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ABSTRACT

This thesis intmduc@nme new results concerning linear differential equations

f{ii} -+ Aﬂ_lf{ﬂ‘—l} i_ can e Alf! +Aﬂf = A“, {*:'

where n > 2 and Ag,..., A, are analytic in a simply connected domain D of the
complex plane. Typically D is the unit disc. Before presenting these new results,
some backgmn:l is recalled. Localization combined with known results implies
lower bounds for the iterated order of growth of solutions of (). Straightforward
integration combined with an uperatn.éh{furetic approach yields sufficient condi-
tions for the coefficients which place all solutions of () or their derivatives in a
general growth space HS (D). Moreover, the operator theoretic approach combined
with certain tools such as representation formulas and Carleson’s theorem indicates
sufficient conditions such that all solutions are bounded, or they belong to the Bloch
space or BMOA. The counterpart of the Hardy-Stein-Spencer formula for higher
order derivatives and the oscillation of solutions are also discussed.

MSC 2010: 30H10, 30H30, 34M10

Keywords: Bloch space, BMOA, bounded function, differential equation, growth
space, Hardy space, integration, localization, operator theory, order of growth, os-
cillation of solutions
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Introduction

The intention of this survey part of the thesis is to describe some methods used in
the study of complex linear ordinary differential equations (ODEs), in particular, in
the study of

f{k]+Ak_1f{k_”+"'+Alfi+fllﬂf=ua (1.1)
where the -::Gets A; are analytic in a simply connected domain D C C and
ke N {1}. It is well-known that in this case solution f is analytic in D,

denoted by f € H(D). Typically D is the whole complex plane C or the unit disc
D={zeC: |z| <1}

Localization is a general method, which allows us to implement known results
to new domains. Nevanlinna theory cnmhineth the standard order reduction
method yields if-and-only-if relations between the iterated M-order of growth oy,
of a coefficients and solutions, see [37], for example. One simple relation is that
all solutions f of (1.1) satisfy

UM 41 U‘.} < HETEakx—l JM.JI[A;']! n €N, (1.2)
and the equality is attained for some solution f. We describe a localization method
of linear ODEs and apply these known relations to equations of a special form, for
example, to the equation

"+ Ai(z)exp (n—4) '+ Aglz) exp (L) fa= 0
(1—z)m (1—2z)m :
re Ay, Ap are analyticin DU {z € C : [z 1| < ¢}, for some 0 < £ < o9, and a;
is a non-zero complex constant for j = 1,2,3,4.

An integration method proves to be an efficient tool, when all solutions of (1.1)
or their derivatives are forced in HZ (D) by giving a sufficient condition on the coef-
ficients A;. This kind of conditions have earlier been given by Grohn, Heittokangas,
Korhonen and Rittya in [26,38-40] by using Picard’s successive approximations and
integral estimates based on Gronwall’s lemma or Herold’s comparison em. In
particular, our elementary integration method gives sharp results for the second
order equation

Ff+Af=0, (1.3)

where A is analytic in ID. Moreover, it yields in C a classical relation_analogous
to (1.2).

An operator theoretic approach, originating from Pumr@ke [57], is based on
the fact that if X € H(ID) is an admissible normed space, f is a solution of (1.3) and

Sa(f)iz)=— ‘L:&;ﬂi:r}ﬂ(i“} dw) dac,

with an operator norm ||S4||x—x < 1, then

12) = S» (D@ FF Oz + fO) and ik < — L) B

1—||5allx-x




Here X is some function space such as H™, BMOA or the Bloch space. This approach
is implicitly behind the integration method.

Finally, we consider the analogue of the Hardy-Stein-Spencer formula of Hardy
spaces for the higher order derivatives. This analogue, combined with the opera-
tor theoretic approach, s information about the case when all solutions of (1.3)
belong to HY. Moreover, we study the zero separation of solutions of the equation

fj”'i‘AZf”'i‘A'[fI‘l"Aﬂf:D

by using localization and a known integral estimate. Zeros of solutions of differ-
ential equations of order k > 3 are hard to study due to lack of sufficient tools.
Mevertheless, the geometrical distribution of zeros of solutions, the growth of the co-
efficients and the growth of solutions are fundamental aspects to consider when (1.1)
is eﬁ:lied.

The remainder of this survey is organized as follows. In Section 2, we discuss
complex ODEs in general and consider means to measure the growth of their solu-
tions and coefficients. In Section 3, we discuss certain function spaces and the zero
separation results for solutions of (1.3). In Section 4, we first describe the general
outline of localization and then discuss pseudo-hyperbolic discs, which are an im-
portant localization domain. ond, we describe some integral estimates, which
precede our integration meth@ &l Third, we describe the operator theoretic approach
applied in Paper IIL Finally, in Section 5 the essential contents of Papers I-III are
summarized.




Differential equations and growth of solutions

In this section, we discuss certain facts about differential equations and present some
means to measure the growth of their coefficients and solutions.

We discuss the analyticity of solutions of (1.1) and claim that certain rates of
growth for the coefficients A; could be peculiarly interesting. Moreover, we define a
generawth space and discuss some norm equivalences.

(8 define the iterated order of growth oy, ,(f), which asymptotically measures
the growth of the maximum modulus function M(r, f) = max;|_, [f(z]|, of an an-
alytic function f. The meaning of the number ¢y ,( f) is discussed by comparing it
to certain quantities which are present in Nevanlinna and Wiman-Valiron theories,
on h we take a brief look. Then, we present results which utilize oy, to relate
the growth of solutions of (1.1) to the growth of the coefficients A;.

We present some of Hamouda'’s results on differential equations with coefficients
of a particular form. These equations are considered in Paper I, where their analysis
is made straightforward by the localization method for linear ODEs.

2.1 OBSERVATIONS RELATED TO DIFFERENTIEQUATIDNS

Consider a complex differential equation of order k € N ina domain D ¢ C. If D
is si&mnneﬂed, the coefficients are analytic in D and the equation is linear,
then it is well-known that all solutions are analytic. If a of these assumptions
are removed, the analyticity of solutions can be lost. First, the fact that D is simply
connected is seen to be necessary. For example, the coefficient 1/z of the linear

equation
g+ B
:

is analytic in the annulus D = {z eC:i<|zl< 1}, but one solution of this equa-
tion is log(z), which is not analytic in D. Second, if t}'mefficients are not analytic,
then the solutions need not to be even meromorphic. For example, the linear equa-
tion " i
i ' e
'+l -=f=0 6]

has the solution f(z) = exp(1/z), which is not meromorphic in [y neighbourhood
of the essential singularity z = 0. Third, the function log(z) is a solution of the
non-linear equation
fH' + {fﬁ'm D.r

whose coefficients are analytic in D. Here D = {z € D : |z| < 1} is the unit disc of
the complex plane and T = dID is its boundary. 2

Due to these notions, it is reasonable to restrict the study to linear differential
equations with coefficients analytic in some simply connected domain.

While considering the equatio

f®+af=o,




the interesting growth rate fﬁ is roughly

Al g = sup|Az)|(1 - |z])* < co.
zeD

This is due to the fact that if A € HZ \ HZ _, then some solution is of exponential
growth, but in the case A € H®  all scm’ns are bounded [38, Corollary 3.16].

If |Allyg < p(p+1), for 0 < p < oo, then all solfEER of (1.3) belong to H,
see [57, Example 1] and [43, Example 5]. Conns sup,.p |A(z)|(1 - |z]*)* <1
and ||A| y= < e imply, respectively, that each solution of (1.3) has at most one zero,
and that the zeros of ea ution are separated in the hyperbolic metric, see [50]
and [60, Theorems 3-4]. If

e

sup | A(z)|(1 - |z|]|2]ugl_—lz| <1,
el

then all solutions f be]0n§ to the Bloch space B, which consists of f € H(ID) such
that sup. ., |f'(z)|(1 = |z|#) < oo [43, Corollary 4 and Example 5].

2.2 GEN% GROWTH SPACE .
55

The general growth space HZY (D) consists of functions f analytic in a simply con-

nected domain D © C, such that

ILfl (o) = sup | f(2)|w(z) < o
€D

Here the function g2 [0 — (0, 00) is bounded and neaaturable, therefore integrable.
If D = D, we wr "~ = HZ (D). Moreover, if w(z) = w(|z|) for all z € D, we
call w radial. If w is a classical weight, that is, w(z) = (1 —z|)*, for p € (0,00), we
write HY = Hi¥. Note that we put |z| instead of the usua in the definition of w;
hence, some calculations in Paper Il will be simpler. A function f belongs to the
Korenblum space

A~ = I B

O<p<es

if and only if

+
ot (o= b f e BEY = Ry 25 0]

2.1
r—=1- Iﬂg“ =l =
is finite.
Some equivalent norms
The Fundamental Theorem of Calculus
19; I
f@)= [ f(@)dt+f0), zeD, @2)

and the Cauchy Integral Formula

f‘“’{z)=2"—r:fl[sfg—{%ﬁdg, zeD, neN,




express f € H(ID) by means of its derivative and vice versa. Here the integration
paths are a linear segment from 0 to z and a simple closed curve C around z and
contained in Eﬁespectivel}r. By using these results, it can be seen that

Il =BBIF@IA = ) < sup |F @I - 2P +1F@ @3
zeD zeD

for f € H(ID), where the constants depend on p. Here A = B is used to denote
the fact that C~'B(r) < A(r) < CB(r) for some constant 0 < C < eo as r varies.
In addih‘@ < B denotes the fact that the quotient A(r)/B(r) is bounded from
above. If A(r)/B(r) = 0asr = 1~, we write A(r) = o(B(r}).

After some simplification, [43, Lemmas 9 and 10] in Paper Il imply

n—1
o (n) p} [;j 2.4
F _rp+ P LARCE Erpﬂlf (0) @4)
and
LF s, < €2 (n 4+ 1)U fllig, (2.5)
respectively, for 0 < p < coand n € N.

