f ) ≤ max
{

1 + max
0≤j≤n−1

deg(Aj)

n − j
, ρ(An)

}
(5.14)

for every solution f .

Our proof of Theorem 5.5 directly generalizes to the iterated order case and we
obtain [7, Theorems 4(i) and 4(ii)], according to which every solution of (1.1) satisfies

ρk+1( f ) ≤ max
{

max
0≤j≤n−1

ρk(Aj), ρk+1(An)

}
. (5.15)

For An ≡ 0, condition (5.15) can be given also by the growth estimates (4.16)
and (4.15) or Picard’s successive approximations, see [25, Theorem D]. Moreover,
condition (5.14) follows from estimate (4.15). Conditions (5.14) and (5.15) have a
similarity with the fact that each solution z0 of the polynomial equation

zn + an−1zn−1 + an−2zn−2 + · · ·+ a1z + a0 = 0,

satisfies
|a0|

1 + ∑n−1
j=0 |aj|

≤ |z0| ≤ 2 + max
0≤j≤n−1

|aj|
n − j

,

which can be seen by modifying the proof of [48, Lemma 1.3.2]. This is no surprise,
since Wiman-Valiron theory transforms the differential equation (1.1) to an algebraic
equation, which, at least asymptotically, is a polynomial equation.

28



5.3 SUMMARY OF PAPER III

We present a counterpart of the Hardy-Stein-Spencer formula for the higher order
derivatives, which has applications to differential equations. Then we consider the
bounded, BMOA and B solutions of a second order differential equation and the
zero separation of solutions of higher order differential equations.

5.3.1 A counterpart of the Hardy-Stein-Spencer formula for higher order
derivatives

Define for f ∈ H(D), 0 < p < ∞ and k ∈ N the quantities

N( f , p, k) = ∥ f ∥p
Hp −

k−1

∑
j=0

| f (j)(0)|,

M( f , p, k) =
∫

D
| f (z)|p−2| f (k)(z)|2(1 − |z|2)2k−1 dm(z).

We are now motivated by the question whether or not

N( f , p, k) ≤ C(p, k)M( f , p, k), C(p, k)
p→0+−−−→ 0+? (5.16)

If k = 1, the answer is affirmative by the Hardy-Stein-Spencer formula (3.2). If k = 2
and f ∈ H(D) is non-vanishing such that ∥log f ∥B is sufficiently small then (5.16)
holds for k = 2 with C(p) ≍ p2 as p → 0+. To see this, apply the Hardy-Stein-
Spencer formula to g = f (p−2)/2 f ′ ∈ H(D). For general k we obtain the next
theorem whose proof relies on a classical characterization of Hp spaces in terms of
the Lusin area function, see [1, p. 125] and [21, pp. 55-56].

Theorem 5.1. [27, Theorem 4] Let f ∈ H(D) and k ∈ N.

(i) If 0 < p ≤ 2, then N( f , p, k) . M( f , p, k).

(ii) If 2 ≤ p < ∞, then M( f , p, k) . N( f , p, k).

(iii) If 0 < p < ∞ and there exists 0 < δ < 1 such that f is univalent in each pseudo-
hyperbolic disc ∆(a, δ), a ∈ D, then
N( f , p, k) . M( f , p, k).

The comparison constants are independent of f and in (i) and (ii) they depend only on p.
In (iii) the comparison constant depends on p and δ.

Theorem 5.1(i) has two immediate applications in the case, when A ∈ H(D)
such that dµA(z) = |A(z)|2(1 − |z|2)3 dm(z) is a Carleson measure. First, let f be a
solution of

f ′′ + A f = 0 (5.17)

and let fr(z) = f (rz) for 0 < r < 1. Since lim supr→1−∥µAr∥Carleson . ∥µA∥Carleson
by the discussion in the proof of [27, Theorem A] and (4.19), we get by Theorem 5.1(i)
and Carleson’s theorem

N( fr, p, 2) .
∫

D
| fr(z)|p|A(rz)|2(1 − |z|2)3 dm(z) . ∥ fr∥p

Hp∥µA∥Carleson
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for r large enough. Hence, if ∥µA∥Carleson is small enough, depending on 0 < p < ∞,
then f ∈ Hp. This is an alternative proof of a special case of [59, Theorem 1.7].

