
Publications 
Juha-Matti Huusko 

June 7, 2017 

  



 

  



Paper I 

  



 

 



Bull. Aust. Math. Soc. 93 (2016), 260–271
doi:10.1017/S0004972715001070

LOCALISATION OF LINEAR DIFFERENTIAL EQUATIONS
IN THE UNIT DISC BY A CONFORMAL MAP

JUHA-MATTI HUUSKO

(Received 13 June 2015; accepted 27 June 2015; first published online 15 October 2015)

Abstract

We obtain lower bounds for the growth of solutions of higher order linear differential equations, with
coefficients analytic in the unit disc of the complex plane, by localising the equations via conformal maps
and applying known results for the unit disc. As an example, we study equations in which the coefficients
have a certain explicit exponential growth at one point on the boundary of the unit disc and consider the
iterated M-order of solutions.
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1. Introduction

We study the growth of solutions of the linear differential equation

f (k) + ak−1(z) f (k−1) + · · · + a1(z) f ′ + a0(z) f = 0, (1.1)

where a0(z), a1(z), . . . , ak−1(z) are analytic in the unit disc D = {z ∈ C : |z| < 1} of the
complex plane C, denoted by a0, a1, . . . , ak−1 ∈ H(D) for short. Since all solutions are
analytic, one natural measure of their growth is the n-order defined by

σM,n( f ) = lim sup
r→1−

log+
n+1 M(r, f )
−log(1 − r)

, f ∈ H(D), n ∈ N.

Here log+ x = max{log x, 0}, log+
1 x = log+ x, log+

n+1 = log+ log+
n x and M(r, f ) is the

maximum modulus of f on the circle of radius r centred at the origin.
It is known that the growth of the coefficients restricts the growth of the solutions

and vice versa, since all solutions f satisfy σM,n+1( f ) ≤ α if and only if σM,n(a j) ≤ α
for all j = 0, 1, . . . , k − 1 [11, Theorem 1.1]. On the other hand, all nontrivial solutions
are of maximal growth at least when a0 dominates the other coefficients in the
whole disc in some suitable way. One sufficient condition is that σM,n(a j) < σM,n(a0)
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for all j = 1, 2, . . . , k − 1 [11, Theorem 1.2]. A refined condition is given in [10,
Theorem 3], namely (σM,n(a j), τM,n(a j)) ≺ (σM,n(a0), τM,n(a0)) for j = 1, 2, . . . , k − 1.
Here τM,n is the n-type defined by

τM,n( f ) = lim sup
r→1−

(1 − r)σM,n( f ) log+
n M(r, f ), f ∈ H(D), n ∈ N,

and we write (a, b) ≺ (c, d) if either a < c or a = c and b < d, for a, b, c, d ∈ R ∪ {∞}.
If a0 dominates the other coefficients near a point on the boundary of the unit disc,

and we consider the equation there locally, it is possible to obtain a lower bound for
the growth of all nontrivial solutions. Of course, this local study can only give a lower
bound and the upper bound depends on the behaviour of the coefficients in the whole
disc. This idea is valid for several measures of growth and, in particular, we can study
the n-order of growth. Earlier results concerning this kind of question can be found
in [9, 10].

Localisation is a standard technique found in the literature. If f ∈ H(D), Ω ⊂ D is a
simply connected domain and φ : D→ Ω is analytic and conformal, then we can study
f in Ω by studying the function f ◦ φ in D. In particular, we can apply known results
to f ◦ φ. The localisation domain Ω and the mapping φ must be chosen in a suitable
way, depending on the expected properties of f . For example, when considering the
behaviour of f near the boundary of D, Ω should touch the boundary in some suitable
way. Also, the geometric and analytic properties of φ must be appropriate.

The simplest localisation mapping is an affine map, in which the image of D is a
horocycle. For example, all solutions of

f ′′ + exp
( 1
1 + z

)
f ′ + exp

( 1
1 − z

)
f = 0

satisfy σM,2( f ) = 1. The inequality σM,2( f ) ≤ 1 follows from [11, Theorem 1.1] and
the converse inequality is seen by studying g = f ◦ φ, where φ : D→ D is given
by φ(z) = 1

2 (1 + z), and applying [11, Theorem 1.2]. For a more general result, see
Theorem 1.1. Here φ′ is a constant and φ(D) is a horocycle touching ∂D tangentially.

Another example of localisation is [6, Proof of Theorem 4], where the authors use
a localisation map ψ : D→ D,

ψ(z) = eiθ ϕ(ζ) − 1
ϕ(ζ) + 1

, ϕ(z) = e−iπδ/2
(1 + z
1 − z

)1−δ
− iα,

where θ ∈ [0, 2π], α ∈ (0,∞) and δ ∈ (0, 2
5 ). The Schwarzian derivative of ψ has

sufficiently smooth behaviour for calculations. On the other hand, the boundary curve
∂ψ(D) consists of two circular arcs, one of which is a part of the unit circle. Thus,
ψ(D) has a fairly simple crescent shape.

The explicit expression of the localisation map may not be needed. For a simply
connected localisation domain, the existence of the mapping can be deduced from
the Riemann mapping theorem and the smoothness of the mapping and the growth of
its derivatives can be estimated by the geometric properties of the boundary curve of
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the image. For example, in [5, Proof of Theorem 3], the authors use a localisation
map φδ,ρ : D→ Ωδ,ρ, for which the boundary of the simply connected convex domain
Ωδ,ρ ⊆ D consists of four circular arcs, one being a part of the unit circle. Since the
boundary curve is smooth, the authors can deduce that (logφ′δ,ρ)

′ and φ′′δ,ρ belong to the
Hardy space Hp for all p ∈ (0,∞) and deduce that φ′δ,ρ is continuous on D. With these
estimates, the proof can proceed. See [5] for details and definitions.

The purpose of this paper is to explain how a localisation method can be used to
study the growth of solutions of (1.1) when information on the coefficients is available
near some boundary point only. To illustrate the method concretely, we consider the
growth of solutions, in terms of the n-order, of the equation

g(k) +

k−1∑
j=0

B j(z) expn j

( d j

(z0 − z)q j

)
g( j) = 0, (1.2)

where B j ∈ H(D ∪ {z0}), d j, q j ∈ C and n j ∈ N for j = 0, 1, . . . , k − 1. Here, we write
exp1(x) = exp(x) and expn+1(x) = exp(expn(x)). Throughout the paper, for a nonzero
complex number z ∈ C and a noninteger power p ∈ C, we define zp by taking the
principal branch. Hence, here (z0 − z)q is well defined, since z0 − z is nonvanishing
in D. We assume that Re(q j) > 0, since otherwise

z 7→ expn j

( d j

(z0 − z)q j

)
is bounded in D, a case of no interest. By making the change of variable z→ z0z and
denoting b j = d j/z

q j

0 , f (z) = g(z0z) and A j(z) = B j(z0z)zk− j
0 , (1.2) reduces to

f (k) +

k−1∑
j=0

A j(z) expn j

( b j

(1 − z)q j

)
f ( j) = 0, (1.3)

where A j ∈ H(D ∪ {1}), b j, q j ∈ C and n j ∈ N for j = 0, 1, . . . , k − 1.
The results of this paper improve the results in [9] concerning the growth of

solutions of (1.2) and the proofs are simpler than the original ones. Our method is
elementary and therefore of interest, even though the results concerning (1.2) can be
deduced from [10, Theorem 2].

The study [9] was motivated by certain results concerning the differential equation

f ′′ + A(z)eaz f ′ + B(z)ebz f = 0, (1.4)

where A(z) and B(z) are entire functions and a, b ∈ C; see [1–3, 7]. See also [4, 8,
11, 13] for methods based on the dominance of some coefficient. The techniques
of [9] were inherited from the plane case and are analogous to those used in [2]. For
example, if in (1.4) we have ab , 0 and either arg a , arg b or a/b ∈ (0, 1), then all
nontrivial solutions f are of infinite order on the plane [2, Theorem 2]. Analogously,
if in the equation

f ′′ + B1(z) exp
( b1

(z0 − z)q

)
f ′ + B0(z) exp

( b0

(z0 − z)q

)
f = 0,
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0 1

T(D)

Figure 1. Domain T (D) with parameters β = 0.85 and γ = −0.75. In this case, p = β(π − β)/π2 ≈ 0.197
and 2 sin(β/2) ≈ 0.825.

where B j ∈ H(D ∪ {z0}), b j ∈ C\{0}, q ∈ (1,∞), we have in addition arg b1 , arg b0 or
b1/b0 ∈ (0, 1), then all nontrivial solutions f satisfy σM,1( f ) =∞ [9, Theorem 1.11].

To define the localisation map employed here, let T : D→ D be given by

T (z) = Tβ,γ(z) = 1 − sin(β/2)eiγ
(1 − z

2

)p
, (1.5)

where β ∈ (0, π/2], γ ∈ (−π/2, π/2) are such that |γ| ≤ (π − β)2/2π ∈ (0, π/2) and
p = p(β) = β(π − β)/π2 ∈ (0,1/4]. Here T (D) is a tear-shaped region having a vertex of
angle pπ touching ∂D at z = 1 (see Figure 1). The domain T (D) has the symmetry axis
T ((−1, 1)) which meets the real axis at angle γ. As β decreases, T (D) becomes thinner,
T ((−1, 1)) becomes shorter and the angle γ can be set larger. If f satisfies (1.3) and we
set g = f ◦ T , then g has to satisfy a differential equation whose coefficients correspond
to those of (1.3) (see Lemma 2.1 and its proof). By applying either [11, Theorem 1.2]
or [10, Theorem 3] to this differential equation, we obtain a lower bound for the n-order
of g, which in turn gives a lower bound for the n-order of f by Lemma 2.2.

We do not obtain new upper bounds for the growth of solutions of (1.2). In
fact, it is not possible to obtain such bounds for the growth of solutions of (1.2)
without imposing conditions on the functions B j. If for example σM,n(Bm) = α > 0
for some m ∈ {0, 1, . . . , k − 1} and n ∈ N with n > nm, then no cancellation can occur,
the coefficient

am(z) = Bm(z) expnm

( dm

(z0 − z)qm

)
satisfies σM,n(am) ≥ σM,n(Bm) = α and there exists at least one solution f such that
σM,n+1( f ) ≥ α by [11, Theorem 1.1].
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The first result in this paper concerns the case when only a0 in (1.1) is unbounded
near a boundary point of the unit disc. In the remainder of the paper, the argument of
a complex number z , 0 takes values arg(z) ∈ (−π, π].

Theorem 1.1. Consider the differential equation

f (k) + Ak−1(z) f (k−1) + · · · + A1(z) f ′ + A0(z) expn

( b
(1 − z)q

)
f = 0,

where k, n ∈ N, A j ∈ H(D ∪ {1}) for j = 0, 1, . . . , k − 1, A0 . 0, b, q ∈ C\{0} and
Re(q) > 0. Suppose that Im(q) , 0 or |arg(b)| < 1

2π(Re(q) + 1). Then all nontrivial
solutions f satisfy σM,n+1( f ) ≥ Re(q).

If Re(q) > 1 in Theorem 1.1, then the condition |arg(b)| < 1
2π(Re(q) + 1) is trivially

satisfied. Moreover, we get [9, Theorem 1.6] as a special case, by setting k = 2, n = 1,
q ∈ (1,∞) and making a change of variables z = w/z0, b = d/zq

0 for z0 ∈ ∂D.
If q ∈ (0, 1] in Theorem 1.1, then the condition |arg(b)| < 1

2π(Re(q) + 1) cannot be
removed. For example, if |arg(−b)| ≤ 1

2 (1 − q)π for q ∈ [0, 1], then z 7→ exp(b(1 − z)−q)
is bounded on D and the solutions of f ′′ + exp(b(1 − z)−q) f = 0 are bounded by [12,
Corollary 3.16]. In particular, by setting k = 2, A1 ≡ 0, b = −1 and q = n = 1, we obtain
the equation

f ′′ + A0(z) exp
(
−1

1 − z

)
f = 0,

where A0 ∈ H(D ∪ {1}). Since A0(z) exp(−(1 − z)−1) remains bounded as z→ 1 in D,
nothing can be said about the growth of solutions f without placing conditions on A0.
This is the reason why the method of [9] cannot work in general for 0 < q ≤ 1; see the
discussion in [9, Remark 3.1].

Next we consider a second-order equation with both coefficients possibly
unbounded near the point z = 1, namely

f ′′ + A1(z) exp
( b1

(1 − z)q1

)
f ′ + A0(z) exp

( b0

(1 − z)q0

)
f = 0, (1.6)

where A j ∈ H(D ∪ {1}), A0 . 0, b j, q j ∈ C\{0} for j = 0, 1 and Re(q0) > 0. The
most interesting case is when q1 = q0. First, we consider q1 = q0 ∈ (0,∞), then
q1 = q0 ∈ C\R and after that the case q1 , q0.

Theorem 1.2. Let q1 = q0 = q ∈ (2,∞) and arg(b1) , arg(b0) in (1.6). Then all
nontrivial solutions f satisfy σM,2( f ) ≥ q.

The case q ∈ (0, 2], which is not covered by Theorem 1.2, can be done with
stronger assumptions, as in Theorem 2.3. For q ∈ (2,∞), Theorem 1.2 improves [9,
Theorem 1.8], which states that for q ∈ (1,∞), we have σM,1( f ) = ∞. Moreover, for
q ∈ (2,∞), Theorem 2.3 improves [9, Theorem 1.11].

Theorem 1.3. Let q1 = q0 = q, Im(q) , 0, Re(q) > 0 and |b1| < |b0| in (1.6). Then all
nontrivial solutions f satisfy σM,2( f ) ≥ Re(q).
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Theorem 1.4. Let q1 , q0 in (1.6). Assume that either q0, q1 ∈ (0,∞) and

Re
( b1

eiγq1

)
< 0 < Re

( b0

eiγq0

)
for some γ ∈ (−π/2, π/2), (1.7)

or Im(q0) , 0 and Re(q1) < Re(q0). Then all nontrivial solutions f of (1.6) satisfy
σM,2( f ) ≥ Re(q0).

Corollary 1.5. Let q0, q1 ∈ (0,∞), q1 , q0 in (1.6). Suppose that one of the following
conditions is satisfied:

(i) Re(b1) < 0 < Re(b0);
(ii) |arg(b0)| < 1

2π(q0 + 1) and q1 > 2q0/(q0 + 1 − (2/π)|arg(b0)|);
(iii) |arg(−b1)| < 1

2π(q1 + 1) and q0 > 2q1/(q1 + 1 − (2/π)|arg(−b1)|);
(iv) q0 ∈ (1, 3] and q1 > 2q0/(q0 − 1);
(v) q0 ∈ [3,∞) and q1 > q0/(q0 − 2);
(vi) q0, q1 ∈ [3,∞).

Then all nontrivial solutions f satisfy σM,2( f ) ≥ q0.

Condition (1.7) follows from each of the conditions (i)–(vi) in Corollary 1.5 and is
symmetric with respect to q0 and q1 in the following sense: if the assumption q0 = a
and q1 = b gives (1.7) for all b0, b1 ∈ C\{0}, then the assumption q0 = b and q1 = a
implies the same conclusion. On the other hand, we see that (1.7) fails in the following
cases:

(a) |arg(b0)| ≥ 1
2π(q0 + 1) or |arg(−b1)| ≥ 1

2π(q1 + 1);
(b) 0 < q0 < q1 ≤ 3 and b0 = b1 = −1;
(c) 0 < q1 < q0 ≤ 3 and b0 = b1 = 1;
(d) q0 ∈ (2,∞), q1 = q0/(q0 − 1), b0 = exp( 1

2 iπ(q0 − 3)) and b1 = exp( 1
2 iπ(1 − q1));

(e) q0 = 2m + 1, q1 = q0/(q0 − 2), b0 = (−1)m+1 and b1 = 1 for some m ∈ N ∩ [2,∞).

For q0 ∈ (1,∞), it is not clear how q1 satisfying q0/(q0 − 1) < q1 ≤ q0/(q0 − 2) should
be restricted to obtain (1.7) for all b0, b1 ∈ C\{0}. Numerical investigations suggest
that conditions

q1 >
q0

q0 − 1
, q0 ∈

∞⋃
m=2

(2m − 1, 2m)

and

q1 >
2m

2m − 1
(1 − (q0 − 2m)) +

2m + 1
(2m + 1) − 2

(q0 − 2m), q0 ∈ [2m, 2m + 1],

for m ∈ N ∩ [2,∞), could be sharp. The latter condition says that as q0 increases from
2m to 2m + 1, the lower bound of q1 increases linearly.

Our method works also for nonhomogeneous equations, as part (ii) of Theorem 2.4
shows.
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2. Proofs of theorems

The following lemma allows us to study the differential equation (1.1) locally on a
subset of the unit disc.

Lemma 2.1. Let f be a solution of

f (k) + ak−1(z) f (k−1) + · · · + a1(z) f ′ + a0(z) f = ak(z),

where a0, a1, . . . , ak ∈ H(D). Let T : D→ D be locally univalent and g = f ◦ T. Then
g is a solution of

g(k) + ck−1(z)g(k−1) + · · · + c1(z)g′ + c0(z)g = ck(z), (2.1)

where c j ∈ H(D). Moreover, if T (s) is nonvanishing and σM,n((T (s))t) = 0 for n, s ∈ N
and t ∈ Z, then

σM,n(c j) ≤ max
m≥ j
{σM,n(am ◦ T )} (2.2)

and
τM,n(c j) ≤ max{τM,n(aN ◦ T ) : σM,n(aN ◦ T ) = max

m≥ j
{σM,n(am ◦ T )}}, (2.3)

for j = 0, 1, . . . , k − 1, whereas

σM,n(ck) = σM,n(ak ◦ T ) and τM,n(ck) = τM,n(ak ◦ T ). (2.4)

Proof. By a straightforward calculation, g is a solution of (2.1), where

c j =
1

P j, j(T )

[
(a j ◦ T )(T ′)k − Pk, j(T ) −

k−1∑
m= j+1

cmPm, j(T )
]
, j = 0, 1, . . . , k − 1, (2.5)

ck = (ak ◦ T )Pk,k(T ) and Pm, j(T ) is defined by g(m) =
∑m

j=1( f ( j) ◦ T )Pm, j(T ). Hence,
Pm, j(T ) is a polynomial in T ′,T ′′, . . . ,T (m) with integer coefficients. For j = k − 1, the
sum on the right-hand side of (2.5) is empty, and we can solve for ck−1:

ck−1 =
1

Pk−1,k−1(T )
[(ak−1 ◦ T )(T ′)k − Pk,k−1(T )].

After this, we can inductively solve for ck−2, ck−3, . . . , c0. By the assumption, T is
locally univalent, that is, T ′ has no zeros in D. Since P j, j = (T ′) j is nonvanishing for
j = 0, 1, . . . , k, we see that c j ∈ H(D) for all j = 0, . . . , k.

Assume now that σM,n((T (s))t) = 0 for s ∈ N and t ∈ Z. Since for j = 0, 1, . . . , k − 1
the coefficient c j is a linear combination of the functions a j ◦ T, a j+1 ◦ T, . . . , ak−1 ◦ T ,
the assertions (2.2) and (2.3) trivially hold. The assertion (2.4) is also evident. �

Clearly, T defined by (1.5) satisfies all the assumptions of Lemma 2.1. Hence, if
we set g = f ◦ T , then we can study the differential equation (1.1) for f by studying
the differential equation (2.1) for g. In this case, if we can find a lower bound for the
n-order of g, we have a lower bound for the n-order of f by the next lemma.
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Lemma 2.2. Let f ∈ H(D) and g = f ◦ T, where T is defined by (1.5). Then we have
σM,n( f ) ≥ σM,n(g)/p for n ∈ N.