As (2.3) shows, in order to Stlmﬂ' finiteness of sup, . | f(2)[(1 —|2])* + | f (D}|
for f € H(ID) and 1 < a < co it is enough to consider sup,_p |f(z}|[1 - |z|)* 1
However, for 0 < a 1 it is necessary to study the derivative itself. The K-Elﬂﬂh
space B*, a € (0,1], consists of ¢ € H(ID) such that

gl =suplg'(2)|(1— |2])* < o0
el

||g||g= is a semi-norm, which can be made a norm simply by adding [g(0)| to
x = 1, then B" is the classical Bloch space B. As a generalization of 5%, we can
consider the space of such functions f € H(ID) for which f’ belongs to a general
growth space H;j for some w.
For p = 0, inequalities (2.4) and (2.5) take the form

1 -1
sup @ =F(O) (1og =) ZIflls < 20l 26)
zelD 1 |z|

“’f"Hw = sup,.p | f(z)|. By inequality (2.6), we see that H* C B C H3® for
all0 < p < o0, and f(z) = log((14+2)/(1 —z)) is an unbounded Bloch function with
maximal growth. Inequality (2.6) shows also that each Bloch function is a Lipschitz
map from (D,dy) to (C,d;). In fact, the converse is also true. Here d; denotes the
Euclidean metric. Moreover,

107
1o IENRERATT

dulz,w) = = m, zwel, (2.7)

is the hyperbolic metric defined by using the pseudo-hyperbolic metric

z—w
1-%Zw|’

dp(z,w) = |@:(w)| = z,weD.




23 ITERATEURDER OF GROWTH OF SOLUTIONS
The iterated M-order of growth for f € H(ID) is defined as

103:+1M|:rrf}

=) n€NU{0}. (2.8)

opmulf) = limsup
r—1-

Here log& log™ x = max {logx,0} for x € (0,e0), log™ 0 = 0 and we set in-

ductively log,, , x = log" (log, x) for n € N. The function exp, x is defined in an

analogous way. If n = 1 we drop the index and write op1(f) = oum( f), for example.

The number (2. als to eppo(f), defined in (2.8). Clearly, if f € A™%,

then oy01(f) = 0. However, the the converse implication does not hold, as the
example f(z) = exp(—(log(1—z)71)*), 1 < a < 00, sm,

The following if-and-only-if relation betwlZ) the growth of coefficients of (1.1)
and the growth of solutions was given in [37, Theorem 1.1].

aemem 21. Letn € N, = 0and Ay, ..., Ay € H(ID). Then all solutions f of (1.1),
satisfy a1 (f) < o if and only if Gpge(Ag) < a for j = 0,.ce k= 1. Mrde ifg €
{0,...,k =1} is the largest index for which opy,, (Ay) is equal to maxg<j<i_1 {oamu(Aj)},
then there are at least k — q linearly independent solutions f of (1.1) such that opg p41(f) =

TM 0 {Aﬂ'}

Theorem 2.1 can be refined by means of the n-type, defined as

i (f) = limsup(1 — )40 1og™ M(r, f) (2.9)
r=+1-
for f € H(ID) and n € N, when 0 < op(f) < co. a

Theorem 2.2. [30, Theorem 3] Let n € N and Ag, ..., Ajp_q € H(ID). Assume that
UM',,(A!-] < U'Mr,,{ArGJ?‘ﬂHj =1,....k—1,and

max {TM,II(Aj] : D-M,:i{"qj} —_= JM,M{AUJ} < TM,!I[AO}'

Then each nww solution f of (1.1) satisfies Opgps1(f) = Oapnl(An).

Assume that for some n € IN both oy, ( f) and 1, (f) are positive and finite. In
this casgEl® numbers n, oy ,(f) and Ty, ( f) describe how fast f grows. Namely,
let {r; }1 be an increasing sequence of numbers in (0,1) along which the limes
superior in (2.9) is attained. Then we have

,1 ‘TM;J[_f]
lﬂg:M{rjrfj""TM,!r{f}( ) ;s ] oo

l—f‘.r'

By exponentiating, we see that M(r;, f) grows asymptotically as

1 Ol f)
EXPy (TM..H{JF} (1 o rr') ) .

This growth of M(r, f) is attained in a larger set than just a sequence {r;};ij, but
we do not enter into this topic.

4




In the case of non-constant entire functions, the iterated M-order and type are
defined as

) log, .. M(r, f) . log, Mir,
p(f) = luis:pg“—,;gr—f— and T (f) = hrrnﬂpgiﬂ_—{w

r

respectively for k € IN. These definitions make sense also for k = 0; in this case,
condition 0 < pg( mo implies that f is a polynomial and pg( f) = deg( f).

Recall that the Nevanlinna characteristic function T(r, f) is defined for a mero-
morphic function f as the sum of the proximity function

1 2m ;
n(r, f) = Ej;- log™ | f(re)| d,

and and the mmrfwmcrfan

N fl= j; . f) —n(0, f) dt+n(0, f)logr,

Hence, T(r, f) = m(r, f) for an entire function.
For f(z) = Yo" g au2" € H(ID) the number oy ( f) describes the
by definition. In addition, it describes the growth of T(r, f), maximal term

for 0 < r < co [48]. Hr,f} is the number of poles of f in gga disc |z] < r.

of M(r, f)

u(r.f)= ey |anlr”,

and central index

v(r, f) =max{kl‘_>ﬂ : |nk|r"=;.'[r,f]}

of f. Indeed, replace log™ M in the definition of oy (f) by T, log™ p or v, to obtain
the quantities o¢(f), o (f), o (f). Then

"-TM{JF} . gji{f} = max(0, gt‘{f} =1
by [45, pp. 43-45], and

A(f) Seor(f) Som(f) S or(f)+1. (2.10)
ur Y or

Here A(f) is the exponent of convergence of the zeros {z,} of f, that is, the infimum
of a > 0 satisfying

i(l—lz.rll““ < co, (2.11)
n=l1

First inequality in (2.10) is due to [63, Theorem V.11]. Last two inequalities in (2.10)
follow from [%’mpnsiﬁun 2.2.2], according to which

R+r

I(r.f) <logM(rf) < —

R ), O0<f<R<oo

which implies also that o7,,,(f) = opa(f) for n = 2.




Tools for differential equations

The proof of Theorem 2.1 relies on Nevanlinna‘leory combined with order reduc-
tion method. In general, Nevanlinna theory is an important t@ the study of

differential equations [48]. One useful fact is that the function m(r, f/'/f) grows
mver than mi(r, f), which is made precise in the next lemma [34, Lemma 1.1.3].

Theorem 2.3 (Lemma on the germized logarithmic derivative). Let f be a transcen-
dental meromorphic function in D. Then m(r, f%) /f) = S(r, flasr — 17 Ifor(f) < o0
then m(r, f¥) / f) = Dw‘g{l =1)).

In Theorem 2.3, S(r, f) denotes a quantity satisfying
S(r,f) S log" T(r, f) +log llj (2.12)

asr —» 1~ outside a possible exceptional set E C [0, 1) of finite logarithmic measure

1
f dr < co.
El=r

Theorem 2.3 isat delicate enough for meromorphic functions which grow slowly
in the sense of log™ T(r, f) < (—log(1 —r)), due to the second term in (2.12).
To give a straightforward application of rem 2.3, note that (1.1) implies

k-1 (1) (k)
185 LAl < |A|f_+f_
“—E} | FI™lF

and by the properties of log™, we obtai
k=1 k f[ﬂ

m(r, Ag) < log™ k+ ¥ m(r, Aj) + E m ;

j=1 j=1

Hence, if Ay grows faster than Ay, ..., Ay, then all solutions must grow fast. For
example, if there does not exj € (0, e0) such that

k-1
e e
m{r,flu}—;g m(r, Aj) < Clugm, e

then o7 (f) = co by Theorem 2.3.
Wiman-Valiron theory sed on the use of functions p(r, f) and v(r, f) defined

in Section 2.3 [44,48]. For Wiman-Valiron theory in the unit disc, see [18] by Fenton
and Rossi, for example. As Rossi med in a talk!, Wiman-Valiron theory tries
to answer the question: “How much of the power series of an analytic function can
we throw away and still get a good estimate near maximum modulus points?” If f
is entire, then a key inequality is

|k Y

ulr. f)

"The 2015 work shop on “Complex Differential Equations and Value Distribution Theory” in Joensuu,
Finland

< exp (—%mm - N]F) ; (2.13)

6




24
which holds for rgmde a set of finite logarithmic measure. Here N = v(r, f) and b
is a certain decreasing function, see [31, Theorem 2]. Ine J\?1.J|aht_1,r (2.13) implies that
the terms |ay.n|r"*" are small when compared to |ay|r" for large k. In the proof
of (2.13), the sequences |a,| and r" are elaborately compared to certain well-chosen
sequences i, and p, of positive numbers.
Moreover, for an enmnctinn f, an estimate

1/2
M) < 4+t ()

holds for certain r large enough, see [31, Theorem 5] for details.
Wiman-Valiron theory has been developed also for the unit disc. We mention

two key results: in the cases ¢ 0 and oy (ﬁ: 0, respectively,
50 = a+ o (HELY s@), -1 (2.14)
- Idl P ( 1 )‘”‘? - -
@ ~\i=@) - ’ ‘

forqg € N, 5 ::» Er Emwded that |f({)| is large enough, see [18] for details. For a
monomial f(z) ower series is just one term and equation (2.14) reads

i) (z) = NV - 1) Zq(N—qH}ﬂzL

Condition (2.15) suggests that |f7)(z)|(1 = |z|)7 would behave like |f(z)| near the
maximum modulus points of f.

