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ABSTRACT

The survey part of this thesis introduces some new results concern-
ing inner functions and the differential equations

f (n) + an−1(z) f (n−1) + · · ·+ a1(z) f ′ + a0(z) f = an(z), n ≥ 2,

where a0(z), . . . , an(z) are analytic in a simply connected domain
of the complex plane which is typically the unit disc. Before pre-
senting these new results, some background is stated. Regarding
inner functions, the questions of when their derivatives belong to
the weighted Bergman or QK type spaces are studied. In the case
of differential equations, the growth and oscillation of solutions are
of interest.
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Keywords: Bergman space; Blaschke product; Bloch space; Differential
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1 Introduction

We study inner functions and linear differential equations in a sim-
ply connected domain D of the complex plane C, where D is typ-
ically the unit disc D = {z ∈ C : |z| < 1}. We are interested
in the questions of when the derivatives of inner functions or so-
lutions of differential equations belong to certain function spaces.
In both cases, the approach is based on different kinds of integral
estimates; in particular, the asymptotic behavior of integrals is of
interest. Techniques used in this thesis range from basic tools of
classical complex analysis to some new methods.

Fundamental results on the derivatives of inner functions in the
classical Bergman spaces Ap

α, relevant to this thesis, were obtained
by Ahern, Clark, Gluchoff, Kim and Protas in [1, 2, 3, 23, 36, 52]. We
generalize some results in these papers to the Bergman spaces Ap

ω

induced by radial weights ω. For example, we obtain necessary and
sufficient conditions for the derivative of a purely atomic singular
inner function or the derivative of a Blaschke product whose zero-
sequence is a finite union of separated sequences to be in Ap

ω.
An important family of function spaces regarding inner func-

tions is the Möbius invariant QK type spaces, such as Qp, QK and
F(p, p − 2, s). According to [18, 19, 50], the only inner functions in
these spaces are a specific kind of Blaschke products. In this thesis,
we generalize these results by showing an analogous characteriza-
tion for QK(p, p − 2) spaces which contain, for example, all spaces
mentioned above.

Regarding differential equations, we study the growth of solu-
tions of

f (n) + an−1(z) f (n−1) + · · ·+ a1(z) f ′ + a0(z) f = an(z),

where a0(z), . . . , an(z) are analytic in a simply connected domain
D ⊂ C and n ∈ N \ {1}. It is a well-known fact that the solutions
are analytic functions in this case. Sufficient conditions for the solu-
tions and their derivatives to be in H∞

ω (D) are given by restricting

Dissertations in Forestry and Natural Sciences No 237 1
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the growth of the coefficients a0(z), . . . , an(z). Earlier results related
to this topic are obtained by Gröhn, Heittokangas, Korhonen and
Rättyä in [25, 32, 33, 34]. Our sharp results have been proved by ap-
plying new integral estimates without relying on commonly used
tools such as Gronwall’s lemma, Herold’s comparison theorem, Pi-
card’s successive approximations or the standard Wiman-Valiron
reasoning.

Regarding the second order equation

f ′′ + a(z) f = 0, (1.1)

where a(z) is analytic in D, we study the situation where a solution
has prescribed zeros. In particular, we are interested in the cases
where the equation is Blaschke-oscillatory or its solutions belong
to the Nevanlinna class. Here the starting point is Pommerenke’s
result, which states that all solutions of (1.1) are in the Nevanlinna
class provided that a ∈ A

1
2 [51]. Related to this result, one can prove

that, if a sequence {zn} is sparse enough, then there exists a ∈ A
1
2

such that the equation (1.1) has a solution with zeros precisely at the
points zn. Nevertheless, even under strong assumptions on zeros of
the solutions, there is no guarantee that a ∈ A

1
2 would hold. This

part of the thesis builds on [28, 30].
The remainder of this survey is organized as follows. In Sec-

tion 2, we categorize inner functions and recall some basic proper-
ties of certain function spaces. Section 3 contains results on inner
functions. In particular, we consider the behavior of inner func-
tions or their derivatives in QK spaces and the classical Bergman
spaces Ap

α, respectively. In Section 4, we concentrate on differen-
tial equations, while Section 5 summarizes the essential contents of
Papers I-IV.

2 Dissertations in Forestry and Natural Sciences No 237



2 Notation and background

Let us recall some basic concepts and results needed later on.

2.1 INNER FUNCTIONS

A bounded analytic function in the unit disc D = {z ∈ C : |z| <
1} is an inner function if it has unimodular radial limits almost
everywhere on the boundary T = {z ∈ C : |z| = 1}. If an inner
function is not a Blaschke product or a singular inner function, then
it can be represented as a product of them [16]. For w ∈ T and
m ∈ N ∪ {0},

B(z) = wzm ∏
n

|zn|
zn

zn − z
1 − znz

, z ∈ D,

is known as a Blaschke product with zeros {zn} ⊂ D \ {0}, where
∑n(1 − |zn|) < ∞ [15, 16]. Singular inner functions take the form

S(z) = Sσ(z) = exp
(∫

T

z + w
z − w

dσ(w)

)
, z ∈ D,

where σ is a positive (non-zero) measure on T and singular with
respect to the Lebesgue measure, that is, the Lebesgue measure of
the set of all mass points is zero [40].

Blaschke products

If the zero-sequence of a Blaschke product is finite, then the Blaschke
product is said to be finite; infinite Blaschke products are defined in
an analogous manner. In this survey, finite Blaschke products play
a minor role. Nevertheless, in general, they are a widely studied
class of functions. For example, the derivatives of finite Blaschke
products have been studied in [40].

Dissertations in Forestry and Natural Sciences No 237 3
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The whole essence of an infinite Blaschke product is induced
by the quantity and sparsity of its zeros. One way to measure the
quantity of zeros is by means of an α-Blaschke condition

∑
n
(1 − |zn|)α < ∞ (2.1)

for some α ∈ (0, 1], where α = 1 is the classic case. The spar-
sity is typically measured in terms of the pseudo-hyperbolic metric
ρ(a, z) = |ϕa(z)|, where ϕa(z) = a−z

1−az . Indeed, a sequence {zn} in
D is called separated if

δ = inf
n �=k

ρ(zn, zk) > 0, (2.2)

and uniformly separated if

δu = inf
k

∏
n �=k

ρ(zn, zk) > 0.

A uniformly separated sequence is always a Blaschke sequence,
but a separated sequence need not be. Nevertheless, in a Stolz
angle, these two concepts are equivalent [57]. For ξ ∈ T and ε ∈
(1, ∞), a Stolz angle with a vertex at ξ is given by

Ωε(ξ) = {z ∈ D : |1 − ξ̄z| ≤ ε(1 − |z|)}.

A sequence in a Stolz angle approaches the boundary T non-tangentially.
The tangential approach is typically associated with domains

R(ε, ξ, γ) = {z ∈ D : |1 − ξ̄z|γ ≤ ε(1 − |z|)},

where ξ ∈ T, ε ∈ (0, ∞) and γ ∈ (1, ∞) [15].

Singular inner functions

The associated singular measure σ determines the behavior of the
singular inner function Sσ completely. Hence it is worth noting that
we can write any singular measure σ as the sum of a purely atomic
measure σa and a singular continuous measure σc, where the mea-
sures are allowed to be vanishing. In particular, this means that

4 Dissertations in Forestry and Natural Sciences No 237
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each singular inner function Sσ can be represented as the product
of Sσa and Sσc . Here the set of mass points of each purely atomic
measure is at most countable and, in the case of a singular continu-
ous measure σc, the function x → σc({eit : t ∈ [0, x)}) is continuous.

If a singular inner function is associated with a purely atomic
measure, then we can write it in the form

Sσa(z) = ∏
k

exp
(

γk
z + ξk

z − ξk

)
= exp

(
∑

k
γk

z + ξk

z − ξk

)
, z ∈ D,

where ξk ∈ T are distinct and γk ∈ (0, ∞) satisfy ∑k γk < ∞. If
there exist ε > 0 and an index j such that |ξ j − ξk| > ε for all
k �= j, then we state that Sσa is associated with a measure having
a separate mass point. In the case where the product has only one
term with γ1 = γ and ξ1 = ξ, we write Sσa = Sγ,ξ . These functions
are known as atomic singular inner functions. In general, singular
inner functions associated with continuous measures do not have a
special representation other than the definition.

2.2 FUNCTION SPACES

If D ⊂ C is a domain, then H(D) denotes the space of all analytic
functions in D. Typically we consider the case where D is the unit
disc D. The notation a � b means that there exists a constant C ∈
(0, ∞) such that a ≤ Cb, while a � b is understood in an analogous
manner. If a � b and a � b, then we write a � b. The notation f ↗
means that f is essentially increasing; that is, f (r1) � f (r2) for r1 ≤
r2. The term essentially decreasing, in short f ↘, is understood in
an analogous manner.

Growth spaces H∞
ω and α-Bloch spaces Bα

The growth space H∞
ω (D) consists of f ∈ H(D) satisfying

‖ f ‖H∞
ω
= sup

z∈D
| f (z)|ω(z) < ∞.

Dissertations in Forestry and Natural Sciences No 237 5
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Here D ⊂ C is a domain, and ω : D → (0, ∞) is bounded and
measurable. In the particular situation D = D, we write H∞

ω =

H∞
ω (D). If ω(z) = (1− |z|)q for q ∈ (0, ∞) and z ∈ D, then we write

H∞
ω = H∞

q . The union ∪q>0H∞
q is also known as the Korenblum

space A−∞.
The α-Bloch space Bα with α ∈ (0, ∞) consists of f ∈ H(D)

satisfying
‖ f ‖Bα = sup

z∈D

| f ′(z)|(1 − |z|)α < ∞.

If α = 1, then Bα is the classical Bloch space B. It is a well-known
fact that Bα = H∞

α−1 for α ∈ (1, ∞); consequently, B ⊂ H∞
q for any

q ∈ (0, ∞). Note that there exists a function which belongs to B
and has radial limits almost nowhere on T [10]. Furthermore, one
can find a function in B whose zeros do not satisfy the Blaschke
condition [8].

