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Abstract. Sufficient conditions for solutions of

f (n) +An−1(z)f
(n−1) + · · ·+A1(z)f

′ +A0(z)f = An(z)

and their derivatives to be in H∞

ω (D) are given by limiting the growth of coefficients A0(z), . . . An(z).

Here H∞

ω (D) consists of those analytic functions f in a domain D for which |f(z)|ω(z) is uniformly

bounded. In particular, the case where D is the unit disc is considered. The theorems obtained

generalize and improve certain results in the literature. Moreover, by using one of the main results,

one can give a straightforward proof of a classical result regarding the situation where the coefficients

are polynomials.

1. Introduction

We study the growth of solutions of the differential equation

(1) f (n) + An−1(z)f
(n−1) + · · ·+ A1(z)f

′ + A0(z)f = An(z), n ≥ 2,

where A0(z), . . . , An(z) are analytic in a domain D of the complex plane C, denoted
by A0, . . . , An ∈ H(D) for short. In particular, we consider the case where D is the
unit disc D = {z ∈ C : |z| < 1}. Hence, for simplicity, notations mentioned below
are defined for D but on request we use their analogies also for other domains.

Our main purpose is to find conditions which guarantee that all solutions of (1)
or their derivatives belong to a growth space

H∞
ω =

{

g ∈ H(D) : ‖g‖H∞

ω
:= sup

z∈D
|g(z)|ω(z) < ∞

}

.

Here ω is a weight, which means that ω : D → (0,∞) is bounded and measurable. In
the case where ω(z) = ω(|z|) for all z ∈ D, we say that ω is radial. If ω(z) = (1−|z|)p

with p ∈ (0,∞), we write H∞
ω = H∞

p . Also, the question of when all solutions belong
to the α-Bloch space Bα with α ∈ (0,∞), which consists of g ∈ H(D) such that
‖g‖Bα := supz∈D |g′(z)|(1 − |z|)α < ∞, is considered. Note that if α = 1, then Bα is
the classical Bloch space B.
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The growth of fast growing solutions of (1) is typically measured in terms of
the Nevanlinna characteristic function [9]. For slowly growing solutions some other
methods may give better results. Some useful techniques are, for example, Gronwall’s
lemma [7], Herold’s comparison theorem [11], Picard’s successive approximations
[2, 5] and methods based on Carleson measures [10, 13, 14, 15]. Moreover, in the case
of the complex plane, Wiman–Valiron theory is a commonly used method [12]. We do
not use any of these methods; instead, our calculations are based on straightforward
integral estimates.

It is well known that the growth of the coefficients A0(z), . . . , An(z) of (1) re-
stricts the growth of solutions. For example, if the coefficients grow slow enough,
then all solutions are bounded, while if the coefficients grow fast enough, then the
solutions may grow faster than any pre-given function. Therefore, if one wants to
force all solutions to H∞

ω , it suffices to give a strong enough growth condition for the
coefficients; for example, one can require that the norms ‖A0‖H∞

n
, . . . , ‖An−1‖H∞

1
are

small enough. This condition can be found by applying the differential equation and
using suitable integral estimates.

Using the integral estimates method mentioned above with a condition on the
norms ‖A0‖H∞

n
, . . . , ‖An−1‖H∞

1
, we prove Theorem 1. This result generalizes and

improves [10, Theorems 3.1 and 3.3]. Moreover, as a special case, we also give a
solution to the following problem due to the late Danikas, which has been open
since the 1997 summer school ”Function Spaces and Complex Analysis” held at the
Mekrijärvi Research Station in Ilomantsi, Finland: Give a condition for A(z) such
that all solutions of

(2) f ′′ + A(z)f = 0

belong to the Bloch space B. More precisely, Theorem 1 yields that if supz∈D[−|A(z)|
(1−|z|)2 log(1−|z|)] < 1, then all solutions of (2) belong to B. This particular result
is sharp in the sense that the assumption cannot be relaxed to supz∈D[−|A(z)|(1 −
|z|)2 log(1 − |z|)] < 1 + ε for any ε ∈ (0,∞). It is worth noticing that all previous
results known to the authors, including those given in [10, 13], force the solutions to
some proper subspace of B and hence form only a partial solution to the problem.

Our second main result, Theorem 2, is proved by applying an integral condition,
instead of radial growth space conditions, for the coefficients. In this case, the result
is valid also in other domains than just the unit disc. As a consequence of the
result, an alternative version of Theorem 1 is verified. An application for polynomial
coefficients is also obtained.

A classical result [18, Satz 1] of Wittich states that every solution of (1), where
the coefficients A0(z), . . . , An−1(z) are entire and An ≡ 0, has a finite order of growth
if and only if all coefficients A0(z), . . . , An−1(z) are polynomials. Moreover, if the
coefficients are polynomials, then the order of growth σ(f) of any solution f satisfies
the well-known estimate

σ(f) := lim sup
r→∞

log logM(r, f)

log r
≤ max

0≤j≤n−1

{

1 +
deg(Aj)

n− j

}

,

where M(r, f) is the maximum modulus of f on the circle of radius r centered at the
origin. This estimate can be proved in a straightforward manner without any heavy
machinery by using Theorem 2; see Section 4. In the literature, one can find more
technical proofs based on, for example, Wiman–Valiron theory [12, Theorem 8.3] and
Herold’s comparison theorem [8, p. 244]. By applying Gronwall’s lemma or Picard’s
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successive approximations, only a weaker version of the estimate has been proved
[5, 8].

The remainder of this paper is organized as follows: In the next section, we
introduce our main results, Theorems 1 and 2. We also prove an alternative version
of Theorem 1 by using Theorem 2. The main purpose of Section 3 is to improve results
of [13]. More precisely, we improve [13, Theorems 2.1 and 2.6] in the case where the
nondecreasing function K is continuous, and also give a partial improvement of [13,
Theorem 2.4]. In addition to this, we discuss the sharpness of our main results.
Section 4 contains a simple proof of the essential part of [12, Theorem 8.3] which
concerns a differential equation with polynomial coefficients in the plane. Sections 5
and 6 contain the proofs of Theorems 1 and 2, respectively.

2. Main results

In this section, we present our main results, Theorems 1 and 2. We start by
introducing conditions and notations needed in the statement of Theorem 1.