If inequality (5.16) were true for k = 2, then we could improve [59, Theorem 1.7]
in the case of equation (5.17) to the form: if dµA(z) = |A(z)|2(1 − |z|2)3 dm(z) is a
Carleson measure, then all solutions of (5.17) belong to

∪
0<p<∞ Hp.

5.3.2 Solutions in H∞, BMOA and B by an operator theoretic approach

We give sufficient conditions for the analytic coefficient A of (5.17) which place solu-
tions in H∞, BMOA or B. In the case of bounded solutions, the sufficient condition
is given in terms of Cauchy transforms, defined by (3.3).

Theorem 5.2. [27, Theorem 2] Let A ∈ H(D). If

lim sup
r→1−

sup
z∈D

∥Ar,z∥K < 1

for

Ar,z(u) =
∫ z

0

∫ ζ

0

A(rw)

1 − uw
dw dζ, u ∈ D,

then all solutions of (1.3) are bounded.

The converse implication in Theorem 5.2 is open and appears to be difficult.
If (5.17) admits linearly independent solutions f1, f2 ∈ H∞ such that

inf
z∈D

(| f1(z)|+ | f2(z)|) > 0, (5.18)

then A ∈ H∞
2 , by an application of the Corona theorem [15, Theorem 12.1]: there

exists g1, g2 ∈ H∞ such that f1g1 + f2g2 ≡ 1, and consequently

A = A + ( f1g1 + f2g2)
′′ = 2( f ′1g′1 + f ′2g′2) + f1g′′1 + f2g′′2 .

Regarding condition (5.18), we recall that f1 and f2 do not have common zeros due
to linear independence.

The existence of one bounded solution restricts the growth of A almost to the
form A ∈ H∞

4 . Namely, f (z) = exp(−(1 + z)/(1 − z)) is a solution of (1.3) with
coefficient A(z) = −4z/(1 − z)4. This is almost extremal possible growth for A
since [14, Theorem 3.1(a)] implies that if (1.3) has a bounded solution, then

M(r, A) .
(
log e

1−r
)2

(1 − r)4 .

For the space BMOA we obtain two results, namely Theorems 5.3 and 5.4 below.
The proofs of Theorems 5.2-5.5 utilize the dilatation fr(z) = f (rz) for 0 < r < 1.
Note that condition (5.19) does not include a limit respect to r, whereas condi-
tion (5.20) does.

Theorem 5.3. [27, Theorem 3] Let A ∈ H(D). If

sup
a∈D

(
log

e
1 − |a|

)2 ∫
D
|A(z)|2(1 − |z|2)2(1 − |φa(z)|2) dm(z) (5.19)

is sufficiently small, then all solutions of (1.3) belong to BMOA.
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Theorem 5.3 is inspirated by [62, Theorem 3.1] and related to so-called logarith-
mic Carleson measures, see Paper III and references therein.

Theorem 5.4. [27, Theorem 14] Let A ∈ H(D). If

lim sup
r→1−

sup
a∈D

∫
D

(
1

2π

∫ 2π

0

∣∣∣∣∫ z

0

A(rζ) dζ

1 − e−itζ

∣∣∣∣ dt
)2

(1 − |φa(z)|2) dm(z) (5.20)

is sufficiently small, then all solutions of (1.3) belong to BMOA.

The condition

sup
z∈D

|A(z)|(1 − |z|)2
(

log
e

1 − |z|

)α

< ∞ (5.21)

for α = 3/2 implies the finiteness of (5.19), but also, since α > 1, that the solutions
are bounded by the growth estimate (4.14). The growth estimate (4.16) implies the
same conclusion if α > 2. Finiteness of (5.19) implies (5.21) for α = 1, but not for
any larger α. For these and other similar observations, see [27, Lemma 6] and [8,62].