EQUATIONS WITH COEFFICIENTS OF A PARTICULAR FORM

We consider the order of growth of solutions oerential equations, whose coeffi-
cients have a particular form. In the plane, the equation

'+ A(z)e f' + B(z)e™ f =0 (2.16)

where A and B are entire functions with order less than 1 and a,F € C has been
studied, for example, in [5,9,10]. Since the coefficients of (2.16) are transcendental,
some solutions of (2.16) must be of infinite order by classical theorems of Frei and
Wittich, see [19,64], for @nple. This leads to asking what conditions on the co-
efficients w2l guarantee that all solutions are of infinite order? This happens, for
example, if ab #£ 0 and arg(a) # arg(b) or a/b € (0,1) [9, Theorem 2].

Equation (2.16) gave the inspiration for [29], Z8which some particular differen-
tial equations in D were studied by techniques inherited from the plane case and
analogous to those used in [9]. As Hamouda [29] refers, [11,24,37, 46] are based on
th minance of some coefficient.

In the unit disc, we may consider the equation

f”+A||[z]lexp({1 b rh)f + Ap(z }exp({l Euz}qu)f='l (2.17)




where A;, Ap € H(DU {|z—1| < ¢}) for some ¢ > 0, by, by, 41,40 are non-zero
complex numbers, Ay Z 0 and Re ( 0. We define the power zF by taking the
principal branch, when z belongs to a simply connected domain D € C\ {0} and
p € C\ Z. Analogously as for (2.16), since the coefficients of (2.17) are not in the
Korenblum space, some solutions of (2.17) must be of infinite order.

The next theorems consider special cases of equation (2.17). In Paper II, we
consider more general cases.

Theorem 2.1. [29, Theorem 1.6] Let o = g1 = 1 and by = 0 # by in (2.17). Then every
non-trivial solution of (2.17) is of infinite order.

Theuren'az. [29, Theorem 1.8] Let gy = g1 > 1, by, by # 0 and arghy # argh,
in (2.17). Then every non-trivial solution of (2.17) is of fuﬁufffﬁer.

We have simplified the statements of Theorems 2.1-2.3 without loss of generality.
It is enough to consider the term (1 — z)" in equation (2.17) instead of the more
general {zn@’ as the change of variable z — zpz shows.

We can also consider the higher order equation

k=1 b, . by
L El Aj(z)exp,, (ﬁ) fU = Ax(z) exp,, (m) ’ (2.18)

where k € N, A; € H(DU{|z—- 1| < ¢}) for some ¢ > 0, 4,q; € C\ {0}, n; € N,
and h_,— € Cforj=0,1,...,k The next theorem considers a special case.

Theorem 2.3. [29, Theorem 1.11] Let A, = 0,9 > 1 mrdu}- = 1%= 0.1,...,k=1
in (2.18). Moreover, let by # 0 and assume that b;/by € [0,1) j=1...-1
with at most one exception b; = by, for which arg(bw) # arg(bo). Then every non-trivial
solution is of infinite order.

The next theorem considers equation (1.1) without assuming a special form for
mmefﬁments Aj.
Theorem 2.4. [30, Theorem 2] Let Ag, ..., Ay_y € H(ID). If there exists wy € T and a
curve 7y C ID tending to wy such that

1m
206 [A(2)

mre n = 1is an integer, and A = 0 and p = 0 are real constants, then every non-trivial
solution f of (1.1) satisfies oy u(f) = oo, and furthermore oy w1 (f) = p.

Tiot 14 +1 A
i exp, (—“ — |z|}i*) =0,

Theorem 2.4 implies Theorem 2.2. Theorems 2.1 and 2.2 can be obtained in a
straightforward manner from Theorem 2.1 by localization, as we show in Paper L
Localization is a general method, which has been used for example in [20,22].




Function spaces and zero separation of solutions

In this section, we define the classical Hardy space HF and its subspace BMOA.
We discuss some equivalent norms and define the Qg spaces, which for certain K
coincide with 5, BMOA or the classical Dirichlet space. We present some suffi-
cient conditions, found by Li and Wulan [49], for the coefficients A;, which place
the solutions of (1.1) in Q. The presented results should be valid under weaker
assumptions. This was shown to be true in Paper II by using a method based on
integration.

Next, we briefly discuss bresults on separation of zeros and critical points
(zeros of the first derivative) of solutions of the second order equation (1.3). Paper III
contains a result on the zero separation of higher order differential equations. Fi-
nally, we state some facts about the relation of univalent functions to the oscillation
theory and function spaces.

3.1 HARDY AND Qy SPACES

ardy spaces

The Hardy space HY, } < p < oo, consists of f € ‘H(ID) for which

; 1 2 ;
If I} = sap _i i‘ |f(re®)| P df < co. (3.1)
0<r=<1 0

Themegral in (3.1), denoted by M} (r, f), is an increasing function of r. Note that,
for H(ID) and 0 < r < 1 fixed, Mp(r, f) — M(r, f) as p — co. For fundamental
faclldbout Hardy spaces, see [15].
space H™ ists of bounded analytic functions in ID. In addition, the
Nevanlinna class Nﬁ?sts of those functions f meromorphic in ID for which T(r, f)
remains bounded as r — ldncelogJ’ x<plxPfor0 < p < co, wehave H* C N
for 0 < p < oo, In fact, t ass N consists of qumlents f/g where f,¢ € H®
and ¢ # 0. For f € N, the radia] limit f(e) = 11m,,_,, f(re") exists almost
everywhere and we have ||f|| g = Mp(1, f) for f € H(D

The zeros of functions in N are neatly characterized: a :.equence {zu} € Dis the
zero sequence of some f € N if and only if (2.11) holds for a = 0, that is, {z,} is a
Blaschke sequence.

The Hardy-5tein-Spencer formula

p?
1115 = LF@I + £ [ P2 f Ez}lzlogl—ffm (32)
that holds for 0 < p < eo and f € H(ID), expresses || f|| yr as an area integral. Here,
let dm(z) = %d‘xdy be the normalized Lebesgue measure. Identity (3.2) is a corollary
of Green's theorem. It can also be obtained frm32, Theorem 3.1] by integration.

In Paper III, we are interested whether or not we can replace the term |f'(z)| with
the quantity |f(2)|(1 — |z|?) in (3.2).




If f € H', then the Cauchy integral formula takes the form

A= (7 SO g [ D ep, 63)

1—eitz  Jr1-
g
where du({) = f(I)(2mil ]“m Theorem 3.6). If in general, p is a finite complex
Borel measure on T, then the right-hand-side of (3.3) is the Cauchy transform of y,

denoted by Kp [13]. The space of Cauchy transforms is normed by

I|f||:;‘.=inf{5upE|,u{E,-]| : Kp=f, UE;:T}-
j=1 j=1

In the definition, all representing measures u of f are considered. The total vamn
of y is defined by using the partitions {E;} of T. The norm |||/ is the infimum of
these total variations. For more information, see Chapter 6 of [58].

The space BMOA consists of those functions in the Hardy space H® whose
boundary values are of bounded mean oscillation and has the seminorm

IflIEmoa = supll fall3e.
acD

where fa(z) = fl@a(z)) — fla) and ¢,(z) = {=% is the automorphism of the unit
disc. Since [|follpz = Ma(1EER> Ma(0,£:) = |f'(a)|(1 = |af?) for all a € D, we
deduce BMOA C B with ||fllg < lIfllsmoa for f € H(ID). By (3.2), with p = 2,
and [21, pp. 228-230], we ﬂbtah

1 1von < 8up- [0 1 G)P(1 = Iga(e)P) dm 2

for f € H(ID).
Some results which place solutions of differential equations in Hardy spaces are
discussed in the end of Section 4.3 and in Paper III.

Sr.:ilutinns'n Dk spaces
Let Ok be the space of functions f € H(ID) such that

sup [ |f'(z)]*K(g(z.a))dm(z) < oo, (3.4)
aeh /D
where K : [0,e0) — [0,c0) is nondecreasing, g(z, w) = log |%‘ is Green's function
and dm(z) is the Lebesgue area measure. For example, Qg = BMOA if K(r) = r, by
the Hardy-5tein-5pencer formula (3.2).
If K grows fast, such that [;" K(r)e > dr = co, then condition (3.4) forces f' to

vanish identically and Q contains only constant functions. If this is not the case,
then Qg contains the Dirichlet space D, which consists of f € H(ID) for which

f]} |f'(2) 2 dm(z),

the area of f(ID) counting multiplicities, is finite. In particular, 5* C D C Qg for
parameters 0 < al/2.
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If K(r) # 0as r — 0, then Qg = D. However, for a € [3,1] the condition

VK(=logr)
fu —“ —r&‘ rdr < co
is equivalent to B* C Q. If K(r) = r¥ for p € (0,20), then Qy is the classical Q)
space. See [17] for the pmothe above mentioned facts and more.
In [49], the authors gave sufficient conditions for the analytic coefficients of (1.1)
such that the solutions all belong to Qk. The proofs involve Carleson measures,

é‘lii‘h are defined in Section 4.3, .
41

Theorem 3.1. [49, Theorem 2.4] Let A(z) = Yo aqz", ay € C. If |ay| < 1 for all
n € N U {0}, then all solutions of (1.3) belong to the Dirichlet space.

Theorem 3.1 was generalized for the higher-order equation (1.1) by Xiao:

Theorem 3.2. [65, ’mﬁ;’m 1.12] Let Af(z) = Ligae2" € H(D), aju € C. If
|aju| < (n+ 227 forall j = 0,...,k=1, n € NU {0}, then all solutions of (1.3)
belong to the Dirichlet space.

In Paper II, it was shown that Theorem 3.1 is not sharp. Namely, for0 < a < 1/2,
there exists a condition on the Maclaurin coefficients a;, such that the assertion of
Theorem 3.1 follows even though |ay| = k* — o as k — oo, see [43, Corollary 8(a)]
and the discussion ﬁr that.