In Theorem 1, we require that the radial weight ω : D → (0,∞) satisfies the
conditions

(3) lim sup
r→1−

ω(r)

ˆ r

0

ds

ω(s)(1− s)
< M < ∞,

for some M = M(ω) ∈ (0,∞), and

(4) lim sup
r→1−

ω(r)

ω
(

1+εr
1+ε

) < m

for some constants ε ∈ (0,∞) and m = m(ω, ε) ∈ (0,∞). It should be noted that (3)
implies that there exists Mk = Mk(ω, k) ∈ (0,M ] and M0 = M0(ω) ∈ (0,∞) such
that

(5) lim sup
r→1−

ω(r)(1− r)k−1

ˆ r

0

ds

ω(s)(1− s)k
< Mk, k = 1, . . . , n,

and

(6) ω(t)

ˆ t

0

ds

ω(s)(1− s)
< M0, t ∈ (0, 1).

The conditions (3) and (4) play key roles in Theorem 1. Hence, before stating
the theorem, we list some observations about (3) and (4).

(i) The conditions (3) and (4) are independent. For example, ω(r) = exp
(

− 1
1−r

)

satisfies (3) but fails (4). On the other hand, ω(r) =
(

log e
1−r

)−1
satisfies (4)

but fails (3).
(ii) If ω satisfies (3), then there exists p = p(ω) ∈ (0,∞) such that ω(r)/(1− r)p

is bounded [17, Lemma 2].
(iii) It is possible that (4) holds for some ε but not for all. For example,

ω(r) = (1− r) sin2

(

π log 1
1−r

log 2

)

+ (1− r)2 cos2

(

π log 1
1−r

log 2

)

satisfies (4) for ε = 1 but not for ε = π. However, if (4) holds for some ε,
then it holds for some arbitrarily small ε.
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(iv) If ω is nonincreasing and (4) holds for some ε, then it holds for all ε. Hence, in
this case, (4) is equivalent to the doubling condition ω(r) ≤ mω

(

1+r
2

)

when
r ∈ [0, 1) is close enough to one.

(v) If the condition (4) is valid, then, in (3), the factor 1 − s is in a certain
sense the best possible. Namely, if ν : (0, 1) → (0,∞), ω satisfies (4) for some
ε,m ∈ (0,∞), ων is nonincreasing and there exists M = M(ω, ν) ∈ (0,∞)
such that

lim sup
t→1−

ω(t)

ˆ t

0

ds

ω(s)ν(s)
< M,

then we have

M > ω

(

1 + εr

1 + ε

)
ˆ

1+εr
1+ε

r

ds

ω(s)ν(s)
≥ ω

(

1 + εr

1 + ε

)

(

1+εr
1+ε

− r
)

ω(r)ν(r)
>

1

m

1

1 + ε

1− r

ν(r)

for sufficiently large r ∈ [0, 1). In particular, (1 − r)/ν(r) is bounded if r is
close enough to one.

Next we state Theorem 1, in which we use the notation ωp(z) = ω(z)(1 − |z|)p,
where ω is a radial weight and p ∈ R.

Theorem 1. Let ω be a radial weight in the unit disc satisfying (3) and (4).
Then the following assertions hold:

(a) If An ∈ H∞
ωn

and

E := Pn

(

‖A0‖H∞
n
+m

n−1
∑

k=1

k!(1 + ε)k‖Ak‖H∞

n−k

)

< 1,

where Pn =
∏n

k=1Mk with constants Mk as in (5) and m, ε are as in (4), then

all solutions of (1) belong to H∞
ω .

(b) If An ∈ H∞
ωn−1

and

F := Pn−1

(

sup
z∈D

|A0(z)|ω(z)(1− |z|)n−1

ˆ |z|

0

dr

ω(r)

+ ‖A1‖H∞

n−1
+m

n−2
∑

k=1

k!(1 + ε)k‖Ak+1‖H∞

n−k−1

)

< 1,

where Pn−1 =
∏n−1

k=1 Mk with constants Mk as in (5) and m, ε are as in (4),
then the derivative of every solution of (1) belongs to H∞

ω .

Moreover, if we consider the equations

f (n) + A0(z)f = 0 and f (n) + A1(z)f
′ + A0(z)f = 0

in (a) and (b), respectively, then the assumption (4) regarding ω is not necessary.

In what follows, we present another result where, instead of considering the
norms ‖A0‖H∞

n
, . . . , ‖An−1‖H∞

1
, we establish an integral condition on the coefficients

and their derivatives. This result is also more general in the sense that the weight
ω does not need to be radial and the unit disc D may be replaced by some other
domain.

We call a domain D on the complex plane starlike if 0 ∈ D and, for each point
z ∈ D, the line segment from the origin to z is contained in D. For a weight ω
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(not necessarily radial) in such a domain D and functions A0, A1, . . . , An−1 ∈ H(D),
denote

I1,ω(z) = I∗1,ω(z) =

ˆ z

0

|An−1(ξ)|

ω(ξ)
|dξ|,

and

Im,ω(z) =

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξm−1

0

∣

∣

∣

∣

∣

m
∑

j=1

(−1)m−j

(

n− j

m− j

)

A
(m−j)
n−j (ξm)

∣

∣

∣

∣

∣

|dξm| · · · |dξ1|

ω(ξm)
, z ∈ D,

for m = 2, . . . , n and

I∗m,ω(z) =

ˆ z

0

· · ·

ˆ ξm−1

0

∣

∣

∣

∣

∣

m
∑

j=1

(−1)m−j

(

n− 1− j

m− j

)

A
(m−j)
n−j (ξm)

∣

∣

∣

∣

∣

|dξm| · · · |dξ1|

ω(ξm)
, z ∈ D,

for m = 2, . . . , n − 1, where the integration paths are line segments. With these
concepts and notations established, we give the following result.

Theorem 2. Let D be a starlike domain and let ω : D → (0,∞) be a weight.

Then the following assertions hold:

(a) If

(7) E := sup
z∈D

ω(z)

n
∑

m=1

Im,ω(z) < 1

and the function z 7→
´ z

0

´ ξ1

0
· · ·
´ ξn−1

0
An(ξn) dξn · · · dξ1 belongs to H∞

ω (D),
then all solutions of (1) belong to H∞

ω (D).
(b) If

F := sup
z∈D

ω(z)

[
ˆ z

0

· · ·

ˆ ξn−2

0

|A0(ξn−1)|

ˆ ξn−1

0

|dξn|

ω(ξn)
|dξn−1| · · · |dξ1|

+
n−1
∑

m=1

I∗m,ω(z)

]

< 1

(8)

and the function z 7→
´ z

0

´ ξ1

0
· · ·
´ ξn−2

0
An(ξn−1) dξn−1 · · · dξ1 belongs to H∞

ω (D),
then the derivative of every solution of (1) belongs to H∞

ω (D).

