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Abstract

We obtain lower bounds for the growth of solutions of higher order linear differential equations, with
coefficients analytic in the unit disc of the complex plane, by localising the equations via conformal maps
and applying known results for the unit disc. As an example, we study equations in which the coefficients
have a certain explicit exponential growth at one point on the boundary of the unit disc and consider the
iterated M-order of solutions.
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1. Introduction

We study the growth of solutions of the linear differential equation

fO+ a1 @f Y + -+ a@f +a@)f =0, (1.1

where ay(z), a1(z), . . ., ar-1(z) are analytic in the unit disc D = {z € C: |z] < 1} of the
complex plane C, denoted by ag,ay,...,ar—1 € H(D) for short. Since all solutions are
analytic, one natural measure of their growth is the n-order defined by

log?,, M(r,
ran(f) = lim sup &t MO-/)

ro1- —log(1—r) ° f€HD), neN.

Here log”™ x = max{log x, 0}, log} x = log" x, log},, = log" log, x and M(r, f) is the
maximum modulus of f on the circle of radius r centred at the origin.

It is known that the growth of the coeflicients restricts the growth of the solutions
and vice versa, since all solutions f satisfy oy ,.1(f) < @ if and only if oy ,(a;) < @
forall j=0,1,...,k—1[11, Theorem 1.1]. On the other hand, all nontrivial solutions
are of maximal growth at least when ay dominates the other coefficients in the
whole disc in some suitable way. One sufficient condition is that oy,(a;) < oy .(ao)
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2] Differential equations in the unit disc 261

forall j=1,2,...,k—1 [11, Theorem 1.2]. A refined condition is given in [10,
Theorem 3], namely (0 y(a;), Tmn(a;)) < (Tpnlao), Tmalao)) for j=1,2,... k- 1.
Here 7, is the n-type defined by

Tun(f) = limsup(l — )7 Dlogt M(r, f), fe€H(D), neN,
r—1-
and we write (a, b) < (c,d) ifeithera<cora=cand b <d, fora,b,c,d € R U {c0}.

If ap dominates the other coefficients near a point on the boundary of the unit disc,
and we consider the equation there locally, it is possible to obtain a lower bound for
the growth of all nontrivial solutions. Of course, this local study can only give a lower
bound and the upper bound depends on the behaviour of the coefficients in the whole
disc. This idea is valid for several measures of growth and, in particular, we can study
the n-order of growth. Earlier results concerning this kind of question can be found
in [9, 10].

Localisation is a standard technique found in the literature. If f € H(D),QC Disa
simply connected domain and ¢ : D — Q is analytic and conformal, then we can study
f in Q by studying the function f o ¢ in D. In particular, we can apply known results
to f o ¢. The localisation domain Q and the mapping ¢ must be chosen in a suitable
way, depending on the expected properties of f. For example, when considering the
behaviour of f near the boundary of D, Q should touch the boundary in some suitable
way. Also, the geometric and analytic properties of ¢ must be appropriate.

The simplest localisation mapping is an affine map, in which the image of D is a
horocycle. For example, all solutions of

el -0

satisfy op2(f) = 1. The inequality oy2(f) < 1 follows from [11, Theorem 1.1] and
the converse inequality is seen by studying g = f o ¢, where ¢ : D — D is given
by ¢(z) = %(1 + z), and applying [11, Theorem 1.2]. For a more general result, see
Theorem 1.1. Here ¢’ is a constant and ¢(D) is a horocycle touching 4D tangentially.

Another example of localisation is [6, Proof of Theorem 4], where the authors use
a localisation map y : D — D,

P =1 _ mp( L2\
s+l PO=e (l—z) @

where 6 € [0, 27], @ € (0, 00) and 6 € (0, ). The Schwarzian derivative of Y has
sufficiently smooth behaviour for calculations. On the other hand, the boundary curve
OYy(D) consists of two circular arcs, one of which is a part of the unit circle. Thus,
(D) has a fairly simple crescent shape.

The explicit expression of the localisation map may not be needed. For a simply
connected localisation domain, the existence of the mapping can be deduced from
the Riemann mapping theorem and the smoothness of the mapping and the growth of
its derivatives can be estimated by the geometric properties of the boundary curve of

'+ exp(

U@ =e

)
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the image. For example, in [5, Proof of Theorem 3], the authors use a localisation
map ¢s, : D — Qg,, for which the boundary of the simply connected convex domain
Q;, € D consists of four circular arcs, one being a part of the unit circle. Since the
boundary curve is smooth, the authors can deduce that (log ¢; )" and ¢, belong to the

Hardy space H” for all p € (0, o) and deduce that ¢} , is continuous on D. With these
estimates, the proof can proceed. See [5] for details and definitions.

The purpose of this paper is to explain how a localisation method can be used to
study the growth of solutions of (1.1) when information on the coefficients is available
near some boundary point only. To illustrate the method concretely, we consider the
growth of solutions, in terms of the n-order, of the equation

k=1
®) , d;j ) U —

o JZ:(; B expy ((ZO —u )t T * -2
where B; € H(D U {z}), dj,q; € Cand n; e N for j=0,1,...,k — 1. Here, we write
exp; (x) = exp(x) and exp,,(x) = exp(exp,(x)). Throughout the paper, for a nonzero
complex number z € C and a noninteger power p € C, we define z” by taking the
principal branch. Hence, here (zg — z)? is well defined, since zp — z is nonvanishing
in D. We assume that Re(g;) > 0, since otherwise

d;
Zr—>expm(za;:752;)

is bounded in D, a case of no interest. By making the change of variable z — zpz and
denoting b; = d; /z , f(2) = g(z0z) and Aj(z) = B; (zOz)z0 , (1.2) reduces to

k=1
A Z Ai(2) expn/(
Jj=0

where A; € H(D U {1}), bj,qgje CandnjeNfor j=0,1,...,k—-1.

The results of this paper improve the results in [9] concerning the growth of
solutions of (1.2) and the proofs are simpler than the original ones. Our method is
elementary and therefore of interest, even though the results concerning (1.2) can be
deduced from [10, Theorem 2].

The study [9] was motivated by certain results concerning the differential equation

J"+ AQESS + B =0, 1.4

where A(z) and B(z) are entire functions and a, b € C; see [1-3, 7]. See also [4, 8,
11, 13] for methods based on the dominance of some coefficient. The techniques
of [9] were inherited from the plane case and are analogous to those used in [2]. For
example, if in (1.4) we have ab # 0 and either arga # argb or a/b € (0, 1), then all
nontrivial solutions f are of infinite order on the plane [2, Theorem 2]. Analogously,
if in the equation

Vm_ (1.3)

Z)qj

Jr=o.

b
1+ B e )+ B exp

b
(z0 — 2)7
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25sin(8/2)

(D)

FiGuRe 1. Domain T(D) with parameters 8 = 0.85 and y = —0.75. In this case, p = f(x — 8)/n* ~ 0.197
and 2 sin(3/2) ~ 0.825.

where Bj € H(D U {z0}), b; € C\{0}, g € (1, o), we have in addition arg b, # arg by or
b1 /by € (0, 1), then all nontrivial solutions f satisfy o (f) = oo [9, Theorem 1.11].
To define the localisation map employed here, let T : D — D be given by

1 =7\P

T() = Tpp(2) = 1 - sin(ﬁ/z)e'y(¥) , (1.5)
where 8 € (0,7/2], y € (-n/2,7/2) are such that |y| < (m — 8)*/2r € (0,7/2) and
p = pB) = B(m —p)/n* € (0,1/4]. Here T(D) is a tear-shaped region having a vertex of
angle prx touching 9D at z = 1 (see Figure 1). The domain 7'(D) has the symmetry axis
T((—1,1)) which meets the real axis at angle y. As g decreases, T(D) becomes thinner,
T((—1, 1)) becomes shorter and the angle y can be set larger. If f satisfies (1.3) and we
set g = f o T, then g has to satisfy a differential equation whose coeflicients correspond
to those of (1.3) (see Lemma 2.1 and its proof). By applying either [11, Theorem 1.2]
or [10, Theorem 3] to this differential equation, we obtain a lower bound for the n-order
of g, which in turn gives a lower bound for the n-order of f by Lemma 2.2.

We do not obtain new upper bounds for the growth of solutions of (1.2). In
fact, it is not possible to obtain such bounds for the growth of solutions of (1.2)
without imposing conditions on the functions B;. If for example oy, (B,,) = @ > 0
for some me€ {0,1,...,k— 1} and n € N with n > n,,, then no cancellation can occur,
the coefficient 4

an(2) = Bul0) eXp”"'( (z0 — 2)2r )
satisfies oy (am) = oma(By) = @ and there exists at least one solution f such that
Oun1(f) = @by [11, Theorem 1.1].
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The first result in this paper concerns the case when only g in (1.1) is unbounded
near a boundary point of the unit disc. In the remainder of the paper, the argument of
a complex number z # 0 takes values arg(z) € (-, 7).

TueoreM 1.1. Consider the differential equation
b
1O+ A @FD 4 QS+ Ao exp, (G )f =0,

where k,n €N, Aj e H(DU{1}) for j=0,1,...,k—1, Ay #0, b,q € C\{0} and
Re(g) > 0. Suppose that Im(g) # 0 or |arg(b)| < %H(Re(q) + 1). Then all nontrivial
solutions f satisfy o yn+1(f) = Re(g).

If Re(g) > 1 in Theorem 1.1, then the condition |arg(b)| < %ﬂ(Re(q) + 1) is trivially
satisfied. Moreover, we get [9, Theorem 1.6] as a special case, by setting k =2, n =1,
q € (1, o) and making a change of variables z = w/zp, b = d/zg for zg € dD.

If g € (0, 1] in Theorem 1.1, then the condition |arg(b)| < %n(Re(q) + 1) cannot be
removed. For example, if |arg(—b)| < %(1 — q)r for g € [0, 1], then z — exp(b(1 — 2)79)
is bounded on D and the solutions of " + exp(b(1 — z)7%) f = 0 are bounded by [12,
Corollary 3.16]. In particular, by settingk=2,A4;, =0,b = -1 and ¢ = n = 1, we obtain
the equation

7+ Ao exp( ) =0,

where Ay € H(D U {1}). Since Ay(z) exp(—(1 — z)~') remains bounded as z — 1 in D,
nothing can be said about the growth of solutions f without placing conditions on Ay.
This is the reason why the method of [9] cannot work in general for 0 < g < 1; see the
discussion in [9, Remark 3.1].

Next we consider a second-order equation with both coefficients possibly
unbounded near the point z = 1, namely

b] , bO
T )+ Ao exp T

where A; € H(D U {1}), Ag £0, bj,q; € C\{0} for j=0,1 and Re(go) > 0. The
most interesting case is when gq; = go. First, we consider q; = ¢go € (0, ), then
q1 = qo € C\R and after that the case q; # qo.

1" +A1(z)exp( )f=0, (1.6)

ToeEOREM 1.2. Let q; = qo = q € (2, 00) and arg(b;) # arg(by) in (1.6). Then all
nontrivial solutions f satisfy oyo2(f) > gq.

The case g € (0, 2], which is not covered by Theorem 1.2, can be done with
stronger assumptions, as in Theorem 2.3. For g € (2, o), Theorem 1.2 improves [9,
Theorem 1.8], which states that for g € (1, 00), we have o1 (f) = 0. Moreover, for
q € (2, 00), Theorem 2.3 improves [9, Theorem 1.11].

Tueorem 1.3. Let q; = qo = q, Im(q) # 0, Re(q) > 0 and |by| < |by| in (1.6). Then all
nontrivial solutions f satisfy oyo(f) = Re(g).
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THeEOREM 1.4. Let q) # qo in (1.6). Assume that either qq, q, € (0, 00) and

bl b()
Re(—-) <0<Re(2) for somey € (=n/2,7/2) (1.7)
or Im(qo) # 0 and Re(q;) < Re(qo). Then all nontrivial solutions f of (1.6) satisfy
au2(f) = Re(qo).

CoroLLARY 1.5. Let qo, q1 € (0, 0), g1 # qo in (1.6). Suppose that one of the following
conditions is satisfied:

(i) Re(by) <0 < Re(by);

(i) larg(bo)| < 37(qo + 1) and q1 > 2q0/(qo + 1 — (2/m)larg(bo)));
(iii) |arg(—by)| < 37(q1 + 1) and qo > 2q1/(q1 + 1 — (2/m)larg(=by)));
(iv) qo € (1,31 and g1 > 2q0/(qo — 1);

(V) qo €[3,00)and q1 > qo/(q0 — 2);

(VD) qo,q1 € [3,00).

Then all nontrivial solutions f satisfy oy2(f) = qo.

Condition (1.7) follows from each of the conditions (i)—(vi) in Corollary 1.5 and is
symmetric with respect to gy and ¢g; in the following sense: if the assumption gy = a
and g, = b gives (1.7) for all by, b; € C\{0}, then the assumption gy = b and gq; = a
implies the same conclusion. On the other hand, we see that (1.7) fails in the following
cases:

(a) larg(bo)l > in(go + 1) or larg(=b))| > in(q) + 1);
(b) 0<go<gi<3andby=by=-1;

(C) 0<511<Q()S3andb0=b1=1;

(d) q0 € (2, 00)9 q1 = q()/(q() - 1), bo = exp(%lﬂ-(qo _ 3)) and bl — exp(%lﬂ'(l _ ql))’
(€) go=2m+1,q1=q0/(g0~2),bo=(=1)""" and by = 1 for some m € N N [2, o).
For g € (1, ), it is not clear how g satisfying go/(qo — 1) < g1 < qo/(qo — 2) should

be restricted to obtain (1.7) for all by, b; € C\{0}. Numerical investigations suggest
that conditions

qo € U(Zm —1,2m)

m=2

q > s
go—1

and
2m 2m + 1

=17 @0 = 2m) TS

q1 > (g0 —2m), qo € [2m,2m + 1],
for m € N N [2, 00), could be sharp. The latter condition says that as g increases from
2m to 2m + 1, the lower bound of ¢; increases linearly.

Our method works also for nonhomogeneous equations, as part (ii) of Theorem 2.4
shows.
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2. Proofs of theorems

The following lemma allows us to study the differential equation (1.1) locally on a
subset of the unit disc.

Levmma 2.1. Let f be a solution of

P+ a1 @Qf P+ @ f + a0 f = ar2),

where ay, ay, ...,ar € H(D). Let T : D — D be locally univalent and g = f o T. Then
g is a solution of

gV + @'+ + (g + co@)g = al2), 2.1)

where cj € H(D). Moreover; if T is nonvanishing and oy,,((T®)") = 0 for n, s € N
and t € Z, then

oua(c)) < mgx{GM,n(am o T)} (2.2)
m=j
and
Tun(c;)) max{tylayoT) :oyulayoT) = mgx{ch,n(am o T}}, (2.3)
m>j

Jor j=0,1,...,k =1, whereas
oma(cr) = omn(aroT) and  Typ(cr) = Tyalar o T). (2.4

Prookr. By a straightforward calculation, g is a solution of (2.1), where

k-1
(ajo T)(T) = Pej(T) = ). cum,j(T)], j=0,1,...,k—1, (2.5)

m=j+1

1
7P AT

¢ = (ax o T)Pii(T) and P, j(T) is defined by g™ = 3 (f o T)P,, j(T). Hence,
P,, (T) is a polynomial in 7', T”, ..., T with integer coefficients. For j =k — 1, the
sum on the right-hand side of (2.5) is empty, and we can solve for c_;:

Ci-1 [(@-1 o T)X(T"Y* = Pri-1(D)].