Proof. If |1 − z| ≤ sin(β/2) and |arg(1 − z)| ≤ (π − β)/2, then the law of cosines gives

|1 − z| ≤
2

sin(β/2)
(1 − |z|)

and, therefore, by the definition of T ,

|1 − T (z)| ≤
2

sin(β/2)
(1 − |T (z)|), z ∈ D.

Now, for r ∈ [0, 1) and θ ∈ [0, 2π) such that |T (reiθ)| = M(r,T ),

1 − M(r,T ) ≤ 1 − |T (r)| ≤ |1 − T (r)| ≤ |1 − T (reiθ)|

≤
2

sin(β/2)
(1 − |T (reiθ)|) =

2
sin(β/2)

(1 − M(r,T )). (2.6)

Since
|1 − T (r)| =

sin(β/2)
2p (1 − r)p,

inequality (2.6) gives

lim
r→1−

log(1 − M(r,T ))
p log(1 − r)

= 1. (2.7)

Now, by (2.7),

σM,n(g)
p

= lim sup
r→1−

log+
n+1 M(r, g)

−p log(1 − r)
≤ lim sup

r→1−

log+
n+1 M(M(r,T ), f )
−log(1 − M(r,T ))

= σM,n( f ),

the last inequality holding since M(r, T ) is an increasing continuous function of r and
M(r,T )→ 1− as r→ 1−. �

Proof of Theorem 1.1. Let q = x + iy for x ∈ (0,∞) and y ∈ R, and let g = f ◦ T , where
T is defined by (1.5). Use the differential equation for f in the claim to obtain the
differential equation (2.1) for g. In this differential equation, ck ≡ 0 and σM,n(c j) = 0
for j = 1, 2, . . . , k − 1. Moreover, σM,n(c0) = px. To show this, we start by observing
that

b
(1 − T (z))q =

b2pq

(sin(β/2))qeiγq

1
(1 − z)pq =

b2pqe−ipy log(1−z)

(sin(β/2))qeiγq

1
(1 − z)px .

First, assume that y , 0. Now, for some sequence of points rn ∈ (0, 1), rn → 1− as
n→∞, the value of log(1 − rn) is such that

b2pqe−ipy log(1−rn)

(sin(β/2))qeiγq =

∣∣∣∣∣ b2pq

(sin(β/2))qeiγq

∣∣∣∣∣ = C ∈ (0,∞).

Hence, for this sequence {rn}n∈N,

b
(1 − T (rn))q =

C
(1 − rn)px , n ∈ N,
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giving ∣∣∣∣∣expn

( b
(1 − T (rn))q

)∣∣∣∣∣ = expn

( C
(1 − rn)px

)
, n ∈ N,

and we see that σM,n(c0) = px.
Second, assume that y = 0, that is, q = x ∈ (0,∞), and |arg(b)| < 1

2π(x + 1). Now
there exist γ ∈ (−π/2, π/2) such that∣∣∣∣∣arg

( b
eiγx

)∣∣∣∣∣ < π

2
that is,Re

( b
eiγx

)
> 0

and β ∈ (0, π/2] such that |γ| ≤ (π − β)2/2π, giving T = Tβ,γ : D→ D. Now there exists
a sequence of points rn ∈ (0, 1), rn → 1− as n→∞, such that

b
(1 − T (rn))x =

b2px

(sin(β/2))xeiγx

1
(1 − rn)px =

2pxRe(be−iγx)
(sin(β/2))x

1
(1 − rn)px + i2πmn,

for some integers mn such that either mn = 0 for all n ∈ N or |mn| → ∞ as n→∞. Thus,
also in this case, σM,n(c0) = px. Now, by Lemma 2.2 and [11, Theorem 1.1], we have
σM,n+1( f ) ≥ σM,n+1(g)/p ≥ σM,n(c0)/p = x, given that f . 0. �

Theorem 1.2 is a special case of Theorem 2.3, since, for q1 = q0 = q, (1.6) is
a special case of (2.8) and, if q ∈ (2,∞), then one of the conditions (i)–(iii) in
Theorem 2.3 is satisfied.

Theorem 2.3. Consider the differential equation

f (k) +

k−1∑
j=0

A j(z) exp
( b j

(1 − z)q

)
f ( j) = 0, (2.8)

where k ∈ N, A j ∈ H(D ∪ {1}), q ∈ (0,∞) and b j ∈ C for j = 0, 1, . . . , k − 1. Let A0 . 0
and b0 , 0. Assume that b j/b0 ∈ [0, 1) for all j = 0, 1, . . . , k − 1 with at most one
exception b j = bm for which arg(bm) , arg(b0). Suppose that one of the conditions:

(i) max(Re(bm), 0) < Re(b0);
(ii) 0 < Re(b0) ≤ Re(bm), arg(bm/b0) ∈ (0, π) and arg(i/(bm − b0)) < 1

2πq;
(iii) Re(b0) ≤ 0, arg(bm/b0) ∈ (0, π] and arg(b0/i) < 1

2πq

holds or that one of the conditions holds when b0 and bm are replaced by b0 and bm,
respectively. Then all nontrivial solutions f satisfy σM,2( f ) ≥ Re(q).

Proof. Let g = f ◦ T , where T is defined by (1.5). Use the differential equation for f
in the claim to obtain the differential equation (2.1), where ck ≡ 0, for g. First, we treat
the case

f ′′ + A1(z) exp
( b1

(1 − z)q

)
f ′ + A0(z) exp

( b0

(1 − z)q

)
f = 0,

where the assumptions in the claim are satisfied by bm = b1.
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Now the assumptions ensure the existence of γ ∈ (−π/2, π/2) such that

max
(
Re

( b1

eiγq

)
, 0

)
< Re

( b0

eiγq

)
.

Fix one such γ and choose β ∈ (0, π/2] sufficiently small to obtain |γ| ≤ (π − β)2/2π.
With these parameters γ and β, we have T = Tβ,γ : D→ D. By taking β even smaller,
we find some ε ∈ (0, 1) such that

max
(
Re

( b1

eiγq

|1 − z|pq

(1 − z)pq

)
, 0

)
< εRe

( b0

eiγq

|1 − z|pq

(1 − z)pq

)
, z ∈ D.

Hence, in (2.1), (σM,1(c1), τM,1(c1)) ≺ (σM,1(c0), τM,1(c0)). The assertion follows
by [10, Theorem 3] and Lemma 2.2.

The general case is proved in a similar manner. In particular, for j , m, the
coefficient c j is small in the sense that (σM,1(c j), τM,1(c j)) ≺ (σM,1(c0), τM,1(c0)). �

Theorem 1.1 can be trivially generalised to obtain part (i) of Theorem 2.4. Part (ii)
of Theorem 2.4 shows that our method works also for nonhomogeneous equations.

Theorem 2.4. Consider the differential equation

f (k) +

k−1∑
j=0

A j(z) expn j

( b j

(1 − z)q

)
f ( j) = Ak(z) expnk

( bk

(1 − z)qk

)
, (2.9)

where k ∈ N, A j ∈ H(D ∪ {1}), q, qk ∈ C\{0} and b j ∈ C for j = 0, 1, . . . , k. Then the
following assertions hold.

(i) Let bk = 0, A0 . 0, b0 , 0, Re(q) > 0 and either n j < n0, or n j = n0 but b j/b0 ∈

[0, 1), for j = 1, 2, . . . , k − 1. Suppose Im(q) , 0 or |arg(b0)| < 1
2π(Re(q) + 1).

Then all nontrivial solutions f of (2.9) satisfy σM,n0+1( f ) ≥ Re(q).
(ii) Let Ak . 0 and bk , 0. Assume that n j ≤ nk − 1 for j = 1, 2, . . . , k − 1 and

Re(q) < Re(qk). Suppose that Im(qk) , 0 or |arg(bk)| < 1
2π(Re(qk) + 1). Then

all solutions f of (2.9) satisfy σM,nk ( f ) ≥ Re(qk).

Proof. Assertion (i) is clear. Let the assumptions in (ii) be satisfied. Let g = f ◦ T ,
where T is defined by (1.5). Use the differential equation (2.9) for f to obtain
the differential equation (2.1) for g. Fix one particular solution f2 of (2.9) and let
g2 = f2 ◦ T . Now every solution g is of the form g = g1 + g2, where g1 is a solution
of the homogeneous equation. By the assumptions and the proof of Theorem 1.1,
σM,nk (g1) ≤ Re(q)p < Re(qk)p. On the other hand, the parameters of T = Tβ,γ can be
chosen such that σM,nk (ck) = Re(qk)p, which gives σM,nk (g2) = σM,nk (ck) = Re(qk)p.
Hence, σM,nk (g) = Re(qk)p, since no cancellation can occur. By Lemma 2.2,
σM,nk ( f ) ≥ σM,nk (g)/p = Re(qk). �

Proof of Theorem 1.3. Let q = x + iy, x ∈ (0,∞) and y ∈ R. Let g = f ◦ T , where
T is defined by (1.5). Use the differential equation for f in the claim to obtain the
differential equation (2.1), with ck ≡ 0, for g. By the assumptions and the proof of
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Theorem 1.1, we can choose the parameter γ of T = Tβ,γ such that the coefficients
c j in (2.1) satisfy (σM,1(c j), τM,1(c j)) ≺ (σM,1(c0), τM,1(c0)) for all j = 1, 2, . . . , k − 1.
Moreover, in this case σM,1(c0) = px. Hence, all nontrivial solutions g of (2.1) satisfy
σM,2(g) ≥ px by [10, Theorem 3]. By Lemma 2.2, all nontrivial solutions f of (1.6)
satisfy σM,2( f ) ≥ σM,2(g)/p ≥ x = Re(q). �

Proof of Theorem 1.4. If (1.7) is valid, then the assertion follows as in the proof of
Theorem 2.3.

Assume that Im(q0) , 0 and Re(q1) < Re(q0) and let g = f ◦ T , where T is defined
by (1.5). Use the differential equation for f in the claim to obtain the differential
equation (2.1), with ck ≡ 0, for g. Now, in (2.1), we have ck ≡ 0, σM,1(c1) < σM,1(c0)
and in addition σM,1(c0) = Re(q0)p. Now, by [11, Theorem 1.2] and Lemma 2.2,
we deduce that σM,2( f ) ≥ σM,2(g)/p = Re(q0) for every nontrivial solution f , as
desired. �

Proof of Corollary 1.5. Trivially, (i) implies (1.7) of Theorem 1.4.
Assume that (ii) is true. Now, there exist (γ1, γ2) ⊂ (−π/2, π/2) such that

|arg(b0e−iγq0 )| <
π

2
, γ ∈ (γ1, γ2)

and

|γ1 − γ2| ≥

1
2πq0 + 1

2π − |arg(b0)|
q0

=
q0 + 1 − (2/π)|arg(b0)|

2q0
π.

By the assumption,

q1|γ1 − γ2| ≥ q1
q0 − 1

2q0
π > π,

so that |arg(−b1e−iγq1 )| < π/2 for some γ ∈ (γ1, γ2) and (1.7) is valid. Similarly (iii)
gives (1.7).

Trivially, condition (iv) implies (ii). Condition (v) holds if and only if q1 ∈ (1, 3)
and q0 > 2q1/(q1 − 1). Therefore, (v) implies (iii).

If condition (vi) holds, then either (iv) or (v) is valid. �
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Abstract. Sufficient conditions for solutions of

f (n) +An−1(z)f
(n−1) + · · ·+A1(z)f

′ +A0(z)f = An(z)

and their derivatives to be in H∞

ω (D) are given by limiting the growth of coefficients A0(z), . . . An(z).

Here H∞

ω (D) consists of those analytic functions f in a domain D for which |f(z)|ω(z) is uniformly

bounded. In particular, the case where D is the unit disc is considered. The theorems obtained

generalize and improve certain results in the literature. Moreover, by using one of the main results,

one can give a straightforward proof of a classical result regarding the situation where the coefficients

are polynomials.

1. Introduction

We study the growth of solutions of the differential equation

(1) f (n) + An−1(z)f
(n−1) + · · ·+ A1(z)f

′ + A0(z)f = An(z), n ≥ 2,

where A0(z), . . . , An(z) are analytic in a domain D of the complex plane C, denoted
by A0, . . . , An ∈ H(D) for short. In particular, we consider the case where D is the
unit disc D = {z ∈ C : |z| < 1}. Hence, for simplicity, notations mentioned below
are defined for D but on request we use their analogies also for other domains.

Our main purpose is to find conditions which guarantee that all solutions of (1)
or their derivatives belong to a growth space

H∞
ω =

{

g ∈ H(D) : ‖g‖H∞

ω
:= sup

z∈D
|g(z)|ω(z) < ∞

}

.

Here ω is a weight, which means that ω : D → (0,∞) is bounded and measurable. In
the case where ω(z) = ω(|z|) for all z ∈ D, we say that ω is radial. If ω(z) = (1−|z|)p

with p ∈ (0,∞), we write H∞
ω = H∞

p . Also, the question of when all solutions belong
to the α-Bloch space Bα with α ∈ (0,∞), which consists of g ∈ H(D) such that
‖g‖Bα := supz∈D |g′(z)|(1 − |z|)α < ∞, is considered. Note that if α = 1, then Bα is
the classical Bloch space B.

doi:10.5186/aasfm.2016.4128
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The growth of fast growing solutions of (1) is typically measured in terms of
the Nevanlinna characteristic function [9]. For slowly growing solutions some other
methods may give better results. Some useful techniques are, for example, Gronwall’s
lemma [7], Herold’s comparison theorem [11], Picard’s successive approximations
[2, 5] and methods based on Carleson measures [10, 13, 14, 15]. Moreover, in the case
of the complex plane, Wiman–Valiron theory is a commonly used method [12]. We do
not use any of these methods; instead, our calculations are based on straightforward
integral estimates.

It is well known that the growth of the coefficients A0(z), . . . , An(z) of (1) re-
stricts the growth of solutions. For example, if the coefficients grow slow enough,
then all solutions are bounded, while if the coefficients grow fast enough, then the
solutions may grow faster than any pre-given function. Therefore, if one wants to
force all solutions to H∞

ω , it suffices to give a strong enough growth condition for the
coefficients; for example, one can require that the norms ‖A0‖H∞

n
, . . . , ‖An−1‖H∞

1
are

small enough. This condition can be found by applying the differential equation and
using suitable integral estimates.

Using the integral estimates method mentioned above with a condition on the
norms ‖A0‖H∞

n
, . . . , ‖An−1‖H∞

1
, we prove Theorem 1. This result generalizes and

improves [10, Theorems 3.1 and 3.3]. Moreover, as a special case, we also give a
solution to the following problem due to the late Danikas, which has been open
since the 1997 summer school ”Function Spaces and Complex Analysis” held at the
Mekrijärvi Research Station in Ilomantsi, Finland: Give a condition for A(z) such
that all solutions of

(2) f ′′ + A(z)f = 0

belong to the Bloch space B. More precisely, Theorem 1 yields that if supz∈D[−|A(z)|
(1−|z|)2 log(1−|z|)] < 1, then all solutions of (2) belong to B. This particular result
is sharp in the sense that the assumption cannot be relaxed to supz∈D[−|A(z)|(1 −
|z|)2 log(1 − |z|)] < 1 + ε for any ε ∈ (0,∞). It is worth noticing that all previous
results known to the authors, including those given in [10, 13], force the solutions to
some proper subspace of B and hence form only a partial solution to the problem.

Our second main result, Theorem 2, is proved by applying an integral condition,
instead of radial growth space conditions, for the coefficients. In this case, the result
is valid also in other domains than just the unit disc. As a consequence of the
result, an alternative version of Theorem 1 is verified. An application for polynomial
coefficients is also obtained.

A classical result [18, Satz 1] of Wittich states that every solution of (1), where
the coefficients A0(z), . . . , An−1(z) are entire and An ≡ 0, has a finite order of growth
if and only if all coefficients A0(z), . . . , An−1(z) are polynomials. Moreover, if the
coefficients are polynomials, then the order of growth σ(f) of any solution f satisfies
the well-known estimate

σ(f) := lim sup
r→∞

log logM(r, f)

log r
≤ max

0≤j≤n−1

{

1 +
deg(Aj)

n− j

}

,

where M(r, f) is the maximum modulus of f on the circle of radius r centered at the
origin. This estimate can be proved in a straightforward manner without any heavy
machinery by using Theorem 2; see Section 4. In the literature, one can find more
technical proofs based on, for example, Wiman–Valiron theory [12, Theorem 8.3] and
Herold’s comparison theorem [8, p. 244]. By applying Gronwall’s lemma or Picard’s
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successive approximations, only a weaker version of the estimate has been proved
[5, 8].

The remainder of this paper is organized as follows: In the next section, we
introduce our main results, Theorems 1 and 2. We also prove an alternative version
of Theorem 1 by using Theorem 2. The main purpose of Section 3 is to improve results
of [13]. More precisely, we improve [13, Theorems 2.1 and 2.6] in the case where the
nondecreasing function K is continuous, and also give a partial improvement of [13,
Theorem 2.4]. In addition to this, we discuss the sharpness of our main results.
Section 4 contains a simple proof of the essential part of [12, Theorem 8.3] which
concerns a differential equation with polynomial coefficients in the plane. Sections 5
and 6 contain the proofs of Theorems 1 and 2, respectively.

2. Main results

In this section, we present our main results, Theorems 1 and 2. We start by
introducing conditions and notations needed in the statement of Theorem 1.

In Theorem 1, we require that the radial weight ω : D → (0,∞) satisfies the
conditions

(3) lim sup
r→1−

ω(r)

ˆ r

0

ds

ω(s)(1− s)
< M < ∞,

for some M = M(ω) ∈ (0,∞), and

(4) lim sup
r→1−

ω(r)

ω
(

1+εr
1+ε

) < m

for some constants ε ∈ (0,∞) and m = m(ω, ε) ∈ (0,∞). It should be noted that (3)
implies that there exists Mk = Mk(ω, k) ∈ (0,M ] and M0 = M0(ω) ∈ (0,∞) such
that

(5) lim sup
r→1−

ω(r)(1− r)k−1

ˆ r

0

ds

ω(s)(1− s)k
< Mk, k = 1, . . . , n,

and

(6) ω(t)

ˆ t

0

ds

ω(s)(1− s)
< M0, t ∈ (0, 1).

The conditions (3) and (4) play key roles in Theorem 1. Hence, before stating
the theorem, we list some observations about (3) and (4).

(i) The conditions (3) and (4) are independent. For example, ω(r) = exp
(

− 1
1−r

)

satisfies (3) but fails (4). On the other hand, ω(r) =
(

log e
1−r

)−1
satisfies (4)

but fails (3).
(ii) If ω satisfies (3), then there exists p = p(ω) ∈ (0,∞) such that ω(r)/(1− r)p

is bounded [17, Lemma 2].
(iii) It is possible that (4) holds for some ε but not for all. For example,

ω(r) = (1− r) sin2

(

π log 1
1−r

log 2

)

+ (1− r)2 cos2

(

π log 1
1−r

log 2

)

satisfies (4) for ε = 1 but not for ε = π. However, if (4) holds for some ε,
then it holds for some arbitrarily small ε.
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(iv) If ω is nonincreasing and (4) holds for some ε, then it holds for all ε. Hence, in
this case, (4) is equivalent to the doubling condition ω(r) ≤ mω

(

1+r
2

)

when
r ∈ [0, 1) is close enough to one.

