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ABSTRACT

This thesis infmduc%nme new results concerning linear differential equations

f{:i} fe A:i—lf[“_” o lfi -I-—Anf = A”; {*}

where n = 2 and Ay,..., A, are analytic in a simply connected domain D of the
complex plane. Typically D is the unit disc. Before presenting these new results,
some backgro is recalled. Localization combined with known results implies
lower bounds for the iterated order of growth of solutions of (*). Straightforward
integration combined with an nperatnéwenretic approach yields sufficient condi-
tions for the coefficients, which place all solutions of () or their derivatives in a
general growth space HS' (D). Moreover, the operator theoretic approach combined
with certain tools such as representation formulas and Carleson’s theorem indicates
sufficient conditions such that all solutions are bounded, or belong to the Bloch
space or BMOA. A counterpart of the Hardy-5tein-Spencer formula for higher or-
der derivatives and the oscillation of solutions are also discussed.

MSC 2010: 30H10, 30H30, 34M10.

Keywords: Bloch space, bounded function, growth space, integration, localization,
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Introduction

The intention of this survey part of the thesis is to describe some methods used in
the study of complex linear ordinary differential equations (ODEs), in particular, in
the study of 5

f{k]+14k_lf{k_l}+"'lfi""Aﬂf:DJ (1.1)
where the -::csets A; are analytic in a simply connected domain D C C and
ke NY {1}. It is well known that in this case solution f is analytic in D,

denoted by f € H(D). Typically D is the whole complex plane C or the unit disc
D={zeC: |z| <1}.

Localization is a general method, which allows us to implement known results
to new domains. Nevanlinna theory cnmhineth the standard order reduction
method yields if-and-only-if relations between the iterated M-order of growth oy,
of coefficients and solutions, see [37], for example. One simple relation is that
all solutions f of (1.1) satisfy

UM 41 U‘.} < UETEakx—I JM.JI[A;']! n €N, (1.2)
and the equality is attained for some solution f. We describe a localization method
of linear ODEs and apply these known relations to equations of a special form, for
example, to the equation

"+ Ai(z)exp (n—4) '+ Aglz) exp (L) f=0
(1—z)m (1—2z)m 2
re Ay, Ap are analytic in D U {zeC : |z—1| <¢}, forsome 0 < € < 1, and aj
is a non-zero complex constant for j = 1,2,3,4.

An integration method proves to be an efficient tool when all solutions of (1.1)
or their derivatives are forced in HY(D) by giving a sufficient condition on the
coefficients A;. Such conditions have earlier been given by Grihn, Heittokangas,
Korhonen and Rittya in [26, 38-40] using Picard’s successive approximations and
integral estimates based on Gronwall’s lemma or Herold’s comparison em. In
particular, our elementary integration method gives sharp results for the second
order equation

F+Af=0, (1.3)

where A is analytic in ID. Moreover, it yields in C a classical relation analogous
to (1.2).

An operator theoretic approach, originating in Pumrrme [57], is based on the
fact that if X € H(D) is an admissible normed space, f is a solution of (1.3) and

Sa(f)(z) = —‘[:g;f{ur}ﬂiwldﬂ?) dac,

with an operator norm ||S4||x—x < 1, then

7@ = Sa(EEFO)z + F0) and [ifix < —S¥) B

1—||5allx-x




30
Here X is some function spacegh as H™, BMOA or the Bloch space. This approach
is implicitly behind the integration method.

Finally, we consider an analogue of the Hardy-Stein-Spencer formula of Hardy
spaces for higher order derivatives.&;is analogue, comlelled with the operator the-
oretic approach, gives information @out the case when all solutions of (1.3) belong
to the Hardy space H”. Moreover, udy the zero separation of solutions of the
equation %

fjl”+A2f”+A1f:+Aﬂf=ﬂ

using localization and a known integral estimate. Zeros of solutions of differen-
tial equations of order k > 3 are difficult to slud to the lack of sufficient
tools. Mevertheless, the geometrical distribution of zeros of solutions, the growth
of the coefficients and the growth of solutions are fundamental aspects to consider
whil (1.1) is studied.

The remainder of this survey is organized as follows. In Section 2, we discuss
complex ODEs in general and consider means of measuring the growth of their
solutions and coefficients. In Section 3, we discuss certain function spaces and the
zero separation results for solutions of (1.3). In Section 4, we first describe the
general outline of localization and then discuss pseudo-hyperbolic discs, which are
an important localization domain. Second, we describe some integral estimates,
which precede our integration methnﬂ Third, we describe the operator theoretic
approach applied in Paper III. Finally, in Section 5 the essential contents of Papers I-
III are summarized.




Differential equations and growth of solutions

In this section, we discuss certain facts about differential equations and present some
means of measuring the growth of their coefficients and solutions.

We discuss the analyticity of solutions of (1.1) and claim that certain rates of
growth for the coefficients A; could be particularly interesting. Moreover, we define
a genemwth space and discuss some norm equivalences.

(& define the iterated order of growth ¢ ,(f), which asymptotically measures
the growth of the maximum modulus function M(r, f) = max;_, |f(z)| of an ana-
lytic function f. The meaning of the number oy, ( f) is discussed by comparing it to
certain quantities which are present in the Nevanlinna and Wiman-Valiron theories,
on h we take a brief look. Then, we present results which utilize oy, to relate
the growth of solutions of (1.1) to the growth of the coefficients A;.

We present some of Hamouda'’s results on differential equations with coefficients
of a particular form. These equations are considered in Paper I, where their analysis
is made straightforward by the localization method for linear ODEs.

2.1 OBSERVATIONS RELATED TEIFFERENTIAL EQUATIONS

Consider a complex differential equation of order k € IN in a domain D C C. If D gz}
simply connected, the coefficients are analytic in D and the equation is linear, then it

is well known that all solutions are analytic. If any of these assumptions is removed,
the analyticity of solutions can be lost. First, the fact that D is simply connected is a
necessity. For example, the coefficient 1/z of the linear equation

ff.r_'_zq: =0

is analytic in the annulus D = {z eC:j<|z < 1}, but one solution of this equa-

tion is log(z), which is not analytic in D. Second, if t@efﬁcients are not analytic,
then the solutions need not to even be meromorphic. For example, the linear equa-
tion

. 1R 2
+=f-=f=0
f sz ij
has the solution f(z) = exp(1/z), which is not meromorphic inay neighbourhood
of the essential singularity z = 0. Third, the function log(z) is a solution of the
non-linear equation
f.H' e {flﬁ ﬂ,
whose coefficients are analytic in ID. Here D = {z € D : |z| < 1} is the unit disc of
the complex plane and T = 4D is its boundary. 2
Due to these notions, it is reasonable to restrict the study to linear differential
equation h coefficients analytic in some simply connected domain.
While considering the equation

f®+af=0,




the interesting growth rate fﬁ is roughly

Al g = sup|A@)|(1 - |z])* < co.
zeD

This is due to the fact thatif A € H b - 120 then some solution is of exponential
growth, but in the case A € H® _ all scfgtions are bounded (38, Corollary 3.16].
If |Allyg < p(p+1), for 0 < p < oo, then all solff5E} of (1.3) belong to H,
see [57, Example 1] and [43, Example 5]. Cotm)ns sup,.p |A(z)|(1 - |z]*)* <1
and ||A||y= < e imply, respectively, that each solution of (1.3) has at most one zero,
and that the zeros of ea ution are separated in the hyperbolic metric, see [50]
and [60, Theorems 3-4]. If
e

sup | A(z)|(1 - |z|]|2]ugl_—lz| <1,
el

then all solutions f be]0n§ to the Bloch space B, which consists of f € H(ID) such
that sup. ., |f'(z)|(1 = |z|#) < oo [43, Corollary 4 and Example 5].

2.2 GEN GROWTH SPACE
217

The general growth space H( (D) consists of functions f analytic in a simply con-
nected domain D © C, such that

ILfl (o) = sup | f(2)|w(z) < o
€D

Here the function @22 D — (0, 00) is bounded and neaaturable, therefore integrable.
If D = D, we writ = HZ (D). Moreover, if w(z) = w(|z|) for all z € D, we
call w radial. If w is a classical weight, that is, w(z) = (1 —[z1)”, for p € (0, ),
we write H = HF°. Note that we put |z| instead of the usu in the definition
of w; hence, some calculations in Paper Il will be simpler. A function f belongs to
the Korenblum space
A" = SN B
O=p<es

if and only if

og"* M(r, f)

|

inf{a >0: fe H} =lims 2.1

infie 29 :f ! lr_”L_'P —log(1 —r) €14
is finite.
So uivalent norms
The Fundamental Theorem of Calculu

2
f@) = [ f@©dt+f©), zeD, @2)

and the Cauchy Integral Formula

f{“}{z)=2"n_r:flléffr{j%]?”_ldg’ zeD, neN,




express f € H(ID) by means of its derivative and vice versa. Here the integration
paths are a linear segment from 0 to z and a simple closed curve C around z and
contained ir&?, respectively. By using these results, it can be seen that

Iflly =CEF @I = [21)? < sup [ @)1 - )P +1F@),  @3)
zeD zelD

for f € H(ID), where the constants depend on p. Here A = B is used to denote
the fact that C~'B(r) < A(r) < CB(r) for some constant 0 < C < o as r varies.
In addih‘mA < B denotes the fact that the quotient A(r)/B(r) is bounded from
above. If A(r)/B(r) = 0asr = 1~, we write A(r) = o(B(r}).