For B we obtain a family of sufficient conditions given in terms of reproducing
kernels Bω

ζ of the weighted Bergman space A2
ω. Note that, for the ω as below, we

have B ⊂ A2
ω [51, Proposition 6.1]. Here we only make the necessary definitions,

see [27, p. 12] for a more detailed discussion. See [33], [16] and [52] for general
theory of Bergman spaces.

Let ω : [0, 1) → [0, ∞) be radial and integrable such that the norm convergence
in A2

ω implies the uniform convergence on compact subsets of D. Then each point
evaluation Lz( f ) = f (z) is a bounded linear functional in the Hilbert space A2

ω.
Consequently, there exists unique reproducing kernels Bω

ζ such that

f (ζ) =
⟨

f , Bω
ζ

⟩
A2

ω

=
∫

D
f (u)Bω

ζ (u)ω(u) dm(u), ζ ∈ D,

for all f ∈ A2
ω, that is, f ∈ H(D) and∫

D
| f (u)|2ω(u) dm(u) < ∞.

Moreover,

Bω
ζ (u) =

∞

∑
n=0

[
(uζ)n

2

(∫ 1

0
r2n+1ω(r) dr

)−1
]

.

We may assume ω to be normalized such that we have Bω
ζ (0) = 1. Denote

ω⋆(u) =
∫ 1

|u|
log

r
|u| ω(r) r dr, u ∈ D \ {0}.

In the following, we assume on ω the existence of C = C(ω) > 0, α = α(ω) > 0
and β = β(ω) ≥ α such that

C−1
(

1 − r
1 − t

)α

ω̂(t) ≤ ω̂(r) ≤ C
(

1 − r
1 − t

)β

ω̂(t) (5.22)

for all 0 ≤ r ≤ t < 1, where ω̂(u) =
∫ 1
|u| ω(r) dr for u ∈ D. The first inequality

in (5.22) is equivalent to ω̂(r) . ω̂
(

1+r
2

)
and the second one is equivalent to that

there exists K, C > 1 such that ω̂(r) ≥ Cω̂
(

1 − 1−r
K

)
.
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Theorem 5.5. [27, Theorem 10] Let ω be as above, and A analytic in D such that
lim supr→1− XB(Ar) <

1
4 , where

XB(Ar) = sup
z∈D

(1 − |z|2)
∫

D

∣∣∣∣∫ z

0
(Bω

ζ )
′(u)A(rζ) dζ

∣∣∣∣ ω⋆(u)
1 − |u|2 dm(u).

Then every solution f of (1.3) belongs to B and satisfies

∥ f ∥B ≤ 1
1 − 4 XB(A)

(
| f (0)| sup

z∈D

(1 − |z|2)
∣∣∣∣∫ z

0
A(ζ) dζ

∣∣∣∣+ | f ′(0)|
)

,

where XB(A) < 1/4. Moreover, if XB(A) is small enough, then all solutions of (1.3)
belong to B.

By [27, Theorem 11], for ω as in Theorem 5.5, condition lim supr→1− XB(Ar) < ∞
is equivalent to that (5.21) holds for α = 1, which is equivalent to the boundedness
of the operator SA : B → B

SA( f )(z) =
∫ z

0

(∫ ζ

0
f (w)A(w) dw

)
dζ, z ∈ D.

If one of these conditions holds, then f ∈ H2 [57, Theorem 3].
In [43, Corollary 4, Example 5], it was found that if

sup
z∈D

|A(z)|(1 − |z|)2 log
1

1 − |z| < C, (5.23)

with a sharp constant C = 1, then all solutions of (5.17) belong to B. This remains as
the best known solution to the problem: give a sufficient condition for the analytic
coefficient A of (5.17) which places all solutions in B. Initially this question was
stated by late Nikolaos Danikas (Aristotle University of Thessaloniki) 1. Danikas
asked the corresponding question also for the BMOA space.