Nevanlinna class N and Hardy spaces H p

We say that f ∈ H(D) belongs to the Nevanlinna class N if

sup
r∈[0,1)

∫ 2π

0
log+ | f (reit)| dt < ∞,

where log+ x = max{0, log x} for x ∈ [0, ∞). For example, the
Hardy spaces Hp with p ∈ (0, ∞], which contain all functions f ∈
H(D) satisfying supr∈[0,1) Mp(r, f ) < ∞, are proper subspaces of
N. This is clear for p = ∞. In the case p ∈ (0, ∞), the inclusion
follows from the inequality log+ x ≤ p−1xp, where x ∈ [0, ∞). Since
g(z) = exp

( 1+z
1−z

)
belongs to N but g /∈ Hp, it is clear that the

inclusion is proper. Here, for r ∈ [0, 1),

Mp
p(r, f ) =

1
2π

∫ 2π

0
| f (reit)|p dt, p ∈ (0, ∞),

and M∞(r, f ) = maxt∈[0,2π) | f (reit)|.
Since any f ∈ N can be written in the form f = f1/ f2, where

f1, f2 ∈ H∞, the Nevanlinna class inherits some useful properties

6 Dissertations in Forestry and Natural Sciences No 237
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of H∞: (1) existence of non-tangential limits almost everywhere
on the boundary T; (2) zeros (or a-points in general) of f satisfy
the Blaschke condition [16]. By the latter property, any f ∈ N ∩
H(D) can be represented in the form f = gB, where g ∈ H(D)

is non-vanishing and B is a Blaschke product. A careful analysis
shows that g can be written in the form OS1/S2, where O is an
outer function and Si is a singular inner function for i = 1, 2 [16,
Theorem 2.9]. If f ∈ Hp for some p ∈ (0, ∞), then there exist O and
S1 such that S2 = 1 [16, Theorem 2.8].

Weighted Bergman spaces Ap
ω

For p ∈ (0, ∞), the weighted Bergman space Ap
ω consists of f ∈

H(D) satisfying

‖ f ‖p
Ap

ω
=

∫

D
| f (z)|pω(z) dA(z) < ∞.

Here dA(z) is the Lebesgue area measure on D and the weight
ω : D → [0, ∞) is integrable over D. Typically ω is radial which
means that ω(z) = ω(|z|) for all z ∈ D. In the classical case where
ω(z) = (1 − |z|)α for some α ∈ (−1, ∞), we write Ap

ω = Ap
α [27]. If

α = 0, then the notation Ap is used.
The class D̂ of doubling weights consists of all radial weights

satisfying ω̂(r) � ω̂( 1+r
2 ), where ω̂(r) =

∫ 1
r ω(s) ds. D̂ is a suf-

ficiently large class whose members are sufficiently stable. On
one hand, regular and rapidly increasing weights belong to D̂ [48].
Moreover, weights in D̂ can have zeros but do not have to satisfy
any strong properties such as continuity or essential monotonicity.
On the other hand, many results on classical weights generalize to
doubling weights. For example, Forelli-Rudin type estimates [27,
Theorem 1.7] for doubling weights are available [46, Lemma 1].

The following statements for a radial weight ω are equivalent:

(i) ω ∈ D̂;

(ii) There exist C = C(ω) ∈ (0, ∞) and β = β(ω) ∈ (0, ∞) such

Dissertations in Forestry and Natural Sciences No 237 7
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that

ω̂(r) ≤ C
(

1 − r
1 − t

)β

ω̂(t), 0 ≤ r ≤ t < 1.

(iii) There exist C = C(ω) ∈ (0, ∞) and p0 = p0(ω) ∈ (0, ∞) such
that

∫ t

0

(
1 − t
1 − s

)p

ω(s) ds ≤ Cω̂(t), t ∈ [0, 1), (2.3)

for p ≥ p0.

(iv) The asymptotic equality

∫ 1

0
sxω(s) ds � ω̂

(
1 − 1

x

)
, x ∈ [1, ∞),

is valid.

This result is a combination of [46, Lemma 1] and a simple im-
provement of [48, Lemma 1.3]. If ω satisfies (2.3) for some fixed
p ∈ (0, ∞), then we say that ω belongs to the class D̂p. By the result
above, it is obvious that D̂ = ∪p>0D̂p.

We say that ω ∈ R if ω ∈ D̂ and there exist C = C(ω) ∈ (1, ∞)

and K = K(ω) ∈ (1, ∞) such that ω̂(r) ≥ Cω̂
(
1 − 1−r

K

)
for all

r ∈ [0, 1) [47]. It is known that ω ∈ R if and only if there exist
C = C(ω) ∈ [1, ∞), α = α(ω) ∈ (0, ∞) and β = β(ω) ∈ [α, ∞) such
that

C−1
(

1 − r
1 − t

)α

ω̂(t) ≤ ω̂(r) ≤ C
(

1 − r
1 − t

)β

ω̂(t), 0 ≤ r ≤ t < 1.

Furthermore, it is easy to see that R contains the class of regular
weights. Here a continuous radial weight ω is regular if ω(r) �
ω̂(r)(1 − r) for all r ∈ [0, 1) [48]. To avoid confusion, we note that,
in some sources, the class of regular weights is denoted by the sym-
bol R.

8 Dissertations in Forestry and Natural Sciences No 237
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QK(p, q) spaces

For p ∈ (0, ∞) and q ∈ (−2, ∞), QK(p, q) consists of f ∈ H(D)

satisfying

sup
a∈D

∫

D
| f ′(z)|p(1 − |z|)qK(g(z, a)) dA(z) < ∞.

Here K : [0, ∞) → [0, ∞) is (typically non-decreasing) such that
K(1) > 0 and ∫ 1

0
(1 − r)qK

(
log

1
r

)
r dr < ∞, (2.4)

and g(z, a) = log
∣∣ 1−az

a−z

∣∣ is Green’s function. If p = 2 and q =

0, then QK(p, q) = QK [17], and, if K(r) = rs with s ∈ [0, ∞),
then QK(p, q) = F(p, q, s) [63]. Note that if (2.4) is not valid, then
QK(p, q) consists only of constant functions [59].

If K is non-decreasing and satisfies the condition
∫ ∞

1
ϕK(r)

dr
r2 < ∞, (g)

where ϕK(r) = supt∈[0,1] K(rt)/K(t), then QK(p, q) spaces have nu-
merous useful properties [59]. For example, f ∈ QK(p, q) if and
only if f ∈ H(D) and

sup
a∈D

∫

D
| f ′(z)|p(1 − |z|)qK(1 − |ϕa(z)|) dA(z) < ∞.

Furthermore, if K1 ≡ 1, then QK1(p, q) = QK(p, q) if and only if

K(0) > 0. In addition, the inclusions QK1(p, q) ⊂ QK(p, q) ⊂ B
q+2

p

are valid without assuming (g). These properties are not surprising
due to the following fact: If a non-decreasing K satisfies (g), then we
can find a twice differentiable K2 such that K2 � K, K2(r) = K2(1)
for r ∈ [1, ∞) and K2(s) � K2(2s) for s ∈ (0, ∞) [60]. Hence we may
assume to begin with that K satisfies the same properties as K2.

Let K(r) = rs with s ∈ [0, ∞). Then (g) holds if and only if s < 1.
Moreover, ∫ 1

0
ϕK(r)

dr
r

< ∞ (f)

Dissertations in Forestry and Natural Sciences No 237 9
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is satisfied if and only if s > 0. By combining these facts, we see
that s ∈ (0, 1) is a sufficient and necessary condition for (f) and
(g). Next we show that these conditions are also possible to state
in a similar way in a more general case by using some normality
conditions.

Let K be non-decreasing. If K satisfies (g), then there exists K1

such that K � K1 and

r−αK1(r) ↘, r ∈ (0, 1), (2.5)

for some α ∈ (0, 1). The converse result is also valid: If (2.5) holds,
then ∫ ∞

1
ϕK1(r)

dr
r2 < ∞.

Assume for a moment that K satisfies (g). If, in addition, (f) is
satisfied, then there exists K2 such that K � K2 and

r−βK2(r) ↗, r ∈ (0, 1), (2.6)

for some β ∈ (0, ∞). Conversely, if (2.6) holds, then

∫ 1

0
ϕK2(r)

dr
r

< ∞.

Summarizing, in the sense of functions in QK(p, q), the following
assumptions are equivalent:

(i) There exist α, β ∈ (0, 1) such that r−αK(r) ↘ and r−βK(r) ↗.

(ii) K satisfies (f) and (g).

The claim above is based on the proofs of [18, Lemmas 2.1 and 2.2]
and [59, Theorem 3.1].

Various characterizations for QK(p, q) spaces are needed be-
cause, in some situations, the term K(g(z, a)) in the definition causes
problems. In particular, a characterization based on Carleson squares
Q(I) = {rξ : 1 − |I| < r < 1, ξ ∈ I} is important. Here I is a sub-
arc of T of the length |I| < 1. More precisely, if a non-decreasing
K satisfies (f) and (g), then f ∈ QK(p, q) if and only if f ∈ H(D)
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Notation and background

and the measure µ satisfying dµ = | f ′(z)|p(1 − |z|)q dA(z) is a K-
Carleson measure. A positive Borel measure µ on D is a K-Carleson
measure if

sup
I

∫

Q(I)
K
(

1 − |z|
|I|

)
dµ(z) < ∞,

where the supremum is taken over all the arcs I denoted above.
This result follows by modifying the proof of [18, Theorem 3.1], as
observed in [62].

We close this section by noting that results based on Carleson
squares play important roles also in the theory of many function
spaces other than QK(p, q). For example, in the case of weighted
Bergman spaces Ap

ω induced by doubling weights ω, we have [46,
Theorem 1(b)]: For p ∈ (0, ∞), µ is a p-Carleson measure for Ap

ω if
and only if

sup
I

∫
Q(I) dµ(z)∫

Q(I) ω(z) dA(z)
< ∞,

where the supremum is taken over all the arcs I. Here a positive
Borel measure µ on D is a p-Carleson measure for Ap

ω if there exists
C ∈ (0, ∞) such that

(∫

D
| f (z)|pdµ(z)

) 1
p

≤ C‖ f ‖Ap
ω

for all f ∈ H(D).
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3 Integrability of derivatives
of inner functions

In Section 2, we identified Blaschke products and singular inner
functions as components of inner functions. In this section, we
will demonstrate that the integrability of the derivative of an inner
function Θ determines the character of Θ.

In the radial sense, the derivative behaves quite similarly for
all inner functions Θ except for finite Blaschke products. Namely,
the derivative of Θ belongs to the Bloch space B, yet Θ′ /∈ Bα

for any α ∈ (0, 1). The first statement is a consequence of the
Schwarz-Pick lemma and the second follows from the fact that the
only inner functions in VMOA are finite Blaschke products [56] and
Bα ⊂ VMOA for any α ∈ (0, 1).

The integrability of |Θ′| is affected by the properties of the inner
function Θ, and hence depends on Θ. For example, if the zeros of
a Blaschke product B satisfy (2.1) for some α ∈ (0, 1

2 ), then B′ ∈
H1−α [4]. Nevertheless, there exists a Blaschke product B whose
zeros satisfy (2.1) for all α ∈ ( 1

2 , 1), but B′ /∈ N [20]. Typically the
integrability is studied in the Bergman, QK and Hardy type spaces.
In this section, we will concentrate on the classical Bergman spaces
Ap

α and QK spaces.