(v) If the condition (4) is valid, then, in (3), the factor 1 − s is in a certain
sense the best possible. Namely, if ν : (0, 1) → (0,∞), ω satisfies (4) for some
ε,m ∈ (0,∞), ων is nonincreasing and there exists M = M(ω, ν) ∈ (0,∞)
such that

lim sup
t→1−

ω(t)

ˆ t

0

ds

ω(s)ν(s)
< M,

then we have

M > ω

(

1 + εr

1 + ε

)
ˆ

1+εr
1+ε

r

ds

ω(s)ν(s)
≥ ω

(

1 + εr

1 + ε

)

(

1+εr
1+ε

− r
)

ω(r)ν(r)
>

1

m

1

1 + ε

1− r

ν(r)

for sufficiently large r ∈ [0, 1). In particular, (1 − r)/ν(r) is bounded if r is
close enough to one.

Next we state Theorem 1, in which we use the notation ωp(z) = ω(z)(1 − |z|)p,
where ω is a radial weight and p ∈ R.

Theorem 1. Let ω be a radial weight in the unit disc satisfying (3) and (4).
Then the following assertions hold:

(a) If An ∈ H∞
ωn

and

E := Pn

(

‖A0‖H∞
n
+m

n−1
∑

k=1

k!(1 + ε)k‖Ak‖H∞

n−k

)

< 1,

where Pn =
∏n

k=1Mk with constants Mk as in (5) and m, ε are as in (4), then

all solutions of (1) belong to H∞
ω .

(b) If An ∈ H∞
ωn−1

and

F := Pn−1

(

sup
z∈D

|A0(z)|ω(z)(1− |z|)n−1

ˆ |z|

0

dr

ω(r)

+ ‖A1‖H∞

n−1
+m

n−2
∑

k=1

k!(1 + ε)k‖Ak+1‖H∞

n−k−1

)

< 1,

where Pn−1 =
∏n−1

k=1 Mk with constants Mk as in (5) and m, ε are as in (4),
then the derivative of every solution of (1) belongs to H∞

ω .

Moreover, if we consider the equations

f (n) + A0(z)f = 0 and f (n) + A1(z)f
′ + A0(z)f = 0

in (a) and (b), respectively, then the assumption (4) regarding ω is not necessary.

In what follows, we present another result where, instead of considering the
norms ‖A0‖H∞

n
, . . . , ‖An−1‖H∞

1
, we establish an integral condition on the coefficients

and their derivatives. This result is also more general in the sense that the weight
ω does not need to be radial and the unit disc D may be replaced by some other
domain.

We call a domain D on the complex plane starlike if 0 ∈ D and, for each point
z ∈ D, the line segment from the origin to z is contained in D. For a weight ω
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(not necessarily radial) in such a domain D and functions A0, A1, . . . , An−1 ∈ H(D),
denote

I1,ω(z) = I∗1,ω(z) =

ˆ z

0

|An−1(ξ)|

ω(ξ)
|dξ|,

and

Im,ω(z) =

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξm−1

0

∣

∣

∣

∣

∣

m
∑

j=1

(−1)m−j

(

n− j

m− j

)

A
(m−j)
n−j (ξm)

∣

∣

∣

∣

∣

|dξm| · · · |dξ1|

ω(ξm)
, z ∈ D,

for m = 2, . . . , n and

I∗m,ω(z) =

ˆ z

0

· · ·

ˆ ξm−1

0

∣

∣

∣

∣

∣

m
∑

j=1

(−1)m−j

(

n− 1− j

m− j

)

A
(m−j)
n−j (ξm)

∣

∣

∣

∣

∣

|dξm| · · · |dξ1|

ω(ξm)
, z ∈ D,

for m = 2, . . . , n − 1, where the integration paths are line segments. With these
concepts and notations established, we give the following result.

Theorem 2. Let D be a starlike domain and let ω : D → (0,∞) be a weight.

Then the following assertions hold:

(a) If

(7) E := sup
z∈D

ω(z)

n
∑

m=1

Im,ω(z) < 1

and the function z 7→
´ z

0

´ ξ1

0
· · ·
´ ξn−1

0
An(ξn) dξn · · · dξ1 belongs to H∞

ω (D),
then all solutions of (1) belong to H∞

ω (D).
(b) If

F := sup
z∈D

ω(z)

[
ˆ z

0

· · ·

ˆ ξn−2

0

|A0(ξn−1)|

ˆ ξn−1

0

|dξn|

ω(ξn)
|dξn−1| · · · |dξ1|

+
n−1
∑

m=1

I∗m,ω(z)

]

< 1

(8)

and the function z 7→
´ z

0

´ ξ1

0
· · ·
´ ξn−2

0
An(ξn−1) dξn−1 · · · dξ1 belongs to H∞

ω (D),
then the derivative of every solution of (1) belongs to H∞

ω (D).

Note that the conditions (7) and (8) both imply that ω needs to be bounded,
unless all the coefficients A0(z), . . . , An−1(z) are identically zero.

It is worth noticing that the method used to prove Theorem 2 works also in more
general domains than just those which are starlike with respect to the origin. In
fact, if one chooses the paths of integration and the compact sets K appropriately,
the method may be used in any domain D. For example, let D ( C be any simply
connected domain and let φ : D → D be a Riemann map from D onto D. Then
choosing the paths of integration in the proof of Theorem 2 to be lz = φ ([0, φ−1(z)]),
for z ∈ D, and taking the compact sets as K =

⋃

z∈K0
φ ([0, φ−1(z)]), where K0 is an

arbitrary compact subset of D, one sees that the following result holds:
If the function z 7→

´

lz

´

lξ1
· · ·
´

lξn−1
An(ξn) dξn · · · dξ1 belongs to H∞

ω (D) and

sup
z∈D

ω(z)

n
∑

m=1

I(φ)m,ω(z) < 1,
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where

I
(φ)
1,ω(z) =

ˆ

lz

|An−1(ξ)|

ω(ξ)
|dξ| =

ˆ 1

0

|An−1 (φ (tφ−1(z)))|

ω (φ (tφ−1(z)))

∣

∣φ′
(

tφ−1(z)
)

φ−1(z)
∣

∣ dt, z ∈ D,

and

I(φ)m,ω(z) =

ˆ

lz

ˆ

lξ1

· · ·

ˆ

lξm−1

∣

∣

∣

∣

∣

m
∑

j=1

(−1)m−j

(

n− j

m− j

)

A
(m−j)
n−j (ξm)

∣

∣

∣

∣

∣

|dξm| · · · |dξ1|

ω(ξm)
, z ∈ D,

for m = 2, . . . , n, then all solutions of (1) belong to H∞
ω (D).

Even in this rather simple example, it is clear that the choices of integration paths
and compact sets done above are not the only nor necessarily the best ones. However,
the example above is an easy way to illustrate the generality of the argument used
in the proof of Theorem 2. It is also a way to pinpoint the connection between the
choice of the paths of integration and that of compact sets: The compact sets need
to contain all the integration paths from the chosen fixed point z0 ∈ D (in the above
example z0 = φ(0)) to other points in the compact set. Hence one also cannot choose
the paths of integration randomly but some kind of systematic approach or control
over the paths is required.

Finally, we derive a result of the same nature as Theorem 1 from Theorem 2.
The main difference is that the result is not as sharp as Theorem 1 but the weight ω
does not need to satisfy the condition (4).

Theorem 3. Let ω be a radial weight in the unit disc satisfying (3). Then the

following assertions hold:

(a) There exists α = α(ω, n) ∈ (0,∞) such that if

‖Aj‖H∞

n−j
≤ α, j = 0, . . . , n− 1,

and the function z 7→
´ z

0

´ ξ1

0
· · ·
´ ξn−1

0
An(ξn) dξn · · ·dξ1 belongs to H∞

ω , then

all solutions of (1) belong to H∞
ω .

(b) There exists α = α(ω, n) ∈ (0,∞) such that if

‖Aj‖H∞

n−j
≤ α, j = 1, . . . , n− 1,

sup
z∈D

ω(z)

[
ˆ z

0

· · ·

ˆ ξn−2

0

|A0(ξn−1)|

ˆ ξn−1

0

|dξn|

ω(ξn)
|dξn−1| · · · |dξ1|

]

< 1

and the function z 7→
´ z

0

´ ξ1

0
· · ·
´ ξn−2

0
An(ξn−1) dξn−1 · · · dξ1 belongs to H∞

ω ,

then the derivative of every solution of (1) belongs to H∞
ω .

Proof. By (6), we obtain

Im,ω(z)ω(z) = ω(z)

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξm−1

0

∣

∣

∣

∣

∣

m
∑

j=1

(−1)m−j

(

n− j

m− j

)

A
(m−j)
n−j (ξm)

∣

∣

∣

∣

∣

|dξm| · · · |dξ1|

ω(ξm)

≤ Cω(z)

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξm−1

0

m
∑

j=1

∣

∣

∣
A

(m−j)
n−j (ξm)

∣

∣

∣

|dξm| · · · |dξ1|

ω(ξm)

≤ C
m
∑

j=1

sup
|ξ|≤|z|

∣

∣

∣
A

(m−j)
n−j (ξ)

∣

∣

∣
(1− |ξ|)mω(z)

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξm−1

0

|dξm| · · · |dξ1|

ω(ξm)(1− |ξm|)m

≤ C ′

m
∑

j=1

sup
|ξ|≤|z|

∣

∣

∣
A

(m−j)
n−j (ξ)

∣

∣

∣
(1− |ξ|)m, z ∈ D,
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for some constants C ∈ (0,∞) and C ′ = C ′(ω, n) ∈ (0,∞). Therefore Lemma 10 for
classical weights yields

sup
|ξ|≤|z|

ω(ξ)

n
∑

m=1

Im,ω(ξ) ≤

n
∑

m=1

sup
|ξ|≤|z|

ω(ξ)Im,ω(ξ)

≤ C ′

n
∑

m=1

m
∑

j=1

sup
|ξ|≤|z|

∣

∣

∣
A

(m−j)
n−j (ξ)

∣

∣

∣
(1− |ξ|)m

≤ nC ′′
n−1
∑

j=0

sup
|ξ|≤ρ

|Aj(ξ)| (1− |ξ|)n−j,

where ρ = (1 + |z|)/2 and C ′′ = C ′′(ω, n) ∈ (0,∞). Now, we have

E = sup
z∈D

ω(z)

n
∑

m=1

Im,ω(z) ≤ nC ′′
n−1
∑

j=0

‖Aj‖H∞

n−j
< 1

for ‖Aj‖H∞

n−j
< 1

n2C′′
with all indices j = 0, . . . , n−1. Hence the assertion (a) follows

by Theorem 2. The assertion (b) can be proved in a similar manner. �

3. Solutions in B
α, QK or QK,0

We begin this section by stating a version of Theorem 1 where ω(r) = (1 − r)p

with p ∈ (0,∞). After that we discuss the sharpness of Theorems 1 and 2 and some
of their consequences. In particular, consequences of Theorem 1, related to the cases
where all solutions of differential equations belong to Bα, QK or QK,0, are stated.

Corollary 4. Let f be a solution of the equation (1) with An ≡ 0. Then the

following assertions hold:

(a) If, for p ∈ (0,∞),

E :=
n
∏

j=1

1

p+ j − 1

(

‖A0‖H∞
n
+

n−1
∑

k=1

k!
(k + p)k+p

kkpp
‖Ak‖H∞

n−k

)

< 1,

then

‖f‖H∞

p
≤

|f(0)|+
∑n−1

k=1

∏k

j=1
1

p+j−1
|f (k)(0)|

1− E
.

(b) If, for α ∈ (0,∞),

F :=
n−1
∏

j=1

1

α+ j − 1

(

sup
z∈D

|A0(z)|(1− |z|)α+n−1

ˆ |z|

0

dr

(1− r)α

+ ‖A1‖H∞

n−1
+

n−2
∑

k=1

k!
(k + α)k+α

kkαα
‖Ak+1‖H∞

n−k−1

)

< 1,

(9)

then

‖f‖Bα ≤

∏n−1
j=1

1
α+j−1

‖A0‖H∞

α+n−1
|f(0)|+ |f ′(0)|+

∑n−1
k=2

∏k−1
j=1

1
α+j−1

|f (k)(0)|

1− F
.

The following example shows that, in the case of equation (2), Theorem 2 and
Corollary 4, hence also Theorem 1, are sharp in the sense that we cannot replace
the assumption E < 1 or F < 1 by E < 1 + ε or F < 1 + ε, respectively, for any
ε ∈ (0,∞).
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Example 5. Let us consider the equation (2).

(a) If A(z) = −(p + α)(p + α + 1)(1 − z)−2 for p ∈ (0,∞) and α ∈ [0,∞), then
(2) has a solution base {f1, f2}, where

f1(z) = (1− z)−p−α and f2(z) = (1− z)p+α+1.

Hence, if α = 0, then all solutions belong to H∞
p and E = 1 in Theorem 2(a)

and Corollary 4(a). On the other hand, for any ε ∈ (0,∞), we find α =
α(ε) ∈ (0,∞) such that f1 /∈ H∞

p and E ∈ (1, 1 + ε) in these results.

(b) If A(z) = −α(1 − z)−2
(

(α− 1)
(

log e
1−z

)−2
+
(

log e
1−z

)−1
)

for α ∈ [1,∞),

then (2) has a solution base {f1, f2}, where

f1(z) =

(

log
e

1− z

)α

and f2(z) =

(

log
e

1− z

)α ˆ z

0

(

log
e

1− ζ

)−2α

dζ.

Here
∣

∣

∣

∣

∣

ˆ z

0

(

log
e

1− ζ

)−2α

dζ

∣

∣

∣

∣

∣

≤
(

log
e

2

)−2α

and

|f ′
2(z)| ≤

(

log
e

2

)−α

|f ′
1(z)|+

(

log
e

2

)−2α

for z ∈ D. Hence, if α = 1, then all solutions belong to B and F = 1 in
Theorem 2(b) and Corollary 4(b). On the other hand, for any ε ∈ (0,∞), we
find α = α(ε) ∈ (1,∞) such that f1 /∈ B and F ∈ (1, 1 + ε) in these results.

Next we turn our attention to QK and QK,0 spaces. In particular, our purpose is
to improve results in [13].

Let QK be the space of functions f ∈ H(D) such that

sup
a∈D

ˆ

D

|f ′(z)|2K(g(z, a)) dm(z) < ∞,

where K : [0,∞) → [0,∞) is nondecreasing, g(z, w) = log
∣

∣

1−wz
w−z

∣

∣ is Green’s function

and dm(z) is the Lebesgue area measure. Respectively, QK,0 is the space of functions
f ∈ H(D) such that

lim
|a|→1−

ˆ

D

|f ′(z)|2K(g(z, a)) dm(z) = 0.

If K ≡ 1, then QK is the Dirichlet space D.
For the next result, we introduce some properties of QK and QK,0. We begin by

introducing a standard assumption which guarantees that QK contains non-constant
functions.

(i) If

(10)

ˆ ∞

1

K(r)e−2r dr < ∞

does not hold, then QK contains constant functions only.

In the future, we assume that K : [0,∞) → [0,∞) is continuous, nondecreasing and
satisfies (10). Then the following facts are true:

(ii) The inclusion QK ⊂ B is always valid. Moreover, QK = B if and only if

(11)

ˆ 1

0

K(− log r)

(1− r)2
r dr < ∞.
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(iii) The inclusion D ⊂ QK is always valid. Moreover, D = QK if and only if
K(0) > 0, while D ⊂ QK,0 if and only if K(0) = 0.

(iv) For α ∈ [1
2
, 1), the conditions Bα ⊂ QK,0, B

α ⊂ QK and

(12)

ˆ 1

0

K(− log r)

(1− r)2α
r dr < ∞

are equivalent.
(v) If K(r) = rp for p ∈ (0,∞), then QK is the classical Qp space.

Proofs of the facts (i)–(v) and more details about QK spaces can be found in [4].
Now, by using the facts (i)–(iv) and the trivial inclusion Bα ⊂ D for α ∈ (0, 1

2
),

we obtain the following consequence of Corollary 4.

Corollary 6. Let f be a solution of the equation (1) with An ≡ 0. Then the

following assertions hold:

(a) If (9) with α = 1 and (11) hold, then f ∈ B = QK .

(b) If (9) with α ∈ [1
2
, 1) and (12) hold, then f ∈ Bα ⊂ QK,0.

(c) If (9) holds with α ∈ (0, 1
2
), then f ∈ Bα ⊂ D ⊂ QK . Moreover, f ∈ Bα ⊂

D ⊂ QK,0 if K(0) = 0.

It is worth noticing that Corollary 6(c) improves [13, Theorems 2.1 and 2.6] in
the case where the nondecreasing function K is also continuous. In particular, the
condition concerning the coefficient A0(z) is weaker in Corollary 6(c). Namely, in
Corollary 6(c), we only have to assume that ‖A0‖H∞

n−1/2−ε
is sufficiently small for

some ε ∈ (0,∞), whereas in [13, Theorem 2.1] or [13, Theorem 2.6] it is assumed
that ‖A0‖H∞

n−1−ε
or ‖A0‖H∞

n−1
is sufficiently small, respectively. Note also that, in

Corollary 6(c), we obtain f ∈ B
1
2
−ε, whereas in [13, Theorems 2.1 and 2.6] it is

obtained that f lies in a strictly larger QK space and some assumptions on K are
needed.

Using Corollary 4 and [3, Theorem 5.1], we also find that if (9) holds with
α ∈ (0, 1), then f(eit) ∈ Λ1−α, that is, the boundary function satisfies the Lipschitz
condition of order 1−α. In particular, f belongs to the disc algebra A. Therefore, if
the assumption of Corollary 6(b) or 6(c) holds, we get f ∈ QK,0 ∩A or f ∈ QK ∩A,
respectively. One may now ask whether the solutions could be analytically continued
to ∂D if the coefficients of (1) grow slowly and have a nice boundary behavior. This
property is not true in general, as the following counterexample shows.

Example 7. The function f0(z) = 4 + 2z +
∑∞

k=1 2
−k2z2

k
is one-to-one and

continuous in D, analytic in D, and all of the derivatives of f0 converge uniformly in
D, see [16, p. 252]. Since |f0(z)| ≥ 1 uniformly in D, we see that

A(z) :=
−f ′′

0 − f ′
0

f0

is analytic in D and, in fact, belongs to A. In other words, f0 ∈ A is a solution of

f ′′ + f ′ + A(z)f = 0

with coefficients in A. Even so, f0 cannot be analytically continued to any point of
∂D.

The last result of this section gives a sufficient condition for solutions of (2) to
be in Bα. This time the condition is given by limiting the Maclaurin coefficients of
A(z).
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Corollary 8. Let f be a solution of the equation (2), where A(z) =
∑∞

k=0 akz
k ∈

H(D). Then the following assertions hold:

(a) If α ∈ (0, 1) and |ak| < α(1− α)
Γ(k + α+ 1)

k! Γ(α+ 1)
for k ∈ N ∪ {0}, then f ∈ Bα.

(b) If |ak| <
1

k!

ˆ 2

1

Γ(k + x)

Γ(x)
dx for k ∈ N ∪ {0}, then f ∈ B.

(c) If α ∈ (1,∞) and |ak| < α(α− 1)(1 + k) for k ∈ N ∪ {0}, then f ∈ Bα.

Proof. Since

1

(1− z)x
=

∞
∑

k=0

Γ(k + x)

k! Γ(x)
zk, z ∈ D, x ∈ (0,∞),

we obtain

z

(1− z)2 log
(

1
1−z

) =

ˆ 2

1

dx

(1− z)x
=

∞
∑

k=0

1

k!