Note that the conditions (7) and (8) both imply that ω needs to be bounded,
unless all the coefficients A0(z), . . . , An−1(z) are identically zero.

It is worth noticing that the method used to prove Theorem 2 works also in more
general domains than just those which are starlike with respect to the origin. In
fact, if one chooses the paths of integration and the compact sets K appropriately,
the method may be used in any domain D. For example, let D ( C be any simply
connected domain and let φ : D → D be a Riemann map from D onto D. Then
choosing the paths of integration in the proof of Theorem 2 to be lz = φ ([0, φ−1(z)]),
for z ∈ D, and taking the compact sets as K =

⋃

z∈K0
φ ([0, φ−1(z)]), where K0 is an

arbitrary compact subset of D, one sees that the following result holds:
If the function z 7→

´

lz

´

lξ1
· · ·
´

lξn−1
An(ξn) dξn · · · dξ1 belongs to H∞

ω (D) and

sup
z∈D

ω(z)

n
∑

m=1

I(φ)m,ω(z) < 1,
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where

I
(φ)
1,ω(z) =

ˆ

lz

|An−1(ξ)|

ω(ξ)
|dξ| =

ˆ 1

0

|An−1 (φ (tφ−1(z)))|

ω (φ (tφ−1(z)))

∣

∣φ′
(

tφ−1(z)
)

φ−1(z)
∣

∣ dt, z ∈ D,

and

I(φ)m,ω(z) =

ˆ

lz

ˆ

lξ1

· · ·

ˆ

lξm−1

∣

∣

∣

∣

∣

m
∑

j=1

(−1)m−j

(

n− j

m− j

)

A
(m−j)
n−j (ξm)

∣

∣

∣

∣

∣

|dξm| · · · |dξ1|

ω(ξm)
, z ∈ D,

for m = 2, . . . , n, then all solutions of (1) belong to H∞
ω (D).

Even in this rather simple example, it is clear that the choices of integration paths
and compact sets done above are not the only nor necessarily the best ones. However,
the example above is an easy way to illustrate the generality of the argument used
in the proof of Theorem 2. It is also a way to pinpoint the connection between the
choice of the paths of integration and that of compact sets: The compact sets need
to contain all the integration paths from the chosen fixed point z0 ∈ D (in the above
example z0 = φ(0)) to other points in the compact set. Hence one also cannot choose
the paths of integration randomly but some kind of systematic approach or control
over the paths is required.

Finally, we derive a result of the same nature as Theorem 1 from Theorem 2.
The main difference is that the result is not as sharp as Theorem 1 but the weight ω
does not need to satisfy the condition (4).

Theorem 3. Let ω be a radial weight in the unit disc satisfying (3). Then the

following assertions hold:

(a) There exists α = α(ω, n) ∈ (0,∞) such that if

‖Aj‖H∞

n−j
≤ α, j = 0, . . . , n− 1,

and the function z 7→
´ z

0

´ ξ1

0
· · ·
´ ξn−1

0
An(ξn) dξn · · ·dξ1 belongs to H∞

ω , then

all solutions of (1) belong to H∞
ω .

(b) There exists α = α(ω, n) ∈ (0,∞) such that if

‖Aj‖H∞

n−j
≤ α, j = 1, . . . , n− 1,

sup
z∈D

ω(z)

[
ˆ z

0

· · ·

ˆ ξn−2

0

|A0(ξn−1)|

ˆ ξn−1

0

|dξn|

ω(ξn)
|dξn−1| · · · |dξ1|

]

< 1

and the function z 7→
´ z

0

´ ξ1

0
· · ·
´ ξn−2

0
An(ξn−1) dξn−1 · · · dξ1 belongs to H∞

ω ,

then the derivative of every solution of (1) belongs to H∞
ω .

Proof. By (6), we obtain

Im,ω(z)ω(z) = ω(z)

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξm−1

0

∣

∣

∣

∣

∣

m
∑

j=1

(−1)m−j

(

n− j

m− j

)

A
(m−j)
n−j (ξm)

∣

∣

∣

∣

∣

|dξm| · · · |dξ1|

ω(ξm)

≤ Cω(z)

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξm−1

0

m
∑

j=1

∣

∣

∣
A

(m−j)
n−j (ξm)

∣

∣

∣

|dξm| · · · |dξ1|

ω(ξm)

≤ C
m
∑

j=1

sup
|ξ|≤|z|

∣

∣

∣
A

(m−j)
n−j (ξ)

∣

∣

∣
(1− |ξ|)mω(z)

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξm−1

0

|dξm| · · · |dξ1|

ω(ξm)(1− |ξm|)m

≤ C ′

m
∑

j=1

sup
|ξ|≤|z|

∣

∣

∣
A

(m−j)
n−j (ξ)

∣

∣

∣
(1− |ξ|)m, z ∈ D,
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for some constants C ∈ (0,∞) and C ′ = C ′(ω, n) ∈ (0,∞). Therefore Lemma 10 for
classical weights yields

sup
|ξ|≤|z|

ω(ξ)

n
∑

m=1

Im,ω(ξ) ≤

n
∑

m=1

sup
|ξ|≤|z|

ω(ξ)Im,ω(ξ)

≤ C ′

n
∑

m=1

m
∑

j=1

sup
|ξ|≤|z|

∣

∣

∣
A

(m−j)
n−j (ξ)

∣

∣

∣
(1− |ξ|)m

≤ nC ′′
n−1
∑

j=0

sup
|ξ|≤ρ

|Aj(ξ)| (1− |ξ|)n−j,

where ρ = (1 + |z|)/2 and C ′′ = C ′′(ω, n) ∈ (0,∞). Now, we have

E = sup
z∈D

ω(z)

n
∑

m=1

Im,ω(z) ≤ nC ′′
n−1
∑

j=0

‖Aj‖H∞

n−j
< 1

for ‖Aj‖H∞

n−j
< 1

n2C′′
with all indices j = 0, . . . , n−1. Hence the assertion (a) follows

by Theorem 2. The assertion (b) can be proved in a similar manner. �

3. Solutions in B
α, QK or QK,0

We begin this section by stating a version of Theorem 1 where ω(r) = (1 − r)p

with p ∈ (0,∞). After that we discuss the sharpness of Theorems 1 and 2 and some
of their consequences. In particular, consequences of Theorem 1, related to the cases
where all solutions of differential equations belong to Bα, QK or QK,0, are stated.