3.1 CONVERSE SCHWARZ-PICK LEMMA INSIDE INTEGRALS

The Schwarz-Pick lemma states that, if f : D → D is analytic,
then | f ′(z)|(1 − |z|2) ≤ 1 − | f (z)|2 for all z ∈ D. In particular,
this inequality holds for inner functions Θ. The equality in the
statement of the Schwarz-Pick lemma is valid only if f : D → D

is an automorphism. Note that, by [6, Theorem 3], there exists a

Dissertations in Forestry and Natural Sciences No 237 13
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non-constant inner function Θ such that

|Θ′(z)|(1 − |z|2)
1 − |Θ(z)|2 −→ 0+, |z| → 1−.

Many problems concerning derivatives of inner functions are
related to the question of when one may apply the Schwarz-Pick
lemma inside an integral without any essential loss of information.
This is natural because, in many cases, it is much easier to give
estimates for 1− |Θ(z)| than |Θ′(z)|. In addition, any inner function
Θ can be approximated by an interpolating Blaschke product BΘ in
the sense that 1 − |BΘ(z)| � 1 − |Θ(z)| [14]. BΘ is known as an
approximating Blaschke product of Θ.

Comparability of area integrals

Let us begin with Ahern’s result.

Theorem 3.1 ([2, Theorem 6]). Let Θ be an inner function, and let
α ∈ (−1, ∞) and q, p ∈ (0, ∞) be such that p > 1 + α. Then

∫ 1

0
(1 − r)α

(∫ 2π

0
|Θ′(reit)|q dt

) p
q

dr

�
∫ 1

0
(1 − r)α

(∫ 2π

0

(
1 − |Θ(reit)|

1 − r

)q

dt

) p
q

dr.

The proof of Theorem 3.1 is based on a generalized Hardy’s
inequality for q ≥ 1, and the Hardy-Littlewood maximal theorem
together with some estimates for maximal functions for q < 1.

Note that the special case of Theorem 3.1 where p ∈ (1, ∞),
q = 1 and α = 0 was originally stated in [24], and the case where
p = q = 1 was originally proved in [3]. In the sense of the classical
Bergman spaces, the case where p = q is the most interesting; and
hence, we present this result as a corollary.

Corollary 3.2. Let Θ be an inner function, and let α ∈ (−1, ∞) and
p ∈ (0, ∞) be such that p > 1 + α. Then

‖Θ′‖p
Ap

α
�

∫

D
(1 − |Θ(z)|)p(1 − |z|)α−p dA(z).
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Corollary 3.2 gives us a useful tool for the classical Bergman
spaces. Next we present a similar result for D̂p; see [49, Theorem 1].

Theorem 3.3. Let p ∈ (0, ∞) and ω ∈ D̂. Then the asymptotical equa-
tion

‖Θ′‖p
Ap

ω
�

∫

D

(
1 − |Θ(z)|

1 − |z|

)p

ω(z) dA(z),

where the comparison constants depend on p and ω, is satisfied for all
inner functions Θ if and only if ω ∈ D̂p.

The proof of Theorem 3.3 relies on p-Carleson measures for Ap
ω.

Nevertheless, for p < 1, the proof of Theorem 3.3 is based on a
similar idea as that of Theorem 3.1 in the case q < 1. For p ≥
1, the self-improvement property of weights in D̂p together with
the Hardy-Littlewood maximal theorem plays an important role;
see [49].

Next we state two simple consequences of Theorem 3.3. Such
results are commonly used in the theory of inner functions.

Corollary 3.4. Let p ∈ (0, ∞) and ω ∈ D̂p. If Θ is an inner function
and BΘ is its approximating Blaschke product, then ‖Θ′‖Ap

ω
� ‖B′

Θ‖Ap
ω

.

Corollary 3.5. Let p ∈ (0, ∞) and ω ∈ D̂p. Further, let Θ1, . . . , Θn be
inner functions and Θ = ∏n

j=1 Θj. Then Θ′ ∈ Ap
ω if and only if Θ′

j ∈ Ap
ω

for all j = 1, . . . , n.

Comparability of radial integrals

We now turn our attention to results involving radial integrals.
Such results are useful, for example, when working with charac-
terizations based on Carleson squares.

For δ ∈ [0, 1) and p ∈ [1, ∞), the class Dp,δ consists of radial
weights ω satisfying

Dp,δ(ω) = ess sup
r∈[δ,1)

(1 − r)p−1

ω(r)

∫ r

δ

ω(s)
(1 − s)p ds < ∞.
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In the case where ω(z) = (1 − |z|)α for all z ∈ D, Dp,δ(ω) is
bounded for any δ ∈ [0, 1) if and only if α < p − 1. In general, this
assumption may appear a bit confusing. Nevertheless, in the next
sections, we will see that the following result works effectively to-
gether with the characterization for QK(p, q) spaces, which is based
on K-Carleson measures.

Theorem 3.6. Let Θ be an inner function, and let p ∈ [1, ∞), δ ∈ [0, 1)
and ω ∈ Dp,δ. Then, for almost all t ∈ [0, 2π),

∫ 1

δ
|Θ′(reit)|pω(r) dr �

∫ 1

δ

(
1 − |Θ(reit)|

1 − r

)p

ω(r) dr (3.1)

with comparison constants depending on p and Dp,δ(ω).

In [49], only a special case of Theorem 3.6 where ω ∈ Dp,0 is
proved. Nevertheless, Theorem 3.6 can be verified by imitating the
proof of this result. There exists also an alternative version which
relies on [43, Theorem 2] due to Muckenhoupt; see Theorem 3.7
below.

For δ ∈ [0, 1) and p ∈ (1, ∞), the class Mp,δ consists of radial
weights ω satisfying

Mp,δ(ω) = sup
r∈[δ,1)

∫ r

δ

ω(s)
(1 − s)p ds

(∫ 1

r
ω(t)

1
1−p dt

)p−1

< ∞.

Theorem 3.7. Let Θ be an inner function, and let p ∈ (1, ∞), δ ∈ [0, 1)
and ω ∈ Mp,δ. Then, for almost all t ∈ [0, 2π), the asymptotical equation
(3.1) with comparison constants depending on p and Mp,δ(ω) is satisfied.

Note that Theorem 3.7 is a simple modification of [49, Proposi-
tion 5].

3.2 DERIVATIVES OF INNER FUNCTIONS IN THE SPACES AP
α

We study conditions which are either sufficient and/or necessary
guaranteeing that the derivatives of inner functions belong to the
classical Bergman spaces Ap

α.
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Results on Blaschke products

Let us begin by stating the Forelli-Rudin estimate [27, Theorem 1.7]:
For α ∈ (−1, ∞) and β ∈ R , we have

∫ 2π

0

dt
|1 − reit|β

�
∫

D

(1 − |z|)α

|1 − rz|1+α+β
dA(z) �




1, β < 1,
log

( 1
1−r

)
, β = 1,

(1 − r)1−β, β > 1,

as r → 1−. Furthermore, we note that H∞ ⊂ F(p, q, 0) if p ∈ (0, ∞)

and q ∈ (−1, ∞) are such that q > p − 1 [53]. In particular, the
derivative of any inner function belongs in this case to Ap

q .

Proposition 3.8. Let p ∈ (0, ∞) and α ∈ (−1, ∞), and let B be a
Blaschke product with zeros {zn}.

(a) If p − 2 < α < min{p − 1, 2p − 2}, then

‖B′‖p
Ap

α
� ∑

n
(1 − |zn|)2+α−p.

(b) If α = 2p − 2 < 0 or α = p − 1 ≥ 0, then

‖B′‖p
Ap

α
� ∑

n
(1 − |zn|)min{1,p} log

e
1 − |zn|

.

(c) If 2p − 2 < α ≤ p − 1, then

‖B′‖p
Ap

α
� ∑

n
(1 − |zn|)p.

In [36], an analog of Proposition 3.8 has been stated and proved
using fractional derivatives. We give an elementary proof without
appealing to fractional derivatives. For p ≤ 1, we can apply the fact
that |B′(z)|p ≤ ∑n |ϕ′

zn
(z)|p, where {zn} is the zero-sequence of B,

together with the Forelli-Rudin estimate. The assertions (a) and (b)
in the case p > 1 follow by the Schwarz-Pick lemma.

If the zeros of a Blaschke product are separated, then the con-
verse result of Proposition 3.8(a) is valid; see [7, Theorem 2(ii)].
Note that, in the statement of [7, Theorem 2(ii)], it suffices to as-
sume that aω < p − 1 instead of aω < p − 2 for p > 1.
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Proposition 3.9. Let B be a Blaschke product with separated zeros {zn}.
If p ∈ ( 1

2 , ∞) and α ∈ (−1, ∞) are such that α < min{p − 1, 2p − 2},
then ‖B′‖p

Ap
α
� ∑n(1 − |zn|)2+α−p.

Now, by combining Propositions 3.8(a) and 3.9, we can replace
the asymptotic inequality with the comparability in Proposition 3.8(a)
when B is a Blaschke product with separated zeros.

Theorem 3.10. Let B be a Blaschke product with separated zeros {zn}.
If p ∈ ( 1

2 , ∞) and α ∈ (−1, ∞) are such that p − 2 < α < min{p −
1, 2p − 2}, then ‖B′‖p

Ap
α
� ∑n(1 − |zn|)2+α−p.

To prove that an inner function is a finite Blaschke product, it
suffices to show that its approximating Blaschke product is finite
[23]. Hence, using Proposition 3.9 together with Corollary 3.4, one
can prove the following result.

Corollary 3.11 ([23, Theorem 7(b)]). Let B be an inner function, and
let p ∈ (1, ∞) and α ∈ (−1, ∞) be such that α ≤ p − 2. Then B′ ∈ Ap

α

if and only if B is a finite Blaschke product.

Using Corollary 3.4 and Theorem 3.10, we can also verify a spe-
cial case of [7, Corollary 2].

Corollary 3.12. Let Θ be an inner function, and let p ∈ ( 1
2 , ∞) and

α ∈ (−1, ∞) be such that p − 2 < α < min{p − 1, 2p − 2}. Then
Θ′ ∈ Ap

α if and only if Θ′ ∈ A1
α+1−p.

A lower bound for ‖B′‖Ap
ω

can also be given when B is any
Blaschke product.

Theorem 3.13 ([52, Theorem 1]). Let B be a Blaschke product with
zeros {zn}. If p ∈ ( 1

2 , 1] and α ∈ (−1, ∞) are such that α < p − 3
2 , then

‖B′‖Ap
α
� ∑n(1 − |zn|)β for all β > 2+α−p

p−α−1 .

Theorem 3.13 in the case p = 1 has been originally proved in [3].
Hence it does not come as a surprise that the proof of this result in
[52] is based on a similar idea to that of [3, Theorem 6].

In Paper I, Theorem 3.13 will be generalized to Ap
ω for p ∈

( 1
2 , ∞). As a consequence of this generalization, we obtain a coun-

terpart of Theorem 3.13 for p ∈ (1, ∞).
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Results on singular inner functions

We begin with an important estimate for singular inner functions.