Theorem 3.3. [49, Theorem 2.1] Let 1 < ¢ < 3/2 and let K satisfy

[ % [ pap L e s, (35)
. J1 N\ o<z K(t)
16

T.Fu_iu there Exfsm:ans.mnr a = a(n,c,K) > 0 such that if the caeﬁicfems. Aj of (1.1)
satisfy “AJ""Hff-f Saj=1..,n—1, and |Ag|y= = & then all solutions of (1.1)

belong to Q.
Theorem 3.4. [49, Theorem 2.6] Let (3.5) be satisfied with ¢ = 1. Then there exists
a constant § = B(n, K) > 0 such that if ”Aill“fif <Bforadlj=1,...n=1, and

Il Agl e | < B, then all solutions of (1.1) belong to Q.

It seems reasonable that Theorem 3.3 holds when the condition [|Ag[[p= < ais
replaced by || Ag|lg= < a. Similarly, Theorem 3.4 should hold when || Ag|| e S Pis

replaced by ||Ag|[y= < B. The heuristic principle behind these predictions is stated
as follows:

Remark 1. Conditions (2.15), (2.3) am@uon [59, p. 787] give the vague idea
the term | fU)(z)| grows roughly as |f'®(z)|(1 — |z|*)* /. If we want the terms f*)
and Ag_1f5-1),..., Agf in equation (1.1) to have equal growth,fi%8h [A;(z)| should
grow roughly as (1 — |z[]2)/~%. In this case, none of the terms A, f%1,..., Agf
and f¥), could be immediately neglected while considering (1.1).

11




3.2 SEPARATION OF ZEROS AND CRITICAL POINTS

For a non-constant f € H(ID) the zeros do not have an accumulation point inside
of D. Moreover, the subset of T, where the boundary function f(e®) exists and
vanishes, cannot be an arc on T due to the Schwarz reflection principle and cannot
have a positive measure by Privalov’s theorem. These observations hold for the
critical puintsﬂ f as well.

If f and g are linearly independent solutions of

f"+Af=0, (3.6)

where A € H(D), then the Wronskian determinant W(f, g) = fg' — f'g is a non-
zero constant. Consequently, the zeros of each solution of (3.6) are 5ié¢ and the
zeros (resp. critical points) of two different solutions are distinct, since | f(z)| 4+ |g(z)|
and |f(z)| + | f'(z)| are non-vanishing. In contrast to these observations, note that it
is not clgPhow often |f(z)| + |¢'(z)| can vanish. 81

The zeros of any non-trivial solution of (3.6) are simple. Analogously, the zeros
of any non-trivial solution of the kth order differential equation (1.1) are at most of
orcéi -1

If fisa nnn—trivm:;lutinn of (3.6), the separation of its zeros and critical points
is of interest. If ¢ : [0,1) = (0, 1) is a non-decreasing function such that

p(r)
K= sup . < 09,
rdgr)
s (f‘m)

13

and A is an analytic function satisfying

pov 2
sup |A()| (v(Iz)A=21) =M < oo,
el

then any two distinct zeros {q, {> € ID of any non-trivial solution of (5.17) are sepa-
rated in the hyperbolic metric by

1+ §(1tu(G1, 82)1)/ max {KV/M, 1}
1= (1tn(81,2)))/ max {KVM,1}

dp(81.02) = log

see [12, Theorem 11]. Here dy; is the hyperbolic metric defined in (2.7), and #,({;,{>)
denotes the hyperbolic midpoint of {; and ;. In particular, if A € H5", then (2.7)

takes the form
1+1Hmax{vﬂ,1}
l—lfmax{m,l}a

since we may choose ¢ = ¢ for an arbitrary 0 < ¢ < 1. Hence, we obtain the result
originally proved by Schwarz in [60, Theorems 3-4] that the zeros of each solution
of (1.3) are separated in the hyperbolic metric if and only if ||A|| e is finite. This is
equivalent to the existence of § > 0 such that each solution of ( 1,37} has at most one
zero in each disc A(a, ) for a € D. Here

<s)

dy(g1,82) = log

8—Z

Afa,d) = {z €D : |ga(z)| =

1—na=z

12




3
is agzudﬂ—hyperbaﬁc disc with center @ € ID and radius 0 <4 < 1.
Zeros and criticalfgBoints are hyperbolically separated from each other. Let ¢, K
and M be as above. If f is a non-trivial solution of (5.17), and f(z) = f'(a) = 0 for
some z,a £ D, then

1+ @(|a])/ max § Kv/2M,1
dylz,a) Ello 4l X{ }

2 gl—wilﬂl};’max{Kﬂ,l};

see [26, Theorem 1]. Thiplies the classical result of Taam [41, Theorem 8.2.2]: if
we have A @" then the hyperbolic distance between any zero and any critical
point of any non-trivial solution of (5.17) is uniformly bounded away from zero.

In comparison to the case of two zeros, or a zero and a critical point, the critical
points can have an arbitrary multiplicity and they do not have to be separated,
see Example 1].

I dition to hyperbolic separation, we define another concept: a sequence
{zn}ney in D is uniformly separated if

Ty —Z
inf k| w0
kelN

= Znlg

nem {k} 1

The next example is originally due to Hille [41, p. 552]. The example is discussed
also in [60, p. 162] and in [35, Example 11].

Example 3.1. Let ¥ > 0 and A(z) = (1 +4’rz];‘[1mz]2, z € ID. Then the functions
£ 3 f. s 14z i
filz) = v1-z%exp {—1}-']rxlng1_z :  JEl2

are linearly independent solutions of (5.17). Each f),-, j = 1,2, is bounded and has no
zeros. However, the bounded function
1+z

f(z) = fo(z) — f(z) = 2iv'1 -2 sin (Tlﬂgm)f zeD,

)
has infinitely many zeros. The zeros of f are simple and real, and moreover, the
hyperbolic distance between two consecutive zeros is gBisely 8. = /(27y). If, for
example, g(z) = fa(z) + f1(z), then the Wronskian W(f,g) = fg' — gf' = 8iv. Note
that, if v — co then ||A||H5u —+ o0, |W(f,g)| = ecand ||fjl|g= — o0, j = 1,2, whereas
the separation constant 6, — 0.

The aforementioned results are related to the second order equation (3.6). The
analysis of higher order equations is harder because there are not enough sufficient
tools. Some progress was obtained, for example, by Kim and Lavie in the seventies
an@hties. In Paper III, a new zero separation result is obtained.

It is well-known that if { and g are any linearly independent solutions of (1.3),
then 2A = S(h), where h = f/g. Her

TR 2
sn- () =36}
h g i
is the Schwarzian derivative of a locally unim function ft and h" /h' is called the
pre-Schwarzian derivative of h. Moreover, h is univalent in a set £2 C D if and only
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if each solution ¢, f + s at most one zero in (). Due to these two facts, the
zeros of solutions of (1 d the univalence of I are closely related

For a fgknt, let a(z) = (1 — |z]2) and f(z) = (1 - |z2)% By NehariffE}-
sult [50], ||A||HE: = 2||5{h)||h-;> < 2 implies that I is univalent and equivalently each

non-trivial solution of (1.3) has at most one zero. Indeed, also in the case when h
is locally univalent anmmmorphic. |S(h) | ¢ 2 <1 implies that I is univalent,

see [55, Corollary 6.4]. If h € H(ID), then

1
ISR lleg < 41K" /0| + 5 11R" /B [y

by Cauchy’s integral formula and

[ 1
W I g <24+ 2¢/14 5 IS ag

by [54, p. 133]. Hence, h is univalent if ||i"/}|| = is sufficiently small. The best
constant is due to Becker [6]: if h € H(ID) 4 ally univalent and

zh{ {_||

"ED

then h is uruvamm D.
Conversely, lfﬁ H(ID) is univalent, then it satisfies the growth estimate

21
Ty S @ - OIS OIS

||
(1+ |z

£ (0)]

which implies [|fllug < [f(0)] +[f'(0)|. Moreover, converse Becker’s condition
|P(f)ll= < 6 and Kraus’ condition 1]5[f:|||H;; < 6 hold, see [55, p. 21] and [47,
p. 23],

For a locally univalent meromorphic function i in D, the quantity ||S( h}ll;..-;a is

t'initmnd only if & is uniformly locally univalent. Moreover, if i € H(ID), then
this is equivalent to the finiteness of ||"/h'|| =, see [66, Theorem 2].

Univalent fun:nms are related to inclusions of function spaces. If f € H(ID)
is univalent, then it is well-known that f € B if and only if f(ID) does not contain
arbitrarily large discs. Moreover, univalent functions in B, BMOA and the spaces
Qp, for parameters () < p < o0, are the same. Each univalent function belongs to the
Hardy space HY for all 0 < p < 1/2. For these facts and refinements, see [53] and
the references therein.
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Tools for the study of ODEs

In this section, we describe some methods, which are useful in the study of dif-
ferential equations. We state the basic outline of localization, which leads to the
localization method for linear ODEs in Paper I. Since a pseudo-hyperbolic disc is
an important localization domain, the relationship of its center and radius to the
Euclidean center and radius is discussed in detail.

We state some integral estimates for the maximum modulus function of a so-
lution of (1.1). These growth estimates are related to Picard's iterations, Gronwall
lemma and Herold's comparison theorem and have resemblance to the integration
methods used in Paper II. However, the integration methods in Paper II are more
elementary and straightforward.

We describe an operator theoretic approach, which is used in both Papers II
and III. This method originates from Pommerenke’s result [57, Theorem 2] and its
improvement which are presented. A generalization of the Hardy-Stein-Spencer
formula to higher order derivatives improves these results, see Section 5.3.1 in the
summary of Paper 1.

4.1 LOCALIZATION AND PSEUDO-HYPERBOLIC DISCS

A function f € H(D) can be studied locally in a simply connected domain (2 © ID
by localization: consider an analytic bijectim: D — (Y and then study ¢ = fo¢
in ID. By the Riemann mappinb‘teorem, such a localization map ¢ always exists
and is essentially unique. The domain £ and the map ¢ have to be chosen in a
suitable way so that ¢ preserves the properties of interest.