After some sim%ﬁnm [43, Lemmas 9 and 10] in Paper Il imply

1y < 770 oy : s i+ s, E T p & R 24)
and
LF N, < 2" (n 1) fllsp, (2.5)
respectively, for 0 < p < coand n € N.
As (2.3) shows, in order to smhe finiteness of sup, . | f(2)|(1 - [zD* + | F(0)]
for f € H(D) and 1< & < co it is sufficient to consider sup, _p, | f(2) |z]) 1

However, for 0 < afg 1 it is necessary to study the derivative itself. The a-Bloch
space B*, a £ (0,1], consists of ¢ € H(ID) such that

gl =suplg'(2)|(1— |2])* < o0
el

He|| ¢llge i mi-norm, which can be made a norm simply by adding |g(0}| to
it. [Fa=r1 B* is the classical Bloch space B. As a generalization of B, we
can consider the space of such functions f € H(ID) where f' belongs to a general
growth space H;j for some w.

For p = 0, inequalities (2.4) and (2.5) take the form

=
sup [F@=F(0)| (1og =) Zlflls < 20l 26
zelD

where || f|lg= = sup,.p [f(z)|. By inequality (2.6), we see that H® C B C Hy for
all0 < p < e, and f(z) = log((1+z)/(1 — z)) is an unbounded Bloch function with
maximal growth. Inequality (2.6) also shows that each Bloch function is a Lipschitz
map from (D,dy) to (C,d;). In fact, the converse is also true. Here d; denotes the
Euclidean metric. Moreover,

1+ dulz,
d;;(z,wj:llng + dp(Zew)

3 m, e D, EE?}

is the hyperbolic metric defined using the pseudo-hyperbolic metric

dp(z,w) = |@:(w)| = ___| , ZweD.

1-—zw




23 ITERAT%URDER OF GROWTH OF SOLUTIONS
The iterated M-order of growth for f € H(ID) is defined as

103:+1M|:rrf}

e neNU{0}. (2.8)

ol f) = limsup
r=1
Here (&} x = log™ x = max {log x, 0} for x € (0,0), log™ 0 = 0 and we set induc-
tively log,l, , x = log " (log,, x) for n € N. The function exp,, x is defined in an anal-
ogous way. If n = 1, we drop the index and write, for example, oy 1 (£l = om( f).
The number (2.1) is equal to opo(f), defined in (2.8). Clearl € A~
then oy 1(f) = 0. However, the converse implication does not hold, as the example
f(z) = exp(—(log(1 —z)71)*), 1 < & < co, shows.
The following if-and-only-if relation ben the growth of coefficients of (1.1)
and the growth of solutions is given in [37, Theorem 1.1].

mrem 21. Letn € N, = 0and Ay, ..., Ay € H(ID). Then all solutions f of (1.1),
satisfy a1 (f) < o if and only if Gpge(Ag) < & for j = 0ok = 1. Mrde ifg €
{0,...,k =1} is the largest index for which opy,, (Ay) is equal to maxg<j<x_1 {oamu(Aj)},
then there are at least k — q linearly independent solutions f of (1.1) such that opy 41(f) =
oMa(Aq).

Theorem 2.1 canﬁ refined by means of the n-type, defined as

T (f) = limsup(1 = r)~U) log M(r, f) (2.9)
r—1-
for f € H(ID) and n € N, when 0 < op(f) < oo,

Theorem 2.2. [30, Theorem 3] Let n € N and Ag, ..., Ajp_q € H(ID). Assume that
omalAj) < U'Mr,,(A[aJrnHj =1,....k—1and

max {Tyu(A;) : omalA;) = oma(Ao) } < Tva(Ao).

Then each nwm: solution f of (1.1) satisfies Opgns1(f) = Oapnl(An).

Assume that for some n € IN both oy, ( f) and 1, (f) are positive and finite. In
this cas@El® numbers n, oy ,(f) and Ty ,( f) describe how fast f grows. Namely,
let {r;} ~, be an increasing sequence of numbers in (0,1) along which the limit
superior in (2.9) is attained. Then we have

1 "TM.:J[_f]
IOEIM“PI]"'TM,"{JF}( ) ;s ] oo

l—f‘.r'

By exponentiating, we see that M(r;, f) grows asymptotically as

1 Ol f)
EXPy (TM..H{JF} (1 o rr') ) .

This growth of M(r, f) is attained in a larger set than just a sequence {r;};ij, but
we do not enter into this topic.

6




In the case of non-constant entire functions, the iterated M-order and type are
defined as

sy 81 MO e,
pu(f) =timsup B EED ang (1) = tim sup BT S)

r

respectively, for k € IN. These defg{iP@ns also make sense for k = (; in this case, the
condition 0 < < co implies that f is a polynomial and py( f) = deg(f).

Recall that the Nevanlinna characteristic function T(r, f) is defined for a mero-
morphic function f as the sum of the proximity function
L 2“1 1 f(re®)| d6
m(r,f)= 5= [ log* [f(re")

and the counting fupction

N(r, f) = fu L, P BIE) g0 ot

for 0 < r < co [48]. Here n(r, f) is the number of poles of f in the disc |z| < r.
Heé T(r, f) = m(r, f) for an entire function.

For f(z) = Yoo ganz" € H(DD) the mﬂm (f) describes the growth of M(r, f)
by definition. In addition, it deﬁes the growth of T(r, f), the maximal term

— n
pir.f) = THa | |7
and the central index
vir,f) = max{k >0: ol = ,ulfr,f]}

of f. Indeed, replace log™ M in the definition of op(f) by T, log™ i or v, to obtain
the quantities o7 (f), ou(f) or o (f). Then

omlf) = ou(f) = max {0, 0 (f) — 1},
by [45, pp. 43-45], and

A(f) <or(f) <om(f) <or(f)+1 (2.10)

Here A(f) is the exponent of convergence of the zeros {z, } of f, that is, the infimum
of & > 0 satisfying

f(l — |za)**! < . (2.11)
n=1

The first inequality in (2.10) is due to [63, Theorem V.11]. The last two inequalities
in (2,10} ful]nwm [48, Proposition 2.2.2], according to which

R+

Ti(r.f) <logM(r,f) < =

iT{R,fL 0<r<R<eo,

which also implies that o7,,,(f) = oa(f) forn = 2.




Tools for differential equations

The proof of Theorem 2.1 relies on Nevanlinna c}r}f combined with the order
reduction method. In general, Nevanlinna theory is an impﬂrta:@l in the study

of differential equations [48]. One useful fact is that the function m(r, f'/'/ f) grows
mer than mi(r, f), which is made precise in the next lemma [34, Lemma 1.1.3].

Theorem 2.3 (Lemma on the germized logarithmic derivative). Let f be a transcen-
dental meromorphic function in D. Then m(r, f¥) /f) = S(r, flasr — 17 Ifor(f) < o0

then m(r, f¥) / f) = Dw& =1)).
In Theorem 2.3, S(r, f) denotes a quantity satisfying
5(r, f) < log* T(r, f) +log llj (2.12)

asr — 1~ outside a possible exceptional set E C [0, 1) of finite logarithmic measure

fllrdrc:m.

Theorem 2.3 1sa>t delicate enuugh for meromorphic functions which grow slowly
in the sense of log™ T(r, f) < (—log(1 —r)), due to the second term in (2.12).
To give a srraightfmward application of Theorem 2.3, note that (1.1) implies

k=1 (j) (k)
184 14| < i + f
. —E} FA] ¥

and by the properties of log™, we ob

k=1 f[;]l
m(r, Ag) < log™ k+ Z m(r, Aj) + E m ( )

= = f
Hence, if Ay grows faster than Ay, ..., Ay, then all solutions must grow fast. For
example, if there does not exj € (0, e0) such that
k-1
m(r, Ap) — Em{r, ) < Clng—, s Lo

j=

then or(f) = eo by Theorem 2.3.

Wiman-Valiron theory sed on the use of functions p(r, f) and v(r, f) defined
in Section 2.3 [44,48]. For Wiman-Valiron theory in the unit disc, see [18] by Fenton
and Rossi, for example. As Rossi memned in a talk,! Wiman-Valiron theory tries
to answer the question: “How much of the power series of an analytic function can
we throw away and still get a good estimate near maximum modulus points?” If f
is entire, then a key inequality is

+N
L7990 Lo < exp (—%b{lkl + N]E) 2 (2.13)

u(r, f)

"The 2015 workshop on “Complex Differential Equations and Value Distribution Theory” in Joensuu,
Finland.

8




which holds for r outside a set of finite logarithmic measure. Here N = v(r, f) and b
is a certain decreasing function, see [31, Theorem 2]. Inequality (2.13) implies that
the terms |ay.|r* ™™ are small when compared to |ay|r™ for large k. In the proof
of (2.13), the sequences |a,| and r" are elaborately compared to certain well-chosen
sequences i, and p, of positive numbers.

Moreover, for an enmnctinn f, an estimate

2 \1/2
M(r, f) < (1 +e)plr. f) (m)
holds for a certain r large enough, see [31, Theorem 5] for details.
Wiman-Valiron theory has also been developed for the unit disc. We mention
two key results: He cases op(f) = 0and epm(f) = 0, respectively,

£9(2) = (1+0(1)) (@)qm 8- 1-, (2.14)
and -
Fo = (=) - w= ik

forg e N,y >0, Emvided that |f({)| is large enough, see [18] for details. For a
monomial f{z) = z¥ thg power series is just one term and equation (2.14) reads

=S (8 9+ D) )

z

Condition (2.15) suggests that |f7)(z)|(1 = |z|)7 would behave like |f(z)| near the
maximum modulus points of f.

2.4 EQUATIONS wH COEFFICIENTS OF A PARTICULAR FORM

We consider the order of growth of solutions cﬂift’erential equations whose coeffi-
cients have a particular form. In the plane, the equation

F'+ A(z)ef' + B(z)e™ f =0 (2.16)

where A and B are entire functions with orders less than 1 and a,b € C has been
studied, for example, in [5,9,10]. Since the coefficients of (2.16) are transcendental,
some solutions of (2.16) must be of infinite order, for Example, classical theo-
rems of Frei and Wittich, see [19,64]. This leads to asking what conditions on the
coefﬁcientsll guarantee that all solutions are of infinite order. This happens, for
example, if ab # 0 and arg(a) # arg(b) or a/b € (0,1) [9, Theorem 2].

