7

ON Q_P SEQUENCES

Rauno Aulaskari

Department of Mathematics, University of Joensuu P. O. Box 111, FIN-80101, Joensuu, Finland

E-mail: rauno.aulaskari@joensuu.fi

Shamil Makhmutov

Department of Mathematics Ufa State Aviation Technical University Ufa, Russia

Hasi Wulan

Department of Mathematics

Shantou University Shantou, Guangdong 515063, P. R. China

E-mail: wulan@stu.edu.cn

Abstract: For a non-normal function f the sequences of points $\{a_n\}$ and $\{b_n\}$ for which $\lim_{n\to\infty} (1-|a_n|^2)f^{\#}(a_n) = +\infty$ and $\lim_{n\to\infty} \iint_{\Delta} (f^{\#}(z))^2 g^p(z,a_n) dA(z) = +\infty$ are considered and compared with each other.

AMS-classification: 30D45

1. Introduction

Let Δ be the unit disk in the complex plane and let dA(z) be the Euclidean area element on Δ . Let $M(\Delta)$ denote the class of functions meromorphic in Δ . Green's function in Δ with pole at $a \in \Delta$ is given by $g(z,a) = \log \frac{1}{|\varphi_a(z)|}$, where $\varphi_a(z) = \frac{a-z}{1-\bar{a}z}$ is a Möbius transformation of Δ and $\sigma(z,w) = |\varphi_a(z)|$ is the pseudohyperbolic distance between z

and w. For 0 < r < 1, let $\Delta(a,r) = \{z \in \Delta : \sigma(z,a) < r\}$ be the pseudohyperbolic disk with center $a \in \Delta$ and radius r.

For $0 , we define classes <math>Q_p^{\#}$ (cf. [8] and [6])

$$Q_p^\# = \{f \in M(\Delta): \sup_{a \in \Delta} \iint_{\Delta} (f^\#(z))^2 g^p(z,a) \, dA(z) < \infty\},$$

where $f^{\#}(z) = \frac{|f'(z)|}{1+|f(z)|^2}$ is the spherical derivative of f. We know that $Q_1^{\#} = UBC$, the class of all meromorphic functions of uniformly bounded characteristic in Δ (cf. [9]), and for each $p \in (1, \infty)$ the class $Q_p^{\#}$ is the class of normal functions \mathcal{N} (cf. [6]), which is defined as follows:

$$\mathcal{N} = \{ f \in M(\Delta) : \|f\|_{\mathcal{N}} = \sup_{z \in \Delta} (1 - |z|^2) f^{\#}(z) < \infty \}.$$

Definition 1. Let f be a meromorphic function in Δ . A sequence of points $\{a_n\}$ $(|a_n| \to 1)$ in Δ is called a q_N -sequence if

$$\lim_{n \to \infty} f^{\#}(a_n)(1 - |a_n|^2) = +\infty.$$

Definition 2. Let f be a meromorphic function in Δ and $0 . A sequence of points <math>\{a_n\}$ $(|a_n| \to 1)$ in Δ is called a q_p -sequence if

$$\lim_{n\to\infty} \iint_{\Delta} (f^{\#}(z))^2 g^p(z,a_n) dA(z) = +\infty.$$

2. q_p and q_N sequences

Theorem 1. Let f be a meromorphic function in Δ . If $\{a_n\}$ is a q_N -sequence, then any sequence of points $\{b_n\}$ in Δ for which $\sigma(a_n, b_n) \to 0$ is a q_p -sequence for all p, 0 .

Proof. By [[4], Theorem 7.2] there exist a sequence of points $\{c_n\}$ in Δ and a sequence of positive numbers $\{p_n\}$ satisfying for the pseudo-hyperbolic distance $\sigma(a_n, c_n) \to 0$ and $\frac{p_n}{1-|c_n|} \to 0$ such that the sequence of functions $\{f_n(t)\} = \{f(c_n + p_n t)\}$ converges uniformly on each compact subset of the complex plane to a nonconstant meromorphic function g(t).