The most simple localization maps are the dilatation z — rz,@: r < 1, the
translation z — a + (1 —|a|)z, a € D\ {0}, and the automorphism ¢, : D — D,
a—2z
Pa(z) = 1—az’
for a € D. The composition ¢(z) — ¢,(rz) of the autnmnrphisna‘ld dilatation
sends ID to a pseudo-hyperbolic disc A(a, r) and is important when considering the
zero distribution of solutions of differential equations, see Paper III.

ili uclidean center and radius of a pseudo-hyperbolic disc

A pseudo-hyperbolic disc A(a,r), with centem ID and radius 0 < r < 1, consists
of z € D, for which |g,(z)| < r. In fact, A(a,r) is a Euclidean disc with center and

radius " ;
1—r 1— |a
C=159mps od §=i o p"

respectively [21, p. 3]. To see this by a direct calculation, let |¢,(z)| = r and, for
simplicity, denote A = (1—r?)/(1— W Then

1-7 _ (SRS )

(4.1)

r |z—al?
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which implies

8+ laff - 2Re (a2) = |z —af? = T—lo0 _ el 0
¢ il T1-12 1—-72 7

By re-organizing terms, we obtain

2
%—me (aZ) =

J,.2_|ﬁ.|2
1-r2°

If we multiply both sides with A, the obtained equation yields

2 2 2 _ r*—|a 2,12
|z — Aa|® = |z|* — 2Re (AaZ) + |Aa|]” = W+A |a|
(1=lalP)?
= = [aPrPR
which implies (4.1).
Note that the permutation
(a,C,r,5) — (r,5,a,C) (4.2)

is very useful in this context, since it transforms the formulas in (4.1) to each other.

Supplementary formulas for condition (4.1)

Next, we supplement (4.1) by expressing a number x € {a,C,r,5} in terms of two
other numbers of the same set. In particular, 5 is given by formulas (4.7) and (4.9)
below, and r is given in formulas (4.10)-(4.12). To obtain a formula for C or a, apply

thellhutation (4.2).

Without loss of generality, let a,r € (0,1) and let A(a,r) = D(C, 5). Now, condi-
tion (4.1) implies
atr

1+ra’
which givesa £ r = C £ 5 + raC + ra5. Hence, we deduce the useful equations

C+S5=

a=C+ras (4.3)

and
r=5+raC. (4.4)

First, solve C from (4.4) and substitute to (4.3) to obtain

r = S(1—a*?) +ra®, (4.5)
which implies
1-42
==

Second, solve r from (4.4) and substitute to (4.3) to obtain

as?
II:‘_E-'_]—n'(?’ =

16




which gives

- \/[a—C]{l—aC]r 4.7)

a
Third, apply the permutation (4.2) to (4.6) to obtain

152 -(1-)S§+(1-CHr=0, (4.8)

1-—12 1—r2 2 2
5= P —J( 5 ) ~=[1=C)k (4.9)

Also, formulas for r can be obtained. Equation (4.8) yields

14822 1452 —C2\?
'S TTIs _J( 25 )_1' e

which gives

Apply the permutation (4.2) to (4.5) and solve for r to obtain

e . BPSE .
r= ,fm:]_nc}. (4.11)

Finally, solve r from (4.5) to obtain

1 —a2\? 1-a?
S \/( zsfg) it zsanz‘ e

4.2 INTEGRAL ESTIMATES

Research in [25] concerns the use of Picard iterations f_, =0,

=1 | :
@)=Y Ed;ﬁz; =AY @ fua (0 g
j=0n=

“h (4.13)

k-1
+ Y cu(z—z)", neNu{o},

=0

to study equation (1.1). Here the integration is done along the straight line segment
from z to z. The comﬁnts dj, are given by

(1) -
G S —Tem - CSESisk=l
and the constants ¢; € C, which depend on the initial values of f at z, are given by
an inductive formula in [25]. See also [14], for an application of Picard iterations.
If the iterations f,, converge to an analytic function f, then (4.13) yields the rep-
resentation formula [36, Theorem 3.1], which together with the classical Gronwall
lemma [48, Lemma 5.10] implies Theorem 4.2.

17




Lemma 4.1. Let u and v be nonnegative integrable functions in [1,t;] and let ¢ = 0 be a

constant. If -
114

u(t) {c+[ u(s)o(s)ds, te(l.t),

tHhen #
u(t) < cexp (/ v(s) ds) 2t € [1,4).
1 1

Theorem 4.2. [36,gReorem 4.1(a)] Let f be a solution of (1.1) where A; € H(D), for
all j = 0,....k — 1. Then there exist a constant C; = Cy(k) > 0 depending on the initial
values of f at the origin, and a constant C; > 0 depending on k, such that the following
estimates hold:

(i) Function f satisfies
M(r, f) < Cyexp (Cz ¥ Ef M(s, A["? )1 s]’f-f+"-ids), (4.14)

j=0n=0
forall0<r<1

(i) If A; € H(A(O,R)) for some R € & ea), then

k-1 r )
M(?’ f} = ‘:].l"k exp (C} E Ef M(SFA:;"]}SR—I+H—1 dﬂ) f {415}
j=ﬂﬂ-u
Hi<r<R
sl

Herold’s comparison theorem can be summarized as follows [36, Theorem HJ.
Let v be a solution of

where each p; : [a,b) — C. Let E C [a,b) be a set of finitely many points. Ncrw
e each p; bj,r P; which, outside of E, is continuous and satmf. Ipi(x)] < Pj(x).

Let V be a solution of the new equation outside of E such that [o!/)(a)| < D’m (a),
forall j=0,...,k=1. Then

oW (x)] < v (x) €aB\E j=0....k-1

Herold's comparison theoremﬁls to the following theorem.

'I'heurem 4.3. [36, T.Faem 5.1] Let f be a solution of (1.1) where A; € H(D), for
all j=0,...,k=1,and Aj(zg) # 0forsome 0 < j < k—1and z5 = ue“" e D. Then

M(r, f) < Cexp ( [ EM 5, Aj)FT ds) (4.16)

where C depends on the values of fU) and A j at zg.
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4.3dPERATU'R THEORETIC APPROACH

If f is a solution of
f'+Af=0, (4.17)

where A € H(D), then
f(z) = Sa(f)(z) + f(0) + f(0)z, zeD,

where the operator

5,-,{] — —j: (J[ff{w]ﬂ{w}dw) df, zeD,

maps H (D) into itself. If X € H(ID) is an admissible normed space and the operator
norm ||S4 || x— x satisfies

ISa(f)llx

5 =X =5U < 1,
we deduce ()
= = 00,
I£lx 1—[ISallx—x

This operator theoretic approach is behind many results which give condition for A
such that all solutions belong to some function space of analytic functions.
The approach is related the classical integral operator
146

T(f)) = | f@g' @z,

which has been studied, for example, by Pommerenke, Aleman, Cima and Siskakis,
see [2-4,56]. The application of the operator theoretic approach may be difficult due
to the lack of equivalent norms (H™) and because Carleson measures still remain
unknown (BMOA and B). However, the duality relations (H!)* ~ BMOA, A* ~ K
and (Al))* ~ B suggest how to proceed.

To apply the ﬂ}%r theoretic approach, we usually need to utilize the dilata-
tion f;, defined by f.(z) = f(rz) for r € (0,1). Then at the end of the proof, we can
use facts such as || flluar = lim, ;- || frl|lar and || fllgmoa S suPg<re1llfrlimoa- For
a corresponding lemma about the norm of H{;, see [43, Lemma 11].

A seminal discovery was [57, Theorem 2], where Pommerenke gives a sharp suf-
ficient condition for the analytic coefficient A, which places all solutions f of (4.17)
to the classical Hardy space H*. To do this, Pommerenke writes the H?-norm of f in
terms of f" by using Green’s formula, employs (4.17), and then applies Carleson’s
theorem fof#le Hardy spaces [15, Theorem 9.3].

A finite positive Borel measure p on D is called a g-Carleson measure for an ad-
missible normed space X C H(ID) if X is continuously embedded into Lf., This

means that the identity operator Id : X — L} satisfies
Ifllg < dflxpallfllx.  f€X,

where the operator norm ||Id||,_, ;¢ is a finite number. The term Carleson measure
it
is named after L. Carleson who obtained a characterization for such measures in the

19




caseme X = H" and g = p. Namely, for a finite positive Borel measure y on ID
and 0 < p < 0o,

1
(LR a®)" < 1alyrglflir, € B, (418)
where
II d"ir”. .Ir = “ﬂilCarlE.lmni 0< p < oo

Here || || carleson 15 the Carleson norm of p defined by

#(Sq) dp(z)
Iilicareson = = sup |
SAG nE][:.';l |a HEE‘Snl_lﬂl

see [67, Theorem 9.12] and [15, Theorem 9.3]. The sets

¥

, [
S, = {r-:’""r :|lal <r<1,|6—arg(a)] < %}, aeD)\ {0},
and 5p = ID are called Carleson squares.
We have
".“ "Cﬂr]esnn = sup |‘?’f1 {Z:I | dﬂ [Z} (4.19)
acD+ID
To get an upper estimate for ||jt||carleson, Note that
2
I ||
1—Ja] ~ [1—az[?

= |¢h(z)], z€85., aeD,

by |1 —az| < |1 - |a|?| + ||a]* —&z| < (1 —|a]) for z € S,. For the other direction,
apply (4.18) for p = 1 to ¢}, and note that ||@}||;n =1 for all a € D. See [23, p. 101].
Mow we state Pommerenke’s original theorem.

Theurel. [57, Theorem 2] If A € H(ID) such that ||p 4|l carleson 15 small enough for
dua = |A(2)|2(1 — |z|?)? din(z), then every solution of (4.17) belongs to H2.