Equation (2.16) gave the inspiration for [29], Z8which some particular differen-
tial equations in D were studied by techniques inherited from the plane case and
analogous to those used in [9]. As Hamouda [29] notes, [11,24,37, 46] are based on
th minance of some coefficient.

In the unit disc, we may consider the equation

"+ Aj(z)exp (.[‘l_b_lz]fh) '+ Agl(z) exp ({1 fnz}am) f=0, (2.17)




where A}, Ap € H(DU {|z—1| < ¢}) for some ¢ > 0, by, by, 41,40 are non-zero
complex numbers, Ay Z 0 and Re (g) > 0. We define the power z¥ by taking the
principal branch, when z belongs to a simply connected domain D C C\, {0} and
p € C\ Z. Analogously as for (2.16), since the coefficients of (2.17) are not in the
Korenblum space, some solutions of (2.17) must be of infinite order.

The next theorems consider special cases of equation (2.17). In Paper II, we
consider more general cases.

Theorem 2.4. [29, Theorem 1.6] Let o = g1 = 1 and by = 0 # by in (2.17). Then every
non-trivial solution of (2.17) is of infinite order.

Theuren'afr. [29, Theorem 1.8] Let gy = g1 > 1, by, by # 0 and arghy # argh,
in (2.17). Then every non-trivial solution of (2.17) is of infinite order.

We have simplified the statements of Theorems 2.4-2.6 without any loss of gen-
erality. It is enough to consider the term (1 — z)" in equation (2.17) instead of the
more gene — z)# as the change of variable z — zpz shows.

We can also consider the higher order equation

b;
F® 4 ):A )exp, ({1 )fm = Ar(z) exp,, ([1_1’—“2}‘“) (2.18)

wherek € N, A; € 'H{]DLJ@II < ¢}) for some € > 0, q,q; € C\ {0}, n; € N,
and b; € C for j = 0,1,..., k. The next theorem considers a special case.

Theorem 2.6. (29, Theorem 1.11] Let Ay, = 0,9 > landn; = lanff;

in (2.18). Moreover, let by # 0 and assume that b;j/by € [{] 1) for all ml

with at most one exception b; = by, for which arg( ,,,] # arg(by). Then every nﬂm!rrmaf
solution is of infinite order.

The final theorem in this section considers equation (1.1) without assuming a
special form for the coefficients A .

Theorem 2.7. [30, Theorem 2] Let Ay, ..., Ay_1 € H(D). Ifwy € T and a curve y C D
tending to wy exist such that

m ex
e |Ao(2)] Pn
ZER

@rﬂ n = 1is an integer, and A > 0 and p > 0 are real constants, then every non-trivial
solution f of (1.1) satisfies opg u(f) = oo, and furthermore oy 1(f) = p.

zj:l'm,-(znﬂ( ) o
a—ry) =

Theorem 2.7 implies Theorem 2.2, Theorems 2.4 and 2.5 can be obtained in a
straightforward manner from Theorem 2.1 by localization, as we show in Paper L
Localization is a general method, which has been used, for example, in [20,22].
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Function spaces and zero separation of solutions

In this section, we define the classical Hardy space HF and its subspace BMOA.
We discuss some equivalent norms and define the Qg spaces, which for certain K
coincide with 5, BMOA or the classical Dirichlet space. We present some suffi-
cient conditions, found by Li and Wulan [49], for the coefficients A;, which place
the solutions of (1.1) in Q. The presented results should be valid under weaker
assumptions. This was shown to be true in Paper II using a method based on inte-
gration.

Next, we brlEﬂym:ubb results on separation of zeros and critical points (zeros of
the first derivative) of solutions of the second order equation (1.3). Paper III contains
a result on the zero separation of higher order differential equations. Finally, we
state some facts about the relation of univalent functions to the oscillation theory
and function spaces.

3.1 HARDY AND Qy SPACES

Gardy spaces

The Hardy space HY, 0 < p < oo, coms of f € H(ID) for which

25 )
£k = sup —H |f(re®)|P df < co. (3.1)
0=r<l

Themagra] in (3.1), denoted by M} (r, f), is an increasing function of r. Note that

for f € H{D) and 0 < r < 1 fixed, My(r, f) —+ M(r, f) as p — co. For fundamental
facts ab%ard}f spaces, see [15].

The space H™ consists of bounded analytic functions in ID. In addition, the
Nevanlinna class N consists of those functions f memmorphic in ID for which T(r, f)
remains bounded as r — 1. Since log™ x =P for 0 < p < have
HP € N for 0 < p < co. In fact, the class mmsts of quotients f/g, where

f.g € H® and g # 0. For f € N, the radial limit f(e®) = lim,_,;- f(re") exists
almost everywhere and we have || f|lyr = Mp(1, f) for f ).

The zeros of functions in N are neatly characterized: the sequence {z,;} C D is
the zero sequence of some f € N if and only if (2.11) holds for & = 0, that is, {z,} is
a Blaschke sequence.

The Hardy-5tein-Spencer formula

p
111 = LFOF + 5 [ If@P21F @) og 17 dm(z), 62)
17

that holds far! p < oo and f € H(ID), expresses || f||yr as an area integral. Here,
dm(z) = Ldxdy is the normalized Lebesgue measure. Identity (3.2) is a corollary of
Green's theorem. It can also be obtained frcmmT heorem 3.1] by integration. In
Paper III, we are interested in whether or not we can replace the term |f’(z)| with
the quantity |f(z)|(1 — |z|?) in (3.2).
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If f € H', then the Cauchy integral formula takes the form

2 st
f{z]=l[ L‘jdr:f‘”‘—@, zeD, (3.3)
2n o 1-—e"itz Tl—i;Z
where du(Z) = f(2)(2ni)~deb, Theorem 3.6]. If, in general, y is a finite complex
Borel measure on T, then the right-hand side of (3.3) is the Cauchy transform of y,
denoted by Kp [13]. The space of Cauchy transforms is normed by

Ilf||u=inf{supi|mfm  Ku=f, UE;=T}~
j=1

=1

In the definition, all measures y representing f are considered. The total vamnn
of y is defined by using the partitions {E;} of T. The norm ||f||x- is the infimum of
these total variations. For more information, see Chapter 6 of [58].

The space BMOA consists of those functions in th y space H? whose
boundary values have bounded mean oscillation and is equipped with the semi-
norm . <

I lzmoa = supl| fall3e,
aclD
where f,(z) = f(@s(2)) — f(a) and @,(2) = {=5 is the involutive automorphism of
the unit disc. Since [|ful| 2 = Ma(1, fa) > M2(0, fa) = |f'(a)|(1 ~ |a[?) for all a € D,
we deduce BMOA C B with ||fllg < |Ifllsmoa for f € H(ID). By (3.2), with p = 2,
and [21, pp. 228-230], we obta&

I flEmoa = sup L I (Z) (1 = |@a(2)?) dm(z)
gelr /D

for f € H (D).
Some results which place solutions of differential equations in Hardy spaces are
discussed in the end of Section 4.3 and in Paper 111

Suluticn in Q spaces
Let Oy be the space of functions f € H(ID) such that

sup |/ |f'(2)*K(g(z,a))dm(z) < oo, (3.4)

ach -

where K : [0,00) — [0,00) is non-decreasing and g(z,w) = log |%| is Green's
function. For example, Qg = BMOA if K(r) = r, by the Hardy-Stein-Spencer for-
mula (3.2).

If K grows fast, such that [;” K(r)e™¥ dr = oo, then condition (3.4) forces f' to
vanish identically and Q contains only constant functions. If this is not the case,
then Qy contains the Dirichlet space %hich consists of f € H(ID) such that

INBRZC!

the area of f(ID) counting multiplicities, is finite. In particular, B* C D C Qg for
parameters 0 < a < 1/2.
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If K(r) # 0as r — 0, then Qg = D. However, for a € [3,1] the condition

LK(~logr)
fu T—nx —r&‘ rdr < co
is equivalent to B* C Qg. If K(r) = r” for p € (0,00), then Qk is the classical Q,
space. See [17] for the pmo the above-mentioned facts and more.
In [49], the authors give sufficient conditions for the analytic coefficients of (1.1)
such that the solutions all belong to Q. The proofs involve Carleson measures,

&'Iifh are defined in Section 4.3. .
28

Theorem 3.1. [49, Theorem 2.4] Let A(z) = Yo oanz", an € C. If |ay| < 1 for all
n € N U {0}, then all solutions of (1.3) belong to the Dirichlet space.

Theorem 3.1 was generalized for the higher-order equation (1.1) by Xiao:

Theorem 3.2. [65, {@&Yem 1.12] Let Aj(z) = ¥ qa;,2" € H(D), a;, € C. If
laju| < (n+2)*27 forall j =0,...,k=1, n € NU{0}, then all solutions of (1.3)
belong fo the Dirichlet space.

Paper II, shows that Theorem 3.1 is not sharp. Namely, for 0 < a < 1/2, a con-
dition exists on the Maclaurin coefficients a, such that the assertion of Theorem 3.1
follows even though |a| = kK — o0 as k — oo, see [43, Corollary 8(a)] and the
subsequent discussi

Theorem 3.3. [49, Theorem 2.1] Let 1 < ¢ < 3/2 and let K satisfy

= K[Sf:l 1=2¢ e
/; (uq-gl;lgl <0 ) 5 ds < co, (3.5)

Then a ta = a(n,c,K) > 0 exists such that if the coefficients A; of (1.1) satisfy
HAF”Hf.‘i.j Sa,j=1,...,n—1and ||Ag||g= = = @, then all solutions of (1.1) belong to

Q-
Theorem 3.4. [49, Theorem 2.6] Let (3.5) be satisfied with ¢ = 1. Then a constant p =
pi(n,K) = 0 exists such that ﬂ"llﬂ),-]h.;;g_j <B.forallj=1,...,n-1, and ||.-".g||”:;o e B.

then all solutions of (1.1) belong to Q.