ˆ 2

1

Γ(k + x)

Γ(x)
dx zk.

Hence the assumption of the case (a) yields

sup
z∈D

|A(z)|(1− |z|)α+1

ˆ |z|

0

dr

(1− r)α
≤ sup

z∈D

[

|A(z)|
(1− |z|)α+1

1− α

]

< sup
z∈D

[

α(1− |z|)α+1
∞
∑

k=0

Γ(k + α + 1)

k! Γ(α + 1)
|z|k

]

= α,

and so the assertion (a) follows by Corollary 4. The assertions (b) and (c) can be
proved in a similar manner by using the Maclaurin series above. �

Corollary 8(a) partially improves [13, Theorem 2.4] because there exists α ∈ (0, 1
2
)

such that α(1 − α)Γ(k+α+1)
k! Γ(α+1)

> 1 for k ≥ 12. Namely, in Corollary 8(a), we obtain

f ∈ Bα, whereas in [13, Theorem 2.4] the condition |ak| ≤ 1, for k ∈ N, gives that
f lies in a strictly larger space D. In fact, the assumptions in Corollary 8 allow
|ak| → ∞ as k → ∞. This can be seen from the asymptotic estimates

lim
k→∞

Γ(k+α+1)
k!

kα
= 1 and lim

k→∞

1
k!

´ 2

1
Γ(k+x)
Γ(x)

dx

k(log k)−1
= 1,

which are obtained by applying Stirling’s approximation.

4. Polynomial coefficients

This section contains a straightforward proof of a part of [12, Theorem 8.3], re-
ferred to here as Theorem A. In the literature, one can find more technical proofs
based on, for example, Wiman–Valiron theory [12] and Herold’s comparison theo-
rem [8].

Theorem A. Let the coefficients A0(z), . . . , An−1(z) of (1) be polynomials and
An(z) an entire function with a finite order of growth. Then all solutions of (1) are
entire functions of finite order. Moreover,

(13) σ(f) ≤ max

{

1 + max
0≤j≤n−1

deg(Aj)

n− j
, σ(An)

}

for every solution f .
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It is a well-known fact that Theorem A is sharp. In fact, for every equation there
is a solution for which equality in (13) holds, as is shown in [6, Lemma 3.1].

Before the proof of Theorem A, we note that the end of this section also contains
an analogue of Theorem A for the k-order of the growth of solutions.

Proof of Theorem A. Assume first that σ(An) = 0 and let

α > 1 + max
0≤j≤n−1

deg(Aj)

n− j

be arbitrary. Define ω : C → (0,∞) by ω(z) = exp(−(|z|+R)α) with R ∈ (0,∞) to
be specified later. Then, in Theorem 2, we have

Im,ω(z) ≤ 2n
ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξm−1

0

m
∑

j=1

∣

∣

∣
A

(m−j)
n−j (ξm)

∣

∣

∣
e(|ξm|+R)α |dξm| · · · |dξ1|

≤
2n

αm
sup

|w|≤|z|

m
∑

j=1

∣

∣

∣
A

(m−j)
n−j (w)

∣

∣

∣

(|w|+R)m(α−1)
e(|z|+R)α, z ∈ D.

Here the first inequality follows from the estimate
(

n−j

m−j

)

≤
∑n

j=0

(

n

j

)

= 2n. The

second one is valid because, for a : C → [0,∞) and b : [0,∞) → [0,∞) such that b′ is
non-negative and nondecreasing,
ˆ z

0

a(w)eb(|w|) |dw| =

ˆ z

0

a(w)

b′(|w|)
b′(|w|)eb(|w|) |dw| ≤ sup

|w|≤|z|

a(w)

b′(|w|)
eb(|z|), z ∈ C,

which generalizes to
ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξm−1

0

a(ξm)e
b(|ξm|)|dξm| · · · |dξ1| ≤ sup

|w|≤|z|

a(w)

b′(|w|)m
eb(|z|), z ∈ C.

Now, in Theorem 2, we have

E ≤ sup
w∈C

n
∑

m=1

2n

αm

m
∑

j=1

∣

∣

∣
A

(m−j)
n−j (w)

∣

∣

∣

(|w|+R)m(α−1)
,

and hence, by using the fact that m(α − 1) > deg(An−m) ≥ deg(A
(n−j)
n−m ) for all

m = 1, . . . , n, we can find R such that E < 1. Therefore Theorem 2 yields that every
solution f of (1) satisfies

sup
z∈C

|f(z)| exp(−(|z| +R)α) < ∞,

and so the assertion follows.
Let σ(An) ∈ (0,∞) and let α > σ(An) be arbitrary. Since trivially

∣

∣

∣

∣

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξn−1

0

An(ξn) dξn · · ·dξ1

∣

∣

∣

∣

≤ exp((|z|+R)α), z ∈ C,

for sufficiently large R, the assertion follows in a similar manner as in the case
above. �

Now we turn our attention to the k-order of non-constant entire functions f
defined by

σk(f) := lim sup
r→∞

logk+1M(r, f)

log r
, k ∈ N.
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Here log1 x = log x and logk+1 x = log (logk x) for sufficiently large x ∈ (0,∞). In
particular, our purpose is to notice that [1, Theorems 4(i) and 4(ii)], which is an
analogue of Theorem A for the k-order of the growth of solutions, can be proved by
a similar deduction as in Theorem A. Namely, if Aj(z) with j = 0, . . . , n are entire
functions and

α > max

{

max
0≤j≤n−1

σk(Aj), σk+1(An)

}

for some k ∈ N, then, by proceeding as in the proof of Theorem A with the choice
ω(z) = 1/ expk+1((|z|+R)α), we see that every solution of (1) satisfies

σk+1(f) ≤ max

{

max
0≤j≤n−1

σk(Aj), σk+1(An)

}

.

Here exp1 x = exp x and expk+1 x = exp (expk x) for x ∈ (0,∞).

5. Proof of Theorem 1

We begin this section by stating and proving three lemmas. These lemmas will
then be used to prove Theorem 1. Recall that we use the notation ωp(z) = ω(z)(1−
|z|)p for p ∈ (0,∞) and z ∈ D.

Lemma 9. Let ω : D → (0,∞) be a radial weight satisfying (3). Then, for

f ∈ H(D),

(14) |f(z)|ω(z) ≤ Pn sup
|ξ|≤|z|

[

|f (n)(ξ)|ω(ξ)(1− |ξ|)n
]

+ C, z ∈ D.

Here C ∈ [0,∞) is independent of z and Pn =
∏n

k=1Mk with constants Mk as in (5).

Proof. Note first that the condition (3) implies (5) with some constants Mk ≤ M .
This follows directly from the inequality (1−s)−k ≤ (1−s)−1(1−r)−(k−1) for s ∈ [0, r]
and k ∈ N.

If R = R(ω,M) ∈ [0, 1) is close enough to one, then (3) yields

|f(z)|ω(z) ≤

ˆ z

0

|f ′(ξ)|ω1(ξ)

ω1(ξ)
|dξ|ω(z) + |f(0)|ω(z)

≤ sup
|ξ|≤|z|

|f ′(ξ)|ω1(ξ)

ˆ |z|

0

dr

ω1(r)
ω(z) + |f(0)|ω(z)

≤ M sup
|ξ|≤|z|

|f ′(ξ)|ω1(ξ) + |f(0)|ω(z), R < |z| < 1,

where the path of integration is the line segment from 0 to z. On the other hand, since
ω is bounded, there exists a constant C ′ = C ′(ω, f, R) ≥ 0 such that |f(z)|ω(z) < C ′

for |z| ≤ R. Hence (14) holds in the case n = 1.
Next we assume that (14) holds for n = N ∈ N. Then

|f(z)|ω(z) ≤ PN sup
|ξ|≤|z|

[(
ˆ ξ

0

|f (N+1)(v)|ωN+1(v)

ωN+1(v)
|dv|+ |f (N)(0)|

)

ωN(ξ)

]

+ CN

≤ PN sup
|ξ|≤|z|

[

sup
|v|≤|ξ|

[

|f (N+1)(v)|ωN+1(v)
]

ˆ |ξ|

0

dr

ωN+1(r)
ωN(ξ)

]

+ C ′
N+1

≤ PN+1 sup
|ξ|≤|z|

[

|f (N+1)(ξ)|ωN+1(ξ)
]

+ CN+1,

and therefore (14) holds for n = N + 1. Now the assertion follows by mathematical
induction. �
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Note that a result similar to Lemma 9 can be obtained without induction by
using the formula

f(z) =

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξn−1

0

f (n)(ξn) dξn · · · dξ1 +

n−1
∑

j=0

f j(0)

j!
zj .

However, in this case, the constant Pn may not be the best possible, depending on
the behavior of the weight ω inside the unit disc.

We now proceed to prove the second lemma needed in the proof of Theorem 1,
essentially reversing the estimate obtained in Lemma 9.

Lemma 10. Let ω : D → (0,∞) be a radial weight satisfying (4) for some

ε ∈ (0,∞) and m = m(ω, ε) ∈ (0,∞). Then, for f ∈ H(D),

(15) |f (n)(z)|ω(z)(1− |z|)n ≤ n!(1 + ε)nm sup
|ξ|=ρ

|f(ξ)|ω(ρ) + C, z ∈ D, n ∈ N,

where ρ = ρ(ε, |z|) = (1 + ε|z|)/(1 + ε) and C ≥ 0 is independent of z.

Proof. Since
ρ

ρ2 − |z|2
≤

1

ρ− |z|
=

1 + ε

1− |z|
,

Cauchy’s integral formula yields

|f (n)(z)| ≤ n!(1 + ε)n sup
|ξ|=ρ

|f(ξ)|(1− |z|)−n, z ∈ D.

Hence, by (4), we find R = R(ω, ε,m) ∈ (0, 1) such that

|f (n)(z)|ω(z)(1− |z|)n ≤ n!(1 + ε)nm sup
|ξ|=ρ

|f(ξ)|ω(ρ), R ≤ |z| < 1.

Moreover, there exists C = C(ω, f, n, R) ∈ (0,∞) such that |f (n)(z)|ω(z)(1− |z|)n ≤
C for |z| < R. Therefore (15) holds, and the assertion follows. �

For future use, we define the dilatation function fr(z) = f(rz), where z ∈ D and
r ∈ [0, 1).

Lemma 11. Let ω : D → (0,∞) be a radial weight such that (4) holds for some

ε ∈ (0,∞) and m = m(ω, ε) ∈ (0,∞). If f ∈ H(D) satisfies supr∈[0,1) ‖fr‖H∞

ω
< ∞,

then f ∈ H∞
ω and ‖f‖H∞

ω
= supr∈[0,1) ‖fr‖H∞

ω
.

Proof. Assume first that f /∈ H∞
ω . Then, for each n ∈ N, we may choose zn ∈ D

with |zn| > 1− 1
n

such that |f(zn)|ω(zn) > n. Let rn = |zn|(1+ ε)/(1 + ε|zn|). Then,
by (4),

‖frn‖H∞

ω
≥ |f(rnξn)|ω(ξn) = |f(zn)|ω

(

zn
1

|zn|

1 + ε|zn|

1 + ε

)

>
n

ω(zn)
ω

(

1 + ε|zn|

1 + ε

)

≥ n
1

m
−→ ∞, ξn =

zn
rn

,

as n → ∞. This is a contradiction, and hence f ∈ H∞
ω .

Since M(t, f) = supθ∈[0,2π] |f(te
iθ)| is a nondecreasing function of t, we have

supr∈[0,1) ‖fr‖H∞

ω
≤ ‖f‖H∞

ω
. The converse inequality follows from the definition of

supremum and continuity of f . �



412 Juha-Matti Huusko, Taneli Korhonen and Atte Reijonen

Proof of Theorem 1. Without loss of generality, assume that An ≡ 0.
(a) If f is a solution of (1), then

(16) f (n)
r (z) +

n−1
∑

k=0

Bk(z)f
(k)
r (z) = 0, z ∈ D,

where Bj(z) = Bj(z, r) = rn−jAj(rz). Since fr ∈ H∞
ω for r ∈ [0, 1), Lemma 9, the

equation (16) and Lemma 10 yield

|fr(z)|ω(z) ≤ Pn sup
|ξ|≤|z|

[

|f (n)
r (ξ)|ωn(ξ)

]

+ Cn

≤ Pn sup
|ξ|≤|z|

[

n−1
∑

k=0

|Bk(ξ)|(1− |ξ|)n−k|f (k)
r (ξ)|ωk(ξ)

]

+ Cn

≤ Pn

[

‖B0‖H∞

n−k
‖fr‖H∞

ω
+

n−1
∑

k=1

‖Bk‖H∞

n−k

(

k!(1 + ε)km sup
|ξ|=ρ

|fr(ξ)|ω(ρ) + Ck

)]

+ Cn

≤ E‖fr‖H∞
ω
+ C,

where the constants C,Cj ∈ (0,∞) are independent of z for j = 0, 1, . . . , n. Hence

sup
r∈[0,1)

‖fr‖H∞
ω

≤
C

1−E
< ∞,

and consequently f ∈ H∞
ω by Lemma 11.

(b) Similarly as in Lemma 9, we have

|f(z)|ω(z) ≤ sup
|ξ|≤|z|

|f ′(ξ)|ω(ξ)

ˆ |z|

0

dr

ω(r)
ω(z) + |f(0)|ω(z), z ∈ D,(17)

for f ∈ H(D). Moreover, by applying Lemma 9 for f ′ and n− 1 instead of f and n,
we obtain

(18) |f ′(z)|ω(z) ≤ Pn−1 sup
|ξ|≤|z|

[

|f (n)(ξ)|ωn−1(ξ)
]

+ C.

Hence, the conditions (18), (1) and (17) yield

|f ′
r(z)|ω(z) ≤ F‖f ′

r‖H∞

ω
+ C,

where the constant C ∈ (0,∞) is independent of z. Now the assertion f ′ ∈ H∞
ω

follows by Lemma 11.
In the cases

f (n) + A0(z)f = 0 and f (n) + A1(z)f
′ + A0(z)f = 0

for assertions (a) and (b), respectively, the estimate of Lemma 10 is not needed, and
hence the proofs above may be written directly for f instead of the dilatation fr.
Thus we also do not need Lemma 11 and consequently the assumption (4) regarding
the weight ω is not necessary. �

6. Proof of Theorem 2

This section contains the proof of Theorem 2. Before the proof, we state the
following lemma which is a simple consequence of Leibniz’s rule and mathematical
induction.
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Lemma 12. If f, g ∈ H(D), then

f (n)(z)g(z) =

n
∑

j=0

(−1)j
(

n

j

)

(

fg(j)
)(n−j)

(z), z ∈ D,

for any n ∈ N.

In order to simplify some of the formulas in the following proof, we use the
interpretation

∑−1
j=0(·) = 0, that is, a sum, whose starting value of the summation

index is higher than the end value, has no summands.

Proof of Theorem 2. (a) If f is a solution of (1), then, by applying the identity

f(z) =

ˆ z

0

f ′(ξ) dξ + f(0), z ∈ D,

n times and using equation (1) and Lemma 12, we obtain

|f(z)|ω(z)

≤

∣

∣

∣

∣

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξn−1

0

[

An−1(ξn)f
(n−1)(ξn) + . . .+ A0(ξn)f(ξn)

]

dξn · · ·dξ1

∣

∣

∣

∣

ω(z) + C1

=

∣

∣

∣

∣

∣

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξn−1

0

n−1
∑

k=0

k
∑

j=0

(−1)j
(

k

j

)

(

A
(j)
k f
)(k−j)

(ξn) dξn · · · dξ1

∣

∣

∣

∣

∣

ω(z) + C1,

where

C1 = sup
z∈D

ω(z)

n−1
∑

j=0

∣

∣f (j)(0)
∣

∣

j!
+‖g‖H∞

ω (D), g(z) =

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξn−1

0

An(ξn) dξn · · · dξ1.

Since
ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξn−1

0

n−1
∑

k=0

k
∑

j=0

(−1)j
(

k

j

)

(

A
(j)
k f
)(k−j)

(ξn) dξn · · · dξ1

=

n−1
∑

k=0

k
∑

j=0

(−1)j
(

k

j

)
ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξn−1−(k−j)

0

[

A
(j)
k (ξn−(k−j))f(ξn−(k−j))

−

k−j−1
∑

l=0

(

A
(j)
k f
)(l)

(0)

l!
ξln−(k−j)

]

dξn−(k−j) · · · dξ1

=

n
∑

m=1

ˆ z

0

ˆ ξ1

0

· · ·

ˆ ξm−1

0

[

m
∑

j=1

(−1)m−j

(

n− j

m− j

)

A
(m−j)
n−j (ξm)

]

f(ξm) dξm · · · dξ1

−
n−1
∑

k=0

k
∑

j=0

k−j−1
∑

l=0

(−1)j
(

k

j

)

(

A
(j)
k f
)(l)

(0)

(n− k + j + l)!
zn−k+j+l,

we have

|f(z)|ω(z) ≤ sup
ξ∈[0,z]

|f(ξ)|ω(ξ) sup
ξ∈D

ω(ξ)
n
∑

m=1

Im,ω(ξ) + C, z ∈ D,

where [0, z] is the closed line segment from 0 to z.
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Let now K be a compact subset of D containing the line segment [0, z] for all
z ∈ K. Then the formula above together with (7) and the estimate

sup
ξ∈[0,z]

|f(ξ)|ω(ξ) ≤ sup
ξ∈K

|f(ξ)|ω(ξ), z ∈ K,

yield

sup
ξ∈K

|f(ξ)|ω(ξ) ≤
C

1−E
< ∞.

Since this holds for all compact sets K with the properties mentioned above, we
obtain ‖f‖H∞

ω (D) ≤
C

1−E
, which completes the proof of assertion (a).

(b) Similarly as in the proof of part (a), we obtain

|f ′(z)|ω(z)

≤

∣

∣

∣

∣

∣

ˆ z

0

· · ·

ˆ ξn−2

0

n−1
∑

k=1

k−1
∑

j=0

(−1)j
(

k − 1

j

)

(

A
(j)
k f ′

)(k−1−j)

(ξn−1) dξn−1 · · · dξ1

∣

∣

∣

∣

∣

ω(z)

+

∣

∣

∣

∣

ˆ z

0

· · ·

ˆ ξn−2

0

A0(ξn−1)f(ξn−1) dξn−1 · · ·dξ1

∣

∣

∣

∣

ω(z) + C1, z ∈ D,

where

C1 = sup
z∈D

ω(z)
n−2
∑

j=0

∣

∣f (j+1)(0)
∣

∣

j!
+‖g‖H∞

ω (D), g(z) =

ˆ z

0

· · ·

ˆ ξn−2

0

An(ξn−1) dξn−1 · · · dξ1.