A refinemem heorem 4.1 shows that only the behavior of A close to bound-
ary T matters: There exists an absolute constant 0 < § < oo such that if

Mal(Sq)
sup - < B

la|=d

for any 0 < § < 1, then all solutions of (4.17) belong to H?, see [57, Theorem 3].
Theorem 4.2 generalizes Theorem 4.1 for the case of the higher order equation (1.1)

and general 0 < p < o0,

Theorem 4.2. [59, Theorem 1] Let 0 < 6 < 1. For every 0 < p < oo there is a positive
constant «, depending only on p and k such that if the coefficients Aﬁ H(D) of (1.1)
satisfy

sup [ Aoz (1 — |22y 1= Lol

dm(z) <a
jal 25 |1 —azf*

and _
sup |A;(2)|(1 = |zP) T e, 1,....k-1,
z]z4

then all solutions of (1.1) belong to HY N Hy".
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Summary of papers

In the following Summaries,e notation used in the original papers has been
changed to correspond to the previous sections.

5.1 SUMMARY OF PAPER I .

5
We describe a general localization method, which can be applied to the study of
differential equations in simply connected domains D C C. Then, as an example, we
define a particular localization mapping and apply known results for ID to improve
Theorems 2.1-2.3.

m The localization method for linear ODEs

In this section, we first state a general theorem about localization. Then, we intro-
duce a particular mapping which can detect exponential growth near the boundary
point z = 1.

Lemma 5.1. [42, Lemima 2.1] Let f be a solution of

f{k]é A fOV +- -+ A f' + Aof = Ay,

where Ag, Ay, ..., Ay € H(D). Let T : D = D be locally univalent and g = f o T. Then
function g is a solution of

B oo+ +ad +ag=c (5.1)

where c; € H(D). Moreover,

omalcr) = oma(Are T), Oma(cj) < ‘;E':ﬂ?{gm,rr{f!'m oT)},

5.2
TM,JI(CRJ = TM,rr'l:-'d‘.i; 2 T]r TM..H{‘:}':I < E:'_ax{TM,rr[AN o T} }r o

€5

whereS; = {N € N : opmu(AnoT) = max,,,é{m‘,,{ﬁ.,,roT}}},forj =1,...,k=1!

Proof of Lemma 5.1 follows easily, since by a straightforward calculation, g is a
solution of (5.1) whe@: (ay o T)Pys(T),

k—1

1 !
E_f- = w [{A} o T]{T }k = Pk,I{T} == m_Ej‘{-l CIIJPFIJ._f[T} ’

for j=0,1,...,k— 1, and P, (T) is defined by
m §
g[:rrll s EU’[!J & T}Pm,;'{T}-
i=0
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Hence P, ;(T) is a polynomial in T', T”, ..., T"") with integer coefficients, a so-called
Bell polynomial. We can inductively solve ¢;_q,c_3,...,cp and see that (5.2) holds.
Here we may mention that,ﬁper III, the formulas

@Y (AooTUT)E, o = (AcoT)(TH
_k(k=1)T"

Ck-1 = fﬂkwr 5 T

Ck-2 = f/m T)(T')? - (Ag_10T)T"

k(k—=1) (T"\? _k(k=1)(k —2) T"
"'T(F) - 5 I

(5.3)

which held for a general k € IN, were used in the case k = 3.
We study equations (5.5), (5.7) and (5.8) via the localization map T : ID — 1D,
defined by

1-=z

T(z) = Tpy(z) = 1 = sin(B/2)e" (TL i

where B € (0, m/2], p = p(B8) = B -a}s’rrz € (0,1/4] and y € (—m/2,w/2) such
that || < (m — B)*/2m € (0,7/2). Here T(D) is a tear shaped region having a
vertex of angle pr touching T at z = 1, see Figure 5.1. The domain T(ID) has the
symmetry axis T((—1, 1)) which meets the real axis at angle 7. As p decreases, T(ID)
becomes thinner, T((—1,1)) becomes shorter and @ngle 7 can be set larger [42].

If ¢ € H(ID) grows fast near the point z = 1 in terms of the iterated order of
growth, then T carries the property to ¢ = f o T, as the next lemma shows.

2sin(3/2)

pm

Figure 5.1: Domain T(D) with parameters § = 0.85 and v = —0.75. In this case,
we have p = B(m — p)/n* =~ 0.197 and 2sin(B/2) =~ 0.825.




Lema 5.2. (42, Lemma 2.2] m& H(D)and g = foT, where T is defined by (5.4).
Then UM,:i{f} = UM,::{S’”P,@-’ nelN.

The proof of Lemma 5.2 is straightforward and follows from the definition of the
order o, and the geometric properties of the conformal map T. Note that f can
grow arbitrarily fast even when f o T grows slowly.

5.1.2 Iterated order of growth of solutions

Second order equations

We apply the localization map T, defined in (5.4), to the equation

"+ Ay(z) exp ({b—z}rn)f + Ap(z) exp (ﬁ)f= 0, (5.5)

where Ap, A; € H(DU {|z=1| < £}), for some £ > 0 and, to avoid trivial cases,
Ag £ 0, by, by, g1.90 # 0, Re (go) = 0. Earlier results concerning equation (5.5) were
discussed in Section 2.4.

Theorem 5.3. [42, Theorems 1.2 and 1.3] Let f be an arbitrary non-trivial solution of (5.5),
where g1 = qp = 4.

(1) If (2,c0) and arg(by) # arg(bg), then op2(f) = q.
f Im (q) # 0 < Re (q) and [by] < |bol, then oy 2(f) > Re (q).

The case g € (0,2], which is not covered by Theorem 5.3(i), can be done with
stronger assumptions, see Theorem 5.6 below. For q € (2,c0), Theorem 5.3(i) im-
proves Theorem 2.2, and Theorem 5.6 improves [29, Theorem 1.11].

Theorem 5.4. [42, Theorem 1.4] Let q1 # qo in equation (5.5). Assume that either
qo. 71 € (0,00) and

* bl * hﬂ 4 —?T ?T
Re (E‘T—'ﬂ) <0< Re (e"f‘Tﬂ)’ fur:,muﬂ']re( 73 (5.6)

or Im(qp) # 0 and Re (q;) < Re(qy). Then ep2(f) = Re (go) for all non-trivial
solutions f of (5.5).

In Paper II, we discuss in detail when (5.6) holds, see [42, Corollary 1.5] and the
discussion after that. See also Figure 5.2.

Higher order equations
Here, we consider higher order differential equations.

Theorem 5.5. [42, Theorem 1.1] Let f be an arbitrary non-trivial solution of

FO+ALE@FEY 4+ + A2)f + Aolz) exp.,( )f 0, (7

where k,n € N, A; e{{ D U {|z = 1| < €}), for some £ > 0, Ay does not vanish identi-
cally and b,q € C\\ {0}. Suppose that Im (q9) # Oor |arg(bg)| < Z(Re (qo) + 1). Then
HM,rH—I{f} = Re '{‘]‘u]
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Figure 5.2: The green area represents those pairs (gp, 1) € [3,10] x [1,3] such that
condition 5.6 holds for any by, Iy € C) 0. The sawteeth are bounded by the blue
curve gy = qo/ (g0 — 2) the red curve qy = qo/ (g0 — 1).

Theorem 5.5 implies Theorem 2.1 as a special case, by setting k = 2, n = 1 and
g € (1,00). Next, M%e two generalizations.

Theorem 5.6. [42, Theorem 2.3] Let f be an arbitrary non-trivial solution of
B+ & Vo
a ! —
f +j=uA}{z)Exp({1_z]‘?)f 0, (5.8)

2
where k € N, A; € H(DU {|z-1| < &}) for some ¢ > 0, q.E (0,00) and b; € C
&nﬂj =0,1,....k— 1. Let Ag # 0 and by # 0. Assume that EIJ,-fbn € [0,1) for all
0,1,....,k =1 with at most one exception b; = by, for which arg(b,,) # arg(by).
Suppose that one of the conditions

(1) max(Re (by),0) < Re (by);

(i) 0 < Re (by) < Re (by), arg (%g) € (0,77) and arg (z—lb;) <3

2
(iii) Re (bp) <0, arg (‘f:g) € (0, 7] and arg (L'F) <39
holds or that one of the conditions holds when by and by, are replaced by by and by, respec-
tively. Then opma(f) = Re (q).

For a non-homogenous version of Theorem 5.6, see [42, Theorem 2.4].
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.2 § MARY OF PAPER Il
10

We give sufficient conditions for the coefficients such that all solutions of
o+ Ak—lf%"' o+ Alf' + Aof = Ay (5.9)

belong to H; (D). Here k € N\, {1} and Ap, A, ..., A are analytic in a simply con-
nected domain D, which is typically the unit disc D. In Theorem 5.2, the domain D
needs only to be starlike: 0 € D and D contains the linear segment [0, zg| for all
points zg € D.

5.2.1 Integration method involving multiple steps

Let a bounded, measurable and radial function w : D — (0, 00) satisfy

; r ds
li:rlz;,i:lp w(r) .[u il =2 < M < oo, (5.10)

for some M = M(w) € (0,00) and

, w(r)
limsup——— <m (5.11)
r=1- W (—-l-—ll_::)

for some constants ¢ € (0,¢0) and m = ni(w, &) € (0,0). Then, by (5.10) there exists
constants M, = Mk{cuﬁ € (0, M] and My = My(w) € (0,00) such that

limsup w(r)(1 —r)k! fﬂrm <M, B=1...B (5.12)

r=+1-
and r p
5
ﬂJ{f]L m ‘:Mn, fE{U,l]

BT rem 5.1. (43, Theorem 1] Let w : ID — (0, 00) be radial and satisfy (5.10) and (5.11).
Then the following assertions hold:

(a) If the nth primitive of A, belongs to H;; and

n=1
E= P,,(||An||H;= +m Y k(1 +f}k||-’d-k||H‘:ﬁ_k) <l

k=l

where P, = [T}_, My with constants M;. as in (5.12) and m, € are as in (5.11), then
all solutions of (1.1) belong to HSY

[T

(b) If the (n — 1)th primitive of A, belongs to HZ; and

!