1

Pi14-1(T)
After this, we can inductively solve for c¢;_», ck-3,...,co. By the assumption, T is
locally univalent, that is, 7* has no zeros in D. Since P;; = (T") is nonvanishing for
j=0,1,...,k weseethatc; € H(D) forall j=0,...,k.

Assume now that ,,,((T®)") = 0 for s € N and ¢ € Z. Since for j=0,1,...,k— 1
the coefficient ¢; is a linear combination of the functions ajo T,aj,107,..., a1 0T,
the assertions (2.2) and (2.3) trivially hold. The assertion (2.4) is also evident. O

Clearly, T defined by (1.5) satisfies all the assumptions of Lemma 2.1. Hence, if
we set g = f o T, then we can study the differential equation (1.1) for f by studying
the differential equation (2.1) for g. In this case, if we can find a lower bound for the
n-order of g, we have a lower bound for the n-order of f by the next lemma.
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Lemva 2.2. Let f € H(D) and g = f o T, where T is defined by (1.5). Then we have
oun(f) = opa(g)/p forne N

Proor. If |1 — z| < sin(B/2) and |arg(1 — )| < (w — B)/2, then the law of cosines gives

2
1-z7 < 1-
1 -2z < sin(,8/2)( Iz])
and, therefore, by the definition of T,
2
1-T@)| < 1-1T®@), D.
I @l =< sin(ﬂ/Z)( T, z€

Now, for r € [0, 1) and 6 € [0, 27) such that [T'(re'®)| = M(r, T),
1-M#,T)<1—|T(H)| <1 =T@)| <1 -T(re?)

2 0N — _
< sin(,B/2)(1 —|T(re”))) = sin(,B/2)(1 M@, T)). (2.6)
Since . 5
-1 = 82y,
inequality (2.6) gives
im M =1 2.7)
r—1- plog(l —r)
Now, by (2.7),
O-M,n(g) - lim sup 10gn+1 M(}’, g) < lim su 10gn+1 M(M(V, T), f) — O'M,n(f),

PP plog(T—r) = P Zlog(l - M(r, 1))

the last inequality holding since M(r, T) is an increasing continuous function of r and
M(r,T)y—> 1"asr— 1". O

Proor oF THEOREM 1.1. Letg =x+iyforx € (0,00)andy e R, andletg = f o T, where
T is defined by (1.5). Use the differential equation for f in the claim to obtain the
differential equation (2.1) for g. In this differential equation, ¢, =0 and o p,,(c;) = 0
for j=1,2,...,k— 1. Moreover, oy,(co) = px. To show this, we start by observing
that ‘
b b2ra 1 b2Pd e~irylog(1-2) 1
(1-T()1 (sin(B/2))1e4 (1 —z)P4 ~ (sin(B/2))eve (1 — z)Px’

First, assume that y # 0. Now, for some sequence of points r, € (0, 1), r, = 17 as
n — oo, the value of log(1 — r,) is such that

bzpqe—ipy log(1-ry) b2ard
. |- S| = Ce 0,00,
(sin(B/2))4eiva (sin(B/2))1er4
Hence, for this sequence {r,},en,
b C
neN,

A=T@)? (1=t
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giving
b
eXp"((l - T(r,,))‘l)
and we see that o7,(co) = px.
Second, assume that y = 0, that is, g = x € (0, 0), and |arg(d)| < %7‘((}( +1). Now
there exist y € (—x/2,7/2) such that

b
s{ )

and 8 € (0,7/2] such that |y| < (x — 8)*/2n, giving T = Tg, : D — D. Now there exists
a sequence of points r, € (0, 1), r, = 1~ as n — oo, such that

C
= expn(m), ne N,

< dl that is, Re(.i) >0
2 elyx

b 3 b2r* 1 3 2P*Re(be™r¥) 1

(I=T(@r)*  sin@B/2))ye (1 —r,)P*  (sin(B/2))* (1 —r,)P*

for some integers m,, such that either m,, = 0 for all n € N or |m,,| — o0 as n — oo. Thus,

also in this case, o y,(co) = px. Now, by Lemma 2.2 and [11, Theorem 1.1], we have

OMar1(f) Z Oyn1(8)/ P = omalco)/p = x, given that f # 0. m

Theorem 1.2 is a special case of Theorem 2.3, since, for g; = go = ¢q, (1.6) is

a special case of (2.8) and, if ¢ € (2, o), then one of the conditions (i)—(iii) in
Theorem 2.3 is satisfied.

+ 2nm,,,

TueoreM 2.3. Consider the differential equation

b;
-z

k=1
4> 40 exp( ) £ =0, 2.8)
j=0
wherek €N, Aj € H(D U{1}), g€ (0,00)and bj € Cfor j=0,1,...,k—1. Let Ay #0
and by # 0. Assume that bj/by € [0,1) for all j=0,1,...,k—1 with at most one
exception b; = b,, for which arg(b,,) # arg(bo). Suppose that one of the conditions:

(1) max(Re(b,,),0) <Re(by),
(i) 0 <Re(bg) < Re(bu), arg(by/bo) € (0,7) and arg(i/ (b — b)) < 37g;
(i) Re(bo) <0, arg(by/bo) € (0, 7] and arg(bo/i) < 1nq

holds or that one of the conditions holds when by and b, are replaced by b_o and b_m
respectively. Then all nontrivial solutions f satisfy oy 2(f) = Re(q).

Proor. Let g = f o T, where T is defined by (1.5). Use the differential equation for f
in the claim to obtain the differential equation (2.1), where c; = 0, for g. First, we treat

the case
b[ bO

(1 =2y (1 -2y

where the assumptions in the claim are satisfied by b,,, = b.

1+ AQ) exp( ) 7+ Ag(2) exp( ) r=o0,
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Now the assumptions ensure the existence of y € (—m/2,/2) such that

max(Re (ﬂ), O) <Re (ﬁ )
evqa evvd

Fix one such y and choose g € (0, /2] sufficiently small to obtain |y| < (7 — B)?/2n.
With these parameters y and 38, we have T = T, : D — D. By taking 8 even smaller,
we find some ¢ € (0, 1) such that

by |1 —zP? by |1 -z
max(Re(elyq m) 0) < ERC(E(I — Z)Pq ), z€D.

Hence, in (2.1), (omi(c1), Tmi(c1)) < (omi(co), Tmi(co)). The assertion follows
by [10, Theorem 3] and Lemma 2.2.

The general case is proved in a similar manner. In particular, for j # m, the
coeflicient c¢; is small in the sense that (o771 (c;), Ta,1(c)) < (Tpr1(co), Tar1(co)). O

Theorem 1.1 can be trivially generalised to obtain part (i) of Theorem 2.4. Part (ii)
of Theorem 2.4 shows that our method works also for nonhomogeneous equations.

TueoreM 2.4. Consider the differential equation

Fo 4 ZA i(2) exp,,/((1 bj ) 9 = Au(z) expm( a sz)qk ) (2.9)

where k€N, Aj € H(D U ({1}), g,qr € C\{0} and bj € C for j=0,1,...,k. Then the
following assertions hold.

(1) Letby =0, Ay %0, by # 0, Re(g) > 0 and either n; < ny, or nj = ng but b;/bg €
[0, 1), for j=1,2,...,k— 1. Suppose Im(q) # 0 or larg(bo)| < 7(Re(q) + 1).
Then all nontrivial solutions f of (2.9) satisfy o n+1(f) = Re(q).

(ii) Let Ay #0 and by # 0. Assume that n; <nm—1 for j=1,2,..., k-1 and
Re(qg) < Re(qy). Suppose that Im(qy) # 0 or |arg(by)| < %R(Re(qk) +1). Then
all solutions f of (2.9) satisfy oy, (f) = Re(gy).

Proor. Assertion (i) is clear. Let the assumptions in (ii) be satisfied. Let g = fo T,
where T is defined by (1.5). Use the differential equation (2.9) for f to obtain
the differential equation (2.1) for g. Fix one particular solution f; of (2.9) and let
g» = f» o T. Now every solution g is of the form g = g| + g,, where g, is a solution
of the homogeneous equation. By the assumptions and the proof of Theorem 1.1,
omn(81) £ Re(g)p <Re(gr)p. On the other hand, the parameters of T = Tg,, can be
chosen such that o, (cx) = Re(gi)p, which gives oy, (82) = o mp, (cr) = Re(gr)p.
Hence, oy, (8) = Re(qx)p, since no cancellation can occur. By Lemma 2.2,
Tam(F) = Tun ()] p = Re(gp). o

Proor or THEorREM |.3. Let g =x+1iy, x€(0,0) and ye R. Let g = f o T, where
T is defined by (1.5). Use the differential equation for f in the claim to obtain the
differential equation (2.1), with ¢; = 0, for g. By the assumptions and the proof of
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Theorem 1.1, we can choose the parameter y of T = Tg, such that the coefficients
Cj in 2.1 satisfy (O'M’l(Cj), TM,I(CJ')) < ((TM’](C()), TMJ(CO)) for all ] =1,2,...,k—1.
Moreover, in this case ou,1(co) = px. Hence, all nontrivial solutions g of (2.1) satisfy
ou2(g) > px by [10, Theorem 3]. By Lemma 2.2, all nontrivial solutions f of (1.6)
satisfy op2(f) 2 oma(g)/p 2 x = Re(q). o

Proor orF THEorEM 1.4. If (1.7) is valid, then the assertion follows as in the proof of
Theorem 2.3.

Assume that Im(g) # 0 and Re(q;) < Re(qp) and let g = f o T, where T is defined
by (1.5). Use the differential equation for f in the claim to obtain the differential
equation (2.1), with ¢, = 0, for g. Now, in (2.1), we have ¢, =0, op1(c1) < opm.1(co)
and in addition os1(co) = Re(go)p. Now, by [11, Theorem 1.2] and Lemma 2.2,
we deduce that ou2(f) = om2(g)/p = Re(qp) for every nontrivial solution f, as
desired. O

Proor oF CororrLary 1.5. Trivially, (i) implies (1.7) of Theorem 1.4.
Assume that (ii) is true. Now, there exist (y;,y»2) C (-m/2,7/2) such that

i n
larg(boe™71)| < 5 Y€ ,v2)

and
37qo + 37 — larg(bo)| _qot1- (Z/ﬂ)larg(bo)lﬂ

90 2q0

ly1 =2l 2

By the assumption,

q0
qily1 —ya2l 2 q1 >
0

>,

so that |arg(—bje 9| < n/2 for some y € (y1,Y2) and (1.7) is valid. Similarly (iii)
gives (1.7).

Trivially, condition (iv) implies (ii). Condition (v) holds if and only if ¢; € (1, 3)
and qg > 2q;/(q1 — 1). Therefore, (v) implies (iii).

If condition (vi) holds, then either (iv) or (v) is valid. O

Acknowledgement

The author thanks the referee for his careful review and helpful comments.

References

[11 I Amemiya and M. Ozawa, ‘Non-existence of finite order solutions of w”’ + e™*w’ + Q(z)w =0,
Hokkaido Math. J. 10 (1981), 1-17.

[2] Z. X. Chen, ‘The growth of solutions of " +e*f" + Q(z)f = 0, where the order (Q) = 1’,
Sci. China Ser. A 45 (2002), 290-300.

[3] Z.X.Chenand K. H. Shon, ‘On the growth of solutions of a class of higher order linear differential
equations’, Acta Math. Sci. Ser. B 24(1) (2004), 52-60.

[4] Z.X. Chen and K. H. Shon, ‘The growth of solutions of differential equations with coefficients of
small growth in the disc’, J. Math. Anal. Appl. 297 (2004), 285-304.



[12]

[51

(6]
171
(8]
191
[10]
[11]
[12]

[13]

Differential equations in the unit disc 271

E. A. Gallardo-Gutiérrez, M. J. Gonzilez, F. Pérez-Gonzdlez, Ch. Pommerenke and J. Ritty4,
‘Locally univalent functions, VMOA and the Dirichlet space’, Proc. Lond. Math. Soc. (3) 106(3)
(2013), 565-588.

F. W. Gehring and Ch. Pommerenke, ‘On the Nehari univalence criterion and quasicircles’,
Comment. Math. Helv. 59(2) (1984), 226-242.

G. G. Gundersen, ‘On the question of whether f”” + e*f" + B(z)f = 0 can admit a solution f % 0
of finite order’, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), 9-17.

G. G. Gundersen, ‘Finite order solutions of second order linear differential equations’, Trans.
Amer. Math. Soc. 305 (1988), 415-429.

S. Hamouda, ‘Properties of solutions to linear differential equations with analytic coefficients in
the unit disc’, Electron. J. Differential Equations 177 (2012), 1-8.

S. Hamouda, ‘Iterated order of solutions of linear differential equations in the unit disc’, Comput.
Methods Funct. Theory 13(4) (2013), 545-555.

J. Heittokangas, R. Korhonen and J. Rittyé, ‘Fast growing solutions of linear differential equations
in the unit disc’, Results Math. 49 (2006), 265-278.

J. Heittokangas, R. Korhonen and J. Rittyd, ‘Linear differential equations with solutions in the
Dirichlet type subspace of the Hardy space’, Nagoya Math. J. 187 (2007), 91-113.

L. Kinnunen, ‘Linear differential equations with solution of finite iterated order’, Southeast Asian
Bull. Math. 22(4) (1998), 1-8.

JUHA-MATTI HUUSKO, Department of Physics and Mathematics,
University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
e-mail: juha-matti.huusko @uef.fi









Annales Academis Scientiarum Fennicae
Mathematica
Volumen 41, 2016, 399-416

LINEAR DIFFERENTIAL EQUATIONS WITH
SOLUTIONS IN THE GROWTH SPACE H7Y

Juha-Matti Huusko, Taneli Korhonen and Atte Reijonen

University of Eastern Finland, Department of Physics and Mathematics
P.O. Box 111, 80101 Joensuu, Finland; juha-matti.huusko@uef.fi

University of Eastern Finland, Department of Physics and Mathematics
P.O. Box 111, 80101 Joensuu, Finland; taneli.korhonenQ@uef.fi

University of Eastern Finland, Department of Physics and Mathematics
P.O. Box 111, 80101 Joensuu, Finland; atte.reijonen@uef.fi

Abstract. Sufficient conditions for solutions of
F + A () 4+ A1)+ Ao(2)f = An(2)

and their derivatives to be in HZ°(D) are given by limiting the growth of coefficients Ag(z), ... An(2).
Here HZ°(D) consists of those analytic functions f in a domain D for which |f(z)|w(z) is uniformly
bounded. In particular, the case where D is the unit disc is considered. The theorems obtained
generalize and improve certain results in the literature. Moreover, by using one of the main results,
one can give a straightforward proof of a classical result regarding the situation where the coefficients
are polynomials.

1. Introduction
We study the growth of solutions of the differential equation
(1) ™4 A () fO D 4 A (2)f + A(2) f = An(2), n>2,

where Ay(2),...,A,(2) are analytic in a domain D of the complex plane C, denoted
by Ao,..., A, € H(D) for short. In particular, we consider the case where D is the
unit disc D = {# € C: |2| < 1}. Hence, for simplicity, notations mentioned below
are defined for D but on request we use their analogies also for other domains.