For a fixed R > 0 set $\Delta_n = \{z : z = c_n + p_n t, |t| < R\}$. For any sequence of points $\{b_n\}$ in Δ for which $\sigma(a_n, b_n) \to 0$, we have $\sigma(b_n, c_n) \to 0$ since $\sigma(a_n, c_n) \to 0$. Thus, for n sufficiently large, we obtain that

$$\Delta_n = \{z : z = c_n + p_n t, |t| < R\} \subset \Omega_n = \{z : |\varphi_{b_n}(z)| < 1/e\}.$$

Therefore, we get by change of variables

$$\iint_{\Omega_n} (f^{\#}(z))^2 g^p(z, b_n) dA(z)
\geq \iint_{\Delta_n} (f^{\#}(z))^2 g^p(z, b_n) dA(z)
= \iint_{|t| < R} (f_n^{\#}(t))^2 g^p(c_n + p_n t, b_n) dA(t).$$

By the uniformly convergence we have

$$\iint_{|t| < R} (f_n^{\#}(t))^2 dA(t) \to \iint_{|t| < R} (g^{\#}(t))^2 dA(t),$$

and this last integral is finite and nonzero, because g(t) is a nonconstant meromorphic function and the integral is over a fixed bounded set. However, $g(c_n + p_n t, b_n) \to +\infty$ as $n \to \infty$ uniformly for |t| < R, and it follows for p, 0 , that

$$\iint_{|t|< R} (f_n^{\#}(t))^2 g^p(c_n + p_n t, b_n) dA(t) \to +\infty.$$

In fact,

$$g(c_n + p_n t, b_n) = \log \left| \frac{1 - \overline{b_n}(c_n + p_n t)}{c_n + p_n t - b_n} \right|,$$

and for |t| < R

$$\left| \frac{c_n + p_n t - b_n}{1 - \overline{b_n}(c_n + p_n t)} \right| \le \frac{|c_n - b_n| + p_n |t|}{|1 - \overline{b_n}c_n| - p_n |b_n t|} \le \frac{\left| \frac{c_n - b_n}{1 - \overline{b_n}c_n} \right| + \frac{p_n |t|}{|1 - \overline{b_n}c_n|}}{1 - \frac{p_n |b_n t|}{|1 - \overline{b_n}c_n|}} \to 0.$$

Thus the proof of Therem 1 is complete.

Corollary 1. Let f be a meromorphic function in Δ . Suppose $\{a_n\}$ is a q_N -sequence, then $\{a_n\}$ is a q_p -sequence for all p, 0 .

In view of Corollary 1, it is natural to ask whether the converse of Corollary 1 is also true. However, the following result shows that no such assertion can be true.

Theorem 2. There exist a non-normal function f and a sequence $\{a_n\}$ in Δ which is a q_p -sequence for all p, $0 , but <math>\{a_n\}$ is not a q_N -sequence.

Proof. Consider function $f(z) = \exp \frac{i}{1-z}$. It is easy to see that f is not normal. Choose sequence $\{b_n\} = \{\frac{n^2}{1+n^2}\}$ and by a simple computation we obtain that

$$\lim_{n \to \infty} (1 - |b_n|^2) f^{\#}(b_n) = +\infty.$$

By Theorem 1 for any sequence of points $\{a_n\}$ in Δ for which $\sigma(a_n, b_n) \to 0$,

$$\lim_{n\to\infty} \iint_{\Delta} (f^{\#}(z))^2 g^p(z, a_n) dA(z) = +\infty$$

for all $p, 0 . Now we choose <math>\{a_n\} = \{\frac{n^2}{1+n^2} - \frac{i}{n+n^3}\}$ and notice that $\sigma(a_n, b_n) \to 0$. But

$$\lim_{n \to \infty} (1 - |a_n|^2) f^{\#}(a_n) = 0.$$

Thus $\{a_n\}$ is just one we needed.