It seems reasonable that Theorem 3.3 holds when the condition [[Ag[|y= < a is
replaced by || Ag||pz < a. Similarly, Theorem 3.4 should hold when ||f’-|;|||”:] < pis

replaced by || Ag|/y= < B. The heuristic principle behind these predictions is stated
as follows:

Remark 3.5. Conditions (2.15), (2.3) and mwn [59, p. 787] give the vague idea t
the term | f')(z)| grows roughly as |f'*(z)|(1 — |z]*)*~/. If we want the terms fi¥)
and Ag_1 f5-1),..., Agf in equation (1.1) to have equal growth, PR} |A;(z)| should
grow roughly as (1 — |z[]*)/~%. In this case, none of the terms Ay f% 1, .. Agf
and fi*), can immediately be neglected while considering (1.1).
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3.2 SEPARATION OF ZEROS AND CRITICAL POINTS

For a non-constant f € H(ID), the zeros do not have an accumulation point inside ID.
Moreover, the subset of T, where the boundary function f (:f"’]l exists and vanishes,
cannot be an arc on T due to the Schwarz reflection principle and cannot have a
positive measure by Privalov’s theorem. These observations hold for the critical
points of f asml.

If f and g are linearly independent solutions of

f"+Af=0, (3.6)

where A € H(ID), then the Wronskian W(f,g) = fg' — f'g is a non-zero constant.
Consequently, zeros of each solution of (3.6) are simple and the zeros (resp. crit-
ical points) of two linearly independent solutions are distinct, since |f(z)| + |f'(z)|
and |f(z)| + |g(z)| are non-vanishing. In contrast to these observations, note that it
is not clhow often |f(z)| + |¢'(z)| can vanish. 65

The zeros of any non-trivial solution of (3.6) are simple. Analogously, the zeros
of any nun—biviﬁution of the kth order differential equation (1.1) are at most of
multiplicity k — 1.

If fisa nnn—trivaolutiun of (3.6), the separation of its zeros and critical points
is of interest. If ¢ : [0,1) = (0, 1) is a non-decreasing function such that

: (r)
e P (El—”)

T+rg(r)

o0

(12

and A is an analytic function satisfying

pov 2
sup |A(2)| (v(Iz) (A= 21%) =M < oo,

il
then any two distinct zeros {1, {> € ID of any non-trivial solution of (5.17) are sepa-
rated in the hyperbolic metric by

1+ §(1tu(G1, 82)1)/ max {KV/M, 1}
1= (1tn(81,2)))/ max {KVM,1}

dp(81.02) = log

see [12, Theorem 11]. Here dy; is the hyperbolic metric defined in (2.7), and #,({;,{>)
denotes the hyperbolic midpoint of {; and ;. In particular, if A € H5", then (2.7)

takes the form
1+1Hmax{vﬂ,1}
l—lfmax{m,l}a

since we may choose ¢ = ¢ for an arbitrary 0 < ¢ < 1. Hence, we obtain the result
originally proved by Schwarz in [60, Theorems 3-4] that the zeros of each solution
of (1.3) are separated in the hyperbolic metric if and only if ||A|| e is finite. This is
equivalent to the existence of § > 0 such that each solution of ( 1,37} has at most one
zero in each disc A(a, ) for a € D. Here

<s)

dy(g1,82) = log

8—Z

Afa,d) = {z €D : |ga(z)| =

1—na=z
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3
is ageudu—h}rperbolic disc with center a € D and radius 0 < § < 1.
Zeros and critical p are hyperbolically separated from each other. Let ¢, K
and M be as above. If f is a non-trivial solution of (5.17) and f(z) = f'(a) = 0 for
some z,a £ D, then

£ 1+¢{|n|}a’max{Kvﬂ,l}
2 ogl—wilﬂl};’max{Kﬂ,l};

see [26, Theorem 1]. This irrms the classical result of Taam [41, Theorem 8.2.2]: if
we havemE H3®, then the hyperbolic distance between any zero and any critical
point of any non-trivial solution of (5.17) is uniformly bounded away from zero.

In comparison to the case of two zeros, or a zero and a critical point, the critical
points can have arbitrary multiplicity and do not have to be separated, see [26,
Example 1]. m

In addition to hyperbolic separation, we define another concept: a sequence
{zn}y=; in D is uniformly separated if

dy(z,a) =

inf
kel

= Znlg

neM {k} 1

The next example is originally due to Hille [41, p. 552]. The example is also
discussed in [60, p. 162] and in [35, Example 11].

Example 3.6. Let ¥ > 0and A(z) = (1 +4’rz];‘[1az]2, z € ID. Then the functions
g 2 fo s 14= i
filz) = v1-z%exp {—1}-']rxlng1_z ;=12

are linearly independent solutions of (5.17). Each f),-, j = 1,2, is bounded and has no
zeros. However, the bounded function
1+z

f(z) = f2(2) — f(2) =2iv'1 -2 sin (Tlﬂgm)f zeD,

has infinitely_many zeros. The zeros of f are simple and real, and moreover, the
hyperbol ance between two consecutive zeros is precisely 8, = m/(2). If, for
example, g(z) = f2(z) + f1(z), then the Wronskian W(f,¢) = f¢' — gf' = 8iv. Note
that if v — oo then IIAIIH? — 00, |W(f,g)| — coand ||fil|g= — o0, j = 1,2, whereas
the separation constant 6, — 0.

The aforementioned results are related to the second order equation (3.6). The
analysis of higher order equations is harder because there are not enough sufficient
tools. Some progress was obtained, for example, by Kim and Lavie in the Seventies
and Eighties. | er Ill, a new zero separation result is obtained.

It is evident that if f and g are any linearly independent solutions of (1.3), then
2A = S(h), where h = f/g. Here

oo - (-} (5

is the Schwarzian derivative of a locally unim function i and k" /' is called the
pre-Schwarzian derivative of h. Moreover, h is univalent in a set £2 C D if and only
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if each solution ¢, f + s at most one zero in (). Due to these two facts, the
zeros of solutions of (1 d the univalence of I are closely related.

For a moment, let a(z) = (1 — [zZB[0hd B(z) = (1= |z2)%. By Nehari’s re-
[50], ||A||H;= = ”5”’]'”1'1'? /2 < 1 implies that h is univalent and equivalently

each non-trivial solution of (1.3) has at most one zero. Indeed, also in the case when
h is locally univalent merﬂmorphic. |IS(h) ||{_[§.1 < 2 implies that I is univalent,

see [55, Corollary 6.4]. If h € H(ID), then

; 1
ISRl < 416" /0 || + 5 11B" /B [y

by Cauchy’s integral formula and

[ 1
W I g <24+ 2¢/14 5 IS ag

by [54, p. 133]. Hence, h is univalent if ||i"/}|| = is sufficiently small. The best
constant is due to Becker [6]: if h € H(ID)d ally univalent and

zh{ {"‘[|

"ED

then h is unwamm D.
Conversely, if f € ’H{]D)ﬁnn alent, then it satisfies the growth estimate

k|
|z[)?

which implies [|f||zz < | f(0)| + |f'(0)|. Moreover, the converse Becker’s condition
[|P(f)|lpze < 6 and the Kraus” condition ||5[f]||“;e < 6 hold, see [55, p. 21] and [47,

p--
For a locally univalent meromorphic function /1 in D, the quantity ||S{I:}||Hm is

ﬁmtmnd only if k is uniformly locally univalent. Moreover, if h € H(ID), then
this is equivalent to the finiteness of ||h” /h'|| =, see [66, Theorem 2]. @

Univalent functions are related to inclu of function spaces. If f € H(ID) is
univalent, then it is quite evident that f € B if and only if f(ID) does not contain
arbitrarily large discs. Moreover, univalent functions in B, BMOA and the spaces
Qp, for parameters () < p < o0, are the same. Each univalent function belongs to the
Hardy space H? for all 0 < p < 1/2. For these facts and refinements, see [53] and
the references therein.

|z
(1+ |z

£ (0)] e If@) - FOI < If [‘i’?rl{1
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Tools for the study of ODEs

In this section, we describe some methods which are useful in the study of dif-
ferential equations. We state the basic outline of localization, which leads to the
localization method for linear ODEs in Paper I. Since a pseudo-hyperbolic disc is
an important localization domain, the relationship of its center and radius to the
Euclidean center and radius is discussed in detail.

We state some integral estimates for the maximum modulus function of a solu-
tion of (1.1). These growth estimates are related to Picard’s iterations, the Gronwall
lemma and Herold's comparison theorem and resemble the integration methods
used in Paper II. However, the integration methods in Paper II are more elementary
and straightforward.

We describe an operator theoretic approach, which is used in both Papers II
and III. This method originates from Pommerenke’s result [57, Theorem 2] and its
improvement, which are presented. A generalization of the Hardy-5Stein-Spencer
formula to higher order derivatives improves these results, see Section 5.3.1 in the
summary of Paper 1.

4.1 LOCALIZATION AND PSEUDD-HERBDLIC DISCS

A function f € H(D) can be studied locally in a simply connected domain (2 © ID
by localization: consider an analytic bijectib: D — (Y and then study ¢ = fo¢
in ID. By the Riemann mapp@& theorem, such a localization map ¢ always exists
and is essentially unique. The domain (2 and the map ¢ must be chosen in a suitable
way so that ¢ preserves the properties of interest.

simplest localization maps are the dilatation z — rz, 0 < r < 1, the transla-
tion z —+ a+ (1 — |a|)z, a € D\ {0}, and the automorphism

a—z
1-az'

2 pu(z) =

for a € D. The composition ¢(z) — ¢,(rz) of the autnmnrphisnmd dilatation
sends D to a pseudo-hyperbolic disc A(a, r) and is important when considering the
zero distribution of solutions of differential equations, see Paper III.