Corollary 4. Let f be a solution of the equation (1) with An ≡ 0. Then the

following assertions hold:

(a) If, for p ∈ (0,∞),

E :=
n
∏

j=1

1

p+ j − 1

(

‖A0‖H∞
n
+

n−1
∑

k=1

k!
(k + p)k+p

kkpp
‖Ak‖H∞

n−k

)

< 1,

then

‖f‖H∞

p
≤

|f(0)|+
∑n−1

k=1

∏k

j=1
1

p+j−1
|f (k)(0)|

1− E
.

(b) If, for α ∈ (0,∞),

F :=
n−1
∏

j=1

1

α+ j − 1

(

sup
z∈D

|A0(z)|(1− |z|)α+n−1

ˆ |z|

0

dr

(1− r)α

+ ‖A1‖H∞

n−1
+

n−2
∑

k=1

k!
(k + α)k+α

kkαα
‖Ak+1‖H∞

n−k−1

)

< 1,

(9)

then

‖f‖Bα ≤

∏n−1
j=1

1
α+j−1

‖A0‖H∞

α+n−1
|f(0)|+ |f ′(0)|+

∑n−1
k=2

∏k−1
j=1

1
α+j−1

|f (k)(0)|

1− F
.

The following example shows that, in the case of equation (2), Theorem 2 and
Corollary 4, hence also Theorem 1, are sharp in the sense that we cannot replace
the assumption E < 1 or F < 1 by E < 1 + ε or F < 1 + ε, respectively, for any
ε ∈ (0,∞).
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Example 5. Let us consider the equation (2).

(a) If A(z) = −(p + α)(p + α + 1)(1 − z)−2 for p ∈ (0,∞) and α ∈ [0,∞), then
(2) has a solution base {f1, f2}, where

f1(z) = (1− z)−p−α and f2(z) = (1− z)p+α+1.

Hence, if α = 0, then all solutions belong to H∞
p and E = 1 in Theorem 2(a)

and Corollary 4(a). On the other hand, for any ε ∈ (0,∞), we find α =
α(ε) ∈ (0,∞) such that f1 /∈ H∞

p and E ∈ (1, 1 + ε) in these results.

(b) If A(z) = −α(1 − z)−2
(

(α− 1)
(

log e
1−z

)−2
+
(

log e
1−z

)−1
)

for α ∈ [1,∞),

then (2) has a solution base {f1, f2}, where

f1(z) =

(

log
e

1− z

)α

and f2(z) =

(

log
e

1− z

)α ˆ z

0

(

log
e

1− ζ

)−2α

dζ.

Here
∣

∣

∣

∣

∣

ˆ z

0

(

log
e

1− ζ

)−2α

dζ

∣

∣

∣

∣

∣

≤
(

log
e

2

)−2α

and

|f ′
2(z)| ≤

(

log
e

2

)−α

|f ′
1(z)|+

(

log
e

2

)−2α

for z ∈ D. Hence, if α = 1, then all solutions belong to B and F = 1 in
Theorem 2(b) and Corollary 4(b). On the other hand, for any ε ∈ (0,∞), we
find α = α(ε) ∈ (1,∞) such that f1 /∈ B and F ∈ (1, 1 + ε) in these results.

Next we turn our attention to QK and QK,0 spaces. In particular, our purpose is
to improve results in [13].

Let QK be the space of functions f ∈ H(D) such that

sup
a∈D

ˆ

D

|f ′(z)|2K(g(z, a)) dm(z) < ∞,

where K : [0,∞) → [0,∞) is nondecreasing, g(z, w) = log
∣

∣

1−wz
w−z

∣

∣ is Green’s function

and dm(z) is the Lebesgue area measure. Respectively, QK,0 is the space of functions
f ∈ H(D) such that

lim
|a|→1−

ˆ

D

|f ′(z)|2K(g(z, a)) dm(z) = 0.

If K ≡ 1, then QK is the Dirichlet space D.
For the next result, we introduce some properties of QK and QK,0. We begin by

introducing a standard assumption which guarantees that QK contains non-constant
functions.

(i) If

(10)

ˆ ∞

1

K(r)e−2r dr < ∞

does not hold, then QK contains constant functions only.

In the future, we assume that K : [0,∞) → [0,∞) is continuous, nondecreasing and
satisfies (10). Then the following facts are true:

(ii) The inclusion QK ⊂ B is always valid. Moreover, QK = B if and only if

(11)

ˆ 1

0

K(− log r)

(1− r)2
r dr < ∞.
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(iii) The inclusion D ⊂ QK is always valid. Moreover, D = QK if and only if
K(0) > 0, while D ⊂ QK,0 if and only if K(0) = 0.

(iv) For α ∈ [1
2
, 1), the conditions Bα ⊂ QK,0, B

α ⊂ QK and

(12)

ˆ 1

0

K(− log r)

(1− r)2α
r dr < ∞

are equivalent.
(v) If K(r) = rp for p ∈ (0,∞), then QK is the classical Qp space.

Proofs of the facts (i)–(v) and more details about QK spaces can be found in [4].
Now, by using the facts (i)–(iv) and the trivial inclusion Bα ⊂ D for α ∈ (0, 1

2
),

we obtain the following consequence of Corollary 4.

Corollary 6. Let f be a solution of the equation (1) with An ≡ 0. Then the

following assertions hold:

(a) If (9) with α = 1 and (11) hold, then f ∈ B = QK .

(b) If (9) with α ∈ [1
2
, 1) and (12) hold, then f ∈ Bα ⊂ QK,0.

(c) If (9) holds with α ∈ (0, 1
2
), then f ∈ Bα ⊂ D ⊂ QK . Moreover, f ∈ Bα ⊂

D ⊂ QK,0 if K(0) = 0.