Prior to [43], conditions for A such that f ∈ H∞ ⊂ B were known [34, 38].
Condition (5.23) with constant C = 1, is less restrictive and allows solutions to
belong in (B ∩ H2) \ H∞. However, unlike all H2 functions, an arbitrary Bloch
function need not to have radial limit in any point of T and its zero set does not
have to satisfy the Blaschke condition. Hence, the final answer to Danikas’ question
remains to be given.

The proof of Theorem 5.4 shows that, in order to conclude f ∈ BMOA, it suffices
to take the supremum in (5.20) over any annulus R < |z| < 1 instead of D. This
should be compared with the discussion after Theorem 4.1. A similar note can be
made on Theorem 5.5. Theorems 5.3, 5.4 and 5.5 have their analogues for little Bloch
space B0 and VMOA, closures of polynomials in B and BMOA, which consist of
those f ∈ H(D) for which lim|z|→1− f ′(z)(1 − |z|2) = 0 and lim|a|→1−∥ fa∥2

H 2 = 0,
respectively. See [27, Theorems 7, 15 and 13].

5.3.3 A zero separation result by localization and a growth estimate

The zeros of a non-trivial solution f of

f ′′′ + A2 f ′′ + A1 f ′ + A0 f = 0, (5.24)
1The 1997 summer school ”Function Spaces and Complex Analysis” in Ilomantsi, Finland
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where A0, A1, A2 ∈ H(D), are at most two-fold. For the zeros of maximum multi-
plicity, we obtain the following theorem.

Theorem 5.6. [27, Theorem 1] Let A0, A1, A2 ∈ H(D) and let f be a non-trivial solution
of (5.24).

(i) If
sup
z∈D

|Aj(z)|(1 − |z|2)3−j < ∞, j = 0, 1, 2, (5.25)

then the sequence of two-fold zeros of f is a finite union of separated sequences.

(ii) If

sup
a∈D

∫
D
|Aj(z)|(1 − |z|2)1−j(1 − |φa(z)|2

)
dm(z) < ∞, (5.26)

for j = 0, 1, 2, then the sequence of two-fold zeros of f is a finite union of uniformly
separated sequences.

In the proof of Theorem 5.6, equation (5.24) is localized by the automorphism φa
and the coefficients of the localized equation can be obtained from formulas (5.3)
for k = 3. Then Jensen’s formula, and the proofs of the growth estimates (4.14) and
Lemma 5.7 are applied. For the counterpart of Theorem 5.6 in the second order case,
see [28, Theorem 1].

Let γ > 0, A(z) = (1 + 4γ2)/(1 − z2)2, z ∈ D, and f1, f2 as in Example 3.1.
Trivially,

{
f 2
1 , f 2

2 , f1 f2
}

is a solution base of

h′′′ + 4Ah′ + 2A′h = 0. (5.27)

In fact,
{

f 2
1 , f 2

2 , f1 f2
}

consists of three linearly independent bounded solutions each
of which has no zeros. By Example 3.1, h = ( f2 − f1)

2 is a bounded solution of (5.27)
whose zero-sequence is a union of two separated sequences. Moreover, this se-
quence is a union of two uniformly separated sequences, since all zeros are real [15,
Theorem 9.2]. In this case the coefficients of (5.27) satisfy both (5.25) and (5.26).

Lemma 5.7. [27, Lemma 5] Let Z = {zk} be a sequence of points in D such that the
multiplicity of each point is at most p ∈ N.

(i) If
sup
a∈Z

∑
zk∈Z\{a}

(
1 − |φa(zk)|2

)2 ≤ M < ∞,

then {zk} can be expressed as a finite union of at most M + p separated sequences.

(ii) If
sup
a∈Z

∑
zk∈Z\{a}

(
1 − |φa(zk)|2

)
≤ M < ∞,

then {zk} can be expressed as a finite union of at most M + p uniformly separated
sequences.

See the proofs of [16, Theorem 15 and Lemma 16; pp. 69-71] for earlier results
concerning Lemma 5.7(i).
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