T uclidean center and radius of a pseudo-hyperbolic disc

A pseudo-hyperbolic disc A(a,r), with centem and radius 0 < r < 1, consists
of z € ID for which |g,(z)| < r. In fact, A(a,r) is a Euclidean disc with the center

and radius : ;
1—r 1— |a
==’ ™ Beg—rnt

respectively [21, p. 3]. To obtain this by a direct calculation, let |@,(z)| = r and, for
simplicity, denote A = (1—1r?)/(1— tm Then

1-7 _ (SRS )

(4.1)

r |z—al?
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which implies

2—|ﬁ|2r2 rE_lnler

= r
|z|2+|a|2—2Re{ﬂz}=|z—ﬂ|2= T2 T2 |z|1.
By re-organizing terms, we obtain
|2 w T = e
A R @ =
If we multiply both sides by A, the obtained equation yields
§ _sieiis . 2_r—la? 2 0
|z = Aa|® = |z|* — 2Re (AaZ) 4 |Aa|" = W—i—fl |a|
(A —laf)? 2
~ 0 -TaprRR
which implies (4.1).
Note that the permutation
(a.C,7,5) = (1,5,a,C) (4.2)

is very useful in this context, since it transforms the formulas in (4.1) to each other.

Supplementary formulas for condition (4.1)

Next, we supplement (4.1) by expressing a number x € {a,C,r,5} in terms of two
other numbers of the same set. In particular, 5 is given by formulas (4.7) and (4.9)
below and r is given in formulas (4.10)—(4.12). To obtain a formula for C or a, apply
the permutation (4.2).

Without any loss of generality, let a,r € (0,1) and let A(a,r) = D(C,5). Now,
condition (4.1) implies
atr
1+ra”

which givesa £ r = C £ 5 + raC + ra5. Hence, we deduce the useful equations

C+S5=

a=C+ras (4.3)

and
r=5+raC. (4.4)

First, solve C from (4.4) and substitute in (4.3) to obtain

r=5(1—a*?) +ra?, (4.5)
which implies
1— g2
et

Second, solve r from (4.4) and substitute in (4.3) to have

as?
II:‘_E-'_]—n'(?’ =
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which gives

S \/[“ = C]il =2} (4.7)
Third, apply the permutation (4.2) to (4.6) to obtain
152 -(1-)S§+(1-CHr=0, (4.8)
which gives
1-—12 1—r2 2 2
5= 5 —\/( 5 ) - (1-0C2). (4.9)
Formulas for r can be also obtained. Equation (4.8) yields
14822 1452 —C2\?
'S TTIs _J( 25 ) == e

Apply the permutation (4.2) to (4.5) and solve for r to obtain

[ a=-C
Finally, solve r from (4.5) to get

1 —a2\? 1-a?
S \/( zsfg) it zsanz‘ e

4.2 INTEGRAL ESTIMATES

Research in [25] concerns the use of Picard iterations f_; =0,
7

= J e ()
fulz) = Z ):dj,uf z _g]i_H“_l-’q}- () fua(8)dE
j=0n=

[
“h & (4.13)

k-1
+ Y cu(z—z)", neNu{o},

n=0

to study equation (1.1). Here the integration is performed along the straight line
segment from zg to z.&e constants d;,, are given by

(=1) () .
plo= £ <<= k-—
. i (k=j+m-1)" Osnsjsk-1,
7
and the constants ¢; € C, which depend on the initial values of f at z, are given by
an inductive formula in [25]. See also [14] for an application of Picard iterations.
If the iterations f,, converge to an analytic function f, then (4.13) yields the rep-
resentation formula [36, Theorem 3.1], w@\ together with the classical Gronwall

lemma [48, Lemma 5.10] implies Theorem 4.2,
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Lemma 4.1. Let u and v be non-negative integrable functions in [1,tp| and let ¢ > 0 be a

constant. If 103
%{ c+f u(s)ov(s)ds, te€ (1,4t

tHhen f
u(t) < cexp (/ v[s]ds) 2t € [1,4).
1

Theorem 4.2. [36, T}ﬂ?m 4.1(a)] Let f be a solution of (1.1), where A; € H(D) for all
j=0,....,k—1. Then a constant Cy = Cy(k) > 0depending on the initial values of f at
the origin and a constant C3 > 0 depending on k exist, such that the following estimates
hold:

(i) The function f satisfies

7
=1 | ¢

M(r,f) < G EXP( Z Ef M(s, A“” )(1 s]k‘f‘*"‘ids) (4.14)
j=0 n=0

forall0<r<1
(ii) If A; € H(A(0, R)) for some R € (1, 00), then
k=1 | r (n)
M(r, f) < Cir¥lexp (Cz B L M(s, A" )s* . ds) (4.15)

foralll <r<R.

emld’s comparison theorem can be summarized as follows [36, Theorem HJ.
Let v be a solution of

where each p; : [a,b) — C. Let E C [a,b) be a set of finitely many points. Now,
e each p; by P; which, outside E, is continuous and satisfieggg:(x)| < Pj(x).

Let V be a solution of the new equation outside E such that [0!)(a)| < V) (a) for
allj=0,... k-1 Then

Iﬂ{’l}(I]I EVU}(I}: Xe [’ﬁrb}\E* j:{]"k_l

Herold's comparison theorem@:l s to the following theorem.

Theurem 4.3. [36, T.Faem 5.1] Let f be a solution of (1.1) where A; € H(D), for
all j=0,...,k=1, and Aj(zg) # 0forsome 0 < j < k—1and zy = ue“" e D. Then

M(r, f) < Cexp ( [ EM 5, Aj)FT ds) (4.16)

where C depends on the values of fU) and A j at zg.
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4.b{] PERATOR THEORETIC APPROACH

If f is a solution of
f'+Af=0, (4.17)

where A € H(D), then
f(z) =Sa(f)(z) + f(0) + f(0)z, zeD,

where the operator

san@== ([ gf{wm{w}dw) &, zeD,

maps H (D) into itself. If X € H(ID) is an admissible normed space and the operator
norm ||S4 || x— x satisfies

ISa(f)llx

5 =X =5U < 1,
we deduce ()
= = 00,
I£lx 1—[ISallx—x

This operator theoretic approach is behind many results which give a condition for
A such that all solutions belong to some function space of analytic functions.
The approach is related to the classical integral operator
- 35

T(f)&) = | f@g' @z,

which has been studied, for example, by Pommerenke, Aleman, Cima and Siskakis,
see [2-4,56]. The application of the operator theoretic approach may be difficult due
to the lack of equivalent norms (H™) and because Carleson measures still remain
unknown (BMOA and B). However, the duality relations (H!)* ~ BMOA, A* ~ K
and (Al))* ~ B suggest how to proceed.

To apply the ﬂhr theoretic approach, we usually need to utilize the dilata-
tion f, defined by f;(z) = f(rz) for r € (0,1). Then, at the end of the proof, we can
use facts such as || fllur = lim, ;- || frl|lar and || fllgmoa < suPg<r1llfrlEmoa- For
a corresponding lemma about the norm of H;, see [43, Lemma 11].

A seminal discovery is [57, Theorem 2], where Pommerenke gives a sharp suf-
ficient condition for the analytic coefficient A, which places all solutions f of (4.17)
into the classical Hardy space H?. To do this, Pommerenke writes the H*-norm of f
in terms of f" by using Green's formula, employs (4.17), and then applies Carleson’s
theorem fnrae Hardy spaces [15, Theorem 9.3].

A finite positive Borel measure p on ID is called a g-Carleson measure for an
admissible normed space X C H(ID) if X is continuously embedded into Lf., This

means that the identity operator Id : X — L} satisfies
Ifllg < dflxpallfllx.  f€X,

where the operator norm ||Id||,_, ;¢ is a finite number. The term Carleson measure
it
is named after L. Carleson, who obtained a characterization for such measures in
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the case where X = HF and q = p. Namely, for a finite positive Borel measure y on
Dand 0 < p < oo,

(L F@P@@)" < 1l Wl € b, @19)

where

|l

”P'—rL::: = “ﬂi!&rlemmn 0= p < oo

Here || || carleson 15 the Carleson norm of u defined by

d
"j! "Carbemm = sup '“{Sﬂ} = s [ F [Z} < oo,
wep 1=8l e /s 1= |4l

see [67, Theorem 9.12] and [15, Theorem 9.3]. The sets

, [
S, = {r-:’""r :|lal <r<1,|6—arg(a)] < %}, aeD)\ {0},
and 5p = ID are called Carleson squares.
We have
".“ lcarieson = sup |¢P{1{Z}| df"{z}- (4.19)
aeD <D
To get an upper estimate for ||jt||carleson, Note that
2
I ||
1—Ja] ~ [1—az[?

= |¢h(z)], z€8, aeD,

by |1 —az| < |1 - |a|?| + ||a]* —&z| < (1 —|a]) for z € S,. For the other direction,
apply (4.18) for p = 1 to ¢}, and note that ||@}||;n =1 for all a € D. See [23, p. 101].
Mow we state Pommerenke’s original theorem.

Theuregl.d. [57, Theorem 2] If A € H(ID) is such that ||p 4 ||carteson 5 small enough for
duas = |A(2)|2(1 — |z|>)? din(z), then every solution of (4.17) belongs to H2.