Our main purpose is to find conditions which guarantee that all solutions of (1)
or their derivatives belong to a growth space

H = {g € HD): llgllus = suplg(w(z) < oo} .
zeD

Here w is a weight, which means that w: D — (0, 00) is bounded and measurable. In
the case where w(z) = w(|z|) for all z € D, we say that w is radial. If w(z) = (1—|z|)?
with p € (0, 00), we write H® = H>°. Also, the question of when all solutions belong
to the a-Bloch space B* with a € (0,00), which consists of g € H(D) such that
llgllge := sup,cp |9'(2)|(1 — |2|)* < 00, is considered. Note that if o = 1, then B* is
the classical Bloch space B.
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The growth of fast growing solutions of (1) is typically measured in terms of
the Nevanlinna characteristic function [9]. For slowly growing solutions some other
methods may give better results. Some useful techniques are, for example, Gronwall’s
lemma [7], Herold’s comparison theorem [11], Picard’s successive approximations
[2, 5] and methods based on Carleson measures [10, 13, 14, 15]. Moreover, in the case
of the complex plane, Wiman—Valiron theory is a commonly used method [12]. We do
not use any of these methods; instead, our calculations are based on straightforward
integral estimates.

It is well known that the growth of the coefficients Agy(z), ..., A, (2) of (1) re-
stricts the growth of solutions. For example, if the coefficients grow slow enough,
then all solutions are bounded, while if the coefficients grow fast enough, then the
solutions may grow faster than any pre-given function. Therefore, if one wants to
force all solutions to HS?°, it suffices to give a strong enough growth condition for the
coefficients; for example, one can require that the norms || Ag||mee, - - -, || An—1 |z are
small enough. This condition can be found by applying the differential equation and
using suitable integral estimates.

Using the integral estimates method mentioned above with a condition on the
norms || Ao||mee,- -, || An—1|lze, we prove Theorem 1. This result generalizes and
improves [10, Theorems 3.1 and 3.3]. Moreover, as a special case, we also give a
solution to the following problem due to the late Danikas, which has been open
since the 1997 summer school "Function Spaces and Complex Analysis” held at the
Mekrijarvi Research Station in Ilomantsi, Finland: Give a condition for A(z) such
that all solutions of

(2) f"+A(2)f=0

belong to the Bloch space B. More precisely, Theorem 1 yields that if sup,.p[—|A(2)|
(1—|2])*log(1—|2])] < 1, then all solutions of (2) belong to B. This particular result
is sharp in the sense that the assumption cannot be relaxed to sup,.p[—|A(2)|(1 —
|2])%log(1 — |z|)] < 1 + € for any € € (0,00). It is worth noticing that all previous
results known to the authors, including those given in [10, 13], force the solutions to
some proper subspace of B and hence form only a partial solution to the problem.

Our second main result, Theorem 2, is proved by applying an integral condition,
instead of radial growth space conditions, for the coefficients. In this case, the result
is valid also in other domains than just the unit disc. As a consequence of the
result, an alternative version of Theorem 1 is verified. An application for polynomial
coefficients is also obtained.

A classical result [18, Satz 1] of Wittich states that every solution of (1), where
the coefficients Ag(z), ..., An_1(2) are entire and A,, = 0, has a finite order of growth
if and only if all coefficients Ay(z), ..., A, 1(2) are polynomials. Moreover, if the
coefficients are polynomials, then the order of growth o(f) of any solution f satisfies
the well-known estimate

14—

o(f) :=limsup m—

r—00 logr ~ 0<j<n—1

loglog M (r, f) < max { deg(Aj)}

where M (r, f) is the maximum modulus of f on the circle of radius r centered at the
origin. This estimate can be proved in a straightforward manner without any heavy
machinery by using Theorem 2; see Section 4. In the literature, one can find more
technical proofs based on, for example, Wiman—Valiron theory [12, Theorem 8.3] and
Herold’s comparison theorem [8, p. 244]. By applying Gronwall’s lemma or Picard’s
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successive approximations, only a weaker version of the estimate has been proved
[5, 8]

The remainder of this paper is organized as follows: In the next section, we
introduce our main results, Theorems 1 and 2. We also prove an alternative version
of Theorem 1 by using Theorem 2. The main purpose of Section 3 is to improve results
of [13]. More precisely, we improve [13, Theorems 2.1 and 2.6] in the case where the
nondecreasing function K is continuous, and also give a partial improvement of [13,
Theorem 2.4]. In addition to this, we discuss the sharpness of our main results.
Section 4 contains a simple proof of the essential part of [12, Theorem 8.3] which
concerns a differential equation with polynomial coefficients in the plane. Sections 5
and 6 contain the proofs of Theorems 1 and 2, respectively.

2. Main results

In this section, we present our main results, Theorems 1 and 2. We start by
introducing conditions and notations needed in the statement of Theorem 1.

In Theorem 1, we require that the radial weight w: D — (0,00) satisfies the
conditions

(3) liillsll_lp w(r) /OT ﬁ <M < o0,

for some M = M(w) € (0,00), and

(4) limsup ——=

for some constants ¢ € (0,00) and m = m(w, €) € (0,00). It should be noted that (3)
implies that there exists My = Mg(w,k) € (0, M] and My = My(w) € (0,00) such
that

(5) liiﬁl_lp w(r)(1 —r)*t /Or m <My, k=1,...,n,
and

t ds
(6) w(t)/o S < Mo te 1)

The conditions (3) and (4) play key roles in Theorem 1. Hence, before stating
the theorem, we list some observations about (3) and (4).

(i) The conditions (3) and (4) are independent. For example, w(r) = exp (— %)
satisfies (3) but fails (4). On the other hand, w(r) = (log T)_ satisfies (4)
but fails (3).
(ii) If w satisfies (3), then there exists p = p(w) € (0, 00) such that w(r)/(1 —r)P
is bounded [17, Lemma 2].
(iii) It is possible that (4) holds for some € but not for all. For example,

7 log -1 7 log -
w(r) = (1 —r)sin® (%) + (1 —7)?cos? (%)

satisfies (4) for € = 1 but not for ¢ = w. However, if (4) holds for some ¢,
then it holds for some arbitrarily small €.
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(iv) If w is nonincreasing and (4) holds for some ¢, then it holds for all €. Hence, in
this case, (4) is equivalent to the doubling condition w(r) < mw () when
r € [0,1) is close enough to one.

(v) If the condition (4) is valid, then, in (3), the factor 1 — s is in a certain
sense the best possible. Namely, if v: (0,1) — (0, 00), w satisfies (4) for some
g,m € (0,00), wv is nonincreasing and there exists M = M(w,v) € (0,00)
such that

lim sup w(t) /t _ds <M
11 o w(sh(s)

then we have

Lier l+4er
M>w 1+er /1+s ds > 0 1+er JTZ—T)>i 1 1-r
1+¢ /) ),  w(s)v(s) 1+e ) w(r)v(r) = ml+4e v(r)
for sufficiently large r € [0,1). In particular, (1 — r)/v(r) is bounded if r is
close enough to one.

Next we state Theorem 1, in which we use the notation w,(2) = w(z)(1 — |2])?,
where w is a radial weight and p € R.

Theorem 1. Let w be a radial weight in the unit disc satisfying (3) and (4).
Then the following assertions hold:

(a) If A, € HY and

n—1
E = Pn<||Ao||H3° +my k(1 +5)k||Ak”H3‘ik> <1

k=1

where P, = [[}_, My with constants M}, as in (5) and m, € are as in (4), then
all solutions of (1) belong to HZ.
(b) If A, € HY | and

= ar
w(r)

F:=P,, (fgg | Ao (2)|w(2)(1 — |z|)n—1/0

n—2
+ | A, +m Y RN+ 5)k||Ak+1“Hf§°_k_1> <1,
k=1

where P, = HZ;} M, with constants M, as in (5) and m,e are as in (4),
then the derivative of every solution of (1) belongs to HZ®.

Moreover, if we consider the equations
F™ + A(2)f =0 and f™ + Ai(2)f + Ao(2)f =0

in (a) and (b), respectively, then the assumption (4) regarding w is not necessary.

In what follows, we present another result where, instead of considering the
norms || Aol e, - - -, | An—1l| 3, we establish an integral condition on the coefficients
and their derivatives. This result is also more general in the sense that the weight
w does not need to be radial and the unit disc D may be replaced by some other
domain.

We call a domain D on the complex plane starlike if 0 € D and, for each point
z € D, the line segment from the origin to z is contained in D. For a weight w
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(not necessarily radial) in such a domain D and functions Ay, A;, ..., A,—1 € H(D),

denote
ZA,—
ha() = It = [ 2l ag,

and

[ [ oy (M) |
form=2,...,n and
. z Em—1 | T _ifn—1—3 m— |d€m||d§1|

_ [ 1 \m—j Al ]) Poml TR
Tnal?) /0 /o ;1( g < m—j ) ) =g TP

for m = 2,...,n — 1, where the integration paths are line segments. With these
concepts and notations established, we give the following result.

Theorem 2. Let D be a starlike domain and let w: D — (0,00) be a weight.
Then the following assertions hold:

(a) If

(7) = supw(z Z I w(2) <

zeD

and the function z — [ fO&- fgn YA, (&) dE, - - - dEy belongs to H (D),
then all solutions of (1) belong to HX(D).
(b) If

z n—2 En—1 d "
F = supw(z)[/ /0 |Ao(§n—1)|/O (Lé |) |d&n—1] - - - |d&i]

zeD
+ Z z)] <1

and the function z — [ 0& e 05"_2 Ay (€n—1) d&p1 - - - d&; belongs to HX (D),
then the derivative of every solution of (1) belongs to H*(D).

Note that the conditions (7) and (8) both imply that w needs to be bounded,
unless all the coefficients Ag(2),. .., A,—1(2) are identically zero.

It is worth noticing that the method used to prove Theorem 2 works also in more
general domains than just those which are starlike with respect to the origin. In
fact, if one chooses the paths of integration and the compact sets K appropriately,
the method may be used in any domain D. For example, let D C C be any simply
connected domain and let ¢: D — D be a Riemann map from D onto D. Then
choosing the paths of integration in the proof of Theorem 2 to be I, = ¢ ([0, $71(2)]),
for 2 € D, and taking the compact sets as K = (J,x, ¢ ([0, ¢~ (2)]), where K, is an
arbitrary compact subset of D, one sees that the following result holds:

If the function 2 — [, flél = 'fls ) A, (&) dE, - - - dE; belongs to H®(D) and

(8)

supw(z Z I(¢) ) (2) <

z€D
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where

(#) |An 1(6)] |Ap_1 (¢ (td~ l(z ))I 1(, —1 2 2
126 = [ Vo el = [ PGS e ) e @l 2D
@) (2 meg (=0 gon=a) (e | 19€ml---1d&a]
(2] /1/ /EM 2. (m J)A &) =y o PP

for m = 2,...,n, then all solutions of (1) belong to H(D).

Even in this rather simple example, it is clear that the choices of integration paths
and compact sets done above are not the only nor necessarily the best ones. However,
the example above is an easy way to illustrate the generality of the argument used
in the proof of Theorem 2. It is also a way to pinpoint the connection between the
choice of the paths of integration and that of compact sets: The compact sets need
to contain all the integration paths from the chosen fixed point zy € D (in the above
example 2y = ¢(0)) to other points in the compact set. Hence one also cannot choose
the paths of integration randomly but some kind of systematic approach or control
over the paths is required.

Finally, we derive a result of the same nature as Theorem 1 from Theorem 2.
The main difference is that the result is not as sharp as Theorem 1 but the weight w
does not need to satisfy the condition (4).

Theorem 3. Let w be a radial weight in the unit disc satisfying (3). Then the
following assertions hold:

(a) There exists a = a(w,n) € (0,00) such that if
”A]'”Hff’_j SO[, jzoa-"an_la
and the function z — [ f(fl e (f"‘l A, (&) d&, - - - d& belongs to H, then

all solutions of (1) belong to H.
(b) There exists a = a(w,n) € (0, oo) such that if

4]l <@, G=1,.

€n—2 En—1 d¢,
Sup w z)[/ / | Ao (&n— 1)I/ (Lén Idén_ll---ldé‘ll] <1

and the function z v [ [ [**72 A, (€, 1) dé,y -~ d; belongs to HY,
then the derivative of every so]utmn of (1) belongs to H.

Proof. By (6), we obtain

Lo (2)w(2) = w(2) /(;2\/051.../0'6771—1
[d6m| - - - |d&1]

SCw(z)/Oz/Oél.../Oém_li -
S herspamof [ 2l

= lei<lel
AT (- leh, 2 €D,

|d&m| - - - 1d&1|

J

< C'Z sup

j=1 1€1<]2|
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for some constants C' € (0,00) and C’' = C’'(w, n) € (0,00). Therefore Lemma 10 for
classical weights yields

|gslup w(§) ZImw(S) < Z SUP W(f)lmw( )
< C”ZZ sup

m= 1] 1|§|<z

AT (1 - Je™

< nC”Z sup [ 4;(€)] (1 - €)™
j=0 1€1<p
where p = (1+|2])/2 and C” = C"(w, n) € (0,00). Now, we have

E =supw(z Inw(z) < nC” Ajllae, <1
swp) Y0 S
for || A;llmz , < —e with all indices j = 0,...,n— 1. Hence the assertion (a) follows
by Theorem 2. The assertion (b) can be proved in a similar manner. O

3. Solutions in B*, Qk or Qx.o

We begin this section by stating a version of Theorem 1 where w(r) = (1 —r)?
with p € (0,00). After that we discuss the sharpness of Theorems 1 and 2 and some
of their consequences. In particular, consequences of Theorem 1, related to the cases
where all solutions of differential equations belong to B*, Qx or Qk o, are stated.

Corollary 4. Let f be a solution of the equation (1) with A, = 0. Then the
following assertions hold:
(a) If, for p € (0, oo)

n

k + p)k*?
H (||Ao||Hoo+Zk'( ZZ, . ><1,

then

1FO) + 330 Tl llf(k)(O)I
1—E

Ifllmge <
(b) If, for a € (0, )

n—1

~Iaj= (sl e [

=1

Il g
(1—r)

9)

k + o)kte
+ ”Al |Hoo —+ Zk'(kk—l“Ak_'_l”Hso—k—l) < ].,
k=1
then
1l < 12 =l ollmzs,, 1 FO)]+ 1) + X0 [T2 =1 F®(0)]
B = 1-F '

The following example shows that, in the case of equation (2), Theorem 2 and
Corollary 4, hence also Theorem 1, are sharp in the sense that we cannot replace
the assumption £ < 1or F <1by E < 1+¢€or F <1+ ¢, respectively, for any
e € (0,00).
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Example 5. Let us consider the equation (2).
(a) If A(z) = —(p+ a)(p+a+1)(1 —2)~2 for p € (0,00) and «a € [0,00), then
(2) has a solution base {f1, f2}, where

file) = (1 =277 and fo(z) = (1 - 2"+

Hence, if o = 0, then all solutions belong to H;° and E =1 in Theorem 2(a)
and Corollary 4(a). On the other hand, for any ¢ € (0,00), we find o =
a(e) € (0,00) such that f ¢ H* and E € (1,1 +¢) in these results.