It is worth noticing that Corollary 6(c) improves [13, Theorems 2.1 and 2.6] in
the case where the nondecreasing function K is also continuous. In particular, the
condition concerning the coefficient A0(z) is weaker in Corollary 6(c). Namely, in
Corollary 6(c), we only have to assume that ‖A0‖H∞

n−1/2−ε
is sufficiently small for

some ε ∈ (0,∞), whereas in [13, Theorem 2.1] or [13, Theorem 2.6] it is assumed
that ‖A0‖H∞

n−1−ε
or ‖A0‖H∞

n−1
is sufficiently small, respectively. Note also that, in

Corollary 6(c), we obtain f ∈ B
1
2
−ε, whereas in [13, Theorems 2.1 and 2.6] it is

obtained that f lies in a strictly larger QK space and some assumptions on K are
needed.

Using Corollary 4 and [3, Theorem 5.1], we also find that if (9) holds with
α ∈ (0, 1), then f(eit) ∈ Λ1−α, that is, the boundary function satisfies the Lipschitz
condition of order 1−α. In particular, f belongs to the disc algebra A. Therefore, if
the assumption of Corollary 6(b) or 6(c) holds, we get f ∈ QK,0 ∩A or f ∈ QK ∩A,
respectively. One may now ask whether the solutions could be analytically continued
to ∂D if the coefficients of (1) grow slowly and have a nice boundary behavior. This
property is not true in general, as the following counterexample shows.

Example 7. The function f0(z) = 4 + 2z +
∑∞

k=1 2
−k2z2

k
is one-to-one and

continuous in D, analytic in D, and all of the derivatives of f0 converge uniformly in
D, see [16, p. 252]. Since |f0(z)| ≥ 1 uniformly in D, we see that

A(z) :=
−f ′′

0 − f ′
0

f0

is analytic in D and, in fact, belongs to A. In other words, f0 ∈ A is a solution of

f ′′ + f ′ + A(z)f = 0

with coefficients in A. Even so, f0 cannot be analytically continued to any point of
∂D.

The last result of this section gives a sufficient condition for solutions of (2) to
be in Bα. This time the condition is given by limiting the Maclaurin coefficients of
A(z).
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Corollary 8. Let f be a solution of the equation (2), where A(z) =
∑∞

k=0 akz
k ∈

H(D). Then the following assertions hold:

(a) If α ∈ (0, 1) and |ak| < α(1− α)
Γ(k + α+ 1)

k! Γ(α+ 1)
for k ∈ N ∪ {0}, then f ∈ Bα.

(b) If |ak| <
1

k!

ˆ 2

1

Γ(k + x)

Γ(x)
dx for k ∈ N ∪ {0}, then f ∈ B.

(c) If α ∈ (1,∞) and |ak| < α(α− 1)(1 + k) for k ∈ N ∪ {0}, then f ∈ Bα.

Proof. Since

1

(1− z)x
=

∞
∑

k=0

Γ(k + x)

k! Γ(x)
zk, z ∈ D, x ∈ (0,∞),

we obtain

z

(1− z)2 log
(

1
1−z

) =

ˆ 2

1

dx

(1− z)x
=

∞
∑

k=0

1

k!

ˆ 2

1

Γ(k + x)

Γ(x)
dx zk.

Hence the assumption of the case (a) yields

sup
z∈D

|A(z)|(1− |z|)α+1

ˆ |z|

0

dr

(1− r)α
≤ sup

z∈D

[

|A(z)|
(1− |z|)α+1

1− α

]

< sup
z∈D

[

α(1− |z|)α+1
∞
∑

k=0

Γ(k + α + 1)

k! Γ(α + 1)
|z|k

]

= α,

and so the assertion (a) follows by Corollary 4. The assertions (b) and (c) can be
proved in a similar manner by using the Maclaurin series above. �

Corollary 8(a) partially improves [13, Theorem 2.4] because there exists α ∈ (0, 1
2
)

such that α(1 − α)Γ(k+α+1)
k! Γ(α+1)

> 1 for k ≥ 12. Namely, in Corollary 8(a), we obtain

f ∈ Bα, whereas in [13, Theorem 2.4] the condition |ak| ≤ 1, for k ∈ N, gives that
f lies in a strictly larger space D. In fact, the assumptions in Corollary 8 allow
|ak| → ∞ as k → ∞. This can be seen from the asymptotic estimates

lim
k→∞

Γ(k+α+1)
k!

kα
= 1 and lim

k→∞

1
k!

´ 2

1
Γ(k+x)
Γ(x)

dx

k(log k)−1
= 1,

which are obtained by applying Stirling’s approximation.

4. Polynomial coefficients

This section contains a straightforward proof of a part of [12, Theorem 8.3], re-
ferred to here as Theorem A. In the literature, one can find more technical proofs
based on, for example, Wiman–Valiron theory [12] and Herold’s comparison theo-
rem [8].

Theorem A. Let the coefficients A0(z), . . . , An−1(z) of (1) be polynomials and
An(z) an entire function with a finite order of growth. Then all solutions of (1) are
entire functions of finite order. Moreover,

(13) σ(f) ≤ max

{

1 + max
0≤j≤n−1

deg(Aj)

n− j
, σ(An)

}

for every solution f .
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It is a well-known fact that Theorem A is sharp. In fact, for every equation there
is a solution for which equality in (13) holds, as is shown in [6, Lemma 3.1].

Before the proof of Theorem A, we note that the end of this section also contains
an analogue of Theorem A for the k-order of the growth of solutions.

Proof of Theorem A. Assume first that σ(An) = 0 and let

α > 1 + max
0≤j≤n−1

deg(Aj)

n− j

be arbitrary. Define ω : C → (0,∞) by ω(z) = exp(−(|z|+R)α) with R ∈ (0,∞) to
be specified later. Then, in Theorem 2, we have

Im,ω(z) ≤ 2n
ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξm−1

0

m
∑

j=1

∣

∣

∣
A

(m−j)
n−j (ξm)

∣

∣

∣
e(|ξm|+R)α |dξm| · · · |dξ1|

≤
2n

αm
sup

|w|≤|z|

m
∑

j=1

∣

∣

∣
A

(m−j)
n−j (w)

∣

∣

∣

(|w|+R)m(α−1)
e(|z|+R)α, z ∈ D.