Theorem 3.14. Let p ∈ (0, ∞), and let S be a singular inner function.
Then

∫ 2π
0 (1 − |S(reit)|)p dt

(1 − r)p �




1, p < 1
2 ,

log
( 1

1−r

)
, p = 1

2 ,
(1 − r)1/2−p, p > 1

2 ,

for r ∈ [0, 1).

Ahern proved the case p > 1
2 by applying a non-trivial analysis

of singular measures [2, Theorem 5]. Pavlović verified the cases
p < 1

2 and p = 1
2 by using the subordination principle; see [45,

Theorems 4.4.5 and 4.4.8].
Using Theorem 3.14 together with Corollary 3.2, we obtain a

special case of the corollary of [2, Theorem 6], which gives a neces-
sary condition for the derivatives of singular inner functions to be
in Ap

α.

Theorem 3.15. Let Θ be an inner function, and let p ∈ [ 1
2 , ∞) and

α ∈ (−1, ∞) be such that α ≤ p − 3
2 . If Θ′ ∈ Ap

α, then Θ is not a
singular inner function.

For α < p − 1, Corollary 3.5 implies that the derivative of the
product of a singular inner function S and a Blaschke product B
does not belong to Ap

α if S′ /∈ Ap
α. Hence, in the case of Theo-

rem 3.15, the only inner functions are Blaschke products.

Corollary 3.16. Let B be an inner function, and let p ∈ [ 1
2 , ∞) and

α ∈ (−1, ∞) be such that α ≤ p − 3
2 . If B′ ∈ Ap

α, then B is a Blaschke
product.

Next we turn our attention to purely atomic singular inner func-
tions S. We begin with a condition which guarantees that S′ ∈ Ap

α.

Theorem 3.17. Let q ∈ [ 1
2 , 1), and let S be the purely atomic singular

inner function associated with {ξn} and {γn} ∈ �q. If p ∈ (q, ∞) and
α ∈ (−1, ∞) are such that α > p + q − 2, then S′ ∈ Ap

α.
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For p ≥ 1, Theorem 3.17 is valid by [1, Theorem 2.2] and the
Schwarz-Pick lemma. If p < 1, then this result follows from the
case p = 1 using Corollary 3.12. Note that the restriction α <

min{p− 1, 2p− 2} is not necessary in the statement of Theorem 3.17
because Ap

α1 ⊂ Ap
α2 for p ∈ (0, ∞) and −1 < α1 ≤ α2 < ∞.

For q = 1
2 , the condition given in Theorem 3.17 is also necessary

by Theorem 3.15.

Theorem 3.18. Let p ∈ ( 1
2 , ∞) and α ∈ (−1, ∞). Let S be a purely

atomic singular inner function associated with {ξn} and {γn} ∈ �
1
2 .

Then S′ ∈ Ap
α if and only if α > p − 3

2 .

If p ≤ 1
2 and S is as in Theorem 3.18, then S′ ∈ Ap

α for any
α ∈ (−1, ∞). For p = 1

2 , this is true by [5, Theorem 2.2]. For
p < 1

2 , the assertion follows from the case p = 1
2 using the fact that

Ap1
α ⊂ Ap2

α for 0 < p2 ≤ p1 < ∞.

3.3 INNER FUNCTIONS IN QK SPACES

Our purpose is to sketch the proof of the next theorem, which is
the essential part of [18, Theorem 5.1].

Theorem 3.19. Let B be an inner function, and assume that a non-
decreasing K satisfies (f) and (g). Then B ∈ QK if and only if B is a
Blaschke product with zeros {zn} satisfying

sup
a∈D

∑
n

K(1 − |ϕa(zn)|) < ∞. (3.2)

Let us begin with a variant of Theorem 3.6.

Lemma 3.20 ([18, Lemma 5.1]). Let Θ be an inner function, and assume
that a non-decreasing K satisfies (f) and (g). Then, for any δ ∈ (0, 1),

∫ 1

δ
|Θ′(reit)|2K

(
1 − r
1 − δ

)
dr

�
∫ 1

δ
(1 − |Θ(reit)|)2(1 − r)−2K

(
1 − r
1 − δ

)
dr

for almost all t ∈ [0, 2π).
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We give an alternative proof based on Theorem 3.6: Choose
p = 2 and ω(r) = ωδ(r) = K

( 1−r
1−δ

)
. Then it suffices to verify that

ω belongs to D2,δ if K is non-decreasing and satisfies (f) and (g).
Recall that we may assume that K satisfies r−αK(r) ↘ for r ∈ (0, 1).
Hence, for any δ ∈ (0, 1), we have

∫ r

δ
(1 − s)−2K

(
1 − s
1 − δ

)
ds =

∫ r

δ
(1 − s)−2 K

( 1−s
1−δ

)
( 1−s

1−δ

)α

(
1 − s
1 − δ

)α

ds

�
K
( 1−r

1−δ

)

(1 − r)α

∫ r

0
(1 − s)α+q−p ds

� (1 − r)−1K
(

1 − r
1 − δ

)
, r ∈ [δ, 1);

consequently, the weight ω belongs to D2,δ.
Using Lemma 3.20, one can prove a similar type of a result as

Corollary 3.5 for QK spaces.

Corollary 3.21 ([18, Corollary 5.1]). Assume that a non-decreasing K
satisfies (f) and (g). Let Θ1, . . . , Θn be inner functions and Θ = ∏n

j=1 Θj.
Then Θ′ ∈ QK if and only if Θ′

j ∈ QK for all j = 1, . . . , n.

Next we illustrate that the only inner functions in QK spaces are
Blaschke products if K is non-decreasing and satisfies (f) and (g).
Indeed, by Corollary 3.21, it suffices to show that QK with the given
restrictions does not contain any singular inner functions. This
can be done by applying the characterization based on K-Carleson
measures from Section 2.2 together with Lemma 3.20 and [54, The-
orem 7.15]. Note that, in the summary of Paper II, we state an
improvement of this result.

Theorem 3.22. If a non-decreasing K satisfies (f) and (g), then the only
inner functions in QK are Blaschke products.

Now we sketch the proof of Theorem 3.19. If an inner function
B belongs to QK, then B is a Blaschke product by Theorem 3.22. Let
{zn} be the zero-sequence of B. Using the characterization based
on K-Carleson measures, one can prove that ∑zn∈Q(I)(1− |zn|) � |I|
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for any subarc I ⊂ T satisfying |I| ≤ 1; that is, ∑n(1 − |zn|)δzn is a
Carleson measure. Hence

sup
a∈D

∑
n
(1 − |ϕa(zn)|) < ∞

by [21, Chapter VI, Lemma 3.3]. Using this fact in a similar manner
as in the proof of [50, Theorem 4.1], one can show that

1 − |B(z)| � ∑
n

(1 − |zn|)(1 − |z|)
|1 − znz|2 ;

consequently, Lemma 3.20 applied to Θ = B ◦ ϕa yields

‖B‖QK �
∫

D
|B′(ϕa(z))|2K(1 − |z|) dA(z)

�
∫

D
(1 − |B(ϕa(z))|)2 K(1 − |z|)

(1 − |z|)2 dA(z)

� ∑
n
(1 − |ϕa(zn)|)2

∫

D

K(1 − |z|)
|1 − ϕa(zn)z|4

dA(z).

Now, to obtain (3.2), it suffices to show that
∫

D

K(1 − |z|)
|1 − wz|4 dA(z) �

K(1 − |w|)
(1 − |w|)2 , w ∈ D;

see [18] for details.
Assume conversely that B is a Blaschke product with zeros sat-

isfying (3.2). Since

|B′(z)| ≤ ∑
n

1 − |zn|2
|1 − znz|2 ,

we obtain

‖B‖QK �
∫

D
|B′(ϕa(z))|2K(1 − |z|) dA(z)

� ‖B‖B
∫

D
|B′(ϕa(z))|

K(1 − |z|)
1 − |z| dA(z)

� ∑
n
(1 − |ϕa(zn)|)

∫

D

K(1 − |z|)
(1 − |z|)|1 − ϕa(zn)z|2

dA(z).
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Thus, to prove that B ∈ QK, it suffices to show that

∫

D

K(1 − |z|)
(1 − |z|)|1 − wz|2 dA(z) �

K(1 − |w|)
(1 − |w|) , w ∈ D;

see [18] for details. This completes the proof.
A similar type of deduction to that also works in the case of

F(p, p − 2, s) spaces. More precisely, one can prove the following
analogy of Theorem 3.19; see more details in [50].

Theorem 3.23 ([50, Theorem 1.4]). Let s ∈ (0, 1) and p > max{s, 1 −
s}. Then B ∈ F(p, p − 2, s) if and only if B is a Blaschke product with
zeros {zn} satisfying

sup
a∈D

∑
n
(1 − |ϕa(zn)|)s < ∞. (3.3)

In the summary of Paper II, we generalize Theorems 3.19 and 3.23
for QK(p, q) spaces.
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4 Results on linear differen-
tial equations

We study linear differential equations of the form

f (n) + an−1(z) f (n−1) + · · ·+ a1(z) f ′ + a0(z) f = an(z), (4.1)

where n ∈ N \ {1} and a0(z), . . . , an(z) are analytic in a simply
connected domain D, which is typically the unit disc D, because in
this case all solutions belong to H(D); see [38, Theorem 4.1.1]. This
is not the situation in general if either D is not a simply connected
domain or (4.1) is replaced by a non-linear equation.

The fundamental questions concerning solutions of (4.1) regard
growth and oscillation. This is due to the fact that any function
f ∈ H(D) can be represented in the form f = Beg, where g ∈ H(D)

and B is a canonical product formed by the zeros of f . A single
fast-growing solution may be zero-free: For example, f = eg solves
f ′′ + (g′′ + (g′)2) f = 0 for any g ∈ H(D). Nevertheless, for all
solutions, there are equivalent conditions for growth and oscillation
[35]. In the case n = 2, a third equivalent condition involving the
separation of zeros is introduced in [11].

Regarding the growth conditions of the solutions, we mention
the following result: If a0, . . . , an ∈ H(D), then it is known that all
solutions of (4.1) are of a finite order of growth if and only if all
coefficient functions belong to the Korenblum space [29]. Several
refinements are known but they are too numerous to be listed here.

Early oscillation theory in the 1940’s and 1950’s consisted mostly
of results on non-oscillation. In particular, see Nehari and Schwarz’s
papers [44, 55]. For infinite zero-sequences, we mention two papers:
In 1955, Hartman and Wintner [26] studied conditions under which
the zero-sequences of solutions are Blaschke sequences. In 1972,
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Cima and Pfaltzgraff [13] showed that the solutions of the equation

f ′′ + a(z) f = 0 (4.2)

may have infinitely many zeros even if a(z) is univalent. Nowadays
we know that the equation is Blaschke-oscillatory if a(z) is univa-
lent [28].