(b) If A(z) = —a(l — 2)2 ((a— 1) (log =) ™ + (log 1jz)‘l) for a € [1,00),
then (2) has a solution base {fi, fo}, where

[e" «@ 2 —2a
fi(2) = (log 1;) and  fo(2) = (log 1;) /O (log 1f<> dc.
Here

z e —2a e —2«
/0 (log 1 —C) d¢| < (log 5)

7)1 < (log5) 1711+ (08 5)

for z € D. Hence, if @ = 1, then all solutions belong to B and F' = 1 in
Theorem 2(b) and Corollary 4(b). On the other hand, for any ¢ € (0, 00), we
find o = a(e) € (1,00) such that f; ¢ B and F € (1,1 + €) in these results.

Next we turn our attention to () and Qk o spaces. In particular, our purpose is
to improve results in [13].
Let Qk be the space of functions f € H (D) such that

sup /D F'(2)PK (4(2 a)) dm(z) < oo,

aeD

and

where K: [0,00) — [0, 00) is nondecreasing, g(z,w) = log|-"2| is Green’s function
and dm(z) is the Lebesgue area measure. Respectively, Qo is the space of functions
f € H(D) such that

lim [ 7P (g(z0) dn() = .

If K =1, then Qg is the Dirichlet space D.

For the next result, we introduce some properties of Qx and Qx,. We begin by
introducing a standard assumption which guarantees that (Qx contains non-constant
functions.

(i) If
(10) /oo K(r)e ™ dr < oo

does not hold, then Qi contains constant functions only.

In the future, we assume that K: [0,00) — [0, 00) is continuous, nondecreasing and
satisfies (10). Then the following facts are true:

(ii) The inclusion Qx C B is always valid. Moreover, Qx = B if and only if

(1) Y K(—1logr)

; W’rdr < Q.
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(iii) The inclusion D C Qg is always valid. Moreover, D = Qf if and only if
K(0) > 0, while D C Qk, if and only if K(0) = 0.
(iv) For a € [3,1), the conditions B* C Qk,0, B* C Qk and

' K(—1logr)

12 o A=rp

rdr < oo
are equivalent.
(v) If K(r) =P for p € (0,00), then Qx is the classical QP space.
Proofs of the facts (i)—(v) and more details about Qx spaces can be found in [4].
Now, by using the facts (i)—(iv) and the trivial inclusion B* C D for « € (0, 3),
we obtain the following consequence of Corollary 4.

Corollary 6. Let f be a solution of the equation (1) with A, = 0. Then the
following assertions hold:
(a) If (9) with o = 1 and (11) hold, then f € B = Q.
(b) If (9) with € [%,1) and (12) hold, then f € B* C Q.
(c) If (9) holds with o € (0,3), then f € B* C D C Qk. Moreover, f € B* C
D C Qx,o if K(0) = 0.

It is worth noticing that Corollary 6(c) improves [13, Theorems 2.1 and 2.6] in
the case where the nondecreasing function K is also continuous. In particular, the
condition concerning the coefficient Ag(z) is weaker in Corollary 6(c). Namely, in
Corollary 6(c), we only have to assume that || Aol HE 18 sufficiently small for

some £ € (0,00), whereas in [13, Theorem 2.1] or [13, Theorem 2.6] it is assumed
that [|Agl|ge, _ or || Aoz, is sufficiently small, respectively. Note also that, in

Corollary 6(c), we obtain f € B>, whereas in [13, Theorems 2.1 and 2.6] it is
obtained that f lies in a strictly larger Qx space and some assumptions on K are
needed.

Using Corollary 4 and [3, Theorem 5.1], we also find that if (9) holds with
a € (0,1), then f(e®) € A;_,, that is, the boundary function satisfies the Lipschitz
condition of order 1 — a. In particular, f belongs to the disc algebra A. Therefore, if
the assumption of Corollary 6(b) or 6(c) holds, we get f € QroNAor f € QxNA,
respectively. One may now ask whether the solutions could be analytically continued
to 0D if the coefficients of (1) grow slowly and have a nice boundary behavior. This
property is not true in general, as the following counterexample shows.

Example 7. The function fo(z) = 4 4 2z 4+ Yoo, 27¥2%" is one-to-one and
continuous in D, analytic in D, and all of the derivatives of fo converge uniformly in
D, see [16, p. 252]. Since |fo(z)| > 1 uniformly in D, we see that

_—fi—=1
A(z) = T

is analytic in D and, in fact, belongs to A. In other words, fo € A is a solution of
"+ +AR)f=0

with coefficients in \A. Even so, fy cannot be analytically continued to any point of

oD.

The last result of this section gives a sufficient condition for solutions of (2) to

be in B*. This time the condition is given by limiting the Maclaurin coefficients of
A(2).
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Corollary 8. Let f be a solution of the equation (2), where A(z) =Y p, ax2* €
H (D). Then the following assertions hold:

I'k+a+1) "
(3.-) Ifae (O, 1) and |Gk| < O[(]. - a)m fork e NU {0}, then f € B~.
1 [*T(k+z)
(b) Iflak|<y ) Tx)dxforkeNU{O}, therEB

(c) Ifa € (1,00) and |ag| < a(a—1)(1 + k) for k € N U {0}, then f € B*.
Proof. Since

1 Lk +2)
—— =) —— 22" 2zeD, ze€(0,0),
(1—2)* & KT(z) (0,00)

we obtain

- = 2d7$=ooi ZM 2 2F
(1—2)210g(ﬁ)_/1 (1-2z) ;k!/l T'(z) dz z".

Hence the assumption of the case (a) yields

o [ _dr (e
sup 4G~ e+ [T < sup 14

T 1
< sup la(l — |z)**tt ka] =a,
zeD

pe ElT(a+1)

and so the assertion (a) follows by Corollary 4. The assertions (b) and (c) can be
proved in a similar manner by using the Maclaurin series above.

Corollary 8(a) partially improves [13, Theorem 2.4] because there exists o € (0, 3)

such that a(1 — a)% > 1 for k > 12. Namely, in Corollary 8(a), we obtain
f € B%, whereas in [13, Theorem 2.4] the condition |ax| < 1, for k£ € N, gives that
f lies in a strictly larger space D. In fact, the assumptions in Corollary 8 allow

|ax| — oo as k — oo. This can be seen from the asymptotic estimates

D(k+a+1) % f12 Fgc+w) dx
lim k! =1 and lim 2L T@ 7 _ ,
k—o0 ke k—so0 k‘(log k‘)_l

which are obtained by applying Stirling’s approximation.

4. Polynomial coefficients

This section contains a straightforward proof of a part of [12, Theorem 8.3], re-
ferred to here as Theorem A. In the literature, one can find more technical proofs
based on, for example, Wiman—Valiron theory [12] and Herold’s comparison theo-
rem [8].

Theorem A. Let the coefficients Ay(2),...,A,—1(2) of (1) be polynomials and
An(z) an entire function with a finite order of growth. Then all solutions of (1) are
entire functions of finite order. Moreover,

(13) o(f) < max{l +0S1§1373(_1(1‘:1L:4;),0(An)}

for every solution f.
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It is a well-known fact that Theorem A is sharp. In fact, for every equation there
is a solution for which equality in (13) holds, as is shown in [6, Lemma 3.1].

Before the proof of Theorem A, we note that the end of this section also contains
an analogue of Theorem A for the k-order of the growth of solutions.

Proof of Theorem A. Assume first that o(A,) = 0 and let
deg(4;)
0<j<n—1 n —j

be arbitrary. Define w: C — (0,00) by w(z) = exp(—(|z| + R)*) with R € (0, 00) to
be specified later. Then, in Theorem 2, we have

Ipo(2) <2"/ /El

on Al J) )‘
S ~ sup elZ+R* > e D.
™ fwi<lel 5= ([l +R)m(“ b

a>1+

Em—1 M

A(m (e ‘ )| elenl R e |- |dey|

m

Here the first inequality follows from the estimate (::l'_’]) Py 0( ) = 2". The

<
second one is valid because, for a: C — [0, 00) and b: [0, 00) — [0, c0) such that ¥’ is
non-negative and nondecreasing,

* 2l 0D gl — / *a(w) gD ldwl < sup 20 L e o
| ety = [ i) dul < sup T, s,

which generalizes to

/ /61 / § )6b(|£m|)|d§ | |d§1| < sup L b(|2) 2eC
R AT T I '

Now, in Theorem 2, we have

_.. 'w)‘
Essupz_a_mz(lwl_l_R)m(a 1’

and hence, by using the fact that m(c — 1) > deg(An_p,) > deg(A™77) for all
m=1,...,n, we can find R such that £ < 1. Therefore Theorem 2 yields that every
solution f of (1) satisfies

sup |f(2)] exp(=(|z| + R)*) < oo,

and so the assertion follows.
Let 0(A,) € (0,00) and let oo > o(A,,) be arbitrary. Since trivially

z & En—1
/0/0 /0 An(€,) d€, -+~ d& | < exp((|2] + R)®), z€C,

for sufficiently large R, the assertion follows in a similar manner as in the case
above. 0

Now we turn our attention to the k-order of non-constant entire functions f

defined by
— 1 M
Uk(f) := lim sup %H—M

k € N.
r—00 lOgT
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Here log, z = logz and log; , = log (log,, ) for sufficiently large z € (0,00). In
particular, our purpose is to notice that [1, Theorems 4(i) and 4(ii)], which is an
analogue of Theorem A for the k-order of the growth of solutions, can be proved by
a similar deduction as in Theorem A. Namely, if A;(z) with j = 0,...,n are entire
functions and

a > max {Osglg_lak(Aj), 0k+1(An)}

for some k € N, then, by proceeding as in the proof of Theorem A with the choice
w(z) = 1/ expy,1((|2] + R)), we see that every solution of (1) satisfies

ea(f) < max max ou(A). (4}

0<j<n—1

Here exp, = exp z and exp;,; ¢ = exp (exp;, z) for z € (0, 00).

5. Proof of Theorem 1

We begin this section by stating and proving three lemmas. These lemmas will
then be used to prove Theorem 1. Recall that we use the notation w,(z) = w(2)(1 —
|z|)? for p € (0,00) and z € D.

Lemma 9. Let w: D — (0,00) be a radial weight satisfying (3). Then, for
feH(D),

(14) |f(D)|w(z) < Pa sup (7™ ©lw(€)(1 ~EN"] +C, z€D.

Here C € [0, 00) is independent of z and P, = [[,_, My with constants M}, as in (5).

Proof. Note first that the condition (3) implies (5) with some constants M, < M.
This follows directly from the inequality (1—s)~* < (1—s5)"}(1—7)~*=Y for s € [0, 7]
and k € N.

If R = R(w, M) €[0,1) is close enough to one, then (3) yields

@) < [P 400 + 101

< s [FO(©) [ 7560 + Oz
<M sup IF(©a(®) +1FO)z), R <2 <1

where the path of integration is the line segment from 0 to z. On the other hand, since
w is bounded, there exists a constant C' = C’(w, f, R) > 0 such that |f(2)|w(z) < C’
for |z| < R. Hence (14) holds in the case n = 1.

Next we assume that (14) holds for n = N € N. Then

va@smwpK/”W”“W““muumwow@LvN

lel<l| wn+1(v)

dr

wn41(r)

1€l
< Py sup [sup [If(N+1)(U)|WN+1(U)]/O

iel<lzl L i<l
< Py s [ FN DO |wn+1(8)] + Cns,

wmayumﬂ

and therefore (14) holds for n = N 4+ 1. Now the assertion follows by mathematical
induction. O
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Note that a result similar to Lemma 9 can be obtained without induction by
using the formula,

z &1 En—1 n—1 fJ(O) .
— (n) J
7(2) /0 /0 /0 F(E) dé d@+§ O

However, in this case, the constant P, may not be the best possible, depending on
the behavior of the weight w inside the unit disc.

We now proceed to prove the second lemma needed in the proof of Theorem 1,
essentially reversing the estimate obtained in Lemma 9.

Lemma 10. Let w: D — (0,00) be a radial weight satisfying (4) for some
e € (0,00) and m = m(w, €) € (0,00). Then, for f € H(D),
(15) 1FM(@)w(z)(1 ~|2)" < nl(1 +e)*msup |[f(€)lw(p) +C, z€D, neN,
€l=p
where p = p(e, |z|]) = (1 +¢€|z|)/(1 +¢€) and C > 0 is independent of z.

Proof. Since
p 1 1+e¢

< = :
PPl T p =z 14

Cauchy’s integral formula yields
If™ ()] < nl(1+e)" sup 17()IA—2)™", =z€D.
=p

Hence, by (4), we find R = R(w, e, m) € (0,1) such that
[fP (@) w(2)(1 = [2])" < nl(1 +e)"m sup |f(@)lw(p), R< 2| <1
=p

Moreover, there exists C = C(w, f,n, R) € (0,00) such that |f™(2)|w(z)(1—|z|)" <
C for |z| < R. Therefore (15) holds, and the assertion follows. O

For future use, we define the dilatation function f,(z) = f(rz), where z € D and
re[0,1).

Lemma 11. Let w: D — (0,00) be a radial weight such that (4) holds for some
e € (0,00) and m = m(w,¢) € (0,00). If f € H(D) satisfies sup, ¢ 1) || frl zee < 00,
then f € HZ and || fl|lug = sup,efoq) | frllme-

Proof. Assume first that f ¢ HS°. Then, for each n € N, we may choose z, € D
with |2,] > 1 — L such that | f(z,)|w(z,) > n. Let r, = |2,](1+¢€)/(1+ €|2,]). Then,
by (4),

I frnllree 2 | f (raén)lw(&n) = | f(2n)|w (Z"|Zin|1 :l'_—ie-lznl)
n 14 €|z 1 o
>w(zn) ( 14+¢ )ZRE_)OO’ fn—aa

as n — oo. This is a contradiction, and hence f € H.

Since M(t, f) = suPpe(oan | f (te?)] is a nondecreasing function of ¢, we have
sup,¢jo,1) [l frllmee < || fllzee. The converse inequality follows from the definition of
supremum and continuity of f. O
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Proof of Theorem 1. Without loss of generality, assume that A, = 0.
(a) If f is a solution of (1), then

n—1
(16) =)+ B fP(2) =0, z€D,

k=0
where B;(z) = Bj(z,r) = r"7A;(rz). Since f, € HF for r € [0,1), Lemma 9, the
equation (16) and Lemma 10 yield

|- (2)lw(2) < Py sup, (£ (©)lwn(€)] + Cn

< P, sup

lel<l=l | 5=

Z_: | Br(&)I(1 - |€|)”"°Ifr('“)(€)lwk(£)] +Cn

n—1
< P |I1Bollzrge M frllmze + D IBellre (k!(l +e)'msup | (©)lw(e) + ck) +Cp
k=1 =p
< E|fillae + C,
where the constants C, C; € (0, 00) are independent of z for j = 0,1,...,n. Hence

sup || fpllage < < 00,

rel0,1) T 1-FE

and consequently f € H® by Lemma 11.
(b) Similarly as in Lemma 9, we have

o g
17 @) < sup |FE)wE) / %w(z)ﬂf(onw(z), 2 €D,
1€]1<|2| o w\r

for f € H(D). Moreover, by applying Lemma 9 for f' and n — 1 instead of f and n,
we obtain

(18) |[f'(2)|w(z) < Poy sup [17™(©)|wn-1(8)] + C.