Remark 1. There exist a non-normal function f and two sequences of points $\{a_n\}$ and $\{b_n\}$ in Δ for which $\sigma(a_n, b_n) \to 0$ such that

$$\lim_{n \to \infty} (1 - |a_n|^2) f^{\#}(a_n) = +\infty$$

and

$$\lim_{n \to \infty} (1 - |b_n|^2) f^{\#}(b_n) < +\infty.$$

Theorem 3. Let f be a meromorphic function in Δ and let $0 < p' < p < \infty$. If, for a sequence of points $\{a_n\} \subset \Delta$,

$$\lim_{n \to \infty} \iint_{\Lambda} (f^{\#}(z))^2 g^p(z, a_n) dA(z) = +\infty, \tag{1}$$

then

$$\lim_{n \to \infty} \iint_{\Lambda} (f^{\#}(z))^2 g^{p'}(z, a_n) dA(z) = +\infty.$$
 (2)

Remark 2. By assumption (1) we know that $f \notin Q_p^{\#}$. Since the function classes $Q_p^{\#}$ have a nesting property, $f \notin Q_{p'}^{\#}$ for p' < p. However, Theorem 3 gives more information about this situation showing that the same sequence $\{a_n\}$, which breaks the $Q_p^{\#}$ -condition, also breaks the $Q_{p'}^{\#}$ -condition.

Proof of Theorem 3. Let $U_1^n = \{z : g(z, a_n) > 1\}$. By (1) we may suppose (at least for some subsequences of $\{a_n\}$) that either

$$\lim_{n \to \infty} \iint_{\Delta \setminus U_1^n} (f^{\#}(z))^2 g^p(z, a_n) dA(z) = +\infty$$
 (3)

or

$$\lim_{n \to \infty} \iint_{U_1^n} (f^{\#}(z))^2 g^p(z, a_n) dA(z) = +\infty.$$
 (4)

Suppose now that (3) is true. Since, for $z \in \Delta \setminus U_1^n$, we have $g(z, a_n) \leq 1$ and thus $g^{p'}(z, a_n) \geq g^p(z, a_n)$ for p' < p. Hence

$$\lim_{n \to \infty} \iint_{\Delta \setminus U_1^n} (f^{\#}(z))^2 g^{p'}(z, a_n) dA(z) = +\infty$$

and so

$$\lim_{n\to\infty} \iint_{\Delta} (f^{\#}(z))^2 g^{p'}(z,a_n) dA(z) = +\infty.$$

Suppose next that (4) is true. Then we need to consider only two cases: (i) Either there exists a sequence of points $\{b_n\}$ in U_1^n with $\sigma(a_n, b_n) \to 0$ such that

$$\lim_{n \to \infty} (1 - |b_n|^2) f^{\#}(b_n) = +\infty$$

or (ii) there exists r_0 , $0 < r_0 < 1/e$, and M > 0 such that

$$(1-|z|^2)f^{\#}(z) \le M$$

for all $z \in \Delta(a_n, r_0) = \{z : \sigma(z, a_n) < r_0\}$. If (i) is true, then by Theorem 1, for any sequence of points $\{c_n\}$ in Δ for which $\sigma(b_n, c_n) \to 0$ and any p', we obtain that

$$\lim_{n\to\infty} \iint_{\Delta} (f^{\#}(z))^2 g^{p'}(z,c_n) dA(z) = +\infty.$$

By choosing the sequence $\{c_n\} = \{a_n\}$ we see that (2) is true in this case. On the other hand, if (ii) holds, then necessarily

$$\lim_{n\to\infty} \iint_{\Delta\setminus\Delta(a_n,\frac{r_0}{2})} (f^{\#}(z))^2 g^p(z,a_n) dA(z) = +\infty.$$

Since, for $z \in \Delta \setminus U_1^n$, $g^p(z, a_n) \leq g^{p'}(z, a_n)$ and for $z \in U_1^n \setminus \Delta(a_n, \frac{r_0}{2})$, $cg^p(z, a_n) \leq g^{p'}(z, a_n)$ for some c > 0,

$$\lim_{n\to\infty} \iint_{\Delta\setminus\Delta(a_n,\frac{r_0}{2})} (f^{\#}(z))^2 g^{p'}(z,a_n) dA(z) = +\infty.$$

Thus also in this case (2) is true and the proof of Theorem 3 is completed.