A refinement of Theorem 4.4 shows that only the behavior of A close to the
boundary T matters: An absolute constant 0 < § < oo exists such that if

qup 161 o
laf2s 1~ 2l
for any 0 < § < 1, then all solutions of (4.17) belong to H?, see [57, Theorem 3].
Theorem 4.5 generalizes Theorem 4.4 for the case of the higher order equation (1.1)
and general 0 < p < o0,

Theorem 4.5. [59, Theorem 1] Let 0 < & < 1. For every 0 < p < oo there is a positive
constant «, depending only on p and k, such that if the mﬁcﬁﬁs Aj € H(D) of (1.1)

satisfy

sup [ |Ao(z)[*(1 - [22)*

1—|af?
jalz b

= dm(z) <a
and _
sup |A;(2)|(1 = |zPY T e, 1,....k-1,
z]z4

then all solutions of (1.1) belong te HY N Hy'.
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Summary of papers

In the following Summaries,e notation used in the original papers has been
changed to correspond to the previous sections.

51 SUMMARY OF PAPER |

We describe a general localization method which can be applied to the study of
differential equations in simply connected domains D C C. Then, as an example, we
define a particular localization mapping and apply known results for ID to improve
Theorems 2.4-2.6.

m The localization method for linear ODEs

In this section, we first state a general theorem about localization. Then, we intro-
duce a particular mapping which can detect exponential growth near the boundary

point z = 1.

Lemma 5.1. [42, Lemima 2.1] Let f be a solution of

f{k]é A fOV +- -+ A f' + Aof = Ay,

where Ag, Ay, ..., Ay € H(D). Let T : D = D be locally univalent and g = f o T. Then
the function g is a solution of

B oo+ +ad +ag=c (5.1)

where c; € H(D). Moreover,

omalcr) = oma(Are T), Oma(cj) < ‘;E':ﬂ?{gm,rr{f!'m oT)},

5.2
TM,JI(CRJ = TM,rr'l:-'d‘.i; 2 T]r TM..H{‘:}':I < E:'_ax{TM,rr[AN o T} }r o

€5

whereS; = {N € N : opmu(AnoT) = max,,,;_,}-{{:r, AmeT)} L forj=01,....k—1.

The proof of Lemma 5.1 follows easily, s by a straightforward calculation g
is a solution of (5.1) where ¢, = (A o TT),

- 1 1 k-1
cj= m {A;GT] (THE= Pk,j{T} = m§+1 fmpm.j[r}] .

for j=0,1,...,k— 1, and P, (T) is defined by
m §
g[:rrll s EU’[!J & T}Pm,;'{T}-
i=0
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Hence P, ;(T) is a polynomial in T', T”, ..., T"") with integer coefficients, a so-called
Bell polynomial. We can inductively solve ¢;_q,c_3,...,cp and see that (5.2) holds.
Here we may mention that, in Pml[[, the formulas

fu=fﬂuﬁT]‘m e = (Aro T) - (T,
) T
g8 T
k-3 = (Ag_20T): {T"}'zm‘h——l & T
o kk=1) ('I_":)z _kKk—-1)(k—-2)T"
— 2 \F - & T

which hold for a general k € N, are used in the case k = 3.
We study equations (5.5), (5.7) and (5.8) via the localization map T : D — D,
defined by

k-1 = (Ag_1 o T)T =
(5.3)

1-=

: P

'z = Tﬁﬁ{z] =1—sin(g/2)e"" ( ) , (5.4)
where B € (0,7/2], p = p(B) = p(r — p)/e (0,1/4] and y € (~n/2,7/2)
is such that |y| < (m — B)*/2m € (0,7/2). Here T(ID) is a tear-shaped region
having a vertex of angle pm touching T at z = 1, see Figure 5.1. The domain
T(D) has the symmetry axis T((—1,1)), which meets the real axis at angle . As B
decreases, T(ID) becomes thinner, T((—1,1)) becomes shorter and the angle 7 can
be set larger [42]. 24

If ¢ € H(ID) grows rapidly near the point z = 1 in terms of the iterated order of
growth, then T carries the property to ¢ = f o T, as the next lemma shows.

2sin(5/2)

pm

Figure é[ﬁlomain T(D) with parameters § = 0.85 and 7 = —0.75, Figure 1 of
Paper 1. In this case, we have p = B(m — B)/ 7% = 0.197 and 2sin(f/2) = (.825.
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Lemma §EQ (42, Lemma 2.2] Let f € H(D) and g = f o T, where T is defined by (5.4).
T%ii{f:l = TM i {g)fpfﬂj ne .

The proof of Lemma 5.2 is straightforward and follows from the definition of the
order oy, and the geometric properties of the conformal map T. Note that f can
grow arbitrarily fast even when f o T grows slowly.

5.1.2 Iterated order of growth of solutions

Second order equations
We apply the localization map T, defined in (5.4), to the equation

f:f+A1{Z}Exp ({l_bﬁ)f:-}—flﬂ{z]\exp (%)}‘= 0, {55]

where Ag, Ay € H(DU {|z —1| < £}) for some £ > 0 and, to avoid trivial cases,
Ag 0, by, by, g1.90 # 0, Re (go) = 0. Earlier results concerning equation (5.5) are
discussed in Section 2.4.

Theorem 5.3. [42, Theorems 1.2 and 1.3] Let f be an arbitrary non-trivial solution of (5.5),
where g1 = qp = 4.

(1) If (2,c0) and arg(by) # arg(bg), then op2(f) = q.
(igalf Im (q) £ 0 < Re (g) and |by| < |bo|. then op2(f) = Re (g).

The case g € (0,2], which is not covered by Theorem 5.3(i), can be examined
with stronger assumptions, see Theorem 5.6 below. For g € (2, 00), Theorem 5.3(i)
improves Theorem 2.5, and Theorem 5.6 improves [29, Theorem 1.11].

Theorem 5.4. [42, Theorem 1.4] Let q1 # qo in equation (5.5). Assume that either
qo. 71 € (0,00) and

Re (ﬂ) <0< Re (Ei), for some y € (—g,z ; (5.6)

Eh-ﬂ g"‘]'lTﬂ
or Im(qp) # 0 and Re (q;) < Re(qy). Then ep2(f) = Re (go) for all non-trivial
solutions f of (5.5).

In Paper II, we discuss in detail when (5.6) holds, see [42, Corollary 1.5] and the
subsequent discussion. See also Figure 5.2.

Higher order equations
Here, we consider higher order differential equations.
Theorem 5.5. [42, Theorem 1.1] Let f be an arbitrary non-trivial solution of

b
fO 4 A (2)f TV 4+ A(2)f + Ao(z) exp, (m) f=0 (5.7)
wherek,n € N, E H(DU {|z — 1| < &}) for some € > 0, Ag does not vanish identically
and b,q € C\ {0}. Suppose that Im (q0) # 0 or |arg(by)| < F(Re (qo) 4+ 1). Then
HM,rH—I{f} = Re {qt'l':l
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Figure 5.2: The green area represents those pairs (gp, 1) € [3,10] x [1,3] such that
condition (5.6) holds for any Iy, by € C' 0. The sawteeth are bounded by the blue
curve gy = qo/ (o — 2) and the red curve q; = g0/ (g0 = 1).

Theorem 5.5 implies Theorem 2.4 as a special case, by setting k = 2, n = 1 and
g € (1,00). Next, waate two generalizations.

Theorem 5.6. [42, Theorem 2.3] Let f be an arbitrary non-trivial solution of

= b .
® + V7 A i ()

where k € N, A; € H(DU {|z=1| < ¢&}) for some e > 0, g € (0,00) and b; € C
E:ﬂﬂj =0,1,....k— 1. Let Ag = 0 and by = 0. Assume that b),-fbn € [0,1) for all

0,1,....,k =1 with at most one exception b; = by, for which arg(b,,) # arg(by).
Suppose that one of the conditions

(1) max{ Re (b,,),0} < Re (bg);
(@) 0 < Re (bg) < Re (bn), arg (%g) € (0, ) and arg (;—'_g,;) <34

2
(iii) Re (bp) <0, arg (‘f:g) € (0, 7] and arg (L'F) <39
holds or that one of the conditions holds when by and by, are replaced by by and b, respec-
tively. Then opm2(f) = Re (q).

For a non-homogenous version of Theorem 5.6, see [42, Theorem 2.4].
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5.2 EWMAR‘F OF PAPER 1l .
1
We give sufficient conditions for the coefficients such that all solutions of
) L A ) RPN P ST e | a
i . e e A (5.9)

belong to H; (D). Here k € N\, {1} and Ap, Ay, ..., Ay are analytic in a simply con-
nected domain D, which is typically the unit disc D. In Theorem 5.8, the domain D
needs only to be starlike: 0 € D and D contains the linear segment [0, zg| for all
points zg € D.

5.2.1 Integration method involving multiple steps

Let a bounded, measurable and radial function w : ID — (0, c0) satisfy

ds
]i:rl_"’:up wir) [ = <M< o0 (5.10)
for some M = M(w) € (0,00) and
lim sup < m (5.11)

w(r)
r=1- W (—‘5_—)

for some constants € € (0,00) and m = m(w,€) € (0,c0). Then, by (5.10), constants
M = M;(w, k) € (0, Aﬁand Mp = Mp(w) € (0, 00) exist such that

limsup w(r)(1 —r)k! k=1,....n, (5.12)

T s
i fu SE—sfF
and
w(t) ] = S <My, € (0,)
Theorem 5.7. [43, Theorem 1] Let w : D — (G,m] be radial and satisfy (5.10) and (5.11).
Then the following assertions hold:

(a) If the nth primitive of A, belongs to H;; and

1
E= Prr(“AU”H"+mzkl{1+£}k”"d‘k”H‘“) 1,

k—l

where P, = [T}_, My with constants M;. as in (5.12) and m, € are as in (5.11), then
all solutions of (1.1) belong to H.