Hence, the conditions (18), (1) and (17) yield
|fr(2)lw(2) < FI| fillme + C,

where the constant C' € (0,00) is independent of z. Now the assertion f' € HX
follows by Lemma 11.
In the cases

F™+A4(2)f =0 and  f™ 4+ Ai(2)f' + Ao(2)f =0

for assertions (a) and (b), respectively, the estimate of Lemma 10 is not needed, and
hence the proofs above may be written directly for f instead of the dilatation f,.
Thus we also do not need Lemma 11 and consequently the assumption (4) regarding
the weight w is not necessary. O

6. Proof of Theorem 2

This section contains the proof of Theorem 2. Before the proof, we state the
following lemma which is a simple consequence of Leibniz’s rule and mathematical
induction.
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Lemma 12. If f, g € H(D), then

n

@) =3 () (19) " @), ze D,

§=0
for any n € N.

In order to simplify some of the formulas in the following proof, we use the
interpretation Z;:lo() = 0, that is, a sum, whose starting value of the summation
index is higher than the end value, has no summands.

Proof of Theorem 2. (a) If f is a solution of (1), then, by applying the identity

1) = [ r©de+ 10, zeD,
0
n times and using equation (1) and Lemma 12, we obtain

| (2)lw(2)

& En—1
/ / / [Ana (E)FOD(E) + -+ Ao(E) F(E0)] dbn- - - ds|w(2) + Cy

[ [ [ lzzéj 1 (5) (409) ) de-- e wta) + 1
where
Ch —f}EJBW(Z) j:: lf(J)(O)l + gl o), 9(2) = / /‘51 /& 1 n(&n) d&pn - - - d&;.
Since
£1 én_1n—1 k
[ >3 p(5) (420)" 6 dey e
0 k=0 j=
B n—1 k - &1 €n1—(k—p) (
_;_OJZO( 1)7 < )/ / / [AJ (&n—(e—i)) f (€n—(k—))
(

2o (Z__i) A “(sm)] [ (En) d- - dEx

j=

k k—j—1 ke A(j)f 0) (0) .
RRIpD (_1)J<J‘)(?§—kk2j+l>!zn "

|f(2)|w(z) < S |F(©)w(§) EEB‘*’(@ Y Inu(®)+C, z€D,

where [0, 2] is the closed line segment from 0 to z.
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Let now K be a compact subset of D containing the line segment [0, 2] for all
z € K. Then the formula above together with (7) and the estimate

sup |f(£)|w(§) <sup|f(§)lw(E), z€ K,
¢eo,2] ¢eK
yield

1

Since this holds for all compact sets K with the properties mentioned above, we
obtain || f|| g (p) < =5 = <, which completes the proof of assertion (a).
(b) Similarly as in the proof of part (a), we obtain

sup [F(©)l(€) < 7o < co.
£eK

|f'(2 )IW(Z
bn_o N— 1k-1 1-5)
D> (-1 ( ) (427)" 7 () - der| ()
k=1 5=0
En—2
Ao(€n-1)f(€n-1) dnor - - d1|w(2) + C1, 2z € D,
where
n—2 | £(j+1) 0 z En—2
Ci = ig’gw(z) ];0 |fj—|()|+”g”H8°(D)’ g(Z) = /(; . /0 An(fn—l) d§n—1 - d§1
Since
En—2
Ao(&n-1)f(En-1) Ay - - - d&;
En—2 En—1 |d€n
s 17 (©)lole ] / T et [ S e
z En—2
+ 1 £( Ao(€n-1) dép—1---d&|, z€ D,

and
1

/0 /05 1 kz: 1)3( ) (Al(cj)f/) (k—1—3) (o) dr- -t

k=1 j=0
n 1

> JANb> [ 1(‘1)m_j<n;1 ; )A(""”(fm)] (6m) - 6

n—1 k—1 k—j—2 A(j) ’ 0
_ 3 (-1y k—1 ( k f) 0) Skt L e D
i J(n—k+j+1) ’ ’

k=1 j=0 [=0

we have

Eale) < s 1F(E(©) supas(e) [Z

En—2 En—1
o [ [ lcgn o] 46, 2D
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Here
. U]
(9)
c ( ) n22|f(1+1)(0)| +n 1 k— 1ki2< 1)‘(Akj f/) (0)‘
= supw(z
2eb =0 ’ k=1 j=0 (=0 (n—k+j+1)!
z En—2
O | [ [ Al deo - ds| + oz
zeD 0 0
< 0
because

En—2 En—1 dn
supwz)/ / |Ao<§n1|/ 'f 1dnil -+ dei] < o0

z€D
by (8), and [; Sn=1 14l i zero only if £,y = 0. Hence (8) yields

w(én)
, C
sup | f'(§)w(§) < <0
¢ek 1-F
for all compact sets K C D containing the line segments [0, z] for z € K, and
consequently f' € HX(D). O
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LINEAR DIFFERENTIAL EQUATIONS WITH
SLOWLY GROWING SOLUTIONS

JANNE GROHN, JUHA-MATTI HUUSKO AND JOUNI RATTYA

ABSTRACT. This research concerns linear differential equations in the unit disc of the
complex plane. In the higher order case the separation of zeros (of maximal multiplicity)
of solutions is considered, while in the second order case slowly growing solutions in H>,
BMOA and the Bloch space are discussed. A counterpart of the Hardy-Stein-Spencer
formula for higher derivatives is proved, and then applied to study solutions in the
Hardy spaces.

1. INTRODUCTION

A fundamental objective in the study of complex linear differential equations with
analytic coefficients in a complex domain is to relate the growth of coefficients to the
growth of solutions and to the distribution of their zeros. In the case of fast growing
solutions, Nevanlinna and Wiman-Valiron theories have turned out to be very useful
both in the unit disc [10, 24] and in the complex plane [23, 24].

We restrict ourselves to the case of the unit disc D = {z € C : |z| < 1}. In addition to
methods above, theory of conformal maps has been used to establish interrelationships
between the growth of coefficients and the geometric distribution (and separation) of ze-
ros of solutions. This connection was one of the highlights in Nehari’s seminal paper [25],
according to which a sufficient condition for the injectivity of a locally univalent mero-
morphic function can be given in terms of its Schwarzian derivative. In the setting of
differential equations, Nehari’s theorem [25, Theorem I] admits the following (equivalent)
formulation: if A is analytic in D and

sup |A(2)I(1 - |2%)? (1.1)

is at most one, then each non-trivial solution (f # 0) of
'+ Af =0 (1.2)

has at most one zero in D. A few years later, in 1955, Schwarz showed [36, Theorems 3—
4] that if A is analytic in I then zero-sequences of all non-trivial solutions of (1.2) are
separated in the hyperbolic metric if and only if (1.1) is finite. The necessary condition,
corresponding to Nehari’s theorem, was given by Kraus [22]. For recent developments
based on localization of the classical results, see [5]. In the case of higher order linear
differential equations

FE Ay D o A f 4+ Agf =0, keN, (1.3)
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with analytic coefficients Ag, ..., Ax_1, this line of reasoning has not given complete
results. Some progress on the subject was obtained in the seventies and eighties by Kim
and Lavie, among many other authors.

Nevanlinna and Wiman-Valiron theories, in the form they are known today, do not
seem to be sufficiently delicate tools to study slowly growing solutions of (1.2), and hence
different approach must be employed. An important breakthrough in this regard was
[33], where Pommerenke obtained a sharp sufficient condition for the analytic coefficient
A which places all solutions f of (1.2) to the classical Hardy space H?. Pommerenke’s
idea was to use Green’s formula twice to write the H2-norm of f in terms of f”, employ
the differential equation (1.2), and then apply Carleson’s theorem for the Hardy spaces
[8, Theorem 9.3]. Consequently, the coefficient condition was given in terms of Carleson
measures. The leading idea of this (operator theoretic) approach has been extended to
study, for example, solutions in the Hardy and Bergman spaces [28, 35], Dirichlet type
spaces [19] and growth spaces [16, 21], to name a few instances.

Our intention is to establish sufficient conditions for the coefficient of (1.2) which place
all solutions to H*°, BMOA or to the Bloch space. In principle, Pommerenke’s original
idea could be modified to cover these cases, but in practice, this approach falls short
since either it is difficult to find a useful expression for the norm in terms of the second
derivative (in the case of H*®) or the characterization of Carleson measures is not known
(in the cases of BMOA and Bloch). Concerning Carleson measures for the Bloch space,
see [13]. Curiously enough, the best known coefficient condition placing all solutions of
(1.2) to the Bloch space is obtained by straightforward integration [21]. Our approach
takes advantage of the reproducing formulae, and is different to ones in the literature.

2. MAIN RESULTS

Let ‘H(D) denote the collection of functions analytic in D, and let m be the Lebesgue
area measure, normalized so that m(D) = 1. By postponing the rigorous definitions
to the forthcoming sections, we proceed to outline our results. We begin with the zero
distribution of non-trivial solutions of the linear differential equation

"+ Agf" + Aif + Agf =0 (2.1)

with analytic coefficients. Note that zeros of non-trivial solutions of (2.1) are at most
two-fold. Let ¢q(z) = (a — 2)/(1 —az), for a,z € D, denote a conformal automorphism
of I which coincides with its own inverse.

Theorem 1. Let f be a non-trivial solution of (2.1) where Ag, A1, As € H(D).

(i) If A
sup [A4;(2)|(1 = |2[?)* 7 <00, j=0,1,2, (2.2)
zeD

then the sequence of two-fold zeros of f is a finite union of separated sequences.

(i) If
sup /D A5(2)[(1 = |5 (1 = [ga(2) 2 dim(z) < 00, j=0,1,2,  (2.3)

then the sequence of two-fold zeros of f is a finite union of uniformly separated
sequences.

Theorem 1(i) should be compared to the second order case [36, Theorem 3|, which
was already mentioned in the introduction. For the second order counterpart of The-
orem 1(ii), see [14, Theorem 1]. By a standard transformation as in [23, p. 74|, both
[36, Theorem 3] and [14, Theorem 1] admit immediate generalizations to second order
differential equations (1.3) with an intermediate coefficient A;. The proof of Theorem 1
is presented in Section 3, and it is based on a conformal transformation of (2.1), Jensen’s
formula, and on a sharp growth estimate for solutions of (2.1). Theorem 1 extends to
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the case of higher order differential equations (1.3), but we leave details for the interested
reader.

The following results concern slowly growing solutions of the second order differential
equation (1.2), however, our methods could also be applied in more general situations.
A sufficient condition for the analytic coefficient A, which forces all solutions of (1.2) to
be bounded, is given in terms of Cauchy transforms. The space I of Cauchy transforms
consists of functions in #(ID) that take the form [.(1 — (2)~ du(¢), where p is a finite,
complex, Borel measure on the unit circle T = dD. For more details we refer to Section 5,
where the following theorem is proved.

Theorem 2. Let A € H(D).
(i) If limsup sup ||A,.|x < 1 for

r—1— z€D
// AT d¢, ueD,
1—uw

then all solutions of (1.2) are bounded.
(ii) If a primitive of A belongs to the Hardy space H', then all solutions of (1.2) have
their first derivative in H'.

For f € H(D), f' € H' if and only if f admits a continuous extension to D and is abso-
lutely continuous on T [8, Theorem 3.11]. Therefore, as a consequence of Theorem 2(ii),
we obtain a coefficient condition which places all solutions of (1.2) to the disc algebra.

The question converse to Theorem 2(i) is open and appears to be difficult. The bound-
edness of one non-trivial solution of (1.2) is not enough to guarantee that (1.1) is finite,
which can be easily seen by considering the solution f(z) = exp(—(1 + 2)/(1 — z)) of
(1.2) for A(z) = —4z/(1 — 2)*, z € D. However, if (1.2) admits linearly independent
solutions f1, fo € H* such that inf.cp (|f1(2)| +|f2(2)]) > 0, then (1.1) is finite. This is
a consequence of the Corona theorem [8, Theorem 12.1], according to which there exist
91,92 € H™ such that fig1 + fog2 = 1, and consequently A = A + (fig1 + f292)" =
2(fi91 + f395) + 191 + fad5.

We proceed to consider BMOA, which consists of those functions in the Hardy space
H? whose boundary values are of bounded mean oscillation. The following result should
be compared to [33, Theorem 2] as BMOA is a conformally invariant subspace of H?.

Theorem 3. Let A € H(D). If

SU (0] — |2z — 22 ml(z .
sup (o8 =5 ) [ 1A P70 - Lea() ) (2.4

a€D
is sufficiently small, then all solutions of (1.2) belong to BMOA.

To the best of our knowledge BMOA solutions of (1.2) have not been discussed in the
literature before. The coeflicient condition in Theorem 3 allows solutions of (1.2) to be
unbounded, see Example 2 in Section 6. By [28, Lemma 5.3] or [40, Theorem 1], (2.4) is
comparable to

log
up LB T /|A (1— |22 din(2), 25)

acD 1- |a|
where S, = {re? : |a] < r < 1, |0 — arg(a)| < (1 — |a|)/2} denotes the Carleson square
with respect to ¢ € D\ {0} and Sy = D. See also [37, Lemma 3.4]. Solutions in VMOA,
the closure of polynomials in BMOA, are discussed in Section 6 in which Theorem 3 is
proved.
The case of the Bloch space B is especially interesting. For 0 < a < oo, let £L* denote
the collection of those A € H (D) for which

e «
1 4]l ge = sup [A(2)](1 — |2]*) (log > < o0.
z€D 1-— |Z|
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The comparison between H5°, £* and the functions for which (2.4) is finite is presented
in Section 4. It is known that, if ||A| .1 is sufficiently small, then all solutions of (1.2)
belong to B. This result was recently discovered with the best possible upper bound for
| Allz1 in [21, Corollary 4(b) and Example 5(b)]. Moreover, if A € £! then all solutions
of (1.2) are in H? by [33, Corollary 1]. We point out that, if A € £ for any 1 < a < oo,
then all solutions of (1.2) are bounded by [18, Theorem G(a)]. Solutions in the little
Bloch space By, the closure of polynomials in B, are discussed in Section 7, among other
results involving the Bloch space.

The proof of Theorem 2(i) is based on an application of the reproducing formula for
H' functions, and it is natural to ask whether this method extends to the cases of B and
BMOA. In the case of B, by using the reproducing formula for weighted Bergman spaces,
we prove a result (namely, Theorem 10) offering a family of coefficient conditions, which
are given in terms of Bergman spaces induced by doubling weights. The case of BMOA,
with the reproducing formula for H', is further considered in Section 8.

A careful reader observes that the results above are closely related to operator theory.
If f is a solution of (1.2), then

f(z) = — /O (/OC F(w) A(w) dw> d¢ + f'(0)z + f(0), =€D. (2.6)
By denoting
sane = [ ( " Fw)Aw) aw)dc, e,

we obtain an integral operator, induced by the symbol A € H (D), that sends H (D) into
itself. With this approach, the search of sufficient coefficient conditions boils down to
finding sufficient conditions for the boundedness of S4. Therefore, it is not a surprise
that many results on slowly growing solutions are inspired by study of the classical integral
operator

T,(f)(z) = /0 OO e

see [2, 3, 7, 32, 38]. The strength of the operator theoretic approach is demonstrated
by proving that the coefficient conditions arising from Theorem 10 are essentially inter-
changeable with A € £!, see Theorem 11.