Since
∣

∣

∣

∣

ˆ z

0

· · ·

ˆ ξn−2

0

A0(ξn−1)f(ξn−1) dξn−1 · · · dξ1

∣

∣

∣

∣

≤

[

sup
ξ∈[0,z]

|f ′(ξ)|ω(ξ)

]

ˆ z

0

· · ·

ˆ ξn−2

0

|A0(ξn−1)|

ˆ ξn−1

0

|dξn|

ω(ξn)
|dξn−1| · · · |dξ1|

+ |f(0)|

∣

∣

∣

∣

ˆ z

0

· · ·

ˆ ξn−2

0

A0(ξn−1) dξn−1 · · · dξ1

∣

∣

∣

∣

, z ∈ D,

and
ˆ z

0

· · ·

ˆ ξn−2

0

n−1
∑

k=1

k−1
∑

j=0

(−1)j
(

k − 1

j

)

(

A
(j)
k f ′

)(k−1−j)

(ξn−1) dξn−1 · · · dξ1

=
n−1
∑

m=1

ˆ z

0

· · ·

ˆ ξm−1

0

[

m
∑

j=1

(−1)m−j

(

n− 1− j

m− j

)

A
(m−j)
n−j (ξm)

]

f ′(ξm) dξm · · · dξ1

−
n−1
∑

k=1

k−1
∑

j=0

k−j−2
∑

l=0

(−1)j
(

k − 1

j

)

(

A
(j)
k f ′

)(l)

(0)

(n− k + j + l)!
zn−k+j+l, z ∈ D,

we have

|f ′(z)|ω(z) ≤ sup
ξ∈[0,z]

|f ′(ξ)|ω(ξ) sup
ξ∈D

ω(ξ)

[ n−1
∑

m=1

I∗m,ω(ξ)

+

ˆ ξ

0

· · ·

ˆ ξn−2

0

|A0(ξn−1)|

ˆ ξn−1

0

|dξn|

ω(ξn)
|dξn−1| · · · |dξ1|

]

+ C, z ∈ D.
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Here

C = sup
z∈D

ω(z)









n−2
∑

j=0

∣

∣f (j+1)(0)
∣

∣

j!
+

n−1
∑

k=1

k−1
∑

j=0

k−j−2
∑

l=0

(

k − 1

j

)

∣

∣

∣

∣

(

A
(j)
k f ′

)(l)

(0)

∣

∣

∣

∣

(n− k + j + l)!









+ |f(0)| sup
z∈D

ω(z)

∣

∣

∣

∣

ˆ z

0

· · ·

ˆ ξn−2

0

A0(ξn−1) dξn−1 · · ·dξ1

∣

∣

∣

∣

+ ‖g‖H∞

ω (D)

< ∞

because

sup
z∈D

ω(z)

ˆ z

0

· · ·

ˆ ξn−2

0

|A0(ξn−1)|

ˆ ξn−1

0

|dξn|

ω(ξn)
|dξn−1| · · · |dξ1| < ∞

by (8), and
´ ξn−1

0
|dξn|
ω(ξn)

is zero only if ξn−1 = 0. Hence (8) yields

sup
ξ∈K

|f ′(ξ)|ω(ξ) ≤
C

1− F
< ∞

for all compact sets K ⊂ D containing the line segments [0, z] for z ∈ K, and
consequently f ′ ∈ H∞

ω (D). �
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LINEAR DIFFERENTIAL EQUATIONS WITH
SLOWLY GROWING SOLUTIONS

JANNE GRÖHN, JUHA-MATTI HUUSKO AND JOUNI RÄTTYÄ

Abstract. This research concerns linear differential equations in the unit disc of the
complex plane. In the higher order case the separation of zeros (of maximal multiplicity)
of solutions is considered, while in the second order case slowly growing solutions in H

∞,
BMOA and the Bloch space are discussed. A counterpart of the Hardy-Stein-Spencer
formula for higher derivatives is proved, and then applied to study solutions in the
Hardy spaces.

1. Introduction

A fundamental objective in the study of complex linear differential equations with
analytic coefficients in a complex domain is to relate the growth of coefficients to the
growth of solutions and to the distribution of their zeros. In the case of fast growing
solutions, Nevanlinna and Wiman-Valiron theories have turned out to be very useful
both in the unit disc [10, 24] and in the complex plane [23, 24].

We restrict ourselves to the case of the unit disc D = {z ∈ C : |z| < 1}. In addition to
methods above, theory of conformal maps has been used to establish interrelationships
between the growth of coefficients and the geometric distribution (and separation) of ze-
ros of solutions. This connection was one of the highlights in Nehari’s seminal paper [25],
according to which a sufficient condition for the injectivity of a locally univalent mero-
morphic function can be given in terms of its Schwarzian derivative. In the setting of
differential equations, Nehari’s theorem [25, Theorem I] admits the following (equivalent)
formulation: if A is analytic in D and

sup
z∈D

|A(z)|(1− |z|
2)2 (1.1)

is at most one, then each non-trivial solution (f �≡ 0) of

f
�� +Af = 0 (1.2)

has at most one zero in D. A few years later, in 1955, Schwarz showed [36, Theorems 3–
4] that if A is analytic in D then zero-sequences of all non-trivial solutions of (1.2) are
separated in the hyperbolic metric if and only if (1.1) is finite. The necessary condition,
corresponding to Nehari’s theorem, was given by Kraus [22]. For recent developments
based on localization of the classical results, see [5]. In the case of higher order linear
differential equations

f
(k) +Ak−1f

(k−1) + · · ·+A1f
� +A0f = 0, k ∈ N, (1.3)
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with analytic coefficients A0, . . . , Ak−1, this line of reasoning has not given complete
results. Some progress on the subject was obtained in the seventies and eighties by Kim
and Lavie, among many other authors.

Nevanlinna and Wiman-Valiron theories, in the form they are known today, do not
seem to be sufficiently delicate tools to study slowly growing solutions of (1.2), and hence
different approach must be employed. An important breakthrough in this regard was
[33], where Pommerenke obtained a sharp sufficient condition for the analytic coefficient
A which places all solutions f of (1.2) to the classical Hardy space H

2. Pommerenke’s
idea was to use Green’s formula twice to write the H

2-norm of f in terms of f ��, employ
the differential equation (1.2), and then apply Carleson’s theorem for the Hardy spaces
[8, Theorem 9.3]. Consequently, the coefficient condition was given in terms of Carleson
measures. The leading idea of this (operator theoretic) approach has been extended to
study, for example, solutions in the Hardy and Bergman spaces [28, 35], Dirichlet type
spaces [19] and growth spaces [16, 21], to name a few instances.

Our intention is to establish sufficient conditions for the coefficient of (1.2) which place
all solutions to H

∞, BMOA or to the Bloch space. In principle, Pommerenke’s original
idea could be modified to cover these cases, but in practice, this approach falls short
since either it is difficult to find a useful expression for the norm in terms of the second
derivative (in the case of H∞) or the characterization of Carleson measures is not known
(in the cases of BMOA and Bloch). Concerning Carleson measures for the Bloch space,
see [13]. Curiously enough, the best known coefficient condition placing all solutions of
(1.2) to the Bloch space is obtained by straightforward integration [21]. Our approach
takes advantage of the reproducing formulae, and is different to ones in the literature.

2. Main results

Let H(D) denote the collection of functions analytic in D, and let m be the Lebesgue
area measure, normalized so that m(D) = 1. By postponing the rigorous definitions
to the forthcoming sections, we proceed to outline our results. We begin with the zero
distribution of non-trivial solutions of the linear differential equation

f
��� +A2f

�� +A1f
� +A0f = 0 (2.1)

with analytic coefficients. Note that zeros of non-trivial solutions of (2.1) are at most
two-fold. Let ϕa(z) = (a − z)/(1 − az), for a, z ∈ D, denote a conformal automorphism
of D which coincides with its own inverse.

Theorem 1. Let f be a non-trivial solution of (2.1) where A0, A1, A2 ∈ H(D).
(i) If

sup
z∈D

|Aj(z)|(1− |z|
2)3−j

< ∞, j = 0, 1, 2, (2.2)

then the sequence of two-fold zeros of f is a finite union of separated sequences.

(ii) If

sup
a∈D

�

D
|Aj(z)|(1− |z|

2)1−j
�
1− |ϕa(z)|

2
�
dm(z) < ∞, j = 0, 1, 2, (2.3)

then the sequence of two-fold zeros of f is a finite union of uniformly separated

sequences.

Theorem 1(i) should be compared to the second order case [36, Theorem 3], which
was already mentioned in the introduction. For the second order counterpart of The-
orem 1(ii), see [14, Theorem 1]. By a standard transformation as in [23, p. 74], both
[36, Theorem 3] and [14, Theorem 1] admit immediate generalizations to second order
differential equations (1.3) with an intermediate coefficient A1. The proof of Theorem 1
is presented in Section 3, and it is based on a conformal transformation of (2.1), Jensen’s
formula, and on a sharp growth estimate for solutions of (2.1). Theorem 1 extends to
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the case of higher order differential equations (1.3), but we leave details for the interested
reader.

The following results concern slowly growing solutions of the second order differential
equation (1.2), however, our methods could also be applied in more general situations.
A sufficient condition for the analytic coefficient A, which forces all solutions of (1.2) to
be bounded, is given in terms of Cauchy transforms. The space K of Cauchy transforms
consists of functions in H(D) that take the form

�
T(1 − ζz)−1

dµ(ζ), where µ is a finite,
complex, Borel measure on the unit circle T = ∂D. For more details we refer to Section 5,
where the following theorem is proved.

Theorem 2. Let A ∈ H(D).
(i) If lim sup

r→1−
sup
z∈D

�Ar,z�K < 1 for

Ar,z(u) =

�
z

0

�
ζ

0

A(rw)

1− uw
dw dζ, u ∈ D,

then all solutions of (1.2) are bounded.

(ii) If a primitive of A belongs to the Hardy space H
1
, then all solutions of (1.2) have

their first derivative in H
1
.

For f ∈ H(D), f � ∈ H
1 if and only if f admits a continuous extension to D and is abso-

lutely continuous on T [8, Theorem 3.11]. Therefore, as a consequence of Theorem 2(ii),
we obtain a coefficient condition which places all solutions of (1.2) to the disc algebra.

The question converse to Theorem 2(i) is open and appears to be difficult. The bound-
edness of one non-trivial solution of (1.2) is not enough to guarantee that (1.1) is finite,
which can be easily seen by considering the solution f(z) = exp(−(1 + z)/(1 − z)) of
(1.2) for A(z) = −4z/(1 − z)4, z ∈ D. However, if (1.2) admits linearly independent
solutions f1, f2 ∈ H

∞ such that infz∈D
�
|f1(z)|+ |f2(z)|

�
> 0, then (1.1) is finite. This is

a consequence of the Corona theorem [8, Theorem 12.1], according to which there exist
g1, g2 ∈ H

∞ such that f1g1 + f2g2 ≡ 1, and consequently A = A + (f1g1 + f2g2)�� =
2(f �

1g
�
1 + f

�
2g

�
2) + f1g

��
1 + f2g

��
2 .

We proceed to consider BMOA, which consists of those functions in the Hardy space
H

2 whose boundary values are of bounded mean oscillation. The following result should
be compared to [33, Theorem 2] as BMOA is a conformally invariant subspace of H2.

Theorem 3. Let A ∈ H(D). If

sup
a∈D

�
log

e

1− |a|

�2 �

D
|A(z)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z) (2.4)

is sufficiently small, then all solutions of (1.2) belong to BMOA.

To the best of our knowledge BMOA solutions of (1.2) have not been discussed in the
literature before. The coefficient condition in Theorem 3 allows solutions of (1.2) to be
unbounded, see Example 2 in Section 6. By [28, Lemma 5.3] or [40, Theorem 1], (2.4) is
comparable to

sup
a∈D

�
log e

1−|a|
�2

1− |a|

�

Sa

|A(z)|2(1− |z|
2)3 dm(z), (2.5)

where Sa = {reiθ : |a| < r < 1, |θ − arg(a)| ≤ (1 − |a|)/2} denotes the Carleson square
with respect to a ∈ D \ {0} and S0 = D. See also [37, Lemma 3.4]. Solutions in VMOA,
the closure of polynomials in BMOA, are discussed in Section 6 in which Theorem 3 is
proved.

The case of the Bloch space B is especially interesting. For 0 < α < ∞, let Lα denote
the collection of those A ∈ H(D) for which

�A�Lα = sup
z∈D

|A(z)|(1− |z|
2)2

�
log

e

1− |z|

�α

< ∞.
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The comparison between H
∞
2 , Lα and the functions for which (2.4) is finite is presented

in Section 4. It is known that, if �A�L1 is sufficiently small, then all solutions of (1.2)
belong to B. This result was recently discovered with the best possible upper bound for
�A�L1 in [21, Corollary 4(b) and Example 5(b)]. Moreover, if A ∈ L1 then all solutions
of (1.2) are in H

2 by [33, Corollary 1]. We point out that, if A ∈ Lα for any 1 < α < ∞,
then all solutions of (1.2) are bounded by [18, Theorem G(a)]. Solutions in the little
Bloch space B0, the closure of polynomials in B, are discussed in Section 7, among other
results involving the Bloch space.

The proof of Theorem 2(i) is based on an application of the reproducing formula for
H

1 functions, and it is natural to ask whether this method extends to the cases of B and
BMOA. In the case of B, by using the reproducing formula for weighted Bergman spaces,
we prove a result (namely, Theorem 10) offering a family of coefficient conditions, which
are given in terms of Bergman spaces induced by doubling weights. The case of BMOA,
with the reproducing formula for H1, is further considered in Section 8.

A careful reader observes that the results above are closely related to operator theory.
If f is a solution of (1.2), then

f(z) = −

�
z

0

��
ζ

0
f(w)A(w) dw

�
dζ + f

�(0)z + f(0), z ∈ D. (2.6)

By denoting

SA(f)(z) =

�
z

0

��
ζ

0
f(w)A(w) dw

�
dζ, z ∈ D,

we obtain an integral operator, induced by the symbol A ∈ H(D), that sends H(D) into
itself. With this approach, the search of sufficient coefficient conditions boils down to
finding sufficient conditions for the boundedness of SA. Therefore, it is not a surprise
that many results on slowly growing solutions are inspired by study of the classical integral
operator

Tg(f)(z) =

�
z

0
f(ζ)g�(ζ) dζ,

see [2, 3, 7, 32, 38]. The strength of the operator theoretic approach is demonstrated
by proving that the coefficient conditions arising from Theorem 10 are essentially inter-
changeable with A ∈ L1, see Theorem 11.

Deep duality relations are implicit in the proofs of Theorems 2(i), 10 and 14. The
dual of H

1 is isomorphic to BMOA with the Cauchy pairing by Fefferman’s theorem
[12, Theorem 7.1], the dual of the disc algebra is isomorphic to the space of Cauchy
transforms with the dual pairing �f,Kµ� =

�
f dµ [6, Theorem 4.2.2], and the dual of

A
1
ω is isomorphic to the Bloch space with the dual pairing �f, g�A2

ω
=

�
D fg ω dm [30,

Corollary 7].
Finally, we turn to consider coefficient conditions which place solutions of (1.2) in the

Hardy spaces. Our results are inspired by an open question, which is closely related to
the Hardy-Stein-Spencer formula

�f�
p

Hp = |f(0)|p +
p
2

2

�

D
|f(z)|p−2

|f
�(z)|2 log

1

|z|
dm(z), (2.7)

that holds for 0 < p < ∞ and f ∈ H(D). For p = 2, (2.7) is the well-known Littlewood-
Paley identity, while the general case follows from [17, Theorem 3.1] by integration.

Question 1. Let 0 < p < ∞. Is it true that

�f�
p

Hp ≤ C(p)

�

D
|f(z)|p−2

|f
��(z)|2(1− |z|

2)3 dm(z) + |f(0)|p + |f
�(0)|p (2.8)

for any f ∈ H(D), where C(p) is a positive constant such that C(p) → 0+ as p → 0+?
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Affirmative answer to this question would have an immediate application to differential
equations, see Section 9.2. In the context of second order differential equation (1.2), it
suffices to consider Question 1 under the additional assumptions that all zeros of f are
simple and f

�� vanishes at zeros of f . The estimate in Question 1 is valid for a non-trivial
subclass of H(D), see Section 9.1.

Function f ∈ H(D) is uniformly locally univalent if there is a constant 0 < δ ≤ 1 such
that f is univalent in each pseudo-hyperbolic disc ∆(z, δ) = {w ∈ D : |ϕz(w)| < δ} for
z ∈ D. A partial solution to Question 1 is given by Theorem 4. Here a � b means that
there exists C > 0 such that a ≤ Cb. Moreover, a � b if and only if a � b and a � b.

Theorem 4. Let f ∈ H(D), and k ∈ N.
(i) If 0 < p ≤ 2, then

�f�
p

Hp �
�

D
|f(z)|p−2

|f
(k)(z)|2(1− |z|

2)2k−1
dm(z) +

k−1�

j=0

|f
(j)(0)|p. (2.9)

(ii) If 2 ≤ p < ∞, then

�

D
|f(z)|p−2

|f
(k)(z)|2(1− |z|

2)2k−1
dm(z) +

k−1�

j=0

|f
(j)(0)|p � �f�

p

Hp . (2.10)

(iii) If 0 < p < ∞ and f is uniformly locally univalent, then (2.10) holds.

The comparison constants are independent of f ; in (i) and (ii) they depend on p, and

in (iii) it depends on δ (the constant of uniform local univalence) and p.

The proof of Theorem 4 is presented in Section 9, and it takes advantage of a norm
in H

p, given in terms of higher derivatives and area functions, and an estimate of the
non-tangential maximal function.

3. Zero distribution of solutions

For 0 ≤ p < ∞, the growth space H
∞
p consists of those g ∈ H(D) for which

�g�H∞
p

= sup
z∈D

|g(z)|(1− |z|
2)p < ∞.

We writeH∞ = H
∞
0 , for short. The sequence {zn}∞n=1 ⊂ D is called uniformly separated if

inf
k∈N

�

n∈N\{k}

����
zn − zk

1− znzk

���� > 0,

while {zn}
∞
n=1 ⊂ D is said to be separated in the hyperbolic metric if there exists a con-

stant δ > 0 such that |zn−zk|/|1−znzk| > δ for any n �= k. After the proof of Theorem 1,
we present an auxiliary result which provides an estimate for the number of sequences in
the finite union appearing in the claim.

Proof of Theorem 1. (i) If f is a non-trivial solution of (2.1), then g = f ◦ ϕa solves

g
��� +B2g

�� +B1g
� +B0g = 0, (3.1)

where

B0 = (A0 ◦ ϕa)(ϕ
�
a)

3
, B2 = (A2 ◦ ϕa)ϕ

�
a − 3

ϕ
��
a

ϕ�
a

,

B1 = (A1 ◦ ϕa)(ϕ
�
a)

2
− (A2 ◦ ϕa)ϕ

��
a + 3

�
ϕ
��
a

ϕ�
a

�2

−
ϕ
���
a

ϕ�
a

.

(3.2)
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By a conformal change of variable, we deduce �B0�H∞
3

= �A0�H∞
3
,

�B2�H∞
1

≤ sup
z∈D

|A2(z)| (1− |z|
2) + sup

z∈D

6|a|

|1− az|
(1− |z|

2) ≤ �A2�H∞
1

+ 12,

�B1�H∞
2

≤ sup
z∈D

|A1(z)| (1− |z|
2)2 + sup

w∈D
|A2(w)| (1− |w|

2)

����
ϕ
��
a(ϕa(w))

ϕ�
a(ϕa(w))

���� (1− |ϕa(w)|
2)

+ sup
z∈D

12|a|2

|1− az|2
(1− |z|

2)2 + sup
z∈D

6|a|2

|1− az|2
(1− |z|

2)2

≤ �A1�H∞
2

+ 4�A2�H∞
1

+ 72.