4.1 GROWTH ESTIMATES FOR SOLUTIONS

We study the growth of solutions of the differential equation (4.1),
where a0, . . . , an ∈ H(D) and n ∈ N \ {1}. We begin with a result
which forces all solutions to H∞

p .

Theorem 4.1 ([34, Theorem 3.3]). Let δ ∈ (0, 1), and let the coefficients
a0(z), . . . an−1(z) of the equation (4.1) with an(z) ≡ 0 be analytic in D.
For every p ∈ (0, ∞), there exists a constant α = α(p, n) ∈ (0, ∞) such
that if the coefficients satisfy

sup
δ<|z|<1

|aj(z)|(1 − |z|)n−j < α, j = 0, . . . , n − 1,

then all solutions belong to H∞
p .

Theorem 4.1 can be proved, for example, by applying the fact
that, if f ∈ H(D), p ∈ (0, ∞) and n ∈ N, then

‖ f ‖H∞
p
� sup

z∈D

| f (n)(z)|(1 − |z|)n+p +
n−1

∑
j=0

| f (j)(0)|.

A proof based on this fact can be found in [34], along with two
alternative proofs. This result is generalized in Paper III.

Next we state the essential content of [32, Theorems 1 and 2] in
the case of the unit disc. Note that the original results have some
extra information about the comparison constants.

Theorem 4.2. Let the coefficients a0(z), . . . , an(z) of the equation (4.1)
be analytic in D, and let f be a solution. Then there exists a constant
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C ∈ (0, ∞) such that

| f (reit)| �
(

1 +
1

(n − 1)!

∫ r

0
|an(seit)|(1 − s)n−1 ds

)

· exp

(
C

n−1

∑
j=0

j

∑
k=0

∫ r

0
|a(k)j (seit)|(1 − s)n+k−j−1 ds

)

for all t ∈ [0, 2π) and r ∈ [0, 1).

Theorem 4.3. Let the coefficients a0(z), . . . , an(z) of the equation (4.1) be
analytic in D, let nc ∈ {1, . . . , n} be the number of non-zero coefficients,
and let f be a solution. If zt = υeit ∈ D is such that aj(zt) �= 0 for some
j = 0, . . . , n − 1, then

| f (reit)| ≤C
(

1 + max
x∈[0,r]

|an(xeit)|
)

· exp
(

1 + nc

∫ r

0
max

0≤j≤n−1
|aj(seit)|

1
n−j ds

)
, r ∈ (υ, 1),

where

C � max

{
nc, max

0≤j≤n−1

{
| f (j)(zt)|

nc max0≤k≤n−1 |ak(zt)|
j

n−k

}}
.

In [32], Theorem 4.3 has been proved by applying a modification
of Herold’s comparison theorem. The proof of Theorem 4.2 is based
on the following representation result.

Proposition 4.4 ([32, Theorem 9]). Let the coefficients a0(z), . . . , an(z)
of the equation (4.1) be analytic in D, and let f be a solution. Then, for
any z, z0 ∈ D, we have

f (z) =
n−1

∑
k=0

ck(z − z0)
k +

1
(n − 1)!

∫ z

z0

an(ξ)(z − ξ)n−1 dξ

+
n−1

∑
j=0

j

∑
k=0

dj,k

∫ z

z0

a(k)j (ξ) f (ξ)(z − ξ)n+k−j−1 dξ,

where the constants ck ∈ C depend on f (z0), f ′(z0) . . . , f (n−1)(z0), the
constants dj,k belong to Q and the path of integration is a piecewise smooth
curve in D joining z and z0.
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We close this subsection with two results concerning the case
where solutions are in QK. We do not present the proofs of these
results because, in the summary of Paper III, we obtain these results
as consequences of a main result provided that the non-decreasing
K is also continuous.

Theorem 4.5 ([39, Theorem 2.1]). Let c ∈ (1, 3
2 ), and let K be a non-

decreasing function satisfying
∫ ∞

1

ϕK(s)
s2c−1 ds < ∞.

Then there exists a constant α = α(n, c, K) ∈ (0, ∞) such that if the
coefficients aj(z) of the equation (4.1) with an ≡ 0 satisfy ‖aj‖H∞

n−j
≤ α

for all j = 1, . . . , n− 1 and ‖a0‖H∞
n−c

≤ α, then all solutions belong to QK.

Theorem 4.6 ([39, Theorem 2.6]). Let K be a non-decreasing function
satisfying (f). Then there exists a constant α = α(n, K) ∈ (0, ∞) such
that if the coefficients aj(z) of the equation (4.1) with an ≡ 0 satisfy
‖aj‖H∞

n−j
≤ α for all j = 1, . . . , n− 1 and ‖a0‖H∞

n−1
≤ α, then all solutions

belong to QK.

4.2 SECOND ORDER EQUATIONS WITH COEFFICIENTS IN A
1
2

We consider the equation (4.2), where a ∈ H(D). In particular, we
concentrate on the extremal case a ∈ A

1
2 .

General results

Let us begin with a classical result of Pommerenke.

Theorem 4.7 ([51, Theorem 5]). If a ∈ A
1
2 , then all solutions of the

equation (4.2) belong to N.

In Section 2, we mentioned that any function in N ∩H(D) can
be presented in the form where the only term which has zeros is a
Blaschke product. Hence, by Theorem 4.7, it is clear that if a ∈ A

1
2 ,

then the zeros of all non-trivial solutions of (4.2) satisfy the Blaschke
condition; that is, the equation is Blaschke-oscillatory.
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The proof of Theorem 4.7 is based on the Hardy-Littlewood
maximal theorem and on the growth estimate

log+ | f (reit)| ≤ C +
∫ r

0

√
Pa(ξ, t) dξ,

where f is a solution of (4.2), Pa(ξ, t) = maxs∈[0,ξ) |a(seit)| and C =

log+(| f (0)|+ | f ′(0)|). Note that, in the statement of Theorem 4.7,
we can replace the space A

1
2 by A1

1; see [29, Theorem 4.5].
For the next results, we denote D(0, r) = {z ∈ D : |z| < r} for

r ∈ (0, 1). The following example shows that the converse result of
Theorem 4.7 is not valid.

Example 4.8 ([33, Example 5.3]). Let a(z) = C/(1 − z)4 for some
C ∈ C \ {0}. Then

∫

D(0,r)
|a(z)| 1

2 dA(z) = |C| 1
2 π log

1
1 − r2 , r ∈ [0, 1),

and (4.2) is Blaschke-oscillatory if and only if arg C = π.

In spite of Example 4.8, the condition a ∈ A
1
2 is not so far away

from being a necessary condition.

Theorem 4.9 ([28, Theorem 2]). Let a ∈ H(D) be such that the equa-
tion (4.2) is Blaschke-oscillatory. Then

∫

D(0,r)
|a(z)| 1

2 dA(z) � log2
(

e
1 − r

)
, r ∈ [0, 1). (4.3)

Theorem 4.10 ([28, Theorem 4(b)]). Let a ∈ H(D), and let f be a
solution (4.2). If f ∈ N, then (4.3) holds. If in addition f ′ ∈ N, then

∫

D(0,r)
|a(z)| 1

2 dA(z) � log
(

e
1 − r

)
, r ∈ [0, 1). (4.4)

Solutions with prescribed zeros

As background we cite the following two results: If {zn} ⊂ D is
a given sequence of pairwise distinct points without limit points
in D, then there exists a ∈ H(D) such that the equation (4.2) has
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a solution f ∈ H(D) with zeros precisely at the points zn [58].
In addition, a sharp condition for the zero-sequence of a solution
guaranteeing that the coefficient function a(z) is at most of a given
positive order of growth is presented in [12]. Here we continue this
research topic by considering the case where the zero-sequence of
a solution is a uniformly separated α-Blaschke sequence.

Let us begin by stating an auxiliary result which is needed to
prove the main result of this subsection.

Proposition 4.11 ([28, Theorem 15]). Let k ∈ N, and let B be a
Blaschke product with uniformly separated zeros satisfying (2.1) for some
α ∈ (0, 1). Then

∫

D

∣∣∣∣∣
B(k)(z)

B(z)

∣∣∣∣∣

1
k

dA(z) < ∞. (4.5)

Theorem 4.12 ([28, Theorem 19]). Let {zn} be a uniformly separated
sequence in D satisfying (2.1) for some α ∈ (0, 1). Then there exists a ∈
A

1
2 such that the equation (4.2) possesses a solution with zeros precisely

at the points zn and all solutions belong to N.

We sketch the proof of Theorem 4.12. If B is a Blaschke product
with zeros {zn}, then, by the proof of [30, Theorem 4.1] and uniform
separability, we can find a function g ∈ H(D) such that f = Beg is
a solution of (4.2), where

a(z) = −B′′(z)
B(z)

− 2g′(z)
B′(z)
B(z)

− g′(z)2 − g′′(z) (4.6)

is analytic in D. Here the derivative of g is given by

g′(z) =
∞

∑
k=1

σk
Ck(z)
B′(zk)

|zk|2 − 1
(1 − zkz)2 ,

where

Ck(z) = B(z)
1 − zkz
zk − z

and σk = − B′′(zk)

2B′(zk)
.

Now, by applying Proposition 4.11 and the Forelli-Rudin estimate,
we obtain a ∈ A

1
2 . Finally, the fact that all solutions belong to N

follows directly from Theorem 4.7.
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In the following summaries, the notation used in the original papers
has been changed to correspond to the previous sections.

5.1 SUMMARY OF PAPER I

Our purpose is to generalize results of Section 3.2 for the weighted
Bergman spaces Ap

ω.

Result on Blaschke products

Write ω ∈ Jp if

Jp(ω) = sup
0<r<1

(1 − r)p

ω̂(r)

∫ 1

r

ω(s)
(1 − s)p ds < ∞,

and write ω ∈ D̂log if

sup
0<r<1

(
log

e
1 − r

ω̂(r)
)−1 ∫ r

0
log

e
1 − s

ω(s) ds < ∞.

The main result of Paper I regarding Blaschke products is the fol-
lowing generalization of Theorem 3.10.

Theorem 5.1. Let p ∈ ( 1
2 , ∞) and ω ∈ D̂p ∩R, and let B be a Blaschke

product associated with a finite union of separated sequences {zn}. If
either p ∈ ( 1

2 , 1] and ω ∈ D̂2p−1 or p ∈ (1, ∞) and ω ∈ Jp−1, then

‖B′‖p
Ap

ω
� ∑

n

ω̂(zn)

(1 − |zn|)p−1 .

Note that Theorem 5.1 also generalizes the essential content of
[7, Theorem 2].