Deep duality relations are implicit in the proofs of Theorems 2(i), 10 and 14. The
dual of H! is isomorphic to BMOA with the Cauchy pairing by Fefferman’s theorem
[12, Theorem 7.1], the dual of the disc algebra is isomorphic to the space of Cauchy
transforms with the dual pairing (f, Ku) = [ fdp [6, Theorem 4.2.2], and the dual of
Al is isomorphic to the Bloch space with the dual pairing (f,g) Az = Jp fgwdm [30,
Corollary 7].

Finally, we turn to consider coefficient conditions which place solutions of (1.2) in the
Hardy spaces. Our results are inspired by an open question, which is closely related to
the Hardy-Stein-Spencer formula

2
11 = 1£0)P + 2 [ 15G)P217 )P log = dm(a), (2.7
D

2|

that holds for 0 < p < oo and f € H(D). For p = 2, (2.7) is the well-known Littlewood-
Paley identity, while the general case follows from [17, Theorem 3.1] by integration.

Question 1. Let 0 < p < co. Is it true that
1/ e < C(p)/le(Z)lp_zlf”(Z)IQ(l = [2[)? dm(z) + | F ()PP + | f'(0)” (2.8)

for any f € H(D), where C(p) is a positive constant such that C(p) — 0T as p — 07
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Affirmative answer to this question would have an immediate application to differential
equations, see Section 9.2. In the context of second order differential equation (1.2), it
suffices to consider Question 1 under the additional assumptions that all zeros of f are
simple and f” vanishes at zeros of f. The estimate in Question 1 is valid for a non-trivial
subclass of H(ID), see Section 9.1.

Function f € H(DD) is uniformly locally univalent if there is a constant 0 < § < 1 such
that f is univalent in each pseudo-hyperbolic disc A(z,d) = {w e D : |p.(w)| < d} for
z € D. A partial solution to Question 1 is given by Theorem 4. Here a < b means that
there exists C' > 0 such that a < Cb. Moreover, a < b if and only if ¢ < b and a 2 b.
Theorem 4. Let f € H(D), and k € N.

(i) If0 <p <2, then
k-1 ‘
15 < /D FEP2E P = 22 dmz) + Y 1FD0))P (2.9)
j=0

(ii) If 2 < p < o0, then

k-1

/le(Z)I”‘zlf(k)(Z)lz(l— 2% dm(z) + ) IO S 11f - (2.10)

7=0
(iif) If 0 < p < 0o and f is uniformly locally univalent, then (2.10) holds.

The comparison constants are independent of f; in (i) and (ii) they depend on p, and
in (iil) it depends on & (the constant of uniform local univalence) and p.

The proof of Theorem 4 is presented in Section 9, and it takes advantage of a norm
in HP, given in terms of higher derivatives and area functions, and an estimate of the
non-tangential maximal function.

3. ZERO DISTRIBUTION OF SOLUTIONS
For 0 < p < oo, the growth space Hg° consists of those g € H(D) for which
lgllzzze = sup |g(2)|(1 = |2]*)? < oo.
zeD

We write H> = Hg°, for short. The sequence {z,};2; C D is called uniformly separated if

el

neN\{k}

Zn — %
Tk >0,
1—Z,2k

while {2z,}22; C D is said to be separated in the hyperbolic metric if there exists a con-
stant § > 0 such that |z, —zx|/|1 —Zn2k| > 6 for any n # k. After the proof of Theorem 1,
we present an auxiliary result which provides an estimate for the number of sequences in
the finite union appearing in the claim.

Proof of Theorem 1. (i) If f is a non-trivial solution of (2.1), then g = f o ¢, solves
" + Bag” + B1g' + Bog = 0, (3.1)

where
/!

o= oo s, Bam o35
‘ (3.2)

SOH 2 (,0”/
By = (A1 0 ga)(¢l — (Az 0 ga)gll 43 (—) _ Ya,
Pa, Pa
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By a conformal change of variable, we deduce || Bo||mge = || Aol ge,

6|CL|
BQ H>© < sup AQ z 1—|z 2 + sup

(1= [2*) < [|A2llzpe + 12,

1Billrge < sup [Ai(2)] (1 = [2[*)? + sup [Ag(w)] (1 — |w]?)
zeD weD

1
Py (pa(w)) ‘( 2
e (1 = |pa(w)[7)
@ (pa(w)) ¢
12|a|2 2,2 a 212
+sup ———— (1 — |z +sup ———— (1 — |z
2€D |1—az|2( 121 2€D |1—az|2( 1=
< ||A1]lrge + 4] Azl + 72.

laf®

Let Z = Z(f) be the sequence of two-fold zeros of f, and let a € Z; we may assume
that Z is not empty, for otherwise there is nothing to prove. Then, the zero of g = fop,
at the origin is two-fold. By applying Jensen’s formula to z + g(2)/2? we obtain

r 1 2
log——— < —/ logt
2 B <oy lom

zZLEZ
0<|a(zk)|<r

g(re”)
g"(0)

2
‘d@—i—log 5, 0<r<l, (3.3)

where log™ z = max{0,log r} for 0 < z < co. Since

1 r
| ( 2 1°g|%<zk>|>rdr=

LEZ

1 ,
/ rlog ————dr
zpe2\fa} ” lPa (@0l |a(zk)|
0<|a(zg)|<r

S (1)),

zr€Z\{a}

>

| —

the estimate (3.3) implies

. (- |$0a(zk)|2)2 §4/10g+ 9(2)

1
ne2\{a} D g"(0)

Consider the normalized solution h(z) = g(z)/¢”(0) of (3.1), which has the initial
values h(0) = A’'(0) = 0 and h”(0) = 1. By the proofs of the growth estimates [18,
Theorems 3.1 and 4.1, and Corollary 4.2], there exists an absolute constant C7 > 0 such
that

‘ dm(z) + 4log2 + 4.

_/ 10g+ |h ’I"e |d‘9 < C] Z Z/ / |B(" 36 S)B-j"r’ﬂ—] ds do.

7=0n=0

By Cauchy’s integral formula and the estimates above, there exists a positive constant
Cy = C2(||A0||H3°°» ||A1||H§<>, ||A2||H100), independent of a € D, such that

”Bj('n)HHg’iHnSCQ’ i=0,1,2, n=0,....5

Let M (S, Bj(»n)) denote the maximum modulus of B](-n) on the circle of radius s. Now

sup > (1 lpalzo) )

€2 e2\{a}

< 4log2+ 4 + 167 Cy sup ZZ// Moo (s, B(n) )(1—s)* It dsdr

a€Z 20 n—0

<410g2+4+1677010222// —— dr < oo.

7=0n=0

The assertion of Theorem 1(i) follows from Lemma 5(i) below.
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(ii) As in the proof of (i), we conclude that g = f o ¢, is a solution of (3.1), where the
coefficients By, By, Bs depend on a € D. By (2.3),

sup / 1B (2)|(1— [>T+ dm(z) <00, j=0,...,2, n=0,....5. (34)
acD JD

In order to conclude (3.4), first get rid of the derivatives by standard estimates, and then
integrate the coefficients (3.2) term-by-term.

Let Z be the sequence of two-fold zeros of f. As above, there exists an absolute
constant C3 > 0 such that

sup Z log—— o ( O < log 2 +C3 Sup ZZ/ |B(n) — |2H)2 7 dm(z)

a€Z z2LEZ 7=0n=0
0<]pa(zr)I<r

for 0 < r < 1. By letting » — 17, we obtain
sup > (1= pa(z)?) <
€2 c2\[a}
This implies the assertion of Theorem 1(ii) by Lemma 5(ii) below. O

The following lemma gives an estimate for the number of sequences in the finite union
appearing in the statement of Theorem 1. For more details, we refer to [9, Chapter 2.11].

Lemma 5. Let Z = {2} be a sequence of points in D such that the multiplicity of each
point is at most p € N, and let M € N.

(i) If

sup > (1= lpa(z)?)® < M < o,
9€Z  e2\{a}

then {zi} can be expressed as a finite union of at most M +p separated sequences.

(ii) If

sup Z (1= |pa(zk)?) < M < oo, (3.5)
€2 ez\{a}
then {zx} can be expressed as a finite union of at most M +p uniformly separated

sequences.

Proof. (i) Assume on contrary to the claim, that every partition of Z into separated
subsequences is a union of at least M + p + 1 sequences. Then, for each n € N, there
exists a point z,, € Z such that

#{zk € Z ., (zk)] < 2_”} >M+p+1.
Now
p+M=p+ > (1- oo (21)2)° > (- |02 (1) 2)
z2,€2\{zn} 2LEZ
>#l € 2 oo (z) <277 (1—4")2 > (M +p+1)(1—4")>2

By letting n — oo we arrive to a contradiction. Hence Z can be expressed as a union of
at most M + p separated sequences.

(ii) By part (i), Z can be expressed as a union of at most M + p separated sequences,
and each of these separated sequences is uniformly separated by (3.5). O

Ezample 1. If {f, g} is a solution base of (1.2), then {f2, g2, fg} is a solution base of
h" + 4AK +2A'h = 0. (3.6)
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Let us apply this property to a classical example [36, p. 162] originally due to Hille [20,
p. 552]. For v > 0, the differential equation (1.2) with A(z) = (1+442)/(1 —2%)2, z € D,
admits the solution

1
fz) =V1-22 Sin<’ylogli—i>, 2z € D.

The zeros of f are simple and real, and moreover, the hyperbolic distance between two
consecutive zeros is precisely 7/(27). Consequently, (3.6) admits the solution h = f?
whose zero-sequence is a union of two separated sequences. This sequence is a union
of two uniformly separated sequences (in fact, a union of two exponential sequences),
since all zeros are real [8, Theorem 9.2]. In this case the coeflicients of (3.6) satisfy both
conditions (2.2) and (2.3). o

4. INCLUSION RELATIONS BETWEEN FUNCTION SPACES

The following result can be used to compare the coefficient conditions. In particular,
Lemma 6 shows that the coefficient condition in Theorem 3 (which implies that all solu-
tions of (1.2) are in BMOA) is strictly stronger than A € £! with sufficiently small norm
(which places all solutions in BN H?). And further, Lemma 6 proves that A € £ with
sufficiently small norm is strictly stronger than the coefficient condition in Theorem A
below (which forces solutions to be in Hardy spaces). The reader is invited to compare
Lemma 6 to the results in [4, Section 5].

If A€ H(D) and

sup / AP - 12201 [pa()[2) dm(2) (4.1)
D

ach
is finite, then we write A € BMOA”. Note that A € BMOA” if and only if there exists
a function g = g(A) € BMOA such that A = ¢g”, which follows from standard estimates.
Correspondingly, if A € H(D) and

2
e
I AlIf poar = sup <10g —> / JA(2)]2(1 = 2*)2(1 = |pa(2)]?) dm(z) < o0,
aeD 1 — |al D

then A € LMOA”. As expected, LMOA” consists of those functions in H (D) which can be
represented as the second derivative of a function in LMOA. For more details on LMOA,

see [4, 37]. Finally, part (iv) of Lemma 6 gives a sufficient condition for a lacunary series
to be in LMOA".

Lemma 6. The following assertions hold:

(i) £ C L* C Hs® for any 0 < ag < aj < 00;

(ii) LMOA” ¢ £ € £L* C BMOA” C H$® for any 1/2 < a < 1;

(it) £3/2 C LMOA”, and LMOA” \ ;.o £ is non-empty;

(iv) iof {nr}32y € N and {ar}32, C C satisfy the conditions infren ngr1/ny > 1 and

Sy lak|?(logng)3 /ni < oo, then (Y 5o arz™) € LMOA”.
Proof. As (i) is an immediate consequence of the definitions, we proceed to prove (ii). Let
A € LMOA”. Since (2.5) is finite and | A|? is subharmonic, we deduce ||A|2, < [|A|Eyioar-
Assume on contrary to the assertion that LMOA” = £1. By [15, Theorem 1], there exist
Ap, A1 € H(D) satistying
1

(L [eP)log 155,

[Ao(2)] + |A1(2)| =< 2 eD.

Since Ag, A1 € LMOA”, we deduce

dm(z) < Ao LA (AN — 12 dim(z) < =14
/ <1—|z|2>(log1f,z|)2”La(' o)+ = i) 5 =g
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as |a] — 17. This contradicts the fact

/ dm(z) _ 1—1d la] > 1-
e 2 e )
So (1—[22)(log =557)"  log =g

1—|z]

and hence LMOA” # £!'. The remaining part of (ii) is a straightforward computation.
Note that the inclusion £* C BMOA”, for any 1/2 < a < 0o, is strict by A(z) = (1—2)72

To prove (iii) it suffices to prove the latter assertion, as £3/2 ¢ LMOA” follows directly
from (2.5). If A(z) = (1 — 2)~%(log ﬁ)_l for z € D, then A ¢ {J; o0 £% To show
that A € LMOA”, it is enough to verify (2.5) for 0 < a < 1. Since

log % > log > log z € 8, (4.2)

2(1—a)’

we conclude

log

sup ) /|A 21— |22)* dm(2)

0<a<l1 1 —a

2
1-— dr < oo.
S, [ et <o

In order to prove (iv), let A(z) = >"77, akz”k for zeD. If h(z) = > oo, 2" for z € D,
then h € B with My (r,h) = Zk 1P Slog s for 0 < < 1 By the Cauchy-Schwarz

inequality,
0 1/2 e 1/2
A) < 2y 1 0<r<l.
>N<;|ak|r ) (e =) o<

(4.3)

It follows that

( 08 1- |a|
sup —————

wch 1 —a] / |A(Z (1- |Z| ) dm(z)

2
5/ Moo(r, A)2(1 — 1)3 <log16 ) dr
0 -7
= Z| lognk
—

1
Sl [ = (lou

k=1 0
where the asymptotic equality follows from [28, Lemma 1.3]. This completes the proof of
Lemma 6. U

5. BOUNDED SOLUTIONS

We consider bounded solutions of (1.2). As usual, the space H> consists of f € H(D)
for which || f||gree = sup,ep |f(2)] < co. The proof of Theorem 2(i) takes advantage of
the well-known representation formula

B 1 2w g(eit)
g(¢) = %/0 mdt» ¢eD, (5.1)

which holds for any g € H' [8, Theorem 3.6].
Let M be the collection of all (finite) complex Borel measures on T. For u € M, the
total variation measure |u| is defined as a set function

|ul(E) = sup Z |u(E
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where the supremum is taken over all countable (Borel) partitions {£;} of E C T. More-
over, ||u|| = |u|(T) is the total variation of p [34, Chapter 6]. Let K be the space of
Cauchy transforms, which consists of analytic functions in D of the form

d,
(k) = [HE cen,
Tl—(z
for some p € M. For each f € K there is a set M; = {,u eM: f= K,u} of measures
that represent f, and produce the norm
£l = inf {|lu] : p € My}
We refer to [6] for more details.
Proof of Theorem 2(i). Let f be any solution of (1.2), and write f,(z) = f(rz) for 0 <

r < 1. Then f, is analytic in D and satisfies f”(w) + r>A(rw) f,(w) = 0 for w € D. By
(2.6), (5.1) for g = f,, and Fubini’s theorem, we conclude

2 . z ¢ 2A.T ,
o =g [ o [ TEE dwdcar+ 100+ £10) z€D.