Let Z = Z(f) be the sequence of two-fold zeros of f , and let a ∈ Z; we may assume
that Z is not empty, for otherwise there is nothing to prove. Then, the zero of g = f ◦ϕa

at the origin is two-fold. By applying Jensen’s formula to z �→ g(z)/z2 we obtain

�

zk∈Z
0<|ϕa(zk)|<r

log
r

|ϕa(zk)|
≤

1

2π

� 2π

0
log+

����
g(reiθ)

g��(0)

���� dθ + log
2

r2
, 0 < r < 1, (3.3)

where log+ x = max{0, log x} for 0 ≤ x < ∞. Since
� 1

0

�
�

zk∈Z
0<|ϕa(zk)|<r

log
r

|ϕa(zk)|

�
r dr =

�

zk∈Z\{a}

� 1

|ϕa(zk)|
r log

r

|ϕa(zk)|
dr

≥
1

8

�

zk∈Z\{a}

�
1− |ϕa(zk)|

2
�2

,

the estimate (3.3) implies

�

zk∈Z\{a}

�
1− |ϕa(zk)|

2
�2

≤ 4

�

D
log+

����
g(z)

g��(0)

���� dm(z) + 4 log 2 + 4.

Consider the normalized solution h(z) = g(z)/g��(0) of (3.1), which has the initial
values h(0) = h

�(0) = 0 and h
��(0) = 1. By the proofs of the growth estimates [18,

Theorems 3.1 and 4.1, and Corollary 4.2], there exists an absolute constant C1 > 0 such
that

1

2π

� 2π

0
log+

��h(reiθ)
�� dθ ≤ C1

2�

j=0

j�

n=0

� 2π

0

�
r

0
|B

(n)
j

(seiθ)|(1− s)3−j+n−1
ds dθ.

By Cauchy’s integral formula and the estimates above, there exists a positive constant
C2 = C2(�A0�H∞

3
, �A1�H∞

2
, �A2�H∞

1
), independent of a ∈ D, such that

��B(n)
j

��
H

∞
3−j+n

≤ C2, j = 0, 1, 2, n = 0, . . . , j.

Let M∞
�
s,B

(n)
j

�
denote the maximum modulus of B(n)

j
on the circle of radius s. Now

sup
a∈Z

�

zk∈Z\{a}

�
1− |ϕa(zk)|

2
�2

≤ 4 log 2 + 4 + 16πC1 sup
a∈Z

2�

j=0

j�

n=0

� 1

0

�
r

0
M∞

�
s,B

(n)
j

�
(1− s)2−j+n

ds dr

≤ 4 log 2 + 4 + 16πC1C2

2�

j=0

j�

n=0

� 1

0

�
r

0

ds

1− s2
dr < ∞.

The assertion of Theorem 1(i) follows from Lemma 5(i) below.
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(ii) As in the proof of (i), we conclude that g = f ◦ϕa is a solution of (3.1), where the
coefficients B0, B1, B2 depend on a ∈ D. By (2.3),

sup
a∈D

�

D
|B

(n)
j

(z)|(1− |z|
2)2−j+n

dm(z) < ∞, j = 0, . . . , 2, n = 0, . . . , j. (3.4)

In order to conclude (3.4), first get rid of the derivatives by standard estimates, and then
integrate the coefficients (3.2) term-by-term.

Let Z be the sequence of two-fold zeros of f . As above, there exists an absolute
constant C3 > 0 such that

sup
a∈Z

�

zk∈Z
0<|ϕa(zk)|<r

log
r

|ϕa(zk)|
≤ log

2

r2
+ C3 sup

a∈Z

2�

j=0

j�

n=0

�

D
|B

(n)
j

(z)|(1− |z|
2)2−j+n

dm(z)

for 0 < r < 1. By letting r → 1−, we obtain

sup
a∈Z

�

zk∈Z\{a}

�
1− |ϕa(zk)|

2
�
< ∞.

This implies the assertion of Theorem 1(ii) by Lemma 5(ii) below. �

The following lemma gives an estimate for the number of sequences in the finite union
appearing in the statement of Theorem 1. For more details, we refer to [9, Chapter 2.11].

Lemma 5. Let Z = {zk} be a sequence of points in D such that the multiplicity of each

point is at most p ∈ N, and let M ∈ N.
(i) If

sup
a∈Z

�

zk∈Z\{a}

�
1− |ϕa(zk)|

2
�2

≤ M < ∞,

then {zk} can be expressed as a finite union of at most M+p separated sequences.

(ii) If

sup
a∈Z

�

zk∈Z\{a}

�
1− |ϕa(zk)|

2
�
≤ M < ∞, (3.5)

then {zk} can be expressed as a finite union of at most M +p uniformly separated

sequences.

Proof. (i) Assume on contrary to the claim, that every partition of Z into separated
subsequences is a union of at least M + p + 1 sequences. Then, for each n ∈ N, there
exists a point zn ∈ Z such that

#
�
zk ∈ Z : |ϕzn(zk)| ≤ 2−n

�
≥ M + p+ 1.

Now

p+M ≥ p +
�

zk∈Z\{zn}

�
1− |ϕzn(zk)|

2
�2

≥

�

zk∈Z

�
1− |ϕzn(zk)|

2
�2

≥ #
�
zk ∈ Z : |ϕzn(zk)| ≤ 2−n

�
· (1− 4−n)2 ≥ (M + p+ 1)(1− 4−n)2.

By letting n → ∞ we arrive to a contradiction. Hence Z can be expressed as a union of
at most M + p separated sequences.

(ii) By part (i), Z can be expressed as a union of at most M + p separated sequences,
and each of these separated sequences is uniformly separated by (3.5). �
Example 1. If {f, g} is a solution base of (1.2), then {f2

, g
2
, fg} is a solution base of

h
��� + 4Ah� + 2A�

h = 0. (3.6)
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Let us apply this property to a classical example [36, p. 162] originally due to Hille [20,
p. 552]. For γ > 0, the differential equation (1.2) with A(z) = (1+4γ2)/(1− z

2)2, z ∈ D,
admits the solution

f(z) =
�
1− z2 sin

�
γ log

1 + z

1− z

�
, z ∈ D.

The zeros of f are simple and real, and moreover, the hyperbolic distance between two
consecutive zeros is precisely π/(2γ). Consequently, (3.6) admits the solution h = f

2

whose zero-sequence is a union of two separated sequences. This sequence is a union
of two uniformly separated sequences (in fact, a union of two exponential sequences),
since all zeros are real [8, Theorem 9.2]. In this case the coefficients of (3.6) satisfy both
conditions (2.2) and (2.3). �

4. Inclusion relations between function spaces

The following result can be used to compare the coefficient conditions. In particular,
Lemma 6 shows that the coefficient condition in Theorem 3 (which implies that all solu-
tions of (1.2) are in BMOA) is strictly stronger than A ∈ L1 with sufficiently small norm
(which places all solutions in B ∩H

2). And further, Lemma 6 proves that A ∈ L1 with
sufficiently small norm is strictly stronger than the coefficient condition in Theorem A
below (which forces solutions to be in Hardy spaces). The reader is invited to compare
Lemma 6 to the results in [4, Section 5].

If A ∈ H(D) and

sup
a∈D

�

D
|A(z)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z) (4.1)

is finite, then we write A ∈ BMOA��. Note that A ∈ BMOA�� if and only if there exists
a function g = g(A) ∈ BMOA such that A = g

��, which follows from standard estimates.
Correspondingly, if A ∈ H(D) and

�A�
2
LMOA�� = sup

a∈D

�
log

e

1− |a|

�2 �

D
|A(z)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z) < ∞,

then A ∈ LMOA��. As expected, LMOA�� consists of those functions in H(D) which can be
represented as the second derivative of a function in LMOA. For more details on LMOA,
see [4, 37]. Finally, part (iv) of Lemma 6 gives a sufficient condition for a lacunary series
to be in LMOA��.

Lemma 6. The following assertions hold:

(i) Lα1 � Lα2 � H
∞
2 for any 0 < α2 < α1 < ∞;

(ii) LMOA�� � L1 � Lα � BMOA�� � H
∞
2 for any 1/2 < α < 1;

(iii) L3/2 � LMOA��
, and LMOA�� \

�
1<α<∞ Lα

is non-empty;

(iv) if {nk}
∞
k=1 ⊂ N and {ak}

∞
k=1 ⊂ C satisfy the conditions infk∈N nk+1/nk > 1 and�∞

k=1 |ak|
2(log nk)3/n4

k
< ∞, then

��∞
k=1 akz

nk
�
∈ LMOA��

.

Proof. As (i) is an immediate consequence of the definitions, we proceed to prove (ii). Let
A ∈ LMOA��. Since (2.5) is finite and |A|2 is subharmonic, we deduce �A�2L1 � �A�2LMOA�� .
Assume on contrary to the assertion that LMOA�� = L1. By [15, Theorem 1], there exist
A0, A1 ∈ H(D) satisfying

|A0(z)|+ |A1(z)| �
1

(1− |z|2)2 log e

1−|z|
, z ∈ D.

Since A0, A1 ∈ LMOA��, we deduce
�

Sa

dm(z)

(1− |z|2)
�
log e

1−|z|
�2 �

�

Sa

�
|A0(z)|+ |A1(z)|

�2
(1− |z|

2)3 dm(z) � 1− |a|
�
log e

1−|a|
�2
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as |a| → 1−. This contradicts the fact
�

Sa

dm(z)

(1− |z|2)
�
log e

1−|z|
�2 �

1− |a|

log e

1−|a|
, |a| → 1−,

and hence LMOA�� �= L1. The remaining part of (ii) is a straightforward computation.
Note that the inclusion Lα � BMOA��, for any 1/2 < α < ∞, is strict by A(z) = (1−z)−2.

To prove (iii) it suffices to prove the latter assertion, as L3/2 ⊂ LMOA�� follows directly

from (2.5). If A(z) = (1 − z)−2
�
log e

1−z

�−1
for z ∈ D, then A /∈

�
1<α<∞ Lα. To show

that A ∈ LMOA��, it is enough to verify (2.5) for 0 < a < 1. Since
����log

e

1− z

���� ≥ log
e

|1− z|
≥ log

e

2(1− a)
, z ∈ Sa, (4.2)

we conclude

sup
0<a<1

�
log e

1−a

�2

1− a

�

Sa

|A(z)|2(1− |z|
2)3 dm(z)

� sup
0<a<1

1

1− a

� 1

a

� 2π

0

dθ

|1− reiθ|4
(1− r

2)3 r dr < ∞.

(4.3)

In order to prove (iv), let A(z) =
�∞

k=1 akz
nk for z ∈ D. If h(z) =

�∞
k=1 z

nk for z ∈ D,
then h ∈ B with M∞(r, h) =

�∞
k=1 r

nk � log e

1−r
for 0 < r < 1. By the Cauchy-Schwarz

inequality,

M∞(r, A) �
� ∞�

k=1

|ak|
2
r
nk

�1/2�
log

e

1− r

�1/2

, 0 < r < 1.

It follows that

sup
a∈D

�
log e

1−|a|
�2

1− |a|

�

Sa

|A(z)|2(1− |z|
2)3 dm(z)

�
� 1

0
M∞(r, A)2(1− r)3

�
log

e

1− r

�2

dr

�
∞�

k=1

|ak|
2
� 1

0
r
nk(1− r)3

�
log

e

1− r

�3

dr �

∞�

k=1

|ak|
2 (log nk)3

n
4
k

,

where the asymptotic equality follows from [28, Lemma 1.3]. This completes the proof of
Lemma 6. �

5. Bounded solutions

We consider bounded solutions of (1.2). As usual, the space H
∞ consists of f ∈ H(D)

for which �f�H∞ = supz∈D |f(z)| < ∞. The proof of Theorem 2(i) takes advantage of
the well-known representation formula

g(ζ) =
1

2π

� 2π

0

g(eit)

1− e−itζ
dt, ζ ∈ D, (5.1)

which holds for any g ∈ H
1 [8, Theorem 3.6].

Let M be the collection of all (finite) complex Borel measures on T. For µ ∈ M , the
total variation measure |µ| is defined as a set function

|µ|(E) = sup
�

j

|µ(Ej)|,
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where the supremum is taken over all countable (Borel) partitions {Ej} of E ⊂ T. More-
over, �µ� = |µ|(T) is the total variation of µ [34, Chapter 6]. Let K be the space of
Cauchy transforms, which consists of analytic functions in D of the form

(Kµ)(z) =

�

T

dµ(ζ)

1− ζz
, z ∈ D,

for some µ ∈ M . For each f ∈ K there is a set Mf =
�
µ ∈ M : f = Kµ

�
of measures

that represent f , and produce the norm

�f�K = inf
�
�µ� : µ ∈ Mf

�
.

We refer to [6] for more details.

Proof of Theorem 2(i). Let f be any solution of (1.2), and write fr(z) = f(rz) for 0 ≤

r < 1. Then fr is analytic in D and satisfies f
��
r (w) + r

2
A(rw)fr(w) = 0 for w ∈ D. By

(2.6), (5.1) for g = fr, and Fubini’s theorem, we conclude

fr(z) = −
1

2π

� 2π

0
fr(e

it)

�
z

0

�
ζ

0

r
2
A(rw)

1− e−itw
dw dζ dt+ f

�
r(0)z + fr(0), z ∈ D.

For all 0 < r < 1 sufficiently large, and z ∈ D, there exists µr,z ∈ M such that

Ar,z(u) = (Kµr,z)(u), u ∈ D, (5.2)

and �µr,z� < δ for some absolute constant 0 < δ < 1. Hence, by [6, Theorem 4.2.2],

fr(z) = −
r
2

2π

� 2π

0
fr(e

it)(Kµr,z)(eit) dt+ f
�
r(0)z + fr(0)

= −r
2
�

T
fr(x)dµr,z(x) + f

�
r(0)z + fr(0), z ∈ D.

By [34, Theorem 6.12], there exist measurable functions hr,z such that |hr,z(ζ)| = 1 for
all ζ ∈ T and the polar decompositions dµr,z = hr,z d|µr,z| hold. Therefore

|fr(z)| ≤

����
�

T
fr(x)hr,z(x) d|µr,z|(x)

����+ |f
�
r(0)|+ |fr(0)|

≤ �fr�H∞

�

T
d|µr,z|+ |f

�
r(0)|+ |fr(0)|

≤ �fr�H∞�µr,z�+ |f
�(0)|+ |f(0)|, z ∈ D.

This implies �f�H∞ ≤ (|f(0)|+ |f �(0)|)/(1− δ), and hence completes the proof of Theo-
rem 2(i). �

Let 0 < p < ∞, n ∈ N and f ∈ H(D). The proof of Theorem 2(ii) relies on a classical
representation

�f�
p

Hp �

�

T

��

Γ(ζ)
|f

(n)(z)|2(1− |z|
2)2n−2

dm(z)

�p/2

|dζ|+
n−1�

j=0

|f
(j)(0)|p, (5.3)

which involves non-tangential approach regions; see [1, p. 125], for example. Hardy
spaces Hp are further considered in Section 9. For a fixed 1 < α < ∞, the non-tangential
approach region of aperture 2 arctan

√
α2 − 1, with vertex at ζ ∈ T, is given by Γ(ζ) =

{z ∈ D : |z − ζ| ≤ α(1− |z|)}. The corresponding non-tangential maximal function is

f
�(ζ) = sup

z∈Γ(ζ)
|f(z)|, ζ ∈ T. (5.4)

Proof of Theorem 2(ii). Let A(z) =
�∞

n=0 anz
n for z ∈ D. By the assumption, A(z) =�

z

0 A(ζ) dζ satisfies A ∈ H
1. We compute

� 1

0
M∞(r, A)(1− r) dr ≤

� 1

0

� ∞�

n=0

|an|r
n

�
(1− r) dr =

∞�

n=0

|an|

(n+ 1)(n+ 2)
≤ π �A�H1 ,
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where the last estimate follows from Hardy’s inequality [8, p. 48]. By [19, Corollary 3.16],
we conclude that all solutions of (1.2) are bounded.

Let f be a solution of (1.2). Then

f
�(z) = −

�
z

0
f(ζ)A(ζ) dζ + f

�(0), z ∈ D,

and hence by (5.3), we deduce

�f
�
�H1 ≤

����
�

z

0
f(ζ)A(ζ) dζ

����
H1

+ |f
�(0)|

�

�

T

��

Γ(ζ)
|f(z)|2|A(z)|2 dm(z)

�1/2

|dζ|+ |f
�(0)|+ |f

��(0)|

≤ �f�H∞ �A�H1 + |f
�(0)|+ |f

��(0)|.

The assertion f
� ∈ H

1 follows. �
Remark 1. For each 0 < r < 1 and z ∈ D, it is easy to see that

d�µr,z(x) =

��
z

0

�
ζ

0

A(rw)

x− w
dw dζ

�
dx

2πi
, x ∈ T,

is one of the representing measures for which (5.2) holds, and hence �Ar,z�K ≤ ��µr,z�.
Moreover, the behavior of the second primitive of A is controlled by this measure in the
sense that

�
z

0

�
ζ

0
A(rw) dwdζ =

�
z

0

�
ζ

0

�
1

2πi

�

T

dx

x− w

�
A(rw) dwdζ =

�

T
d�µr,z(x),

which follows from Cauchy’s integral formula and Fubini’s theorem.

6. Solutions of bounded and vanishing mean oscillation

The space BMOA consists of those f ∈ H(D) for which

�f�
2
BMOA = sup

a∈D
�fa�

2
H2 < ∞, (6.1)

where fa(z) = f(ϕa(z))− f(a) for a, z ∈ D. By the Littlewood-Paley identity,

�f�
2
BMOA ≤ 4 sup

a∈D

�

D
|f

�(z)|2(1− |ϕa(z)|
2) dm(z) ≤ 4 �f�2BMOA, (6.2)

see [11, pp. 228–230]. Clearly, BMOA is a subspace of the Bloch space B.
A positive Borel measure µ on D is called a Carleson measure, if

�µ�Carleson = sup
a∈D

µ(Sa)

1− |a|
< ∞.

There exists a constant 1 ≤ α < ∞ such that

1

1− |a|
≤ α

1− |a|2

|1− az|2
= α |ϕ

�
a(z)|, z ∈ Sa, a ∈ D,

since |1− az| ≤ |1− |a|2|+ ||a|2 − az| � 1− |a|. Consequently,

�µ�Carleson = sup
a∈D

�

Sa

1

1− |a|
dµ(z) ≤ α · sup

a∈D

�

D
|ϕ

�
a(z)| dµ(z). (6.3)

We prove Theorem 3 and consider its counterpart for VMOA. Theorem 3 is inspired
by [37, Theorem 3.1]. We return to consider BMOA and VMOA solutions in Section 8,
where parallel results are obtained by using the representation formula for H1 functions.
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Proof of Theorem 3. The proof consists of two steps. First, we show that

sup
1/2<r<1

sup
a∈D

�
log

e

1− |a|

�2 �

D
|A(rz)|2(1−|z|

2)2(1−|ϕa(z)|
2) dm(z) � �A�

2
LMOA�� . (6.4)

Denote

I(a, r) =

�

D
|A(rz)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z), 0 < r < 1, a ∈ D,

for short. For |a| ≤ 1/2 the estimate (6.4) is trivial. Let 1/2 < |a| < 1/(2 − r). Since
|1− az| ≤ 2 |1− az/r| for |z| ≤ r, we deduce

I(a, r) =

�

D(0,r)
|A(z)|2

�
1−

�� z
r

��2 �3 1− |a|2

��1− a
z

r

��2
dm(z)

r2

≤
4

r2

�

D
|A(z)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z) ≤ 16 �A�

2
LMOA��

�
log

e

1− |a|

�−2

.

for any 1/2 < r < 1. Let 1/(2− r) ≤ |a| < 1. Now

I(a, r) ≤ �A�
2
L1

�

D

�
1− |z|2

�2�
1− |ϕa(z)|2

�
�
1− |rz|2

�4�
log e

1−|rz|
�2 dm(z)

� �A�
2
L1

� 1

0

(1− s)3(1− |a|)

(1− rs)4
�
log e

1−rs

�2
(1− |a|s)

ds.