The result below gives sufficient conditions for the derivatives
of Blaschke products to be in Ap

ω. This result can be proved in a
similar manner to Proposition 3.8.
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Proposition 5.2. Let ω be a radial weight, and let B be a Blaschke product
with zeros {zn}.

(a) If p = 1
2 and ω ∈ D̂log, then

‖B′‖p
Ap

ω
� ∑

n

ω̂(zn)

(1 − |zn|)p−1 log
e

1 − |zn|
.

(b) If p ∈ ( 1
2 , 1) and ω ∈ D̂2p−1, then

‖B′‖p
Ap

ω
� ∑

n

ω̂(zn)

(1 − |zn|)p−1 .

(c) If p ∈ [1, ∞) and ω ∈ D̂p ∩ Jp−1, then

‖B′‖p
Ap

ω
� ∑

n

ω̂(zn)

(1 − |zn|)p−1 .

Using Proposition 5.2 to prove Theorem 5.1, it suffices to show
that

‖B′‖p
Ap

ω
� ∑

n

ω̂(zn)

(1 − |zn|)p−1 .

Roughly speaking, this can be done by applying the separation as-
sumption in a natural manner, and then using a similar idea as in
the proof of Theorem 3.3.

If B is a Blaschke product associated with a finite union of uni-
formly separated sequences {zn}, then

1 − |B(z)|2 � ∑
n
(1 − |ϕzn(z)|2), z ∈ D;

see [42, Lemma 21] and the proof of Theorem 3.19. Applying this
fact together with the Forelli-Rudin estimate, one can prove that

‖B′‖p
Ap

ω
�

∞

∑
n=1

ω̂(zn)

(1 − |zn|)p−1 , (5.1)

if p ∈ [1, ∞) and ω ∈ D̂p. Now, by the proof of Theorem 5.1,
Corollary 3.4 and (5.1), we can verify the following generalization
of Corollary 3.11.
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Corollary 5.3. Let p ∈ (0, ∞) and ω ∈ D̂p be such that ω̂(r)(1 −
r)1−p � 1 as r → 1−, and let B be an inner function. If either p ∈ (0, 1)
and ω ∈ R or p ∈ [1, ∞), then B′ ∈ Ap

ω if and only if B is a finite
Blaschke product.

Using Corollary 3.4 and Theorem 5.1, we can also improve [7,
Corollary 2] and Corollary 3.12. For q ∈ R and a weight ω, we
write ωq(z) = ω(z)(1 − |z|)q for all z ∈ D.

Corollary 5.4. Let p ∈ ( 1
2 , ∞), q ∈ (0, ∞) and ω ∈ R, and let Θ be an

inner function. If

(a) p > 1 and ω ∈ D̂p ∩ Jp−1, or

(b) p + q ≤ 1 and ω ∈ D̂2p−1, or

(c) 1 < p + q ≤ 1 + q and ω ∈ D̂2p−1 ∩ Jp−1,

then ‖Θ′‖p
Ap

ω
� ‖Θ′‖p+q

Ap+q
ωq

.

We close this subsection with the following result, which gives
a lower bound for ‖B′‖Ap

ω
when B is any Blaschke product.

Theorem 5.5. Let ω be a radial weight, and let B be a Blaschke product
with zeros {zn}.

(a) Let p ∈ ( 1
2 , 1]. If there exists ε ∈ (0, ∞) and a constant C =

C(p, ε, ω) ∈ (0, ∞) such that

ω̂(r) ≤ C
(

1 − r
1 − t

)p−ε

ω̂(t), 0 ≤ r ≤ t < 1, (5.2)

then ‖B′‖Ap
ω
� ∑n ω̂(zn)

1
ε (1 − |zn|)γ for all γ > 1−p

ε .

(b) Let p ∈ (1, ∞). If there exists ε ∈ (p − 1, ∞), 1−p
1+ε−p < γ < 0 and

a constant C = C(p, ε, ω, γ) ∈ [1, ∞) such that

C−1
(

1 − r
1 − t

)γ(p−ε−1)

ω̂(t) ≤ ω̂(r) ≤ C
(

1 − r
1 − t

)p−ε

ω̂(t)

for 0 ≤ r ≤ t < 1, then ‖B′‖p
Ap

ω
� ∑n ω̂(zn)

1
1+ε−p (1 − |zn|)γ.
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If ω(z) = (1 − |z|)α for all z ∈ D, then ω̂(zn)
1
ε (1 − |zn|)γ �

(1 − |zn|)
α+1

ε +γ. Since γ > 1−p
ε , we have α+1

ε + γ > 2+α−p
ε with

ε ≤ p − α − 1 by the assumption (5.2). Hence Theorem 3.13 is a
consequence of Theorem 5.5(a). Furthermore, Theorem 5.5(b) im-
plies that if B′ ∈ Ap

α with α ∈ (−1, 0) and p > max{1, 2(1 + α)},
then ∑n(1 − |zn|)β < ∞ for all β > p−2

α − 1. This is a natural gener-
alization of Theorem 3.13.

Result on purely atomic singular inner functions

The main result of Paper I regarding purely atomic singular inner
functions is the following generalization of Theorem 3.18.

Theorem 5.6. Let p ∈ (0, ∞) and p̂ = min{ 1
2 , p}. Let ω be a radial

weight, and let S be the purely atomic singular inner function associated
with {ξn} and {γn} ∈ � p̂. Moreover, assume that either ω ∈ D̂p or S is
associated with a measure having a separate mass point.

(a) If p < 1
2 , then S′ ∈ Ap

ω and
∫

D

(
1−|S(z)|2

1−|z|2
)p

ω(z) dA(z) < ∞.

(b) If p = 1
2 , then the following statements are equivalent:

(i) S′ ∈ Ap
ω;

(ii)
∫

D

(
1 − |S(z)|2

1 − |z|2

)p

ω(z) dA(z) < ∞;

(iii)
∫ 1

0
ω(r) log

(
1

1 − r

)
dr < ∞.

(c) If p > 1
2 , then the following statements are equivalent:

(i) S′ ∈ Ap
ω;

(ii)
∫

D

(
1 − |S(z)|2

1 − |z|2

)p

ω(z) dA(z) < ∞;

(iii)
∫ 1

0
ω(r)(1 − r)

1
2−p dr < ∞.

Theorem 5.6 in the case where ω ∈ D̂p is a consequence of the
following result and Theorem 3.3.
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Theorem 5.7. Let p ∈ (0, ∞) and p̂ = min{ 1
2 , p}. Let S be the purely

atomic singular inner function associated with {ξn} and {γn} ∈ � p̂. Then

∫ 2π
0 (1 − |S(reit)|)p dt

(1 − r)p � hp(r) =




1, p < 1
2 ,

log
( 1

1−r

)
, p = 1

2 ,
(1 − r)1/2−p, p > 1

2 ,
(5.3)

for r ∈ ( 1
2 , 1).

Note that Theorem 5.7 with p = 1 has been proved earlier in
[1]. Furthermore, it is worth noting that Theorem 5.7 is sharp at
least when p ≥ 1

2 . In other words, the only singular inner func-
tions S satisfying (5.3) with p ≥ 1

2 are purely atomic singular inner
functions associated with some {ξn} and {γn} ∈ �

1
2 .

To prove Theorem 5.6 in the remaining case where the associ-
ated measure of S has a separate mass point, it suffices to prove the
next theorem.

Theorem 5.8. Let p ∈ (0, ∞) and p̂ = min{ 1
2 , p}. Let S be the purely

atomic singular inner function associated with {ξn} and {γn} ∈ � p̂, and
having a separate mass point in its inducing measure. Then there exists
r0 = r0(p, S) ∈ (0, 1) such that

∫ 2π
0 (1 − |S(reit)|)p dt

(1 − r)p � Mp
p(r, S′) � hp(r), r ∈ (r0, 1).

We sketch the proof of Theorem 5.8. Let ξ j be a separate mass
point and S = ∏∞

n=1 Sn, where Sn = Sγn,ξn . Then it suffices to show
that Mp

p(r, S′) � Mp
p(r, S′

j) for sufficiently large r ∈ [0, 1). More
precisely, this property together with Theorem 5.7, the Schwarz-
Pick lemma and the main result of [41] implies that

hp(r) �
∫ 2π

0 (1 − |S(reit)|)p dt
(1 − r)p � Mp

p(r, S′) � Mp
p(r, S′

j) � hp(r)

when r is close enough to one depending on p and S.

Dissertations in Forestry and Natural Sciences No 237 35



Applications of integral estimates to inner functions and differential
equations

5.2 SUMMARY OF PAPER II

Our purpose is to sketch a proof of the following main result of
Paper II, which generalizes Theorems 3.19 and 3.23.

Theorem 5.9. Let p ∈ ( 1
2 , ∞) and p̂ = min{1, p}, and assume that

there exists α, β ∈ (1 − p̂, p̂) such that a non-decreasing K satisfies
r−αK(r) ↘ and r−βK(r) ↗ for r ∈ (0, 1). Then an inner function
belongs to QK(p, p − 2) if and only if it is a Blaschke product with zeros
{zn} satisfying (3.2).

Note that an assertion similar to Theorem 5.9 can be found in
[62]. The proof there, however, contains some inaccuracies and does
not seem to yield the claimed result.

Auxiliary results

Let us state a version of Theorem 3.6 where ω(r) = ωδ(r) = (1 −
r)qK

( 1−r
1−δ

)
. This result and its corollary can be proved in a similar

manner to the corresponding results in Section 3.3.

Lemma 5.10. Let p ∈ [1, ∞) and q ∈ (−2, ∞), and assume that a non-
decreasing K satisfies (f) and (g). If Θ is an inner function, then, for any
δ ∈ (0, 1),

∫ 1

δ
|Θ′(reit)|p(1 − r)qK

(
1 − r
1 − δ

)
dr

�
∫ 1

δ
(1 − |Θ(reit)|)p(1 − r)q−pK

(
1 − r
1 − δ

)
dr

for almost all t ∈ [0, 2π).

Corollary 5.11. Let p ∈ [1, ∞) and q ∈ (−2, ∞), and assume that a
non-decreasing K satisfies (f) and (g). Let Θ = ∏k

n=1 Θn, where Θn is
an inner function for all n = 1, . . . , k. Then Θ ∈ QK(p, q) if and only if
Θn ∈ QK(p, q) for all n = 1, . . . , k.

Next we state a result which gives a necessary condition for
singular inner functions to be in QK(p, q). For this result, write
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Iξ = Iξ(|I|) = {eiθ : θ ∈ (ξ − |I|
2 , ξ + |I|

2 )}, where ξ ∈ [0, 2π) and
|I| ∈ (0, 1).

Lemma 5.12. Let p ∈ [1, ∞) and q ∈ (−2, ∞), and assume that a non-
decreasing K satisfies (f) and (g). If S is the singular inner function asso-
ciated with a measure σ and

sup
ξ∈[0,2π)

|I|q+2−p
∫ 1

|I|/σ(Iξ )
rq−pK(r) dr −→ ∞, |I| → 0+,

then S /∈ QK(p, q).