For all 0 < r < 1 sufficiently large, and z € D, there exists u,, € M such that

AT,Z(U) = (K:LLT)Z)(U’L u € ]D)) (52)
and ||y .|| < 9 for some absolute constant 0 < § < 1. Hence, by [6, Theorem 4.2.2],
r2 27 ) i
fr2) = =g | @ B @ i+ 10z + £:(0)

=~ [ 1@de@ + [0+ £,(0), z€D.
T

By [34, Theorem 6.12], there exist measurable functions h,. , such that |h, .({)| = 1 for
all ¢ € T and the polar decompositions dp, , = hy . d|jr .| hold. Therefore

|fr(2)] < Afr(w)}LT,Z($)d|NT,Z|(w) + 100+ 1£-(0)]

éMMwAﬂmA+W®WHM®

< el ll ezl + 1F0) +[£(0)], 2 € D.

This implies || f]lze < (|£(0)| 4+ |f(0)])/(1 — d), and hence completes the proof of Theo-
rem 2(i). O

Let 0 <p < oo, n€Nand f € H(D). The proof of Theorem 2(ii) relies on a classical
representation

p/2 n-l
_ (W) () [2(1 — [512)20-2 dim( G (o) [P _
M%AA<AJf<WU|PF2dm)|m+2v<w, (5.3)

=0

which involves non-tangential approach regions; see [1, p. 125], for example. Hardy

spaces HP are further considered in Section 9. For a fixed 1 < a < 00, the non-tangential

approach region of aperture 2arctan v «? — 1, with vertex at ¢ € T, is given by T'(¢) =

{zeD : |z—(| <a(l —|z|)}. The corresponding non-tangential maximal function is
Q)= sup |f(z)|, CeT. (5.4)

z€(C)
Proof of Theorem 2(ii). Let A(z) = > 07 janz" for z € D. By the assumption, A(z) =
Jo A(Q) d¢ satisfies A € H'. We compute

! ' n _ > |an|
/0 Moo(r,A)(l—r)drg/O <Z|an|r)(1—r)dr—zmgﬂﬂfl”m,

n=0 n=0
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where the last estimate follows from Hardy’s inequality [8, p. 48]. By [19, Corollary 3.16],
we conclude that all solutions of (1.2) are bounded.
Let f be a solution of (1.2). Then

- /0 QA+ F(0), zeD,

and hence by (5.3), we deduce

||f||H1<H/ I ch L1FO)

1/2
= / ( / |f<z>|2|A<z>|2dm<z>) 1dC]+ 1£(0)] + 1 £(0)]
T ')
<l [ AlLs + 17O + 17" (0).
The assertion f' € H' follows. O

Remark 1. For each 0 < r < 1 and z € D, it is easy to see that

diy . (x (// d dC) 5’ rzeT,

is one of the representing measures for which (5.2) holds, and hence |4,
Moreover, the behavior of the second primitive of A is controlled by this measure in the
sense that

/Oz /04 A(rw) dwdg:/oz /04 (;ﬂ/ﬂrw{fw)zx(rw) deCZ/TW’

which follows from Cauchy’s integral formula and Fubini’s theorem.

6. SOLUTIONS OF BOUNDED AND VANISHING MEAN OSCILLATION

The space BMOA consists of those f € H(D) for which

I flIBaoa = Slelg ||fa||?{2 < o0, (6.1)
a

where f,(2) = f(pa(2)) — f(a) for a,z € D. By the Littlewood-Paley identity,
1/ Emoa < 4 Sup /le'(Z)IQ(l — lpa(2)]?) dm(2) < 4]/ f|Enoas (6.2)

see [11, pp. 228-230]. Clearly, BMOA is a subspace of the Bloch space B.
A positive Borel measure p on D is called a Carleson measure, if

w(S
”NHCarleson = Sup M < o0.
1 —|a

There exists a constant 1 < o < oo such that
1 1—|al?

«
1—lal = |1 —az|?

=alpy(2)l, z€8., aeD,
since |1 —az| < |1 — |al?| + ||a|?> — @z| < 1 — |a|. Consequently,
1
”NHCarleson SUP / Fa—— ) < a-sup / |<,0a )| du(z) (6.3)
Sa L= |a|

acD

We prove Theorem 3 and consider its counterpart for VMOA. Theorem 3 is inspired
by [37, Theorem 3.1]. We return to consider BMOA and VMOA solutions in Section 8,
where parallel results are obtained by using the representation formula for H' functions.
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Proof of Theorem 8. The proof consists of two steps. First, we show that

sup s (log |> L1422 e dm(e) < 1A TRyon- (64)

1/2<r<1 a€D

Denote
I(a,r) = /D [A(r2)P(1 = 121%)*(1 = |@a(2) ) dm(z), 0<r <1, acD,

for short. For |a] < 1/2 the estimate (6.4) is trivial. Let 1/2 < |a| < 1/(2 — 7). Since
|1 —@z| < 2|1 —az/r| for |z| < r, we deduce

1—lal® dm(z
o= [ (- Ak
D(O,r) |1 —a ‘ r
4 e -2
<5 /D AP PR~ o)) () < 16 AR yions (Tox 1)

for any 1/2 <r < 1. Let 1/(2 —7r) < |a| < 1. Now

1—212)%(1 = o(2)?
) <l [ (log'“j_%')ﬁ im(2)

s 1 (=91 la] s
Sl | (1= o)t (log 21— Jals)

1-rs

Ast e (1—1t)?(log 1%;) is decreasing for 0 < t < 1, we apply r < 2 — 1/|a| to obtain

< [l A|I2 “ ds IAIZ: ' 3
a,r) S 141 (1~ o) e [P
0 (1—s2(log1%)° (- la)*(log 15)° Ju
-2
S | AJ% (log —5 .
<1l (1o 1)
Since [|A]|%; < [|Allfyoar by the proof of Lemma 6(ii), this completes the proof of (6.4).
Second, we proceed to consider the differential equation (1.2). Let f be a non-trivial

solution of (1.2). By Lemma 6(ii) and [21, Corollary 4(b)], we may assume that f € B.
Now, (1.2) and (6.2) yield

1 Baion < sup <|f’(m)|2(1 e+ [ PR - - |soa<z>|2>dm<z>>
acD D

S I fellE + sup /D fr(2) = Fr(@)P [AG2) (1 = [21%)2(1 = |pa(2)?) dm(2)
+ sup Ifr(a)IQ/ |A(r2)P(1 = [2)*(1 = [@a(2)[*) dm(z)
a€D D

SIfla+ I+ 12

with absolute comparison constants. By Carleson’s theorem [8, Theorem 9.3], (6.1) and
(6.3),

Bssw [0 [Alrea) (1 = lea) ) lea)] dm:)
Ssup ([l s [ 1Al P~ leuP) @l )] o))

S £ Baoa -ilelg/DIA(TZ)IQ(l — 2)2(1 = lge(2)[?) dm(2).
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Estimation of I is easier. By [12, Corollary 5.3],

12 5 Wlon -sup (tog =5 ) [ 1AGRRQ — 2220~ )P i),
If (2.4) is sufficiently small, then (6.4) implies that || f,||gmoa is uniformly bounded for
1/2 < r < 1. By letting » — 17, we conclude f € BMOA. d

The following example reveals that the coefficient condition in Theorem 3 allows so-
lutions of (1.2) to be unbounded. Moreover, the same construction with 1 < o < oo
illustrates that the finiteness of (2.4) is not enough to guarantee that all solutions of
(1.2) are in BMOA. The same construction is applied in [21, Example 5(b)].

Ezxample 2. Let 0 < o < 1, and define
—2 —1
e e
l—z) +(10g1—z> ), z € D.

A(z) = e ((a -1) (log
Then A € H(D), and (1.2) admits two linearly independent solutions

(i 2p
_( e « | e a oz | e —2ad D
ne = (los ) A= (e ) [ (let) @ se.

which are unbounded on positive real axis; see also [21, Example 5(b)]. We denote
A = —aB; — ala — 1)Bs, where Bj(z) = (1 — z)"%(log(e/(1 — 2)))™7 for z € D and
j = 1,2. Since |By(2)| < |Bi(2)| (log(e/2))™" for all z € D, and (4.2) holds for any
0 < a < 1, we conclude (4.3). We point out that, for a sufficiently small «, the coefficient
A satisﬁes the assumptions of Theorem 3 and hence all solutions of (1.2) are in BMOA.

The space VMOA consists of those f € H? for which

o fallZ2 =0,
where f, is the auxiliary function in the beginning of Section 6. Clearly, VMOA is
a subspace of the little Bloch space By. As Theorem 3 is motivated by [37, Theorem 3.1],
the counterpart of the following result is [37, Theorem 3.6].

Theorem 7. Let A € H(D). If (2.4) is sufficiently small and
i (low 1 |> [ HAGIE = PR = feu() P ) =

la]—1—

then all solutions f of (1.2) satisfy f € VMOA.

The proof of Theorem 7 is omitted, since it is similar to the proof of Theorem 3. Note
that the coefficient condition in Theorem 7 implies (7.11), and hence forces all solutions
of (1.2) to be in the little Bloch space By. See the end of Section 7 for more details.

7. SOLUTIONS IN THE BLOCH AND THE LITTLE BLOCH SPACES

An integrable function w : D — [0,00) is called a weight. The weight w is said to be
radial if w(u) = w(Jul) for all w € D. For 0 < p < oo and a weight w, the weighted
Bergman space AL consists of those f € H(D) for which

£l = [ 1F )Pt dmw) < o0

For a radial weight w, we define &(u) = fhl” w(r) dr for u € D. We denote w € D whenever
w is radial and there exist constants C' = C(w) > 1, @« = a(w) > 0 and 8 = f(w) > «

such that
—1G:’;)aa@)samsc(i::)ﬁa(t) (7.1
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for all 0 < r < t < 1. The existence of constants § = f(w) > 0 and C = C(w) > 0
for which the right-hand side inequality of (7.1) is satisfied is equivalent to the existence
of a constant K = K(w) > 1 such that the doubling property &(r) < Ko((1+7)/2)
holds for all 0 < r < 1 [29, Lemma 1]. Moreover, the left-hand side inequality of (7.1)
is equivalent to the existence of constants K = K(w) > 1 and L = L(w) > 1 such that
w(r) > Ko(l—(1—r)/L) for all 0 < r < 1, see [31] for more details.

Let 0 < p < oo and w be a radial weight. If &(r) = 0 for some 0 < r < 1, then
Al = H(D). Let w be a radial weight such that @(r) > 0 for all 0 < r < 1. By standard
estimates,

1+ P (1+r (14
11 2 34, ( 1) 8(150) 2 Mt gp -5 ( L5 ) o<,
where M)y(r, f) denotes the H? mean of f, and hence
fels—le - ep 72)

- 1/p
() M-

We will concentrate on the case p = 2. By (7.2), the norm convergence in A2 implies the
uniform convergence on compact subsets of I, and consequently each point evaluation
Le(f) = f(¢) is a bounded linear functional in the Hilbert space A%. Hence, there exist
unique reproducing kernels By € A2 with [|L¢|| = || B¢ || 43 such that

F(Q) = (f, BE)az = /D W) BE(Ww(u) dm(u), f € A2, (73)

Moreover, the normalized monomials (2wan1 1)~ /2 2", for n € NU{0}, form the standard
orthonormal basis of A2, and hence

~_(u0)"
B¢ (u) = E , D; 74
see [41, Theorem 4.19] for details in the classical case. Here w, = fol r¥w(r) dr for

1 <z < oo. Weight w is called normalized if w; = 1/2, which implies that w(D) =
Jpw(u) dm(u) = 2wy = 1.

We begin with a lemma which shows that the derivative of BZJ is closely related to
the reproducing kernel of another Bergman space with a suitably chosen weight. For
example, Bg(u) = (1 —u()~27 is the reproducing kernel corresponding to the standard
weight w(u) = (a+1)(1—|u/?)®, a > —1, while (BE) (u) = (2+a)(1—ul) =3~ is related
to the reproducing kernel of the Bergman space with the weight @(u) = (1 — |u|?)**!. In
general, we define

1
w(u) = 2/| w(r)rdr, weD,

ul

for any radial weight w.
Lemma 8. If w is radial then (Bg)' (u) = ZBg(u) for u,¢ € D.

Proof. Tt is clear that representations (7.4) exist for both B¢ and B?. By Fubini’s theo-
rem,

1 s )
Wont1 = 2/ w(s)s/ 2l dr ds = %, n € NU{0},
0 0 n 4+ 1
and hence B

(BeY () =¢ 3 D) _Fps) uce.

This proves the assertion. O
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The following auxiliary result is well-known to experts. For a radial weight w, we define
w*(u) = /Iull log |::| w(r)rdr, weD)\{0}.
Lemma 9. Iff,g € H?, then
% FleMg(e) di = 2 / () g (@) log ﬁ dm(u) + £(0)g(0). (7.5)

Moreover, if f,g € H(D) and w is a normalized radial weight, then
(f.9)a2 =4(f' 9" a2, + £(0)g(0).

Proof. Identity (7.5) is a special case of [41, Theorem 9.9]. Let f,g € H(D). By (7.5),
1 2w

[ seehgtemde =1 [ pigTatos - dmfu) + 24 (0)g00).

T Jo D(0,7) |ul

The assertion follows by integrating both sides with respect to the measure w(r)r dr and
using Fubini’s theorem. O

Recall that the Bloch space B consists of those f € H(ID) for which
1£1ls = sup [f'(2)|(1 — |2*) < 00
zeD

Theorem 10. Let w € D be normalized, and A € H(D) such that

lim sup sup (1 — |Z|2)/D /OZ (B¢) (u)A(r C)dﬁ w'u) d

r—1— 2€D | |2
Then every solution f of (1.2) satisfies f € B, and

1
Il < gy (/O w1 o)

1
Tt (7.6)

/ zA<<>d<\ ¥ If’(U)I) ,

w*(u)
1—uf?

m(u) <

where

Xs(A) = sup (1 - |=?) /D dm(u) <

zeD

z ™ 1
/0 BEY @A) !

Proof. Observe that w*(u)/(1 — |u|?) < @(u) as |u| — 17, since w € D by the hypothesis.
For fixed z € D, Fubini’s theorem and Lemma 8 yield

i 2 ’ wy! r w(w) m(u

imsup (1 = 3 [ / BE WA odc] L dmfu)
20 ) [| [ EEr@aQ) acfatwanto (77)
> (- )| [0 B A = - )| [ acocad]

and it follows that A € HS°. Note that the use of the reproducing formula could be
avoided by a straightforward integration.
Let f be any solution of (1.2). Then

| FQrACQdC [1(0). z€D. (7.8)
The reproducing formula (7.3) and Fubini’s theorem imply
76 == [ [ Bt dm) ) 2a6¢) dc + 100

_/Dfr(u) </O Wrm(rg)c@ w(u) dm(u) + f.(0), zeD,
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from which the second part of Lemma 9 yields

1 [ it (/ ><>2A<r<>d<) “(u) dm{u)
(0 >/0 A(r¢)dC + f1(0), z€D.

It follows that

151 < 415l sup (1 = P /\/ A(r) dc\

dm(u)

+1£(0)] Sup (112

/Ar(d(’ﬂf , 0<r<l.