As t �→ (1− t)2
�
log e

1−t

�
is decreasing for 0 < t < 1, we apply r ≤ 2− 1/|a| to obtain

I(a, r) � �A�
2
L1(1− |a|)

� |a|

0

ds

(1− s)2
�
log e

1−s

�2 +
�A�2L1

(1− |a|)4
�
log e

1−|a|
�2

� 1

|a|
(1− s)3 ds

� �A�
2
L1

�
log

e

1− |a|

�−2

.

Since �A�2L1 � �A�2LMOA�� by the proof of Lemma 6(ii), this completes the proof of (6.4).
Second, we proceed to consider the differential equation (1.2). Let f be a non-trivial

solution of (1.2). By Lemma 6(ii) and [21, Corollary 4(b)], we may assume that f ∈ B.
Now, (1.2) and (6.2) yield

�fr�
2
BMOA � sup

a∈D

�
|f

�(ra)|2(1− |a|
2)2 r2 +

�

D
r
4
|f

��(rz)|2(1− |z|
2)2(1− |ϕa(z)|

2) dm(z)

�

� �fr�
2
B + sup

a∈D

�

D
|fr(z)− fr(a)|

2
|A(rz)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z)

+ sup
a∈D

|fr(a)|
2
�

D
|A(rz)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z)

� �fr�
2
B + I1 + I2

with absolute comparison constants. By Carleson’s theorem [8, Theorem 9.3], (6.1) and
(6.3),

I1 � sup
a∈D

�

D
|(fr)a(z)|

2
��A(rϕa(z))

��2�1− |ϕa(z)|
2
�3

|ϕ
�
a(z)| dm(z)

� sup
a∈D

���(fr)a
��2
H2 · sup

b∈D

�

D

��A(rϕa(z))
��2�1− |ϕa(z)|

2
�3
|ϕ

�
a(z)||ϕ

�
b
(z)| dm(z)

�

� �fr�
2
BMOA · sup

c∈D

�

D
|A(rz)|2(1− |z|

2)2
�
1− |ϕc(z)|

2
�
dm(z).
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Estimation of I2 is easier. By [12, Corollary 5.3],

I2 � �fr�
2
BMOA · sup

a∈D

�
log

e

1− |a|

�2 �

D
|A(rz)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z).

If (2.4) is sufficiently small, then (6.4) implies that �fr�BMOA is uniformly bounded for
1/2 < r < 1. By letting r → 1−, we conclude f ∈ BMOA. �

The following example reveals that the coefficient condition in Theorem 3 allows so-
lutions of (1.2) to be unbounded. Moreover, the same construction with 1 < α < ∞

illustrates that the finiteness of (2.4) is not enough to guarantee that all solutions of
(1.2) are in BMOA. The same construction is applied in [21, Example 5(b)].

Example 2. Let 0 < α ≤ 1, and define

A(z) =
−α

(1− z)2

�
(α− 1)

�
log

e

1− z

�−2

+

�
log

e

1− z

�−1�
, z ∈ D.

Then A ∈ H(D), and (1.2) admits two linearly independent solutions

f1(z) =

�
log

e

1− z

�α

, f2(z) =

�
log

e

1− z

�α � z

0

�
log

e

1− ζ

�−2α

dζ, z ∈ D,

which are unbounded on positive real axis; see also [21, Example 5(b)]. We denote
A = −αB1 − α(α − 1)B2, where Bj(z) = (1 − z)−2(log(e/(1 − z)))−j for z ∈ D and
j = 1, 2. Since |B2(z)| ≤ |B1(z)| (log(e/2))

−1 for all z ∈ D, and (4.2) holds for any
0 < a < 1, we conclude (4.3). We point out that, for a sufficiently small α, the coefficient
A satisfies the assumptions of Theorem 3 and hence all solutions of (1.2) are in BMOA.

The space VMOA consists of those f ∈ H
2 for which

lim
|a|→1−

�fa�
2
H2 = 0,

where fa is the auxiliary function in the beginning of Section 6. Clearly, VMOA is
a subspace of the little Bloch space B0. As Theorem 3 is motivated by [37, Theorem 3.1],
the counterpart of the following result is [37, Theorem 3.6].

Theorem 7. Let A ∈ H(D). If (2.4) is sufficiently small and

lim
|a|→1−

�
log

e

1− |a|

�2 �

D
|A(z)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z) = 0,

then all solutions f of (1.2) satisfy f ∈ VMOA.

The proof of Theorem 7 is omitted, since it is similar to the proof of Theorem 3. Note
that the coefficient condition in Theorem 7 implies (7.11), and hence forces all solutions
of (1.2) to be in the little Bloch space B0. See the end of Section 7 for more details.

7. Solutions in the Bloch and the little Bloch spaces

An integrable function ω : D → [0,∞) is called a weight. The weight ω is said to be
radial if ω(u) = ω(|u|) for all u ∈ D. For 0 < p < ∞ and a weight ω, the weighted
Bergman space A

p
ω consists of those f ∈ H(D) for which

�f�
p

A
p
ω
=

�

D
|f(u)|pω(u) dm(u) < ∞.

For a radial weight ω, we define �ω(u) =
� 1
|u| ω(r) dr for u ∈ D. We denote ω ∈ D whenever

ω is radial and there exist constants C = C(ω) ≥ 1, α = α(ω) > 0 and β = β(ω) ≥ α

such that

C
−1

�
1− r

1− t

�α

�ω(t) ≤ �ω(r) ≤ C

�
1− r

1− t

�β

�ω(t) (7.1)
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for all 0 ≤ r ≤ t < 1. The existence of constants β = β(ω) > 0 and C = C(ω) > 0
for which the right-hand side inequality of (7.1) is satisfied is equivalent to the existence
of a constant K = K(ω) ≥ 1 such that the doubling property �ω(r) ≤ K �ω((1 + r)/2)
holds for all 0 ≤ r < 1 [29, Lemma 1]. Moreover, the left-hand side inequality of (7.1)
is equivalent to the existence of constants K = K(ω) > 1 and L = L(ω) > 1 such that
�ω(r) ≥ K �ω(1− (1− r)/L) for all 0 ≤ r < 1, see [31] for more details.

Let 0 < p < ∞ and ω be a radial weight. If �ω(r) = 0 for some 0 < r < 1, then
A

p
ω = H(D). Let ω be a radial weight such that �ω(r) > 0 for all 0 ≤ r < 1. By standard

estimates,

�f�
p

A
p
ω
� Mp

�
1 + r

2
, f

�p

�ω
�
1 + r

2

�
� M∞(r, f)p(1− r) �ω

�
1 + r

2

�
, 0 < r < 1,

where Mp(r, f) denotes the H
p mean of f , and hence

|f(z)| � �f�Ap
ω

�ω
�
1+|z|
2

�1/p
(1− |z|)1/p

, z ∈ D. (7.2)

We will concentrate on the case p = 2. By (7.2), the norm convergence in A
2
ω implies the

uniform convergence on compact subsets of D, and consequently each point evaluation
Lζ(f) = f(ζ) is a bounded linear functional in the Hilbert space A

2
ω. Hence, there exist

unique reproducing kernels Bω

ζ
∈ A

2
ω with �Lζ� = �Bω

ζ
�A2

ω
such that

f(ζ) = �f,B
ω

ζ
�A2

ω
=

�

D
f(u)Bω

ζ
(u)ω(u) dm(u), f ∈ A

2
ω. (7.3)

Moreover, the normalized monomials (2ω2n+1)−1/2
z
n, for n ∈ N∪{0}, form the standard

orthonormal basis of A2
ω, and hence

B
ω

ζ
(u) =

∞�

n=0

(uζ)n

2ω2n+1
, u, ζ ∈ D; (7.4)

see [41, Theorem 4.19] for details in the classical case. Here ωx =
� 1
0 r

x
ω(r) dr for

1 ≤ x < ∞. Weight ω is called normalized if ω1 = 1/2, which implies that ω(D) =�
D ω(u) dm(u) = 2ω1 = 1.
We begin with a lemma which shows that the derivative of Bω

ζ
is closely related to

the reproducing kernel of another Bergman space with a suitably chosen weight. For
example, Bω

ζ
(u) = (1− uζ)−2−α is the reproducing kernel corresponding to the standard

weight ω(u) = (α+1)(1−|u|2)α, α > −1, while (Bω

ζ
)�(u) = (2+α)ζ(1−uζ)−3−α is related

to the reproducing kernel of the Bergman space with the weight �ω(u) = (1− |u|2)α+1. In
general, we define

�ω(u) = 2

� 1

|u|
ω(r)r dr, u ∈ D,

for any radial weight ω.

Lemma 8. If ω is radial then (Bω

ζ
)�(u) = ζ B

�ω
ζ
(u) for u, ζ ∈ D.

Proof. It is clear that representations (7.4) exist for both B
ω

ζ
and B

�ω
ζ
. By Fubini’s theo-

rem,

�ω2n+1 = 2

� 1

0
ω(s)s

�
s

0
r
2n+1

dr ds =
ω2n+3

n+ 1
, n ∈ N ∪ {0},

and hence

(Bω

ζ
)�(u) = ζ

∞�

n=0

(n+ 1)(uζ)n

2ω2n+3
= ζ B

�ω
ζ
(u), u, ζ ∈ D.

This proves the assertion. �
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The following auxiliary result is well-known to experts. For a radial weight ω, we define

ω
�(u) =

� 1

|u|
log

r

|u|
ω(r) r dr, u ∈ D \ {0}.

Lemma 9. If f, g ∈ H
2
, then

1

2π

� 2π

0
f(eit)g(eit) dt = 2

�

D
f
�(u)g�(u) log

1

|u|
dm(u) + f(0)g(0). (7.5)

Moreover, if f, g ∈ H(D) and ω is a normalized radial weight, then

�f, g�A2
ω
= 4 �f �

, g
�
�
A

2
ω�

+ f(0)g(0).

Proof. Identity (7.5) is a special case of [41, Theorem 9.9]. Let f, g ∈ H(D). By (7.5),

1

π

� 2π

0
f(reit)g(reit) dt = 4

�

D(0,r)
f
�(u)g�(u) log

r

|u|
dm(u) + 2f(0)g(0).

The assertion follows by integrating both sides with respect to the measure ω(r)r dr and
using Fubini’s theorem. �

Recall that the Bloch space B consists of those f ∈ H(D) for which
�f�B = sup

z∈D
|f

�(z)|(1− |z|
2) < ∞.

Theorem 10. Let ω ∈ D be normalized, and A ∈ H(D) such that

lim sup
r→1−

sup
z∈D

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(rζ) dζ

����
ω
�(u)

1− |u|2
dm(u) <

1

4
. (7.6)

Then every solution f of (1.2) satisfies f ∈ B, and

�f�B ≤
1

1− 4XB(A)

�
|f(0)| sup

z∈D
(1− |z|

2)

����
�

z

0
A(ζ) dζ

����+ |f
�(0)|

�
,

where

XB(A) = sup
z∈D

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(ζ) dζ

����
ω
�(u)

1− |u|2
dm(u) <

1

4
.

Proof. Observe that ω�(u)/(1− |u|2) � �ω(u) as |u| → 1−, since ω ∈ D by the hypothesis.
For fixed z ∈ D, Fubini’s theorem and Lemma 8 yield

lim sup
r→1−

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(rζ) dζ

����
ω
�(u)

1− |u|2
dm(u)

� (1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(ζ) dζ

���� �ω(u) dm(u)

≥ (1− |z|
2)

����
�

z

0
�1, B�ω

ζ
�
A

2
�ω
A(ζ)ζ dζ

���� ≥ (1− |z|
2)

����
�

z

0
A(ζ)ζ dζ

���� ,

(7.7)

and it follows that A ∈ H
∞
2 . Note that the use of the reproducing formula could be

avoided by a straightforward integration.
Let f be any solution of (1.2). Then

f
�
r(z) = −

�
z

0
fr(ζ)r

2
A(rζ) dζ + f

�
r(0), z ∈ D. (7.8)

The reproducing formula (7.3) and Fubini’s theorem imply

f
�
r(z) = −

�
z

0

��

D
fr(u)Bω

ζ
(u)ω(u) dm(u)

�
r
2
A(rζ) dζ + f

�
r(0)

= −

�

D
fr(u)

��
z

0
B

ω

ζ
(u)r2A(rζ) dζ

�
ω(u) dm(u) + f

�
r(0), z ∈ D,
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from which the second part of Lemma 9 yields

f
�
r(z) = −4

�

D
f
�
r(u)

��
z

0
(Bω

ζ
)�(u)r2A(rζ) dζ

�
ω
�(u) dm(u)

− fr(0)

�
z

0
r
2
A(rζ) dζ + f

�
r(0), z ∈ D.

It follows that

�fr�B ≤ 4 �fr�B sup
z∈D

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(rζ) dζ

����
ω
�(u)

1− |u|2
dm(u)

+ |f(0)| sup
z∈D

(1− |z|
2)

����
�

z

0
A(rζ) dζ

����+ |f
�(0)|, 0 < r < 1.

We deduce f ∈ B by re-organizing the terms and letting r → 1−.
Since f ∈ B, we know that M∞(r, f) � log(e/(1 − r)) for 0 < r < 1. Hence, for any

0 < p < ∞,

�f�
p

A
p
ω
� �ω(0) + p

� 1

0

�
log

e

1− r

�p−1 1

(1− r)1−α
dr < ∞

by partial integration and (7.1); see also [27, Proposition 6.1]. Now that f ∈ B ⊂ A
2
ω,

we may repeat the proof from the beginning with r = 1 to deduce the second part of the
assertion. �

Remark 2. The proof of Theorem 10 shows that, in order to conclude f ∈ B, it suffices
to take the supremum in (7.6) over any annulus R < |z| < 1 instead of D.

We apply an operator theoretic argument to study the sharpness of Theorem 10. Let

I(A,ω) = lim sup
r→1−

sup
z∈D

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(rζ) dζ

����
ω
�(u)

1− |u|2
dm(u)

denote the left-hand side of (7.6), for short.

Theorem 11. Let ω ∈ D be normalized and A ∈ H(D). Then the following statements

are equivalent:

(i) A ∈ L1
;

(ii) I(A,ω) < ∞;

(iii) the operator SA : B → B is bounded.

Proof. (i) =⇒ (ii): Observe that ω
�(u)/(1 − |u|2) � �ω(u) as |u| → 1−. By Fubini’s

theorem,

I(A,ω) � lim sup
r→1−

sup
z∈D

(1− |z|
2)

�
z

0
|A(rζ)|

��

D

��(Bω

ζ
)�(u)

�� �ω(u) dm(u)

�
|dζ|,

where
�

D

��(Bω

ζ
)�(u)

�� �ω(u) dm(u) �
� |ζ|

0

��ω(t) dt
�ω(t)(1− t)2

�

� |ζ|

0

dt

1− t2
=

1

2
log

1 + |ζ|

1− |ζ|
, ζ ∈ D,

by [30, Theorem 1], Fubini’s theorem and (7.1). It follows that I(A,ω) � �A�L1 < ∞.
(ii) =⇒ (iii): This implication follows by an argument similar to the proof of Theo-

rem 10. As in (7.7), we deduce

sup
z∈D

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(ζ) dζ

����
ω
�(u)

1− |u|2
dm(u) ≤ I(A,ω) < ∞,
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and A ∈ H
∞
2 . Let f ∈ B ⊂ A

2
ω. The reproducing formula (7.3), Fubini’s theorem and

Lemma 9 imply
��SA(f)

��
B = sup

z∈D
(1− |z|

2)

����
�

z

0
f(ζ)A(ζ) dζ

���� � �f�B I(A,ω) + |f(0)| · �A�H∞
2

�
�
�f�B + |f(0)|

�
I(A,ω),

and hence we deduce (iii).
(iii) =⇒ (i): By the assumption, there exists a constant C > 0 such that

sup
z∈D

|f(z)| |A(z)|(1− |z|
2)2 =

��SA(f)
����

H
∞
2

�
��SA(f)

��
B ≤ C

�
�f�B + |f(0)|

�
(7.9)

for any f ∈ B. Consider the family of test functions

fζ(z) = log
e

1− ζz
, z, ζ ∈ D,

for which supζ∈D �fζ�B ≤ 2. By (7.9),
����log

e

1− ζz

���� |A(z)|(1− |z|
2)2 ≤ 3C, z, ζ ∈ D,

which gives (i) for ζ = z. �
A close look at the proof of Theorem 11 implies

I(A,w) � sup
z∈D

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(ζ) dζ

����
ω
�(u)

1− |u|2
dm(u).

We obtain the following consequence of Theorem 10.

Corollary 12. Let ω ∈ D be normalized, and A ∈ H(D) such that

sup
z∈D

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(ζ) dζ

����
ω
�(u)

1− |u|2
dm(u) (7.10)

is sufficiently small. Then every solution of (1.2) belongs to B.

Remark 3. In order to conclude that all solutions of (1.2) are in B, it suffices to take the
supremum in (7.10) over any annulus R < |z| < 1 instead of D.

The little Bloch space B0 consists of those f ∈ H(D) for which
lim

|z|→1−
|f

�(z)|(1− |z|
2) = 0.

The following result is a counterpart of Theorem 10 concerning the little Bloch space.

Theorem 13. Let ω ∈ D be normalized, and A ∈ H(D) such that

lim
|z|→1−

(1− |z|
2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(ζ) dζ

����
ω
�(u)

1− |u|2
dm(u) = 0.

Then every solution of (1.2) belongs to B0.

Proof. As in (7.7), we conclude

lim
|z|→1−

(1− |z|
2)

����
�

z

0
A(ζ)ζ dζ

���� = 0.

By the assumption and Remark 3, it follows that each solution f of (1.2) satisfies
f ∈ B ⊂ A

2
ω. As in the proof of Theorem 10, we have

(1− |z|
2)|f �(z)| ≤ 4 �f�B (1− |z|

2)

�

D

����
�

z

0
(Bω

ζ
)�(u)A(ζ) dζ

����
ω
�(u)

1− |u|2
dm(u)

+ |f(0)| (1− |z|
2)

����
�

z

0
A(ζ) dζ

����+ (1− |z|
2)|f �(0)|, z ∈ D.

The assertion follows. �
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If A ∈ H(D) and
lim

|z|→1−
|A(z)|(1− |z|

2)2 log
e

1− |z|
= 0, (7.11)

then every solution of (1.2) belongs to B0. Actually, f ∈ B by Remark 3. Therefore

f
��(z) = −A(z)

�

D

f(u)

(1− uz)2
dm(u), z ∈ D.

By applying Lemma 9 twice, we obtain

|f
��(z)| � |A(z)|

�
|f(0)|+ |f

�(0)|+ �f
��
�H∞

2

�

D

(1− |u|2)2

|1− uz|
4 dm(u)

�
, z ∈ D.

Since f ∈ B, we deduce f
�� ∈ H

∞
2 , and hence the argument above shows that f ∈ B0

by [41, Lemma 3.10 and Theorem 5.13].
The coefficient condition (7.11), which forces all solutions of (1.2) to be in B0, is

sharp in the sense that it cannot be replaced by A ∈ L1. Indeed, the function f(z) =
log(e/(1− z)) ∈ B \ B0 is a solution of (1.2) for

A(z) =
−1

(1− z)2 log(e/(1− z))
, z ∈ D.