Here the first inequality follows from the estimate
(

n−j

m−j

)

≤
∑n

j=0

(

n

j

)

= 2n. The

second one is valid because, for a : C → [0,∞) and b : [0,∞) → [0,∞) such that b′ is
non-negative and nondecreasing,
ˆ z

0

a(w)eb(|w|) |dw| =

ˆ z

0

a(w)

b′(|w|)
b′(|w|)eb(|w|) |dw| ≤ sup

|w|≤|z|

a(w)

b′(|w|)
eb(|z|), z ∈ C,

which generalizes to
ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξm−1

0

a(ξm)e
b(|ξm|)|dξm| · · · |dξ1| ≤ sup

|w|≤|z|

a(w)

b′(|w|)m
eb(|z|), z ∈ C.

Now, in Theorem 2, we have

E ≤ sup
w∈C

n
∑

m=1

2n

αm

m
∑

j=1

∣

∣

∣
A

(m−j)
n−j (w)

∣

∣

∣

(|w|+R)m(α−1)
,

and hence, by using the fact that m(α − 1) > deg(An−m) ≥ deg(A
(n−j)
n−m ) for all

m = 1, . . . , n, we can find R such that E < 1. Therefore Theorem 2 yields that every
solution f of (1) satisfies

sup
z∈C

|f(z)| exp(−(|z| +R)α) < ∞,

and so the assertion follows.
Let σ(An) ∈ (0,∞) and let α > σ(An) be arbitrary. Since trivially

∣

∣

∣

∣

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξn−1

0

An(ξn) dξn · · ·dξ1

∣

∣

∣

∣

≤ exp((|z|+R)α), z ∈ C,

for sufficiently large R, the assertion follows in a similar manner as in the case
above. �

Now we turn our attention to the k-order of non-constant entire functions f
defined by

σk(f) := lim sup
r→∞

logk+1M(r, f)

log r
, k ∈ N.
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Here log1 x = log x and logk+1 x = log (logk x) for sufficiently large x ∈ (0,∞). In
particular, our purpose is to notice that [1, Theorems 4(i) and 4(ii)], which is an
analogue of Theorem A for the k-order of the growth of solutions, can be proved by
a similar deduction as in Theorem A. Namely, if Aj(z) with j = 0, . . . , n are entire
functions and

α > max

{

max
0≤j≤n−1

σk(Aj), σk+1(An)

}

for some k ∈ N, then, by proceeding as in the proof of Theorem A with the choice
ω(z) = 1/ expk+1((|z|+R)α), we see that every solution of (1) satisfies

σk+1(f) ≤ max

{

max
0≤j≤n−1

σk(Aj), σk+1(An)

}

.

Here exp1 x = exp x and expk+1 x = exp (expk x) for x ∈ (0,∞).

5. Proof of Theorem 1

We begin this section by stating and proving three lemmas. These lemmas will
then be used to prove Theorem 1. Recall that we use the notation ωp(z) = ω(z)(1−
|z|)p for p ∈ (0,∞) and z ∈ D.

Lemma 9. Let ω : D → (0,∞) be a radial weight satisfying (3). Then, for

f ∈ H(D),

(14) |f(z)|ω(z) ≤ Pn sup
|ξ|≤|z|

[

|f (n)(ξ)|ω(ξ)(1− |ξ|)n
]

+ C, z ∈ D.

Here C ∈ [0,∞) is independent of z and Pn =
∏n

k=1Mk with constants Mk as in (5).

Proof. Note first that the condition (3) implies (5) with some constants Mk ≤ M .
This follows directly from the inequality (1−s)−k ≤ (1−s)−1(1−r)−(k−1) for s ∈ [0, r]
and k ∈ N.

If R = R(ω,M) ∈ [0, 1) is close enough to one, then (3) yields

|f(z)|ω(z) ≤

ˆ z

0

|f ′(ξ)|ω1(ξ)

ω1(ξ)
|dξ|ω(z) + |f(0)|ω(z)

≤ sup
|ξ|≤|z|

|f ′(ξ)|ω1(ξ)

ˆ |z|

0

dr

ω1(r)
ω(z) + |f(0)|ω(z)

≤ M sup
|ξ|≤|z|

|f ′(ξ)|ω1(ξ) + |f(0)|ω(z), R < |z| < 1,

where the path of integration is the line segment from 0 to z. On the other hand, since
ω is bounded, there exists a constant C ′ = C ′(ω, f, R) ≥ 0 such that |f(z)|ω(z) < C ′

for |z| ≤ R. Hence (14) holds in the case n = 1.
Next we assume that (14) holds for n = N ∈ N. Then

|f(z)|ω(z) ≤ PN sup
|ξ|≤|z|

[(
ˆ ξ

0

|f (N+1)(v)|ωN+1(v)

ωN+1(v)
|dv|+ |f (N)(0)|

)

ωN(ξ)

]

+ CN

≤ PN sup
|ξ|≤|z|

[

sup
|v|≤|ξ|

[

|f (N+1)(v)|ωN+1(v)
]

ˆ |ξ|

0

dr

ωN+1(r)
ωN(ξ)

]

+ C ′
N+1

≤ PN+1 sup
|ξ|≤|z|

[

|f (N+1)(ξ)|ωN+1(ξ)
]

+ CN+1,

and therefore (14) holds for n = N + 1. Now the assertion follows by mathematical
induction. �



Linear differential equations with solutions in the growth space H
∞

ω 411

Note that a result similar to Lemma 9 can be obtained without induction by
using the formula

f(z) =

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξn−1

0

f (n)(ξn) dξn · · · dξ1 +

n−1
∑

j=0

f j(0)

j!
zj .

However, in this case, the constant Pn may not be the best possible, depending on
the behavior of the weight ω inside the unit disc.

We now proceed to prove the second lemma needed in the proof of Theorem 1,
essentially reversing the estimate obtained in Lemma 9.

Lemma 10. Let ω : D → (0,∞) be a radial weight satisfying (4) for some

ε ∈ (0,∞) and m = m(ω, ε) ∈ (0,∞). Then, for f ∈ H(D),

(15) |f (n)(z)|ω(z)(1− |z|)n ≤ n!(1 + ε)nm sup
|ξ|=ρ

|f(ξ)|ω(ρ) + C, z ∈ D, n ∈ N,

where ρ = ρ(ε, |z|) = (1 + ε|z|)/(1 + ε) and C ≥ 0 is independent of z.

Proof. Since
ρ

ρ2 − |z|2
≤

1

ρ− |z|
=

1 + ε

1− |z|
,

Cauchy’s integral formula yields

|f (n)(z)| ≤ n!(1 + ε)n sup
|ξ|=ρ

|f(ξ)|(1− |z|)−n, z ∈ D.

