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Hence Pm,j(T) is a polynomial in T′, T′′, . . . , T(m) with integer coefficients, a so-called
Bell polynomial. We can inductively solve ck−1, ck−2, . . . , c0 and see that (5.2) holds.

Here we may mention that, in Paper III, the formulas

c0 = (A0 ◦ T)(T′)k, ck = (Ak ◦ T)(T′)k

ck−1 = (Ak−1 ◦ T)T′ − k(k − 1)
2

T′′

T′ ,

ck−2 = (Ak−2 ◦ T)(T′)2 − (Ak−1 ◦ T)T′′

+
k(k − 1)

2

(
T′′

T′

)2

− k(k − 1)(k − 2)
6

T′′′

T′ ,

(5.3)

which hold for a general k ∈ N, were used in the case k = 3.
We study equations (5.5), (5.7) and (5.8) via the localization map T : D → D,

defined by

T(z) = Tβ,γ(z) = 1 − sin(β/2)eiγ
(

1 − z
2

)p
, (5.4)

where β ∈ (0, π/2], p = p(β) = β(π − β)/π2 ∈ (0, 1/4] and γ ∈ (−π/2, π/2) such
that |γ| ≤ (π − β)2/2π ∈ (0, π/2). Here T(D) is a tear shaped region having a
vertex of angle pπ touching T at z = 1, see Figure 5.1. The domain T(D) has the
symmetry axis T((−1, 1)) which meets the real axis at angle γ. As β decreases, T(D)
becomes thinner, T((−1, 1)) becomes shorter and the angle γ can be set larger [42].

If g ∈ H(D) grows fast near the point z = 1 in terms of the iterated order of
growth, then T carries the property to g = f ◦ T, as the next lemma shows.

Figure 5.1: Domain T(D) with parameters β = 0.85 and γ = −0.75. In this case,
we have p = β(π − β)/π2 ≈ 0.197 and 2 sin(β/2) ≈ 0.825.
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Figure 5.2: The green area represents those pairs (q0, q1) ∈ [3, 10]× [1, 3] such that
condition 5.6 holds for any b0, b1 ∈ C \ 0. The sawteeth are bounded by the blue
curve q1 = q0/(q0 − 2) the red curve q1 = q0/(q0 − 1).

Theorem 5.5 implies Theorem 2.1 as a special case, by setting k = 2, n = 1 and
q ∈ (1, ∞). Next, we state two generalizations.

Theorem 5.6. [42, Theorem 2.3] Let f be an arbitrary non-trivial solution of

f (k) +
k−1

∑
j=0

Aj(z) exp
( bj

(1 − z)q

)
f (j) = 0, (5.8)

where k ∈ N, Aj ∈ H(D ∪ {|z − 1| < ε}) for some ε > 0, q ∈ (0, ∞) and bj ∈ C

for all j = 0, 1, . . . , k − 1. Let A0 ̸≡ 0 and b0 ̸= 0. Assume that bj/b0 ∈ [0, 1) for all
j = 0, 1, . . . , k − 1 with at most one exception bj = bm for which arg(bm) ̸= arg(b0).
Suppose that one of the conditions

(i) max (Re (bm), 0) < Re (b0);

(ii) 0 < Re (b0) ≤ Re (bm), arg
(

bm
b0

)
∈ (0, π) and arg

(
i

bm−b0

)
< π

2 q;

(iii) Re (b0) ≤ 0, arg
(

bm
b0

)
∈ (0, π] and arg

(
b0
i

)
< π

2 q

holds or that one of the conditions holds when b0 and bm are replaced by b0 and bm respec-
tively. Then σM,2( f ) ≥ Re (q).

For a non-homogenous version of Theorem 5.6, see [42, Theorem 2.4].
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