Alternative version and sketch of proof

First, we show that the only inner functions in QK(p, p − 2) are
Blaschke products if a non-decreasing K satisfies (f) and (g). Sec-
ond, an alternative version of Theorem 5.9 is stated and proved.
Finally, Theorem 5.9 follows using this result.

Theorem 5.13. Let p ∈ (0, ∞) and q ∈ (−2, ∞), and let K be non-
decreasing.

(i) If p > q + 2, then the only inner functions in QK(p, q) are finite
Blaschke products.

(ii) If K satisfies (f) and (g), then the only inner functions in QK(p, p −
2) are Blaschke products.

Since the only inner functions in VMOA are finite Blaschke
products [56], the statement (i) of Theorem 5.13 follows from the

inclusions QK(p, q) ⊂ B
q+2

p ⊂ VMOA for p > q + 2. For the
case (ii), we may assume that p ∈ [1, ∞) because the inclusion
QK(p, p − 2) ⊂ B yields QK(p1, p1 − 2) ⊂ QK(p2, p2 − 2) for 0 <

p1 ≤ p2 < ∞. Hence Lemma 5.12 together with [62, Lemma 3]
implies that QK(p, p − 2) does not contain any singular inner func-
tions; consequently, the assertion follows from Corollary 5.11.

Theorem 5.14. Let p ∈ ( 1
2 , ∞) and p̂ = min{1, p}, and assume that a

non-decreasing K satisfies
∫ 1

0 ϕK(r)rp̂−2 dr < ∞ and
∫ ∞

1 ϕK(r)r− p̂−1 dr <

Dissertations in Forestry and Natural Sciences No 237 37



Applications of integral estimates to inner functions and differential
equations

∞. Then an inner function belongs to QK(p, p − 2) if and only if it is a
Blaschke product with zeros {zn} satisfying (3.3).

We proceed to prove Theorem 5.14. Assume first that an inner
function B belongs to QK(p, p − 2) for some p ∈ ( 1

2 , ∞). Then The-
orem 5.13 indicates that B is a Blaschke product. Therefore, by [62,
Theorem 10], we obtain that the zero-sequence of B satisfies (3.3).

Conversely, if B is a Blaschke product whose zero-sequence {zn}
satisfies (3.3), then [62, Lemma 5] with parameters t = p̂ − 2 and
c = 2( p̂ − 1) yields

sup
a∈D

∑
n
(1 − |ϕa(zn)|) p̂

∫

D

K(1 − |z|)
|1 − ϕa(zn)z|2p̂(1 − |z|)2− p̂

dA(z) < ∞.

Hence B ∈ QK(p, p − 2) by [62, Proposition 8]. This completes the
proof.

Finally, Theorem 5.9 follows from Theorem 5.14 by showing that
a non-decreasing K satisfies the conditions

∫ 1
0 ϕK(r)rp̂−2 dr < ∞ and∫ ∞

1 ϕK(r)r− p̂−1 dr < ∞ if r−αK(r) ↘ and r−βK(r) ↗ for r ∈ (0, 1).

5.3 SUMMARY OF PAPER III

Sufficient conditions for solutions of the equation (4.1) and their
derivatives to be in H∞

ω (D) are given by restricting the growth of
the coefficients a0(z), . . . , an(z). We consider the cases where D is
the unit disc or some other starlike domain. A domain D on the
complex plane is starlike if 0 ∈ D and, for each point z ∈ D, the
line segment from the origin to z is contained in D. The theorems
obtained improve, for example, Theorems 4.1, 4.5 and 4.6.

Main results

For Theorems 5.15 and 5.17 below, we require that a bounded, mea-
surable and radial function ω : D → (0, ∞) satisfies the condition

lim sup
r→1−

ω(r)
∫ r

0

ds
ω(s)(1 − s)

< M < ∞ (5.4)
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for some M = M(ω) ∈ (0, ∞). Furthermore, the condition

lim sup
r→1−

ω(r)
ω
( 1+εr

1+ε

) < m (5.5)

with some constants ε ∈ (0, ∞) and m = m(ω, ε) ∈ (0, ∞) is needed
for Theorem 5.15. Note that, by (5.4), there exists Mk = Mk(ω, k) ∈
(0, M] and M0 = M0(ω) ∈ (0, ∞) such that

lim sup
r→1−

ω(r)(1 − r)k−1
∫ r

0

ds
ω(s)(1 − s)k < Mk, (5.6)

for k = 1, . . . , n, and

ω(r)
∫ r

0

ds
ω(s)(1 − s)

< M0, r ∈ (0, 1).

Theorem 5.15. Let ω be a function as above satisfying (5.5).

(a) If an ∈ H∞
ωn

and

E = Pn

(
‖a0‖H∞

n
+ m

n−1

∑
k=1

k!(1 + ε)k‖ak‖H∞
n−k

)
< 1,

where Pn = ∏n
k=1 Mk with constants Mk as in (5.6) and m, ε are as

in (5.5), then all solutions of (4.1) belong to H∞
ω .

(b) If an ∈ H∞
ωn−1

and

F = Pn−1

(
sup
z∈D

|a0(z)|ω(z)(1 − |z|)n−1
∫ |z|

0

dr
ω(r)

+ ‖a1‖H∞
n−1

+ m
n−2

∑
k=1

k!(1 + ε)k‖ak+1‖H∞
n−k−1

)
< 1,

where Pn−1 = ∏n−1
k=1 Mk with constants Mk as in (5.6) and m, ε are

as in (5.5), then the derivative of every solution of (4.1) belongs to
H∞

ω .
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Moreover, if we consider the equations

f (n) + a0(z) f = 0 and f (n) + a1(z) f ′ + a0(z) f = 0

in (a) and (b), respectively, then the assumption (5.5) regarding ω is not
necessary.

We proceed to state an analogous result, where the conditions
concerning the norms ‖a0‖H∞

n
, . . . , ‖an−1‖H∞

1
are replaced with inte-

gral conditions on the coefficients. This result is more general in the
sense that the function ω does not need to be radial and the unit
disc D can be replaced by a starlike domain.

For a measurable function ω (not necessarily radial) in a starlike
domain D and functions a0, a1, . . . , an−1 ∈ H(D), we denote

I1,ω(z) = I∗1,ω(z) =
∫ z

0

|an−1(ξ)|
ω(ξ)

|dξ|,

and

Im,ω(z) =
∫ z

0

∫ ξ1

0
· · ·

∫ ξm−1

0

∣∣∣∣∣
m

∑
j=1

(−1)m−j
(

n − j
m − j

)
a(m−j)

n−j (ξm)

∣∣∣∣∣

· |dξm| · · · |dξ1|
ω(ξm)

, z ∈ D,

for m = 2, . . . , n and

I∗m,ω(z) =
∫ z

0
· · ·

∫ ξm−1

0

∣∣∣∣∣
m

∑
j=1

(−1)m−j
(

n − 1 − j
m − j

)
a(m−j)

n−j (ξm)

∣∣∣∣∣

· |dξm| · · · |dξ1|
ω(ξm)

, z ∈ D,

for m = 2, . . . , n − 1, where the integration paths are line segments.
Using these notations, we state the following result.

Theorem 5.16. Let D be a starlike domain, and let ω : D → (0, ∞) be
measurable.
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(a) If

E = sup
z∈D

ω(z)
n

∑
m=1

Im,ω(z) < 1

and the function z �→
∫ z

0

∫ ξ1
0 · · ·

∫ ξn−1
0 an(ξn) dξn · · · dξ1 belongs

to H∞
ω (D), then all solutions of (4.1) belong to H∞

ω (D).

(b) If

F = sup
z∈D

ω(z)
[ ∫ z

0
· · ·

∫ ξn−2

0
|a0(ξn−1)|

·
∫ ξn−1

0

|dξn|
ω(ξn)

|dξn−1| · · · |dξ1|+
n−1

∑
m=1

I∗m,ω(z)
]
< 1

and the function z �→
∫ z

0

∫ ξ1
0 · · ·

∫ ξn−2
0 an(ξn−1) dξn−1 · · · dξ1 be-

longs to H∞
ω (D), then the derivative of every solution of (4.1) be-

longs to H∞
ω (D).

Finally, we derive a result from Theorem 5.16 of the same nature
as Theorem 5.15. The main difference is that this result is not as
sharp as Theorem 5.15 but the function ω does not need to satisfy
the condition (5.5).

Theorem 5.17. Let ω be a function as above.

(a) There exists α = α(ω, n) ∈ (0, ∞) such that if

‖aj‖H∞
n−j

≤ α, j = 0, . . . , n − 1,

and the function z �→
∫ z

0

∫ ξ1
0 · · ·

∫ ξn−1
0 an(ξn) dξn · · · dξ1 belongs

to H∞
ω , then all solutions of (4.1) belong to H∞

ω .

(b) There exists α = α(ω, n) ∈ (0, ∞) such that if

‖aj‖H∞
n−j

≤ α, j = 1, . . . , n − 1,

and

sup
z∈D

ω(z)
[ ∫ z

0
· · ·

∫ ξn−2

0
|a0(ξn−1)|

·
∫ ξn−1

0

|dξn|
ω(ξn)

|dξn−1| · · · |dξ1|
]
< 1
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and the function z �→
∫ z

0

∫ ξ1
0 · · ·

∫ ξn−2
0 an(ξn−1) dξn−1 · · · dξ1 be-

longs to H∞
ω , then the derivative of every solution of (4.1) belongs

to H∞
ω .

Consequences and sharpness of main results

Next we state a version of Theorem 5.15 where ω(r) = (1− r)p with
p ∈ (0, ∞).

Corollary 5.18. Let f be a solution of the equation (4.1) with an ≡ 0.

(a) If, for p ∈ (0, ∞),

E =
n

∏
j=1

1
p + j − 1

(
‖a0‖H∞

n
+

n−1

∑
k=1

k!
(k + p)k+p

kk pp ‖ak‖H∞
n−k

)
< 1,

then

‖ f ‖H∞
p
≤

| f (0)|+ ∑n−1
k=1 ∏k

j=1
1

p+j−1 | f (k)(0)|
1 − E

.

(b) If, for α ∈ (0, ∞),

F =
n−1

∏
j=1

1
α + j − 1

(
sup
z∈D

|a0(z)|(1 − |z|)α+n−1
∫ |z|

0

dr
(1 − r)α

+ ‖a1‖H∞
n−1

+
n−2

∑
k=1

k!
(k + α)k+α

kkαα
‖ak+1‖H∞

n−k−1

)
< 1,

(5.7)

then

‖ f ‖Bα ≤
( n−1

∏
j=1

1
α + j − 1

‖A0‖H∞
α+n−1

| f (0)|+ | f ′(0)|

+
n−1

∑
k=2

k−1

∏
j=1

1
α + j − 1

| f (k)(0)|
)

/(1 − F).