2l dr
F=PF, (

sup |40(@)w(@)(1 - 2" [T 27

L 12
+llA1llyz, +m Zk!{lﬂl*"llﬂxﬂllﬂm_.) =l

k=1

where P, 3 = [1;- ]' My with constants My as in (5.12) and m, & are as in (5.11),

then the derivative of every solution of (1.1) belongs to H;.
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Moreover, if we consider the equations

FO L Agf=0 and "4 A F + Agf =0
in (a) w}, respectively, then the assumption (5.11) regarding w is not necessary.

In the proof of Theorem 5.1, an estimate for f in terms of f“"]' is obtained step-
by-step by using the Fundamental Theorem of Calculus (2.2) with inequality (5.12)
fork =1,...,n, see the proof of [43, Lemma 9]. In this way, the constants My can be
optimized on each step. If we use (2.2) multiple times before involving the weight w
or if we use, for example, the representation formula [36, Theorem 3.1], the sharp
constants are lost.

Conditi@i§ (5.10) implies that w has to decrease quite fast. In particular, ther
exists p € (0, 00) such that w(r) /(1 — r)" is bounded [61, Lemma 2]. Condition (5.
restricts the rate at which w can decrease. If w is nonincreasing, then (5.11) is
equivalent to the doubling condition: w(r) < mw (l{-ﬁ) when r € [0,1) is close to
one.

Conditions (5.10) and (5.11) are independent. Namely, w(r) = exp (—%_;)

satisfies (5.10) but fails (5.11). Conversely, w(r) = (log 1%}_' satisfies (5.11) but
fails (5.10). For more properties on (5.10) and (5.11), see [43].

m Integration method via a differentiation identity

In the proof of 'mrem 5.1, the an upper bound is given to the terms A; mm
terms of A;f, by using the Cauchy Integral Formula and (5.11). Meanwhile, in the
proof of Theorem 5.2 bel{wm use the identity

i L] {m—j)

Anf® = P -0I(T) (a9)"
and then remove the derivative on the right-hand side by integrating repeatedly
along a line segment. Consequently, the sufficient condition for the coefficients A;

is an integral condition. Derm the generated quantities by
=
Fi(m,w)(z) = (-1)@ I( m— | ) :rmrﬂ [y ‘ ) F
for K=0,1and 1 <m < n, and the repeated integration along a line segment by

Io(F,z) = |F(z)L_ and L,+1{F,z}=ff.,{F,r:J|d§.'|

forneNandz e ]hHere F is a measurable function in a starlike domain D.

Theorem 5.2. [43, Theorem 2] Let D be a starlike domain and let w : D — (0,00) be
a measurable and bounded function. Let the coefficients A = H(D),j=0,...,nin
equation (5.9).

(a) If

j=1

L
E=supw(z) }_ Lu(Fo(mw),z) <1
zel =1

and the nth primitive of A, belongs to H.) (D), then all solutions of equation (5.9)
belong to HZ; (D).
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®) If
n—1
F = sup w( )[., (Aoh(w),2)+ Y Ln(F (R,

D m=1

and the (n — 1)th primitive of A, belongs to H (D), then the derivative of every
ﬁut:’an of (5.9) belongs to H (D).

Theorem 5.2 and condition (5.10) imply a version of Theorem 5.1, which is true
wit_hoathe assumption (5.11), but where the sharp constants are lost, see [e—
orem 3]. Theorem 5.2 is more general than Theorem 5.1 also in the way that ID
may be replaced by an arbitrary starlike domain. For more general domains, see the
discussion after [43, Theorem 2].

u:nsequences and sharpness of main results

If w(z) = (1= |z|)¥ for p € (0, c¢), then the quantities E and F in Theorem 5.1 can
be chosen to be

n {k-i— 3 kp
E= (u n||H.,+Ek' * [ ;nH;,»k)

—1.”‘"}'
and
= ] ( kl dr
F= ——= | sup|Ag(zilil—|z F"'"“I] —
I = (g ao@la =+ 7 2
-+ }k (3.13)
p

+ || A1]lpe=, + Z-HT”A&H o, |)

respectively. In this case, concrete upper bounds for ||f||y and [|f||z are found,
see [43, Corollary 4].
In the case of equation

@ A =0
where A € H(ID), Th&m 5.1 is sharp in the sense that assumptions E < 1 and F <

1 cannot be replaced by E < 14 or F < 1 + ¢, respectively, for any £ € (0, c0),

see [43, Example 5]. .
34

Corollary 5.3. [43, Corollary 6] Let f be a solution of (1.1) wheremf,—f H(ID), for
all j=0,....n. Let Ay, = 0and let F = F(p) be defined as in (5.13). Then the following
assertions hold:

—logr)

(a) If F(p) < 1 holds with p =1 mm‘] rdr < co, then f € B = Q.

~7

bR
(b) If F(p) < 1with p € [3,1) :mn’] %rdr < oo, then f € BY C Qg p.
0 -

r)

(c) If F(p) < 1 with p € {U,%]. then f € BP € D < Q. Moreover, if K(0) =
then f € B C D C Qkp-
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Corollary 5.3 imxves Theorems 3.3 and 3.4. Moreover, recall that if f € BF for
some 0 < p < 1, then f is continuous in D and f(e") € Aj_p, that is, f satisfies
a Lipschitz condition of order 1 — p, see [15, Theorem 5.1]. Hence, Corollary 5.3
implies also facts about the continuity of f.

Corollary 5.4. [43, Corollary 8] Let A(z) = ¥ o z* € H(ID) and let f be a solution
af (1.3). Then the following assertions hold:

ik +a+1 .

1
(@ Ifa € (0,1) and [a;| < a(1 - &) k!rm_'_”]forkENU{ﬂ}, then f € B*.

1 2T(k+x
(b) If |ag| < Fj; %dr}'ﬂrkéﬂ\lu 0}, then f € B.

(c) Ifa € (1,00) and |ay| < a(a — 1)(1+ k) for k € NU {0}, then f € B*.
Corollary 5.4(a) partially improves Theorem 3.1, which requires
l"[k+e1+1])‘ I

KT{a+1)
to yield that all solutions of (1.3) belong to the Dirichlet space.

|ﬂk|£1=ﬂ(

.3 A classical theorem in the plane

As a straightforward application of Theorem 5.2, we obtain a part of [48, Theo-
rem 8.3]. See [48] fmpmuf in terms of the Wiman-Valiron theory.

Theureii [43, Theorem Al Let the coefficients Ay, ..., An—1 of (5.9) be polynomials
and Ay an entire function with a finite order of growth p( A, ). Then all solutions of (5.9)
are entire functions of finite order. Moreover,

deg(4;)
o(f) 5max{1+u£r:j_3:<_l o .pm.,}} (5.14)

for every solution f.

Our proof of Theorem 5.5 directly generalizes to iterated order case and we
obtain [7, Theorems 4(i) and 4(ii}], according to which every solution of (1.1) satisfies

Pr+1(f) = max{ max pk(Aj],pH.{A,,]} . (5.15)

0<j=n—1

For A, = 0, condition (5.15) can be given also by the growth estimates (4.16)
and (4.15) or Picard’s successive approximations, see [25, Theorem D]. Moreover,
condition (5.14) follows from estimate (4.15). Conditions (5.14) and (5.15) have a
similarity with the fact that each solution zj of the polynomial equation

Pty 12" a2 gzt ag =0,

satisfies

s
Ll g2 g B
1+ E_J=ﬂ |a;] 0gjSn-11 —]

which can be seen by modifying the proof of [48, Lemma 1.3.2]. This is no surprise,
since Wiman-Valiron theory transforms the differential equation (1.1) to an algebraic
equation, which, at least asymptotically, is a polynomial equation.
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5.3 SUMMARY OF PAPER llI

We present a counterpart of the Hardy-Stein-Spencer formula for the higher order
derivatives, which has ations to differential equations. Then we consider the
bounded, BM d B solutions of a second order differential equation and the
zero separation of solutions of higher order differential equations.

5.3.1 A counterpart of the Hardy-Stein-Spencer formula for higher order
rivatives

Define for f € H(D), 0 <p <o an%& M the quantities

k-1
N(f.p.k) = Ifl} — X 1F9 (0,
e

M(fp k) = [ IF@IPHFY @O =12 dm(2)

We are now motivated bi the question whether or not

N(f,p,k) < Clp,K)M(f, p,k), Clp,k) L5 0%2 (5.16)

If k = 1, the answer is affirmative by the Hardy-Stein-Spencer formula (3.2). If k =2
and f € H(ID) is non-vanishing such that ||log f||g is sufficiently small then (5.16)
holds for k = 2 with C(p) = p* as p =+ 0. To see this, apply _the Hardy-Stein-
Spencer formula to g = fP~2/2f" € H(DD). For general k btain the next
theorem whose proof relies on a classical characterization of HY spaces in terms of
the Lusin area function, see []ml?.ﬁ] and [21, pp. 55-56].

Theorem 5.1. IEF@:’EM: 4] Let f € H(ID) and k € N.
(i) If0 < p < 2, then N(f, p.k) S M(f, p,k).
(1) If2 < p < eo, then M(f,p.k) S N(f.p.k

(iii) If 0 < p < oo and there exists 0 < § < 1 such that f is univalent in each pseudo-
hyperbolic disc A(a,8), a € D, then
N(f,p.k) < M(f, p. k).

The comparison constants are independent of f and in (i) and (ii) they depend only on p.
In (iii) the comparison constant depends on p and 8.

heorern 5.1(i) has two immediate applications in the case, when AM{(D}
such that du4(z) = |A(z)|*(1 — |z|*)?dm(z) is a Carleson measure. First, let f be a
solution of

F+Af=0 (5.17)

and let f,(z) = f(rz) for 0 < r < 1. Since limsup, ;- ||pa, [|carteson = |74 llcarteson
by the discussion in the proof of [27, Theorem A] and (4.19), we get by Theorem 5.1(i)
and Carleson’s theorem

N(frp2) S [ 16(1AG2)0 = 2P dm(z) S 1151 1 | careson
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for r large enough. Hence, if ||t ||carleson 15 small enough, dependingon 0 < p < og,
then f € HF. This is an alternative proof of a special casg gf [59, Theorem 1.7].