(b) If the (n — 1)th primitive of A, belongs to HZ; and

!

el Bl 4
F=P, | sup|Ao(z)lw(z)(1 = |z[)" 4
1] |(ZEE| U }l { | |} 0 w{r}

1 1—2
+llA1llyz, +m Zk!{lﬂl*"llﬂxﬂllﬂm_.) =l

k=1

where P,_1 = H"" My, with constants My as in (5.12) and m, € are as in (5.11),
then the derivative of every solution of (1.1) belongs to H;.
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Moreover, if we consider the equations

LA f=0 and [ 4 A f + Agf =0
in (a) and (b), respectively, then rhmnpﬁﬂn (5.11) regarding w is unnecessary.

In the proof of Theorem 5.7, an estimate for f in terms of f'") is obtained step-
by-step by using the Fundamental Theorem of Calculus (2.2) and inequality (5.12)
fork =1,...,n, see the proof of [43, Lemma 9]. In this way, the constants My can be
optimized on each step. If we use (2.2) multiple times before involving the weight w
or if we use, for example, the representation formula [36, Theorem 3.1], the sharp
constants are lost.

Conditig (5.10) implies that w has to decrease quite rapidly. In particular, ther
exists p € (0, 00) such that w(r) /(1 — r)" is bounded [61, Lemma 2]. Condition (5.
restricts the rate at which w can decrease. If w is non-increasing, then (5.11) is
equivalent to the doubling condition w(r) < mw (-‘—ff-[) when r € [0,1) is close to
one.

Conditions (5.10) and (5.11) are independent. Namely, w(r) = exp (—1-1;;)

satisfies (5.10) but fails (5.11). Conversely, w(r) = (log 1%}_’ satisfies (5.11) but
fails (5.10). For more properties on (5.10) and (5.11), see [43].

5.2.2 Integration method via a differentiation identity

In the prog§Ell Theorem 5.7, an upper bound is given to the terms A; m terms
of A;f, by using the Cauchy Integral Formula and (5.11). Meanwhile, in the proof
of Theorem 5.8 below, we ume identity

Anf® = R (-01(T) (27"

and then remove the derivative on the right-hand side by integrating repeatedly
along a line segment. Consequently, the sufficient condition for the coefficients A;
is an integral condition. Denote the generated quantities by

K_ =
U o) PR AR

j=1

Fplm,w)(z) =

for K=0,1and 1 <m < n, and the repeated integration along a line segment by

rﬂu:,zj=|pﬁ and L,+1{F,z}=fu 1, (E, ) |dg|

forneNandz e hHere F is a measurable function in a starlike domain D.

Theorem 5.8. [43, Theorem 2] Let D be a starlike domain and let w : D — (0,00) be
a measurable and bounded function. Let the coefficients A = H(D), j=0,....n in
equation (5.9).

(a) If .
E=supw(z) }_ Lu(Fo(mw),z) <1
zel =1

and the nth primitive of A, belongs to H.) (D), then all solutions of equation (5.9)
belong to HZ; (D).




(b) If
n=1

F = supw( )[,, (Ao (w™),2) + ¥ L,,{F.{m,w},z}] 2 1

D m=1

and the (n — 1)th primitive of A, belongs to H (D), then the derivative of every
solution of (5.9) belongs to HZ; (D).

Theorem 5.8 and condition (5.10) imply a version of Theorem 5.7 which is true

without assumption (5.11), but where the sharp constants are lost, see [43, Theo-

]. Theorem 5.8 is also more general than Theorem 5.7 in the sense that D

may be replaced by an arbitrary starlike domain. For more general domains, see the
discussion following [43, Theorem 2].

u:nsequences and sharpness of main results

If w(z) = (1= |z|)¥ for p € (0, c0), then the quantities E and F in Theorem 5.7 can
be chosen to be
@l

: (k+p)t?
== (nannﬁ., + Zk'ﬁu ;nH;,»k)

and
n=1
1 dr
F=]] —— Ap(2)|(1 = |z|)PH? f .
F.p+;—1(“m'” W T

(k+ p)+
+ || A1]lpe=, + ZHH—?”A"‘H o, |)

(5.13)

respectively. In this case, concrete upper bounds for ||f||z and [|f||z are found,
see [43, Coroll (M.
In the case of the equation
ﬁ+ Af =0,

where A € H(ID), Theorem 5.7 is sharp in the sense that the assumptions E < 1
and F < 1 cannot be replaced by E < 1+ ¢ or F < 1 + ¢, respectively, for any
g € (0, 00), see [43, Example 5].

Corollary 5.9. [43, Corollary 6] Let f be a solution of (1.1) wherem € H(DD), for
all j =0,...,n. Let Ay = 0and F = F(p) be defined as in (5.13). Then the following
assertions hold:

—logr)

(a) If E(p) < 1 holds with p =1 and ] -

rdr < o, then f € B = Q.

(b) If F(p) < 1with p € [3,1) :md] “—g}

il
(c) If F(p) < 1 with p € {U,%]. then f € BP ¢ D < Q. Moreover, if K(0) =
then f € B C D C Qkp-

rdr < oo, then f € BY C Q..
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Corollary 5.9 @v&s Theorems 3.3 and 3.4. Moreover, recall that if f € BF for
some 0 < p < 1, then f is continuous in D and f{e“}l € MAq_p, that is, f satisfies a
Lipschitz condition of order 1 — p, see [15, Theorem 5.1]. Hence, Corollary 5.9 also
implies facts about the continuity of f.

Corollary 5.10. [43, Corollary 8] Let A(z) = L2 axz* € H(ID) and let f be a solution
of (1.3). Then the following assertions hold:

1
Dk +2+1) o — « 5.

@ Ifa € (0,1) and || < (1) Zrrr=s

1

1 f2Trk+
(b) If |ag| < Fj; %dxfaréﬁu{ﬂ},fhmeE.

(c) Ifa € (1,00) and |ag| < a(a — 1)(1 + k) for k € N U {0}, then f € B*.
Corollary 5.10(a) partially improves Theorem 3.1, which requires

T(k+a+1)
KT(a+1) ) ki,

to yield all solutions of (1.3) belonging to the Dirichlet space.

|Hk|£1=ﬂ'(

5.2.3 A classical theorem in the plane

As a straightforward application of Theorem 5.8, we obtain a part of [48, Theo-
rem 8.3]. See [48] fom:muf in terms of the Wiman-Valiron theory.

Theorem 5.10!43, Theorem Al Let the coefficients Ag, ..., Ax—1 of (5.9) be polynomials
and let Ay be an entire function with a finite order of growth p( A, ). Then all solutions
of (5.9) are entire functions of finite order. Moreover,

deg(A;)
T i {1 + max B ,pr:A.,}} (5.14)

for every solution f.

Our proof of Theorem 5.11 directly generalizes to iterated order case and we
obtain [7, Theorems 4(i) and 4(ii)], according to which every solution of (1.1) satisfies

Pr+1(f) = max{ max pk(Aj],pH.{A,,]} . (5.15)

0<j=n—1

For A, = 0, condition (5.15) can also be given by the growth estimates (4.16)
and (4.15) or Picard’s successive approximations, see [25, Theorem D]. Moreover,
condition (5.14) follows from estimate (4.15). Conditions (5.14) and (5.15) have a
similarity in that each solution zy of the polynomial equation

Pty 12" a2 gzt ag =0,

satisfies

s
%EQMEZ-}— max l’ll.,
1+ E}.=ﬂ |a;] 0=jsn—-1H—|

which can be seen by modifying the proof of [48, Lemma 1.3.2]. This is no sur-
prise, since the Wiman-Valiron theory transforms the differential equation (1.1) to
an algebraic equation, which, at least asymptotically, is a polynomial equation.
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5.3 SUMMARY OF PAPER llI

We present a counterpart of the Hardy-5tein-Spencer formula for higher order deriva-
tives, which h@:licatinns to differential equations. Then we consider the bounded,
BMOA and B solutions of a second order differential equation and the zero separa-
tion of solutions of higher order differential equations.

5.3.1 A counterpart of the Hardy-5tein-5pencer formula for higher order
derivatives

Define for f € H(D), 0 < p < cc and k € N the quantities
N(fp.k) = Iflkw = ¥ LFP )],
-
MU p k) = [ IR0 @R = [2)* dm(:).

We are now motivated bi the question of whether or not

N(f, p,k) < C(p.K)M(f, p.k), C(p.k) L= 0. (5.16)

If Kk = 1, the @r is affirmative by the Hardy-Stein-Spencer formula (3.2). If
k=2 and f € H(ID) is non-vanishing and such that ||log f|| g is sufficiently small,
then (5.16) holds for k = 2 with C(p) = pz as p — 0%, To see this, apply the Hardy-
Stein-Spencer formula to g = fP=2//2f' € H(ID). For general k btain the next
theorem, whose proof relies on a classical characterization of HY spaces in terms of
the Lusin area function, see [1, ﬁﬁ] and [21, pp. 55-56].

Theorem 5.12. [2 eoren 4] Let f € H(ID) and k € IN.
(i) If0 < p < 2, then N(f, p.k) S M(f, p,k).
(ii) If 2 < p < oo, then M(f,p, k) < N(f, p.k

(ifi) If 0 < p < oo and there exists 0 <@ 1 such that f is univalent in each pseudo-
hyperbolic disc A(a,8), a € D, then N(f, p. k) < M(f, p.k).

The comparison constants are independent of f and in (i) and (ii) depend only on p. In (iii)
the comparison constant depends on p and 8.

Theor&.lzﬁ} has two immediate applications in the case of A € H(ID) such
that dp 4 (z) = |A(z)[*(1 — |z|*)? dm(z) is a Carleson measure. First, let f be a solu-
tion of

f+Af=0 (5.17)

and let f,(z) = f(§TZBr 0 < r < 1. Since limsup, ;[114, | Carteson S |14 | Carteson
by the discussion in the proof of [27, Theorem A] and (4.19), we obtain by Theo-
rem 5.12(i) and Carleson’s theorem

27

N(p2) S [ 1@IIAG) A= [P dm(@) < 1 W lia careson
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for all sufficiently large r. Hence, if ||pta|/carleson is Small enough, depending on
0 < p < oo, then f € HP. This is an alternative proof of a special case of [59,
Theorem 1.7].