Remark 3. In fact, from the proof of Theorem 3, we can see that if for a fixed r_0 , $0 < r_0 < 1$,

$$\lim_{n\to\infty} \iint_{\Delta(a_n,r_0)} (f^{\#}(z))^2 g^p(z,a_n) dA(z) = +\infty,$$

then there exists a sequence of points $\{b_n\}$ in U_1^n such that

$$\lim_{n \to \infty} (1 - |b_n|^2) f^{\#}(b_n) = +\infty.$$

In the opposite direction we are able to get a sharper result which is also deeper than Corollary 1.

Theorem 4. Let f be a meromorphic function in Δ . If, for a sequence of points $\{a_n\} \subset \Delta$,

$$\lim_{n \to \infty} (1 - |a_n|^2) f^{\#}(a_n) = +\infty,$$

then for the same sequence $\{a_n\}$

$$\lim_{n\to\infty} \iint_{\Delta(a_n,r)} (f^{\#}(z))^2 g^p(z,a_n) dA(z) = +\infty$$

holds for all p, 0 and all <math>r, 0 < r < 1.

Proof. Suppose that

$$\lim_{n \to \infty} (1 - |a_n|^2) f^{\#}(a_n) = +\infty.$$

If there exists an r_0 , $0 < r_0 < 1$ and a p, 0 such that

$$\limsup_{n\to\infty} \iint_{\Delta(a_n,r_0)} (f^{\#}(z))^2 g^p(z,a_n) dA(z) = M < +\infty,$$

then there exists a subsequence $\{a_{n_k}\}$ of $\{a_n\}$ such that

$$\iint_{\Delta(a_{n_k}, r_0)} (f^{\#}(z))^2 g^p(z, a_{n_k}) dA(z) \le M + 1$$

for k sufficiently large. Choose an r_1 , $0 < r_1 < r_0$, satisfying

$$(\log 1/r_1)^{-p}(M+1) < \pi/2.$$

It follows that

$$\iint_{\Delta(a_{n_k},r_1)} (f^{\#}(z))^2 dA(z) \le (\log 1/r_1)^{-p} (M+1) < \frac{\pi}{2}.$$

By Dufresnoy's theorem (see [[7], p.83]) we have

$$(1-|a_{n_k}|^2)f^{\#}(a_{n_k}) \leq \frac{1}{r_1},$$

which contradicts our assumption.

Theorem 5. Let f be a meromorphic function in Δ . Suppose that, for $0 , there exists a sequence of points <math>\{a_n\}$ in Δ such that

$$\lim_{n\to\infty} \iint_{\Lambda} (f^{\#}(z))^2 g^p(z,a_n) dA(z) = +\infty.$$

Then, for any sequence of points $\{b_n\}$ in Δ for which $\sigma(a_n, b_n) \to 0$,

$$\lim_{n\to\infty} \iint_{\Lambda} (f^{\#}(z))^2 g^p(z,b_n) dA(z) = +\infty.$$

Proof. Choose positive constants M_1 and M_2 such that $M_2 < M_1$. Let $U_1^n = \{z: g(z,a_n) > M_1\}$ and $U_2^n = \{z: g(z,a_n) > M_2\}$. Then if $w \in U_1^n, z \in \Delta \setminus U_2^n$,

$$cg(z, a_n) \leq g(z, w)$$

for some c > 0. This means for all n that

$$\iint_{\Delta \setminus U_2^n} (f^{\#}(z))^2 g^p(z, b_n) dA(z) \ge c^p \iint_{\Delta \setminus U_2^n} (f^{\#}(z))^2 g^p(z, a_n) dA(z)$$
(5)

for any sequence of points $\{b_n\}$ in Δ for which $\sigma(a_n,b_n)\to 0$. If

$$\limsup_{n\to\infty} \iint_{\Delta\setminus U_2^n} (f^\#(z))^2 g^p(z,a_n) dA(z) = +\infty,$$

then, by (6),

$$\limsup_{n\to\infty} \iint_{\Delta\setminus U_2^n} (f^\#(z))^2 g^p(z,b_n) dA(z) = +\infty.$$