Using Corollary 5.18, we show below that Theorems 5.15 and 5.16
in the case of the equation (4.2) are sharp in the sense that we cannot
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replace the assumption E < 1 or F < 1 by E < 1 + ε or F < 1 + ε,
respectively, for any ε ∈ (0, ∞). In particular, this means that we
can give a sharp answer to the open question of when solutions of
(4.2) belong to B. Initially Danikas (Aristotle University of Thes-
saloniki) stated this question at the 1997 summer school ”Function
Spaces and Complex Analysis” in Ilomantsi, Finland.

Example 5.19. Let us consider the equation (4.2).

(a) If a(z) = −(p + α)(p + α + 1)(1 − z)−2 for p ∈ (0, ∞) and
α ∈ [0, ∞), then (4.2) has a solution base { f1, f2}, where

f1(z) = (1 − z)−p−α and f2(z) = (1 − z)p+α+1.

Hence, if α = 0, then all solutions belong to H∞
p and E = 1 in

Theorem 5.16(a) and Corollary 5.18(a). On the other hand, for
any ε ∈ (0, ∞), we find α = α(ε) ∈ (0, ∞) such that f1 /∈ H∞

p
and E ∈ (1, 1 + ε) in these results.

(b) If a(z) = −α(1 − z)−2
(
(α − 1)

(
log e

1−z

)−2
+

(
log e

1−z

)−1
)

for
α ∈ [1, ∞), then (4.2) has a solution base { f1, f2}, where

f1(z) =
(

log
e

1 − z

)α

and

f2(z) =
(

log
e

1 − z

)α ∫ z

0

(
log

e
1 − ζ

)−2α

dζ.

Hence, if α = 1, then all solutions belong to B and F = 1 in
Theorem 5.16(b) and Corollary 5.18(b). On the other hand, for
any ε ∈ (0, ∞), we find α = α(ε) ∈ (1, ∞) such that f1 /∈ B
and F ∈ (1, 1 + ε) in these results.

Next we turn our attention to cases where solutions belong to
Bα or QK. Let us begin with a consequence of Corollary 5.18.

Corollary 5.20. Let f be a solution of the equation (4.1) with an ≡ 0, and
let K be continuous and non-decreasing. If (5.7) holds with α ∈ (0, 1

2 ),
then f ∈ Bα ⊂ QK.
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Corollary 5.20 improves Theorems 4.5 and 4.6 in the case where
the non-decreasing K is also continuous. Furthermore, by Corol-
lary 5.18 and [16, Theorem 5.1], f (eit) ∈ Λ1−α ⊂ A if (5.7) is valid
with some α ∈ (0, 1). In particular, f belongs to QK ∩ A in Corol-
lary 5.20. Here the notation f (eit) ∈ Λ1−α means that the boundary
function satisfies the Lipschitz condition of order 1 − α, and A is
the disc algebra.

The last result of this subsection gives a sufficient condition for
solutions of (4.2) to be in Bα. In this result, the condition is given
by limiting the Maclaurin coefficients of a(z).

Corollary 5.21. Let f be a solution of the equation (4.2), where a(z) =

∑∞
k=0 bkzk ∈ H(D).

(a) If α ∈ (0, 1) and |bk| < α(1 − α)
Γ(k + α + 1)
k! Γ(α + 1)

for k ∈ N ∪ {0},

then f ∈ Bα.

(b) If |bk| <
1
k!

∫ 2

1

Γ(k + x)
Γ(x)

dx for k ∈ N ∪ {0}, then f ∈ B.

(c) If α ∈ (1, ∞) and |bk| < α(α − 1)(1 + k) for k ∈ N ∪ {0}, then
f ∈ Bα.

Since Bα is a subset of the Dirichlet space F(2, 0, 0) for α ∈ (0, 1
2 )

and there exists α = α(k) ∈ (0, 1
2 ) such that α(1 − α) Γ(k+α+1)

k! Γ(α+1) > 1
for k ≥ 12, Corollary 5.21(a) partially improves [39, Theorem 2.4].

In closing, we note that one can give a straightforward proof
of the essential content of [37, Theorem 8.3] using Theorem 5.16.
More technical proofs based on Wiman-Valiron theory and Herold’s
comparison theorem can be found in [31, 37].

5.4 SUMMARY OF PAPER IV

Let us begin with the following result which extends Theorem 4.12
to the case where α = 1.

Theorem 5.22. Let {zn} be a uniformly separated sequence of nonzero
points in D. Then there exists a function a ∈ H(D) satisfying (4.4) such
that the equation (4.2) has a solution with zeros precisely at the points zn.
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In Theorem 4.12, the α-Blaschke condition for α ∈ (0, 1) can be
slightly weakened to

∑
n

h(1 − |zn|) < ∞, (5.8)

where h : (0, 1) → (0, ∞) is any continuous function satisfying the
following conditions:

(i) h(x) → 0 as x → 0+;

(ii) h(x)/x is decreasing and h(x) increasing on (0, 1);

(iii)
∫ 1

0
(1 − r)−

1
2 h(1 − r)−

1
2 rdr < ∞.

For p ∈ (2, ∞), the choice h(x) = x logp ep

x shows that the following
result is an improvement of Theorem 4.12.

Theorem 5.23. Let h be a function as above, and let {zn} be a uniformly
separated sequence of nonzero points in D satisfying (5.8). Then there
exists a function a ∈ A

1
2 such that the equation (4.2) has a solution with

zeros precisely at the points zn.

In Theorem 4.12, the assumption on uniform separation can be
weakened at the expense of strengthening the α-Blaschke condition.
More precisely, if the α-Blaschke condition holds for α ∈ (0, 1/2],
then, instead of uniform separation, we may assume the usual sepa-
ration with the separation constant δ ∈ (0, 1) in (2.2), which is close
enough to the constant one in terms of

(2π + 1)
√

1 − δ

(1 −
√

1 − δ)2
< 1. (5.9)

The main point here is that this kind of separation forces {zn} to
be interpolating for some Bergman space Ap with p ∈ (1, ∞) [16,
p. 192].

Theorem 5.24. Let {zn} be a separated sequence of nonzero points in
D such that the separation constant δ in (2.2) satisfies (5.9), and (2.1)
holds for α ∈ (0, 1/2]. Then there exists a function a ∈ A

1
2 such that the

equation (4.2) has a solution with zeros precisely at the points zn.
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The proofs of Theorems 5.22, 5.23 and 5.24 are based on a sim-
ilar idea to that used in the proof of Theorem 4.12. More precisely,
the main point is to give a growth estimate for a(z) in (4.6) by ap-
plying new variants of Proposition 4.11. For example, in the case of
Theorem 5.24, the following variant of Proposition 4.11 is needed.

Proposition 5.25. Let B be a Blaschke product with zeros {zn}. Then
(4.5) holds if either k = 1 and

∞

∑
n=1

(1 − |zn|) log
e

1 − |zn|
< ∞

or k ≥ 2 and (2.1) holds for α ∈ (0, 1/k].

Next we extend our point of view to cover all solutions. First,
an example of a non-oscillatory equation (every non-trivial solution
has at most finitely many zeros) of the form (4.2) is constructed in
[28, Section 4.3] such that a �∈ A

1
2 . Second, Theorem 5.26 below

shows that the solutions can have infinite uniformly separated and
sparse zero sequences even if a �∈ A

1
2 . This result also implies that

the assumption α ∈ (0, 1/2] in Theorem 5.24 is essential. Note that
the proof of this result relies on an example stated in [28, 33],

Theorem 5.26. There exists a function a ∈ H(D) \ A
1
2 such that the

equation (4.2) has the following properties:

(a) There exists a zero-free solution base.

(b) There are solutions with infinitely many zeros.

(c) Every infinite zero sequence satisfies (2.1) for every α ∈ (1/2, 1].

(d) Every infinite zero sequence is uniformly separated.

(e) There are infinite separated zero sequences whose separation con-
stant δ satisfies (5.9).

(f) Every solution and all of their derivatives belong to N.

Even if the equation (4.2) is disconjugate (every non-trivial so-
lution has at most one zero), it is possible that a /∈ A

1
2 : By [9,
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Proposition 2.1],

g(z) =
∞

∑
n=0

(
2n

n

)2

z2n
, z ∈ D,

does not belong to A
1
2 . Hence [61, Theorem 1 (II)] yields g ∈ H∞

2 .
If we set a(z) = g(z)/‖g‖H∞

2
, then a /∈ A

1
2 and (4.2) is disconjugate

by the proof of [44, Theorem I].
Summarizing, we conclude that no condition exists regarding

only the number of zeros of solutions of (4.2) which would guaran-
tee that a ∈ A

1
2 .
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Comenian. (N.S.) 81 (2012), no. 1, 55–60.

[59] H. Wulan and J. Zhou, QK type spaces of analytic functions, J. Funct. Spaces
Appl. 4 (2006), no. 1, 73–84.

52 Dissertations in Forestry and Natural Sciences No 237



Bibliography

[60] H. Wulan and K. Zhu, Lacunary series in QK spaces, Studia Math. 178 (2007),
no. 3, 217–230.

[61] S. Yamashita, Gap series and α-Bloch functions, Yokohama Math. J. 28 (1980),
no. 1–2, 31–36.

[62] C. Yang, Inner functions in QK type spaces, J. Funct. Spaces Appl. 9 (2011),
no. 3, 305–322.

[63] R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn.
Math. Diss. 105 (1996), 1–56.

Dissertations in Forestry and Natural Sciences No 237 53





uef.fi

PUBLICATIONS OF 
THE UNIVERSITY OF EASTERN FINLAND

Dissertations in Forestry and Natural Sciences

ISBN 978-952-61-2274-8
ISSN 1798-5668

Dissertations in Forestry and 
Natural Sciences

D
IS

S
E

R
T

A
T

IO
N

S
  |  A

T
T

E
 R

E
IJO

N
E

N
  |  A

P
P

L
IC

A
T

IO
N

S
 O

F
 IN

T
E

G
R

A
L

 E
S

T
IM

A
T

E
S

 T
O

 IN
N

E
R

 F
U

N
C

T
IO

N
S

...  |  N
o

 237  

ATTE REIJONEN

APPLICATIONS OF INTEGRAL ESTIMATES TO INNER
FUNCTIONS AND DIFFERENTIAL EQUATIONS

PUBLICATIONS OF 
THE UNIVERSITY OF EASTERN FINLAND

The survey part of this thesis introduces 
some new results concerning inner functions 

and differential equations with analytic 
coefficients in the unit disc of the complex 

plane. Regarding inner functions, the 
questions of when their derivatives belong 

to certain function spaces are studied. In the 
case of differential equations, the growth and 

oscillation of solutions are of interest.

ATTE REIJONEN


	Blank Page