If inequality (5.16) were true for k = 2, then we coul rove [59, Theorem 1.7]
in the case of equ (5.17) to the form: if du4(z) = |A(z)[*(1 — |z|*)* dm(z) is a
Carleson measure, then all solutions of (5.17) belong to Up-p<e H”.

5.3.2 Solutions in H*, BMOA and B by an operator theoretic approach

We give sufficient conditions for the analytic coefficient A of (5.17) which place solu-
tions in H™, BMOA or B. In the case of bounded solutions, the sufficient condition
is given in terms of Cauchy transforms, defined by (3.3).

Theorem 5.2. [27, Theorem 2] Let A € H(ID). If

limsup sup [|A;:||x <1
r=1- zeD

for

O [Ff A(rw)
Ah:{lf}—‘L ‘/c; l—ﬁwdﬂd;' u e D,

then all solutions of (1.3) are bounded.

The converse implication in Theorem 5.2 m)en and appears to be difficult.
If (5.17) admits linearly independent solutions f;, f; € H* such that

inf (i) +1f22)) > 0, (5.18)

then m{‘”, by an application of the Corona theorem [15, Theorem 12.1]: there
exists £1,82 € H™ such 181 + f2g2 = 1, and consequently

A=A+ (fig1+fog) =2(fig) + f285) + 1g) + 287

Regarding condition (5.18), we recall that f; and f> do not have common zeros due
to linear independence.

The existence of one bounded solution restricts the mth of A almost to the
form A € H{®. Namely, f(z) = exp(—(1+z)/(1 —z)) is a solution of (1.3) with
coefficient A(z) = —4z/(1 —z)*. This is almost extremal possible growth for A
since [14, Theorem 3.1(a)] implies that if (1.3) has a bounded solution, then

. (log 1%5)°
M{I, f” :‘5 W

For the space BMOA we obtain two results, namely Theorems 5.3 and 5.4 below.
The proofs of Theorems 5.2-5.5 utilize the dilatation f.(z) = f(rz) for 0 < r < 1.
Mote that condition (5.19) does not include a limit respect to r, whereas condi-
tion (5.20) does.

Theorem 5.3. [27, Theorem 3] Let A € H(DD). If

2
sup (log ;=) [ 1AG)EQ= 2220 = lga@PF) dm(x) (519

acD

is sufficiently small, then all solutions of (1.3) belong to BMOA.
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Theorem 5.3 is inspirated by [62, Theorem 3.1] and related to so-called logarith-
mic Carleson measures, see Paper Il and references therein.

Theorem 5.4. (27, Theorem 14] Let A € H(ID). If

s 1 2| = AGrg) dg 2
limsup sup [ (H [} [ e | ( —lga(2)P)dm(z)  (5.20)
is sufficiently small, then all solutions of (1.3) belong to BMOA.
The condition 1
sup |A(z)[(1 = |z])* | log < 00 (5.21)
zeD 1= |z|

for & = 3/2 implies the finiteness of (5.19), but also, since & > 1, that the solutions
are bounded by the growth estimate (4.14). The growth estimate (4.16) implies the
same conclusion if & > 2. Finiteness of (5.19) implies (5.21) for & = 1, but not for
any ]argemcm these and other similar observations, see [27, Lemma 6] and [8,62].

For B we obtain a family of sufficient conditions given in terms of reproducing
kernels B“’ of the weighted Bergman space A“, MNote that, for the w as below, we
have B C AE, [51, Proposition 6.1]. Here we only make the necessary definitions,
see [27, p. 12] for a more detailed discussion. See [33] [16] and [52] for general
theory of Bergman spaces.

Let w : [0,1) — [0,00) be radial and integrable such that the norm mnverm
in A2, implies the uniform convergence on compact subsets of ID. Then each point
evaluation L.(f) = f(z) is a bounded linear functional in the Hilbert space AZ,.
Consequently, there exists unique reproducing kernels BY' such that

F@ = {f. BE’}A:I = I/;}f{n]B;:"[n]m{n]dm{n], {eD,
for all f € A2, thatis, f € H(ID) and

./D |f{lf}|2w{n] dm(u) < e

BY (u) = i [@ (/.nl rz"“w{r}dr)_]l :
=0 :

We may assume w to be normalized such that we have BE' {0) = 1. Denote

Moreover,

w*(u) = lng-—m (r)rdr, ue D {0}

[re] |u|

In the following, we assume on w the existence of C = C(w) > 0, a = a(w) > 0
and B = p(w) > a such that

c-1 (H)“amgm[r] Ec(g)ﬁa&{f} {%

forall0 < r < t < 1, where @(u) = [} w

Ju] &

r)dr for u € D. The first inequality
1+r

f-'x

) and the second one is equivalent to that

there exists K,C > 1 such that ai(r) > C@ (1 - l—x?i)

in (5.22) is equivalent to @(r) = @
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Theorem 5.5. [27, Theorem 10] Let «w be as above, and A analytic in D such that
limsup, .- Xg{fl,é 1 where
Xg(A;) = sup (1 —|z|*) f U (BY') (BLY(u)A(r0) d{," o {| |}2 dmu).
zeD

Then every solution f of (1.3) belongs to BB and satisfies

1

:
IflsS % (u{nn sup (1~ 2/ AQ) |+ |f’tm|),

where Xp(A) < 1/4. Moreover, if Xg(A) is small enough, then all solutions of (1.3)
belong to B.

By [27, Theorem 11], for w as in Theorem 5.5, condition limsup,_,,- Xg(A;) < oo
is equivalent to that (5.21) holds for & = 1, which is equivalent to the boundedness
of the operator 54 : B —+ B

5,-,{z} B f; (/DL Flw)A(w) dw) g, z€D.

If one of these conditions holds, then f € H? [57, Theorem 3].
In [43, Corollary 4, Example 5], it was found that if

sup |A(2)](1 = |z])? log | = B, (5.23)
zeD 1-2|

with a sharp constant C = 1, then all solutions of (5.17) belong to B. This remains as

the best known solution to the problem: give a sufficient condition for the analytic

coefficient A of (5.17) which places all solutions in 5. Initially this question was

stated by late Nikolaos Danikas (Aristotle University of Thessaloniki) !. Danikas

asked the corresponding question also for the BMOA space.

Prior to [43], conditions for A such that f € H® C B were known [34, 38].
Condition (5.23) with constant C = 1, is less restrictive and allows solutions to
belong in (BN H?)\ H*®. However, unlike all H? functions, an arbitrary Bloch
function need not to have radial limit in any point of T and its zero set does not
have to satisfy the Blaschke condition. Hence, the final answer to Danikas’ question
rern'-s to be given.

The proof of Theorem 5.4 shows that, in order to conclude f € BMOA, it suffices
to take the supremum in (5.20) over any annulus R < |z| < 1 instead of ID. This
should be compared with the discussion after Theorem 4.1. A similar an be

e on Theorem 5.5. Theorems 5.3, 5.4 and 5.5 have their analogues for little Bloch

By and VMOA, closures of polynomials in B and BMOA, which consist of

those f € H(ID) for which limy; ;- f'(z)(1 — [z[*) = 0 and lim,_,,-[|fu]l3,, = 0,
respectively. See [27, Theorems 7, 15 and 13].

5.3, A zero separation result by localization and a growth estimate

The zeros of a non-trivial wn f of

7+ Aof" + Aaf' + Aof =0, (5.26)

"The 1997 summer school “Function Spaces and Complex Analysis” in llomantsi, Finland
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where afh:ﬁz € H(D), are at most two-fold. For the zeros of maximum multi-
plicity, we obtain the following theorem.

Theorem 5.6. (27, Theorem 1] Let Ap, Ay, Az € H(ID) and let f be a non-trivial solution
of (5.

(i) If _
sup |4;(2)|(1=[2[)* <, j=012, (5.25)
=
then the sequence of two-fold zeros of f is a finite union of separated sequences.

(i) If
sup [ |A;(z)|(1— [z (1= |q:.,{z}|1imn{z} < 00, (5.26)
ach /D
for j = 0,1,2, then the sequence of two-fold zeros of f is a finite union of uniformly
separated sequences.

In the proof of Theorem 5.6, equation (5.24) is localized by the automorphism ¢,
and the coefficients of the localized equation can be obtained from formulas (5.3)
for k = 3. Then Jensen's formula, and the proofs of the growth estimates (4.14) and
Lemma 5.7 are applied. For the counterpart of Theorem 5.6 in the second order case,
see [28, Theorem 1].

Let v > 0, A(z) = (1+49*)/(1-2%)% z € D, and fy, f> as in Example 3.1.
Trivially, { 7, f3, fif2} is a solution base of

"+ rhﬁ +2A'h=0. (5.27)
In fact, { f{, f3, f1f2} consists of three linearly independent bounded solutions each
of whi no zeros. By Example 3.1, h = (f; - fi )2 is a bounded solution of (5.27)
whose uence is a union of two separated sequences. Moreover, this se-

quence is a union of two uniformly separated sequences, since all zeros are real [15,
Theorem 9.2]. In this case thﬁoefficients of (5.27) satisfy both (5.25) and (5.26).

Lemma 5.7. [27, Lemma 5] Let £ = {z;} be a sequence of points in ID such that the
multiplicity of each point is at most p € .

(i) If 201

sup ¥ (1-|ga(z)?)? < M < oo,

AEZ z,c 2 [a}

then {z; } can be expressed as a finite union of at most M + p separated sequences.

(i) If
sup Y (1= |galzi)?) €M < o,
el z,c2\{a}
then {z;} can be expressed as a finite union of at most M + p uniformly separated
SeqUences.

See the proofs of [16, Theorem 15 and Lemma 16; pp. 69-71] for earlier results
concerning Lemma 5.7(i).
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