If

$$\limsup_{n\to\infty} \iint_{U_2^n} (f^{\#}(z))^2 g^p(z,a_n) dA(z) = +\infty,$$

then continuing as in the proof of Theorem 3 we have to consider two different cases: (i) Either there exists a sequence of points $\{c_n\}$ in U_2^n for which $\sigma(a_n, c_n) \to 0$ such that

$$\lim_{n \to \infty} (1 - |c_n|^2) f^{\#}(c_n) = +\infty$$

or (ii) there exists r_0 , $0 < r_0 < e^{-M_2}$, and K > 0 such that

$$(1-|z|^2)f^{\#}(z) \le K$$

for all $z \in \Delta(a_n, r_0)$. If (i) is true, then, by Theorem 1, for above $\{b_n\}$, we have

$$\lim_{n \to \infty} \iint_{\Delta} (f^{\#}(z))^2 g^p(z, b_n) dA(z) = +\infty$$

since $\sigma(b_n, c_n) \to 0$. On the other hand, if (ii) holds, then using the same conclusions for Green's functions we see that necessarily for any sequence of points $\{b_n\}$ for which $\sigma(a_n, b_n) \to 0$,

$$\lim_{n\to\infty} \iint_{\Delta} (f^{\#}(z))^2 g^p(z,b_n) dA(z) = +\infty.$$

This completes the proof.

Question. Let 1 and suppose that

$$\lim_{n\to\infty} \iint_{\Lambda} (f^{\#}(z))^2 g^p(z,a_n) dA(z) = +\infty.$$

Is it true for p', p < p',

$$\lim_{n\to\infty} \iint_{\Lambda} (f^{\#}(z))^2 g^{p'}(z, a_n) dA(z) = +\infty?$$

We answer in part the question below, which is based on the fact that $N \cap M_p^\# = Q_p^\#$ for all p, 0 (see [31]).

Theorem 6. Let 1 and suppose that

$$\lim_{n\to\infty} \iint_{\Delta} (f^{\#}(z))^2 g^p(z,a_n) dA(z) = +\infty.$$

If the sequence $\{a_n\}$ is not a m_p -sequence, that is,

$$\lim_{n\to\infty} \iint_{\Lambda} (f^{\#}(z))^2 (1-|\varphi_a(z)|^2)^p dA(z) < +\infty,$$

then for any p', p < p', we have

$$\lim_{n\to\infty} \iint_{\Lambda} (f^{\#}(z))^2 g^{p'}(z,a_n) dA(z) = +\infty.$$

Acknowledgements

The first and third authors are partly supported by the Väisälä and Wihuri Funds, Finland.

REFERENCES 125

References

[1] R. Aulaskari and P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Complex analysis and its applications, Pitman Research Notes in Mathematics, 305, Longman Scientific & Technical Harlow, 1994, 136–146.

- [2] R. Aulaskari, H. Wulan and R. Zhao, Carleson measure and some classes of meromorphic functions, Proc. Amer. Math. Soc., Vol. 128, 2000, 2329-2335.
- [3] R. Aulaskari, J. Xiao and R. Zhao, On subspaces and subsets of BMOA and UBC, Analysis, Vol. 15, 1995, 101–121.
- [4] D. Campbell and G. Wickes, Characterizations of normal meromorphic functions, Complex Analysis, Joensuu 1978, 55-72, Lecture Notes in Mathematics, 747, Springer-Verlag, Berlin.
- [5] A. Baernstein II, Analytic functions of bounded mean oscillation, Aspects of contemporary complex analysis, Academic Press, London, 1980, 3–36.
- [6] M. Essén, Q_p -spaces, Lectures at the summer school on "Complex Function Spaces" at Mekrijärvi Aug.30 Sept.1, 1999. To appear, Department of Mathematics, University of Joensuu, Finland.
- [7] J. L. Schiff, Normal families, Springer-Verlag, New York, 1993.
- [8] H. Wulan, On some classes of meromorphic functions, Ann. Acad. Sci. Fenn. Math. Diss., Vol. 116, 1998, 1–57.
- [9] S. Yamashita, Functions of uniformly bounded characteristic, Ann. Acad. Sci. Fenn. Ser. A I Math., Vol. 7, 1982, 349–367.