We deduce f € B by re-organizing the terms and letting r — 1.
Since f € B, we know that M. (r, f) < log(e/(1 —r)) for 0 < r < 1. Hence, for any
0<p<oo,

1 p—1
11 5040 [ (l ) o dr <o

by partial integration and (7.1); see also [27, Proposition 6.1]. Now that f € B C A2,
we may repeat the proof from the beginning with r = 1 to deduce the second part of the
assertion. g

Remark 2. The proof of Theorem 10 shows that, in order to conclude f € B, it suffices
to take the supremum in (7.6) over any annulus R < |z| < 1 instead of D.

We apply an operator theoretic argument to study the sharpness of Theorem 10. Let

I{A,w) =limsup sup (1 — |z|2)/
D

r—1— z€D

v w*(u)
| T ACO 4| £ amu)

denote the left-hand side of (7.6), for short.

Theorem 11. Let w € D be normalized and A € H(D). Then the following statements
are equivalent:

(i) AeL';
(i) 1(A,w) < ooy
(iii) the operator Sa : B — B is bounded.

Proof. (i) = (ii): Observe that w*(u)/(1 — |u|?) < @(u) as |u| — 17. By Fubini’s
theorem,

) S msup sup (1 22 [ a6 [ (520|800 dmiw )l
where
< Dwyar a1 14|
flereiawine s | oae T < [ rom =g <P

by [30, Theorem 1], Fubini’s theorem and (7.1). It follows that I(A4,w) < || Az < oc.
(ii) = (iii): This implication follows by an argument similar to the proof of Theo-
rem 10. Asin (7.7), we deduce

sup (1= <) [

zeD

| EET@AQ @ 0 ) < 104.0) <,
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and A € H§®. Let f € B C A2. The reproducing formula (7.3), Fubini’s theorem and
Lemma 9 imply

A odc\ < 7lls I(Aw) + 1£0)] - 1Al g
< (I 15 + 1FO)]) I(A,w),

and hence we deduce (iii).
(iii) = (i): By the assumption there exists a constant C' > 0 such that

Sup [FENAI = 1212 = [[Sal)" | e S 152Dl < CIFI+1£O))  (7.9)
for any f € B. Consider the family of test functions
e
z)=log ———, z,(eD,
fe(2) =log — Z ¢

for which supecp [|f¢|l5 < 2. By (7.9),

[Sa(£)] 5 = sup (1 = |2[*)
z€D

log

- ‘ IA(2)|(1 = 2[3)2 < 3C, =z, eD,
_ CZ

which gives (i) for ¢ = z. d
A close look at the proof of Theorem 11 implies

Haw) = sup (- ) [ [ TBET@AQ ac] {25 amo).

z€eD

We obtain the following consequence of Theorem 10.

Corollary 12. Let w € D be normalized, and A € H(D) such that

2 B A
sup (1= =) [ | [ VA ac

is sufficiently small. Then every solution of (1.2) belongs to B.

*(|u)|2 dm(u) (7.10)

Remark 3. In order to conclude that all solutions of (1.2) are in B, it suffices to take the
supremum in (7.10) over any annulus R < |z| < 1 instead of D.

The little Bloch space By consists of those f € H(D) for which

Jm_ /()11 [ = 0.

The following result is a counterpart of Theorem 10 concerning the little Bloch space.
Theorem 13. Let w € D be normalized, and A € H(D) such that

. 2 zw—,u w*(u) m(u) =
i (- 1a) [ | [ BT ac] 40 an —o

Then every solution of (1.2) belongs to By.
Proof. Asin (7.7), we conclude

lim (1 [) /0 T A de

|z|—1—

=0.

By the assumption and Remark 3, it follows that each solution f of (1.2) satisfies
f € BC A2%. Asin the proof of Theorem 10, we have

(= BTG < 4l - 1P [ | [ @A ac| {20 amu)

+IFO)1 (1= [2?)

0 dc\ L - PO, eD.

The assertion follows. O
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If A € H(D) and

lim |A(2)|(1 = |2[2)? log — 7.11
i [AG)|(1 = 2 og 1= =0, (r11)
then every solution of (1.2) belongs to By. Actually, f € B by Remark 3. Therefore

(z) = —A(2) /D% dm(u), =ze€D.

By applying Lemma 9 twice, we obtain
7 / 11 (1- |u|2)2
LIS TAG) L)+ [FO)] + L] e A mdm(U) , 2€D.

Since f € B, we deduce f” € HS°, and hence the argument above shows that f € By
by [41, Lemma 3.10 and Theorem 5.13].

The coefficient condition (7.11), which forces all solutions of (1.2) to be in By, is
sharp in the sense that it cannot be replaced by A € £'. Indeed, the function f () =
log(e/(1 — 2)) € B\ By is a solution of (1.2) for

-1
A(z) = , e D.
B = T regei=2)
8. SOLUTIONS OF BOUNDED AND VANISHING MEAN OSCILLATION — PARALLEL
RESULTS

In this section, we consider two coeflicient estimates, which are derived from the rep-
resentation (5.1). These estimates give sufficient conditions for all solutions of (1.2)
to be in BMOA or VMOA. Recall that, by (6.2) and (6.3), the measure dus(z) =

IF/(2)|2(1 — |2|?) dm(z) satisfies
||:uf”Carleson S ||f||2BMOA (81)
Actually, f € BMOA if and only if yiy is a Carleson measure [11, p. 231].

Theorem 14. Let A € H(D). If
/ A(r¢) d¢
o 1—e ¢

1 27
lim sup sup / <— / > (1= lpa(x)B)dm(z)  (8.2)
r—1- aeD Jp \27T Jy
is sufficiently small, then all solutions of (1.2) belong to BMOA.
Proof. By applying (5.1) to g = 1, we obtain

o] =[5 [ [ {ee = o [

for 0 <r <1andz€D. By (6.2) and (8.2), any second primitive of A belongs to BMOA.
Let f be a solution of (1.2). Then f, is analytic in D and satisfies f”(¢)+r2A(r¢) f,(¢) =
0. We deduce (7.8). By (5.1) and Fubini’s theorem,

dt, (8.3)

27 ) "2 .2
e == [ e [ dcar+ 0
1"2 - ,
— _% fr( )gm(e B dt + £,(0), zeD,
where -
_ 7 A9
o) = [T dc weD, (8.4)

Since f, gr. € H?, Lemma 9 implies

1

2
3 | @ =2 [ i) Taos o
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We deduce

2

F()P <8 \ /D f1(w) g2 (w) log ﬁ dm(w)| +2|,(0)g200) - f10)°, zeD.

By the Hardy-Stein-Spencer formula
lgr (W) 1

T log T dm(w) < 2grz
D |grz(w)| 7 |w]

and hence by (8.1) and Carleson’s theorem [8, Theorem 9.3], there exist absolute constants
0 < C <ooand0< "< oo such that

2 | / 2

g 1
< 7—10 —dmu
—/D @] %8 o] ()

- / g2 ()] () P log —— dim(w)
D |w|

<2 ||9T,Z||HIC’ ||Nfr||Carleson g,z || 1
2 2
<20 ”gr,zHHl ”fr”BMOA'

We have | f/(2)[* <16C [|gr,- |71 | frl[Bpoa +41£-(0)%1gr,2(0)]* + 4] £(0)]* for 2 € D, and
by (6.2),

\ [ 21015t G 10g o ()
D ’ |w]

I+lsion < 64C | lyion sup / 19221 (1= La(2)[2) dm(2)
+16],(O)F sup / 1902 (0)2(1 — [ia(2)[?) dim(z) + 16| £1(0)

By re-organizing terms and letting r — 17, the assertion follows. |

Remark 4. The proof of Theorem 14 shows that, in order to conclude f € BMOA, it
suffices to take the supremum in (8.2) over any annulus R < |z| < 1 instead of .

Theorem 15. Let A € H(D). If (8.2) is sufficiently small and

G [ %

then every solution of (1.2) belongs to VMOA.

dt) (1= [pa(2)) dim(z) = 0,

Proof. First, by the assumption and (8.3), any second primitive of A belongs to VMOA.
Let f be any solution of (1.2). By the assumption and Theorem 14, we have f € BMOA.
As in the proof of Theorem 14, we obtain

/() S Nlgrz 1 1 Bvoa + 191 PIFO) + [/ (0)F, 2 €D,

where g1 . is the function in (8.4). Hence, by (6.2),
I fallZe < ||f||213M0A/D||91,z||§{1(1 — lpa(2)?) dm(z)
+|f(0)|2/ 191,:(0)* (1 = lpa(2) ) dim(z)

2|2
IPOR 1) [ =B i),

The assertion follows by letting |a|] — 17. d
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9. HARDY SPACES

For 0 < p < oo, the Hardy space H? consists of those f € H(D) for which

1 2m )
1 f 10 = s |F(re®) P do < oc.

Proof of Theorem 4. The case p = 2 follows from the Littlewood-Paley identity by stan-
dard estimates, and if £ = 1 then much more is true, see [26].

The following arguments rely on the representation (5.3) and on an application of the
non-tangential maximal function (5.4). For z € D, let I(z) ={¢ € T : z € I'({)} and note
that its Euclidean arc length satisfies |I(z)| < 1 — |z|? for z € D.

(i) We proceed to prove the following preliminary estimate. If 0 < p < 2, k € N and

0 <r <1, then
k=1 2/p
(S 1or)
j:

2—
1l

for all f € H(D), f 2 0. Write dpur(2) = | £¥ (2)[2(1=|2[2)2¢=D dm/(2) for short. Fubini’s
theorem and Holder’s inequality (with indices 2/(2 — p) and 2/p) yield

4
2

k—1
B, = dyi, d }j) P
£l /T</F(O 1 (Z)) | C|+]§:O|f (0)

b

. ( ) . 2 k—1 0
* 2-p)% L) [P2 p J p
< /T (0 ( /F o P >> |d<|+g|f (0)

g( / f:<c>p|d<|) ( / / P2 dpe (2 IdCI>S+Z|f (0

7=0
1—
< A0 )(/ £ (2)P2(1 = |212) dpae (= ) +Z|f”

where the last inequality follows from [11, pp. 55-56]. Estimate (9.1) follows by re-
organizing the terms.
By a change of variable, we get

/D|f,«(z)|p_2|f7€k)(z)|2(1 — |z|2)2(k_1)+1 dm(z)
< / PP B )2 (1 - |22) " din(). 9.2)
D

By means of (9.1) we conclude that, if (9.2) is finite then f € H? and

(S 1roor) b

||fr||HpN/|f PP )P~ 22?50 dm(z) + (9-1)

1B < / FEP PR (1) dmz) + ~ b (93)
Il 1570
Cauchy’s integral formula, and the estimate |f(2)| < ||f|lge(1 — |2[2)~/? for z € D [8,
p. 36, give [ (0)]2 < ||f||§{p | FD )P for j =0,1,...,k — 1, which implies
- 2/p k-1 k—1
(Z FI0P) S O0R 1A X100 (9.9
j=0 j=0 j=0

Now (9.3) and (9.4) prove (2.9).
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(ii) Let 2 < p < co. We may assume that f € HP, for otherwise there is nothing to
prove. Write ¢ = p — 2 and du(z) = |f®) (2)|2(1 — |2[2)2*=D+1 dm(z), for short. Fubini’s
theorem, Hoélder’s inequality (with indices p/q and p/(p — ¢)) and [11, pp. 55-56] yield

A@ﬂ@ﬁ@@ﬁzé(ﬁ@ﬂq>”? @=L e

p—q

< ([ororiaa)’ /;(/;(o ) )

b

SHfMEzué([%”ﬂ“uﬂ%l—pﬁfw*hmu@> dc|

k-1 2
S I <||f||%p - Z |f(j)(0)|p> S
=0

and the assertion of (ii) follows.

(iii) If f € H(D) is uniformly locally univalent, then sup.cp |f”(2)/f(2)| (1 — |z]?) is
bounded by a constant depending on § [39, Theorem 2]. Here 0 < § < 1 is a constant
such that f is univalent in each pseudo-hyperbolic disc A(z,d) for z € D. Since

BN pler) (k)
/ = / L f—, k eN,
I f for
we conclude ||f*+D/f "l e < oo for k € N by induction. By means of the Hardy-Stein-
Spencer formula, we deduce

/mmwww@mvvm%wma
H f(k)

2
I3

dm(z2) S 11/ e

/v P2 (=) P log -
e B

where the comparison constant depends on § and p. This completes the proof of Theo-
rem 4. Ol

9.1. A class of functions for which Question 1 has an affirmative answer. If
. - _ —9 pp—4 p—2

f € H(D) is non-vanishing, then g = f®=2/2f" ¢ }(D) and ¢’ = %f > () +f= f.

The Hardy-Stein-Spencer formula (2.7) implies

wmﬁxﬂW+ap/m 2(1 — |2[2) dim(=), (9.5)

where 0 < (1 < oo is an absolute constant. By standard estimates, there exists another
absolute constant 0 < Cy < oo such that

L1t 1—MﬁmU<QOgF + [1g@Ra - R w)

By (9.5), we deduce

2—p
£ 1% < |F(O)P + C1Cy p? T IF'(0)]P +2C1Ca (p — 2)°
Hpe

-wa&ﬁéWM“W%WU%%me-

In conclusion, if f € H(D) is non-vanishing and ||f'/f||gee = |log f||5 is sufficiently
small, then (2.8) holds with C(p) < p? as p — 0.

/ fl
I

5™

Hye



22 JANNE GROHN, JUHA-MATTI HUUSKO AND JOUNI RATTYA

9.2. Applications to differential equations. Theorem 4 induces an alternative proof
for a special case of [35, Theorem 1.7]).

Theorem A. Let 0 < p < 2 and A € H(D). If (4.1) is sufficiently small (depending
on p), then all solutions of (1.2) belong to HP.

Proof. Note that

lim sup sup / [A(rz) 2(1 = [2*)*(1 = [@a(2)]?) dm(2) (9.6)
r—1— a€cD JD

is at most a constant multiple of (4.1); compare to the proof of Theorem 3. Let f be

a solution of (1.2). By Theorem 4(i), we deduce

£l < /D (P22 " (r2)P(1 = [2)? dim(2) + [ F O + | (0
< / ()P 1A@2)[P (1 = [2%) dm(=2) + [F(0)[7 + | £ (0)".
D

If (9.6) is sufficiently small, then Carleson’s theorem [8, Theorem 9.3] implies that || f,|| a»
is uniformly bounded for all sufficiently large 0 < r < 1. By letting r — 17, we obtain
f e HP. O

An argument similar to the one above, taking advantage of Theorem 4(i), leads to
a characterization of HP solutions of (1.2): if 0 < p < 2, f is a solution of (1.2) and
dpa(z) = |A()2(1 — |2[*)3 dm(z) is a Carleson measure, then f € HP if and only if

/D PP dua(z) < . ©.7)

For example, if f is a normal (in the sense of Lehto and Virtanen) solution of (1.2) and
pa is a Carleson measure, then (9.7) holds for all sufficiently small 0 < p < oo by [14,
Corollary 9].

Remark 5. If Question 1 had an affirmative answer, then Theorem A would admit the
following immediate improvement: if A € H(D) such that (4.1) is finite, then all solutions
of (1.2) belong to Uy oo H*-
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