Hence, by (4), we find R = R(ω, ε,m) ∈ (0, 1) such that

|f (n)(z)|ω(z)(1− |z|)n ≤ n!(1 + ε)nm sup
|ξ|=ρ

|f(ξ)|ω(ρ), R ≤ |z| < 1.

Moreover, there exists C = C(ω, f, n, R) ∈ (0,∞) such that |f (n)(z)|ω(z)(1− |z|)n ≤
C for |z| < R. Therefore (15) holds, and the assertion follows. �

For future use, we define the dilatation function fr(z) = f(rz), where z ∈ D and
r ∈ [0, 1).

Lemma 11. Let ω : D → (0,∞) be a radial weight such that (4) holds for some

ε ∈ (0,∞) and m = m(ω, ε) ∈ (0,∞). If f ∈ H(D) satisfies supr∈[0,1) ‖fr‖H∞

ω
< ∞,

then f ∈ H∞
ω and ‖f‖H∞

ω
= supr∈[0,1) ‖fr‖H∞

ω
.

Proof. Assume first that f /∈ H∞
ω . Then, for each n ∈ N, we may choose zn ∈ D

with |zn| > 1− 1
n

such that |f(zn)|ω(zn) > n. Let rn = |zn|(1+ ε)/(1 + ε|zn|). Then,
by (4),

‖frn‖H∞

ω
≥ |f(rnξn)|ω(ξn) = |f(zn)|ω

(

zn
1

|zn|

1 + ε|zn|

1 + ε

)

>
n

ω(zn)
ω

(

1 + ε|zn|

1 + ε

)

≥ n
1

m
−→ ∞, ξn =

zn
rn

,

as n → ∞. This is a contradiction, and hence f ∈ H∞
ω .

Since M(t, f) = supθ∈[0,2π] |f(te
iθ)| is a nondecreasing function of t, we have

supr∈[0,1) ‖fr‖H∞

ω
≤ ‖f‖H∞

ω
. The converse inequality follows from the definition of

supremum and continuity of f . �



412 Juha-Matti Huusko, Taneli Korhonen and Atte Reijonen

Proof of Theorem 1. Without loss of generality, assume that An ≡ 0.
(a) If f is a solution of (1), then

(16) f (n)
r (z) +

n−1
∑

k=0

Bk(z)f
(k)
r (z) = 0, z ∈ D,

where Bj(z) = Bj(z, r) = rn−jAj(rz). Since fr ∈ H∞
ω for r ∈ [0, 1), Lemma 9, the

equation (16) and Lemma 10 yield

|fr(z)|ω(z) ≤ Pn sup
|ξ|≤|z|

[

|f (n)
r (ξ)|ωn(ξ)

]

+ Cn

≤ Pn sup
|ξ|≤|z|

[

n−1
∑

k=0

|Bk(ξ)|(1− |ξ|)n−k|f (k)
r (ξ)|ωk(ξ)

]

+ Cn

≤ Pn

[

‖B0‖H∞

n−k
‖fr‖H∞

ω
+

n−1
∑

k=1

‖Bk‖H∞

n−k

(

k!(1 + ε)km sup
|ξ|=ρ

|fr(ξ)|ω(ρ) + Ck

)]

+ Cn

≤ E‖fr‖H∞
ω
+ C,

where the constants C,Cj ∈ (0,∞) are independent of z for j = 0, 1, . . . , n. Hence

sup
r∈[0,1)

‖fr‖H∞
ω

≤
C

1−E
< ∞,

and consequently f ∈ H∞
ω by Lemma 11.

(b) Similarly as in Lemma 9, we have

|f(z)|ω(z) ≤ sup
|ξ|≤|z|

|f ′(ξ)|ω(ξ)

ˆ |z|

0

dr

ω(r)
ω(z) + |f(0)|ω(z), z ∈ D,(17)

for f ∈ H(D). Moreover, by applying Lemma 9 for f ′ and n− 1 instead of f and n,
we obtain

(18) |f ′(z)|ω(z) ≤ Pn−1 sup
|ξ|≤|z|

[

|f (n)(ξ)|ωn−1(ξ)
]

+ C.

Hence, the conditions (18), (1) and (17) yield

|f ′
r(z)|ω(z) ≤ F‖f ′

r‖H∞

ω
+ C,

where the constant C ∈ (0,∞) is independent of z. Now the assertion f ′ ∈ H∞
ω

follows by Lemma 11.
In the cases

f (n) + A0(z)f = 0 and f (n) + A1(z)f
′ + A0(z)f = 0

for assertions (a) and (b), respectively, the estimate of Lemma 10 is not needed, and
hence the proofs above may be written directly for f instead of the dilatation fr.
Thus we also do not need Lemma 11 and consequently the assumption (4) regarding
the weight ω is not necessary. �

6. Proof of Theorem 2

This section contains the proof of Theorem 2. Before the proof, we state the
following lemma which is a simple consequence of Leibniz’s rule and mathematical
induction.
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Lemma 12. If f, g ∈ H(D), then

f (n)(z)g(z) =

n
∑

j=0

(−1)j
(

n

j

)

(

fg(j)
)(n−j)

(z), z ∈ D,

for any n ∈ N.

In order to simplify some of the formulas in the following proof, we use the
interpretation

∑−1
j=0(·) = 0, that is, a sum, whose starting value of the summation

index is higher than the end value, has no summands.

Proof of Theorem 2. (a) If f is a solution of (1), then, by applying the identity

f(z) =

ˆ z

0

f ′(ξ) dξ + f(0), z ∈ D,

n times and using equation (1) and Lemma 12, we obtain

|f(z)|ω(z)

≤

∣

∣

∣

∣

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξn−1

0

[

An−1(ξn)f
(n−1)(ξn) + . . .+ A0(ξn)f(ξn)

]

dξn · · ·dξ1

∣

∣

∣

∣

ω(z) + C1

=

∣

∣

∣

∣

∣

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξn−1

0

n−1
∑

k=0

k
∑

j=0

(−1)j
(

k

j

)

(

A
(j)
k f
)(k−j)

(ξn) dξn · · · dξ1

∣

∣

∣

∣

∣

ω(z) + C1,

where

C1 = sup
z∈D

ω(z)

n−1
∑

j=0

∣

∣f (j)(0)
∣

∣

j!
+‖g‖H∞

ω (D), g(z) =

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξn−1

0

An(ξn) dξn · · · dξ1.