If inequality (5.1 were true for k = 2, we mumen improve [59, Theorem 1.7]
in the case of equ (5.17) to the form: if du(z) = |A(2)]*(1 — |z|?)® dm(z) is a
Carleson measure, then all solutions of (5.17) belong to Up. p<e HF.

5.3.2 Solutions in H™, BMOA and [5 by an operator theoretic approach

We give sufficient conditions for the analytic coefficient A of (5.17) which place solu-
tions in H™, BMOA or B. In the case of bounded solutions, the sufficient condition
is given in terms of Cauchy transforms, defined by (3.3).

Theorem 5.13. [27, Theorem 2] Let A € H(ID). If

limsup sup ||Arzllx <1
r=+1- zeD

for

Arz(u) = j; ]; atic) dwdl, ueD,

1 —=Tuw
then all solutions of (1.3) are bounded.

The converse implication in Theorem 5.13 pen and appears to be difficult.
If (5.17) admits linearly independent solutions fi, f; € H™ such that

inf (LA +1fE)) > o, (5.18)

then mw, by an application of the Corona theorem [15, Theorem 12.1]: there
exists gy,82 € H™ such wlgl + 282 = 1, and consequently

A=A+ (fig1+ frg2)" =2(fig) + 282) + fg) + fog5.

Regarding condition (5.18), we recall that f; and f; do not have common zeros due
to linear independence.

The existence of one l:mEd solution restricts the rth of A almost to the
form A € H{®. Namely, f(z) = exp(—(1+2z)/(1 —z)) is a solution of (1.3) with

coefficient A(z) = —4z/(1 —z)*. This is almost extremal possible growth for A
since [14, Theorem 3.1(a)] implies that if (1.3) has a bounded solution, then
2
(log %)
: ot o o
M(r,A) S T

For the space BMOA we obtain two results, namely Theorems 5.14 and 5.15
below. The proofs of Theorems 5.13-5.16 utilize the dilatation fr(z) = f(rz) for
0 < r < 1. Note that condition (5.19) does not include a limit in respect to r,
whereas condition ( 0es,

Theorem 5.14. [27, Theorem 3] Let A £ m If

2
sup (log 1) [[ 1)1 = 22201 = Igs@PF) dm(z) (519

acD)

is sufficiently small, then all solutions of (1.3) belong to BMOA.
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Theorem 5.14 is inspired by [62, Theorem 3.1] and related to so-called logarithmic
Carleson measures, see Paper Il and references therein.

Theorem 5.15. [27, Theorem 14] Let A € H(ID). If

. 12| 12 Ar) dg 2
imsup sup [ (5= 7| 7 FUGE o - Ip@Pdne) 60
is sufficiently small, then all solutions of (1.3) belong to BMOA.
The condition 1
sup |A(z)[(1 = |z])* | log < 00 (5.21)
zeD 1= |z|

for & = 3/2 implies the finiteness of (5.19), but also, since « > 1, that the solutions
are bounded by the growth estimate (4.14). The growth estimate (4.16) implies the
same conclusion if & > 2. The finiteness of (5.19) implies (5.21) for a = 1, but not for
any larger a. For these and other similar observations, see [27, Lemma 6] and [8,62].

For B we obtain a family of sufficient conditions given in terms of reproducing
kernels BY' of the weighted Bergman space AZ. Note that, for w as below, we

have B C A2 [51, Proposition 6.1]. Here we only gwe the neceasmdehmtmm.
see [27, p. 12] for a more detailed discussion. See [33], [16] and [52] for the general
theory of Bergman spaces.

Let w : D — [0,00) be radial and integrable such that the norm mnverm
in A2, implies the uniform convergence on compact subsets of ID. Then each point
evaluation L.(f) = f(z) is a bounded linear functional in the Hilbert space AZ,.
Consequently, unique reproducing kernels BY' exist such that

fE) = < [ flu) B‘“ BY (u)ew(u) dm(u), leD,

forall f € A2, thatis, f € ‘H{[D} and

./D |f{lf}|2w{n] dm(u) < e

BY (u) = i [@ ([ﬂl rz"“w{r}dr)_]l :
=0 :

We may assume w to be normalized such that we have BE' (0) = 1. Denote

Moreover,

w*(u) = 10 —-m{r}rdr ue D\ {0}
8 Tu]
In the following, we assume on w the existence of C = C(w) > 0, a = a(w) > 0

and p = p(w) > a such that

e — 7B
c! (1—’) &) <@(r) <C (u) a(m (5.22)
1-§ 1-—§
forall0 < r < t < 1, where &(u) = fl w(r)dr for u € D. The first inequal-

ity in (5.22) is equivalent to &(r) < @ (

% and the second is equivalent to the
existence of K, C > 1 such that &(r) = Ci ( )
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Theorem 5.16. [27, Theorem 10] Let w be as above, and let A be analytic in D such that
limsup, ;- XE{Ari < g, where

Xp(Ar) = sup (1 - |2[?) f ‘[ BYY()A(rD) d;‘

zelD

n‘m (u).

Then every solution f of (1.3) belongs to B and satisfies

1
Ilflls < T=4X5(A) (If{ﬂll ::E (1-1z]*)

) da‘ 5 If’[D}I) :

where Xg(A) < 1/4. Moreover, if Xg(A) is small enough, then all solutions of (1.3)
belong to B. 162

By [27, Theorem 11], for w as in Theorem 5.16, the following conditions are
equivalent: tinn (5.21) holds for a = 1; limsup,_,- X B(A;) < oo; the operator
54 : B — B defined by

Sa(f)(z) = I/: (f f{w}AEw}dW) df, zeD,

is bounded. If one of these conditions holds, then f € H? [57, Theorem 3].
In [43, Corollary 4, Example 5], it was found that if

sup [A(2)|(1 = [2])* g
zeD

L (5.23)

1
1-2|
with a sharp constant C = 1, then all solutions of (5.17) belong to B. This remains
the best of the known solutions to the problem: give a sufficient condition for the
analytic coefficient A of (5.17) which places all solutions in B. Initially this question
was posed by the late Nikolaos Danikas (Aristotle University of Thessaloniki). !
Danikas also asked the corresponding question for the BMOA space.

Prior to [43], conditions for A such that f € H* C B were known [34, 38].
Condition (5.23) with constant C = 1 is less restrictive and allows solutions to belong
161 Inl Hz] \ H*. However, unlike all H* functions, an arbitrary Bloch function need
not have a radial limit in any point of T and its zero set does not have to satisfy the
Blaschke condition. Hence, the final answer to Danikas’ question remains to be
FIVET.
= The proof of Theorem 5.15 shows that in order to conclude f € BMOA, it suf-
fices to take the supremum in (5.20) over any annulus R < |z| < 1 instead of
D. This should be compared with the discussion following Theorem 4.4. A sim-
ilar note can made ol eorem 5.16. Theorems 5.14, 5.15 and 5.16 have their
analogues for little Bloch e By and VMOA, closures of polynomials in B and
BMOA, which consist of those f € H(ID) for which lim ;- f'(z)(1 - |z]*) = 0
and limg|_,;- || fall%,> = 0, respectively. See [27, Theorems 7, 15 and 13].

5.3. A zero separation result by localization and a growth estimate
The zeros of a non-trivial on f of

f"”-i-:"lzfﬂ+ﬁlf’+ﬂﬂf:ﬂ’ (5‘24}

"The 1997 summer school *Function Spaces and Complex Analysis” in llomantsi, Finland.
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where @A, A; € H(D), are at most two-fold. For the zeros of maximum multi-
plicity, we obtain the following theorem.

Theorem 5.17. [27, Theorem 1] Let Ag, Ay, Az € H(ID) and f be a non-trivial solution
of (5.

(i) If _
1A=z <, j=0,1,2 (5.25)
zelld

then the sequence of two-fold zevos of f is a finite union of separated sequences.

(i) If
sup | [Aj(z)|(1—[zF) 7 (1 |@a(2)F)dm(z) < oo, (5.26)
ach /D
for j = 0,1,2, then the sequence of two-fold zeros of f is a finite union of uniformly
separated sequences.

In the proof of Theorem 5.17, equation (5.24) is localized by the automorphism ¢,
and the coefficients of the localized equation can be obtained from formulas (5.3)
for Kk = 3. Then Jensen’s formula, the proofs of the growth estimates (4.14) and
Lemma 5.18 are applied. For the counterpart of Theorem 5.17 in the second order
case, see [28, Theorem 1].

Let v > 0, A(z) = (1+49*)/(1-2%)% z € D, and fy, f> as in Example 3.6.
Trivially, { 7, f3, fif2} is a solution base of

" + 4ﬁ +2A'h=0. (5.27)
In fact, 1 ff, f5. f1 fz} consists of three linearly independent bounded solutions each
of whi no zeros. By Example 3.6, h = (f2 — fi )2 is a bounded solution of (5.27)
whose uence is a union of two separated sequences. Moreover, this se-

quence is a union of two uniformly separated sequences, since all zeros are real [15,
Theorem 9.2]. In this case thﬁ)efficients of (5.27) satisfy both (5.25) and (5.26).

Lemma 5.18. [27, Lemma 5] Let 2 = {z;} be a sequence of points in 1D such that the
multiplicity of each point is at most p € .

W) If

sup ¥ (1-|ga(z)P)’ < M < o,
AEZ z.c 2 [a}

then {z; } can be expressed as a finite union of at most M + p separated sequences.
(i) If
sup Y} (1-|ga zi)]?) €M < o,
el z,c2\{a}

then {z;} can be expressed as a finite union of at most M + p uniformly separated
SeqUences.

See the proofs of [16, Theorem 15 and Lemma 16; pp. 69-71] for earlier results
concerning Lemma 5.18(i).
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