Since
ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξn−1

0

n−1
∑

k=0

k
∑

j=0

(−1)j
(

k

j

)

(

A
(j)
k f
)(k−j)

(ξn) dξn · · · dξ1

=

n−1
∑

k=0

k
∑

j=0

(−1)j
(

k

j

)
ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξn−1−(k−j)

0

[

A
(j)
k (ξn−(k−j))f(ξn−(k−j))

−

k−j−1
∑

l=0

(

A
(j)
k f
)(l)

(0)

l!
ξln−(k−j)

]

dξn−(k−j) · · · dξ1

=

n
∑

m=1

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξm−1

0

[

m
∑

j=1

(−1)m−j

(

n− j

m− j

)

A
(m−j)
n−j (ξm)

]

f(ξm) dξm · · · dξ1

−
n−1
∑

k=0

k
∑

j=0

k−j−1
∑

l=0

(−1)j
(

k

j

)

(

A
(j)
k f
)(l)

(0)

(n− k + j + l)!
zn−k+j+l,

we have

|f(z)|ω(z) ≤ sup
ξ∈[0,z]

|f(ξ)|ω(ξ) sup
ξ∈D

ω(ξ)
n
∑

m=1

Im,ω(ξ) + C, z ∈ D,

where [0, z] is the closed line segment from 0 to z.



414 Juha-Matti Huusko, Taneli Korhonen and Atte Reijonen

Let now K be a compact subset of D containing the line segment [0, z] for all
z ∈ K. Then the formula above together with (7) and the estimate

sup
ξ∈[0,z]

|f(ξ)|ω(ξ) ≤ sup
ξ∈K

|f(ξ)|ω(ξ), z ∈ K,

yield

sup
ξ∈K

|f(ξ)|ω(ξ) ≤
C

1−E
< ∞.

Since this holds for all compact sets K with the properties mentioned above, we
obtain ‖f‖H∞

ω (D) ≤
C

1−E
, which completes the proof of assertion (a).

(b) Similarly as in the proof of part (a), we obtain

|f ′(z)|ω(z)

≤

∣

∣

∣

∣

∣

ˆ z

0

· · ·

ˆ ξn−2

0

n−1
∑

k=1

k−1
∑

j=0

(−1)j
(

k − 1

j

)

(

A
(j)
k f ′

)(k−1−j)

(ξn−1) dξn−1 · · · dξ1

∣

∣

∣

∣

∣

ω(z)

+

∣

∣

∣

∣

ˆ z

0

· · ·

ˆ ξn−2

0

A0(ξn−1)f(ξn−1) dξn−1 · · ·dξ1

∣

∣

∣

∣

ω(z) + C1, z ∈ D,

where

C1 = sup
z∈D

ω(z)
n−2
∑

j=0

∣

∣f (j+1)(0)
∣

∣

j!
+‖g‖H∞

ω (D), g(z) =

ˆ z

0

· · ·

ˆ ξn−2

0

An(ξn−1) dξn−1 · · · dξ1.

Since
∣

∣

∣

∣

ˆ z

0

· · ·

ˆ ξn−2

0

A0(ξn−1)f(ξn−1) dξn−1 · · · dξ1

∣

∣

∣

∣

≤

[

sup
ξ∈[0,z]

|f ′(ξ)|ω(ξ)

]

ˆ z

0

· · ·

ˆ ξn−2

0

|A0(ξn−1)|

ˆ ξn−1

0

|dξn|

ω(ξn)
|dξn−1| · · · |dξ1|

+ |f(0)|

∣

∣

∣

∣

ˆ z

0

· · ·

ˆ ξn−2

0

A0(ξn−1) dξn−1 · · · dξ1

∣

∣

∣

∣

, z ∈ D,

and
ˆ z

0

· · ·

ˆ ξn−2

0

n−1
∑

k=1

k−1
∑

j=0

(−1)j
(

k − 1

j

)

(

A
(j)
k f ′

)(k−1−j)

(ξn−1) dξn−1 · · · dξ1

=
n−1
∑

m=1

ˆ z

0

· · ·

ˆ ξm−1

0

[

m
∑

j=1

(−1)m−j

(

n− 1− j

m− j

)

A
(m−j)
n−j (ξm)

]

f ′(ξm) dξm · · · dξ1

−
n−1
∑

k=1

k−1
∑

j=0

k−j−2
∑

l=0

(−1)j
(

k − 1

j

)

(

A
(j)
k f ′

)(l)

(0)

(n− k + j + l)!
zn−k+j+l, z ∈ D,

we have

|f ′(z)|ω(z) ≤ sup
ξ∈[0,z]

|f ′(ξ)|ω(ξ) sup
ξ∈D

ω(ξ)

[ n−1
∑

m=1

I∗m,ω(ξ)

+

ˆ ξ

0

· · ·

ˆ ξn−2

0

|A0(ξn−1)|

ˆ ξn−1

0

|dξn|

ω(ξn)
|dξn−1| · · · |dξ1|

]

+ C, z ∈ D.
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Here

C = sup
z∈D

ω(z)









n−2
∑

j=0

∣

∣f (j+1)(0)
∣

∣

j!
+

n−1
∑

k=1

k−1
∑

j=0

k−j−2
∑

l=0

(

k − 1

j

)

∣

∣

∣

∣

(

A
(j)
k f ′

)(l)

(0)

∣

∣

∣

∣

(n− k + j + l)!









+ |f(0)| sup
z∈D

ω(z)

∣

∣

∣

∣

ˆ z

0

· · ·

ˆ ξn−2

0

A0(ξn−1) dξn−1 · · ·dξ1

∣

∣

∣

∣

+ ‖g‖H∞

ω (D)

< ∞

because

sup
z∈D

ω(z)

ˆ z

0

· · ·

ˆ ξn−2

0

|A0(ξn−1)|

ˆ ξn−1

0

|dξn|

ω(ξn)
|dξn−1| · · · |dξ1| < ∞

by (8), and
´ ξn−1

0
|dξn|
ω(ξn)

is zero only if ξn−1 = 0. Hence (8) yields

sup
ξ∈K

|f ′(ξ)|ω(ξ) ≤
C

1− F
< ∞

for all compact sets K ⊂ D containing the line segments [0, z] for z ∈ K, and
consequently f ′ ∈ H∞

ω (D). �
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