8. Solutions of bounded and vanishing mean oscillation — parallel
results

In this section, we consider two coefficient estimates, which are derived from the rep-
resentation (5.1). These estimates give sufficient conditions for all solutions of (1.2)
to be in BMOA or VMOA. Recall that, by (6.2) and (6.3), the measure dµf (z) =
|f �(z)|2(1− |z|2) dm(z) satisfies

�µf�Carleson � �f�
2
BMOA. (8.1)

Actually, f ∈ BMOA if and only if µf is a Carleson measure [11, p. 231].

Theorem 14. Let A ∈ H(D). If

lim sup
r→1−

sup
a∈D

�

D

�
1

2π

� 2π

0

����
�

z

0

A(rζ) dζ

1− e−itζ

���� dt
�2

(1− |ϕa(z)|
2) dm(z) (8.2)

is sufficiently small, then all solutions of (1.2) belong to BMOA.

Proof. By applying (5.1) to g ≡ 1, we obtain
����
�

z

0
A(rζ) dζ

���� =
����
1

2π

� 2π

0

�
z

0

A(rζ) dζ

1− e−itζ
dt

���� ≤
1

2π

� 2π

0

����
�

z

0

A(rζ) dζ

1− e−itζ

���� dt, (8.3)

for 0 ≤ r ≤ 1 and z ∈ D. By (6.2) and (8.2), any second primitive of A belongs to BMOA.
Let f be a solution of (1.2). Then fr is analytic in D and satisfies f ��

r (ζ)+r
2
A(rζ)fr(ζ) =

0. We deduce (7.8). By (5.1) and Fubini’s theorem,

f
�
r(z) = −

1

2π

� 2π

0
fr(e

it)

�
z

0

r
2
A(rζ)

1− e−itζ
dζ dt+ f

�
r(0)

= −
r
2

2π

� 2π

0
fr(e

it)gr,z(eit) dt+ f
�
r(0), z ∈ D,

where

gr,z(w) =

�
z

0

A(rζ)

1− wζ
dζ, w ∈ D. (8.4)

Since fr, gr,z ∈ H
2, Lemma 9 implies

1

2π

� 2π

0
fr(e

it)gr,z(eit) dt = 2

�

D
f
�
r(w)g

�
r,z(w) log

1

|w|
dm(w) + fr(0)gr,z(0).
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We deduce

|f
�
r(z)|

2
≤ 8

����
�

D
f
�
r(w)g

�
r,z(w) log

1

|w|
dm(w)

����
2

+ 2
��fr(0)gr,z(0)− f

�
r(0)

��2, z ∈ D.

By the Hardy-Stein-Spencer formula

�

D

|g�r,z(w)|
2

|gr,z(w)|
log

1

|w|
dm(w) ≤ 2 �gr,z�H1 ,

and hence by (8.1) and Carleson’s theorem [8, Theorem 9.3], there exist absolute constants
0 < C < ∞ and 0 < C

�
< ∞ such that

����
�

D
f
�
r(w)g

�
r,z(w) log

1

|w|
dm(w)

����
2

≤

�

D

|g�r,z(w)|
2

|gr,z(w)|
log

1

|w|
dm(w)

·

�

D
|gr,z(w)||f

�
r(w)|

2 log
1

|w|
dm(w)

≤ 2 �gr,z�H1C
�
�µfr�Carleson �gr,z�H1

≤ 2C �gr,z�
2
H1�fr�

2
BMOA.

We have |f �
r(z)|

2 ≤ 16C �gr,z�
2
H1�fr�

2
BMOA +4 |fr(0)|2|gr,z(0)|2 +4 |f �

r(0)|
2 for z ∈ D, and

by (6.2),

�fr�
2
BMOA ≤ 64C �fr�

2
BMOA sup

a∈D

�

D
�gr,z�

2
H1(1− |ϕa(z)|

2) dm(z)

+ 16 |fr(0)|
2 sup

a∈D

�

D
|gr,z(0)|

2(1− |ϕa(z)|
2) dm(z) + 16 |f �

r(0)|
2
.

By re-organizing terms and letting r → 1−, the assertion follows. �

Remark 4. The proof of Theorem 14 shows that, in order to conclude f ∈ BMOA, it
suffices to take the supremum in (8.2) over any annulus R < |z| < 1 instead of D.

Theorem 15. Let A ∈ H(D). If (8.2) is sufficiently small and

lim
|a|→1−

�

D

�
1

2π

� 2π

0

����
�

z

0

A(ζ)dζ

1− e−itζ

���� dt
�2

(1− |ϕa(z)|
2) dm(z) = 0,

then every solution of (1.2) belongs to VMOA.

Proof. First, by the assumption and (8.3), any second primitive of A belongs to VMOA.
Let f be any solution of (1.2). By the assumption and Theorem 14, we have f ∈ BMOA.
As in the proof of Theorem 14, we obtain

|f
�(z)|2 � �g1,z�

2
H1�f�

2
BMOA + |g1,z(0)|

2
|f(0)|2 + |f

�(0)|2, z ∈ D,

where g1,z is the function in (8.4). Hence, by (6.2),

�fa�
2
H2 � �f�

2
BMOA

�

D
�g1,z�

2
H1(1− |ϕa(z)|

2) dm(z)

+ |f(0)|2
�

D
|g1,z(0)|

2 (1− |ϕa(z)|
2) dm(z)

+ |f
�(0)|2(1− |a|

2)

�

D

1− |z|2

|1− az|2
dm(z).

The assertion follows by letting |a| → 1−. �
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9. Hardy spaces

For 0 < p < ∞, the Hardy space H
p consists of those f ∈ H(D) for which

�f�
p

Hp = sup
0≤r<1

1

2π

� 2π

0
|f(reiθ)|p dθ < ∞.

Proof of Theorem 4. The case p = 2 follows from the Littlewood-Paley identity by stan-
dard estimates, and if k = 1 then much more is true, see [26].

The following arguments rely on the representation (5.3) and on an application of the
non-tangential maximal function (5.4). For z ∈ D, let I(z) = {ζ ∈ T : z ∈ Γ(ζ)} and note
that its Euclidean arc length satisfies |I(z)| � 1− |z|2 for z ∈ D.

(i) We proceed to prove the following preliminary estimate. If 0 < p < 2, k ∈ N and
0 < r < 1, then

�fr�
p

Hp �
�

D
|fr(z)|

p−2
|f

(k)
r (z)|2(1− |z|

2)2(k−1)+1
dm(z) +

�
k−1�
j=0

|f (j)(0)|p
�2/p

�fr�
2−p

Hp

(9.1)

for all f ∈ H(D), f �≡ 0. Write dµr(z) = |f
(k)
r (z)|2(1−|z|2)2(k−1)

dm(z) for short. Fubini’s
theorem and Hölder’s inequality (with indices 2/(2− p) and 2/p) yield

�fr�
p

Hp �

�

T

��

Γ(ζ)
dµr(z)

� p
2

|dζ|+
k−1�

j=0

|f
(j)
r (0)|p

≤

�

T
f
�

r (ζ)
(2−p) p2

��

Γ(ζ)
|fr(z)|

p−2
dµr(z)

� p
2

|dζ|+
k−1�

j=0

|f
(j)(0)|p

≤

��

T
f
�

r (ζ)
p
|dζ|

� 2−p
2

��

T

�

Γ(ζ)
|fr(z)|

p−2
dµr(z)|dζ|

� p
2

+
k−1�

j=0

|f
(j)(0)|p

� �fr�
p(1− p

2 )
Hp

��

D
|fr(z)|

p−2(1− |z|
2) dµr(z)

� p
2

+
k−1�

j=0

|f
(j)(0)|p,

where the last inequality follows from [11, pp. 55–56]. Estimate (9.1) follows by re-
organizing the terms.

By a change of variable, we get
�

D
|fr(z)|

p−2
|f

(k)
r (z)|2(1− |z|

2)2(k−1)+1
dm(z)

≤

�

D
|f(z)|p−2

|f
(k)(z)|2

�
1− |z|

2
�2k−1

dm(z). (9.2)

By means of (9.1) we conclude that, if (9.2) is finite then f ∈ H
p and

�f�
p

Hp �
�

D
|f(z)|p−2

|f
(k)(z)|2

�
1− |z|

2
�2k−1

dm(z) +

�
k−1�
j=0

|f (j)(0)|p
�2/p

�f�
2−p

Hp

. (9.3)

Cauchy’s integral formula, and the estimate |f(z)| � �f�Hp(1 − |z|2)−1/p for z ∈ D [8,
p. 36], give |f (j)(0)|2 � �f�

2−p

Hp · |f (j)(0)|p for j = 0, 1, . . . , k − 1, which implies

� k−1�

j=0

|f
(j)(0)|p

�2/p

�
k−1�

j=0

|f
(j)(0)|2 � �f�

2−p

Hp

k−1�

j=0

|f
(j)(0)|p. (9.4)

Now (9.3) and (9.4) prove (2.9).



LINEAR DIFFERENTIAL EQUATIONS WITH SLOWLY GROWING SOLUTIONS 21

(ii) Let 2 < p < ∞. We may assume that f ∈ H
p, for otherwise there is nothing to

prove. Write q = p− 2 and dµ(z) = |f (k)(z)|2(1− |z|2)2(k−1)+1
dm(z), for short. Fubini’s

theorem, Hölder’s inequality (with indices p/q and p/(p− q)) and [11, pp. 55–56] yield
�

D
|f(z)|q dµ(z) �

�

D

��

I(z)
|dζ|

�
|f(z)|q

1− |z|2
dµ(z) =

�

T

�

Γ(ζ)

|f(z)|q

1− |z|2
dµ(z) |dζ|

≤

��

T
f
�(ζ)p |dζ|

� q
p




�

T

��

Γ(ζ)

dµ(z)

1− |z|2

� p
p−q

|dζ|





p−q
p

� �f�
p−2
Hp




�

T

��

Γ(ζ)
|f

(k)(z)|2(1− |z|
2)2(k−1)

dm(z)

� p
2

|dζ|





2
p

� �f�
p−2
Hp

�
�f�

p

Hp −

k−1�

j=0

|f
(j)(0)|p

� 2
p

� �f�
p

Hp ,

and the assertion of (ii) follows.
(iii) If f ∈ H(D) is uniformly locally univalent, then supz∈D |f ��(z)/f �(z)| (1 − |z|2) is

bounded by a constant depending on δ [39, Theorem 2]. Here 0 < δ ≤ 1 is a constant
such that f is univalent in each pseudo-hyperbolic disc ∆(z, δ) for z ∈ D. Since

�
f
(k)

f �

��
=

f
(k+1)

f � −
f
��

f � ·
f
(k)

f � , k ∈ N,

we conclude �f (k+1)
/f

��H∞
k

< ∞ for k ∈ N by induction. By means of the Hardy-Stein-
Spencer formula, we deduce

�

D
|f(z)|p−2

|f
(k)(z)|2(1− |z|

2)2k−1
dm(z)

�
����
f
(k)

f �

����
2

H
∞
k−1

�

D
|f(z)|p−2

|f
�(z)|2 log

1

|z|
dm(z) � �f�

p

Hp ,

where the comparison constant depends on δ and p. This completes the proof of Theo-
rem 4. �
9.1. A class of functions for which Question 1 has an affirmative answer. If

f ∈ H(D) is non-vanishing, then g = f
(p−2)/2

f
� ∈ H(D) and g

� = p−2
2 f

p−4
2 (f �)2+ f

p−2
2 f

��.
The Hardy-Stein-Spencer formula (2.7) implies

�f�
p

Hp ≤ |f(0)|p + C1 p
2
�

D
|g(z)|2(1− |z|

2) dm(z), (9.5)

where 0 < C1 < ∞ is an absolute constant. By standard estimates, there exists another
absolute constant 0 < C2 < ∞ such that

�

D
|g(z)|2(1− |z|

2) dm(z) ≤ C2

�
|g(0)|2 +

�

D
|g

�(z)|2(1− |z|
2)3 dm(z)

�
.

By (9.5), we deduce

�f�
p

Hp ≤ |f(0)|p + C1C2 p
2

����
f
�

f

����
2−p

H
∞
1

|f
�(0)|p + 2C1C2 (p− 2)2

����
f
�

f

����
2

H
∞
1

�f�
p

Hp

+ 2C1C2 p
2
�

D
|f(z)|p−2

|f
��(z)|2(1− |z|

2)3 dm(z).

In conclusion, if f ∈ H(D) is non-vanishing and �f �
/f�H∞

1
= �log f�B is sufficiently

small, then (2.8) holds with C(p) � p
2 as p → 0+.
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9.2. Applications to differential equations. Theorem 4 induces an alternative proof
for a special case of [35, Theorem 1.7]).

Theorem A. Let 0 < p ≤ 2 and A ∈ H(D). If (4.1) is sufficiently small (depending

on p), then all solutions of (1.2) belong to H
p
.

Proof. Note that

lim sup
r→1−

sup
a∈D

�

D
|A(rz)|2(1− |z|

2)2(1− |ϕa(z)|
2) dm(z) (9.6)

is at most a constant multiple of (4.1); compare to the proof of Theorem 3. Let f be
a solution of (1.2). By Theorem 4(i), we deduce

�fr�
p

Hp �
�

D
|fr(z)|

p−2
r
2
|f

��(rz)|2(1− |z|
2)3 dm(z) + |f(0)|p + |f

�(0)|p

�
�

D
|fr(z)|

p
|A(rz)|2(1− |z|

2)3 dm(z) + |f(0)|p + |f
�(0)|p.

If (9.6) is sufficiently small, then Carleson’s theorem [8, Theorem 9.3] implies that �fr�Hp

is uniformly bounded for all sufficiently large 0 < r < 1. By letting r → 1−, we obtain
f ∈ H

p. �
An argument similar to the one above, taking advantage of Theorem 4(i), leads to

a characterization of Hp solutions of (1.2): if 0 < p ≤ 2, f is a solution of (1.2) and
dµA(z) = |A(z)|2(1− |z|2)3 dm(z) is a Carleson measure, then f ∈ H

p if and only if
�

D
|f(z)|p dµA(z) < ∞. (9.7)

For example, if f is a normal (in the sense of Lehto and Virtanen) solution of (1.2) and
µA is a Carleson measure, then (9.7) holds for all sufficiently small 0 < p < ∞ by [14,
Corollary 9].

Remark 5. If Question 1 had an affirmative answer, then Theorem A would admit the
following immediate improvement: if A ∈ H(D) such that (4.1) is finite, then all solutions
of (1.2) belong to

�
0<p<∞H

p.
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[30] J.Á. Peláez and J. Rättyä, Two weight inequality for Bergman projection, J. Math. Pures Appl. (9)
105 (2016), no. 1, 102–130.
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CRITERIA FOR BOUNDED VALENCE OF HARMONIC

MAPPINGS

JUHA-MATTI HUUSKO AND MARÍA J. MARTÍN

Abstract. In 1984, Gehring and Pommerenke proved that if the
Schwarzian derivative S(f) of a locally univalent analytic function
f in the unit disk satisfies that lim sup

|z|→1 |S(f)(z)|(1− |z|2)2 <
2, then there exists a positive integer N such that f takes every
value at most N times. Recently, Becker and Pommerenke have
shown that the same result holds in those cases when the function
f satisfies that lim sup

|z|→1 |f
′′(z)/f ′(z)| (1− |z|2) < 1.

In this paper, we generalize these two criteria for bounded va-
lence of analytic functions to the cases when f is merely harmonic.

Introduction

Let D be the unit disk in the complex plane C. It is well known that
if a locally univalent function f in D satisfies

‖P (f)‖ = sup
z∈D

∣

∣

∣

∣

f ′′(z)

f ′(z)

∣

∣

∣

∣

(1− |z|2) ≤ 1 ,

then f is globally univalent in D. This criterion of univalence in due
to Becker [3]. Becker and Pommerenke showed that the constant 1 is
sharp [4].

The quotient P (f) = f ′′/f ′ is the pre-Schwarzian derivative of f .
The quantity ‖P (f)‖ defined above is said to be the pre-Schwarzian

norm of f .
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Nehari [15] proved that if a locally univalent analytic function f in
D satisfies

(1) ‖S(f)‖ = sup
z∈D

|S(f)(z)| (1− |z|2)2 ≤ 2 ,

then f is globally univalent in D. Here, S(f) denotes the Schwarzian

derivative of f defined by

(2) S(f) = P (f)′ −
1

2
(P (f))2 =

(

f ′′

f ′

)′

−
1

2

(

f ′′

f ′

)

2

.

The Schwarzian norm ‖S(f)‖ of f equals the supremum in (1).

The valence of an analytic mapping f in D is defined by supw∈C n(f, w),
where n(f, w) is the number of points z ∈ D (counting multiplicities)
for which f(z) = w. The function f is said to have bounded valence if
there exists a positive integer N such that supw∈C n(f, w) ≤ N . That
is, if there is a positive integer N such that f takes every value at most
N times in D.

A criterion for the bounded valence of analytic functions in terms
of the Schwarzian derivative has been known for some time. Binyamin
Schwarz [16], using techniques from the theory of differential equations,
proved that if a locally univalent analytic function f in D satisfies

|S(f)(z)| (1− |z|2)2 ≤ 2

for all z in an annulus 0 ≤ r0 < |z| < 1, then f has bounded valence.
The authors in [9] show that the slightly stronger condition stated in
Theorem A below suffices to ensure not only that the locally univa-
lent analytic function f in the unit disk has a spherically continuous
extension to D but also the criterion for bounded valence of analytic
functions that we now enunciate.

Theorem A. Let f be a locally univalent analytic function in the unit

disk. If

lim sup
|z|→1

|S(f)(z)| (1− |z|2)2 < 2 ,

then f has bounded valence.

Only recently the corresponding bounded valence criterion to that
stated in Theorem A, now in terms of the pre-Schwarzian derivative,
has been obtained [5, Thm. 3.4].

Theorem B. Let f be a locally univalent analytic function in the unit

disk. If

lim sup
|z|→1

∣

∣

∣

∣

f ′′(z)

f ′(z)

∣

∣

∣

∣

(1− |z|2) < 1 ,
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then there exists a positive integer N such that f takes every value at

most N times in D.

The main aim of this paper is to generalize these criteria stated in
Theorems A and B for bounded valence of locally univalent analytic
functions in the unit disk to the cases when the function f is merely
harmonic.
Perhaps, it is appropriate to stress that we have not been able to

find any paper containing bounded valence criteria for harmonic func-
tions in D. The article [6], which gathers bounded valence criteria for
Weierstrass-Enneper lifts of planar harmonic mappings to their associ-
ated minimal surfaces, deserves to be mentioned at this point.

1. Background

1.1. Harmonic mappings. A complex-valued harmonic function f
in the unit disk D can be written as f = h+ g, where both h and g are
analytic in D. This representation is unique up to an additive constant
that is usually determined by imposing the condition that the function
g fixes the origin. The representation f = h + g is then unique and is
called the canonical representation of f .
According to a theorem of Lewy [14], a harmonic mapping f = h+g

is locally univalent in D if and only if its Jacobian Jf = |h′|2 − |g′|2

is different from zero in the unit disk. Hence, every locally univalent
harmonic mapping is either orientation preserving (if Jf > 0 in D) or
orientation reversing (if Jf < 0). Note that f is orientation reversing if

and only if f is orientation preserving. This trivial observation allows us
to restrict ourselves to those cases when the locally univalent harmonic
mappings considered preserve the orientation, so that |h′|2 − |g′|2 > 0.
Hence, the analytic function h in the canonical representation of f =
h+ g is locally univalent and the dilatation ω = g′/h′ is analytic in D

and maps the unit disk to itself.

It is plain that the harmonic mapping f = h + g is analytic if and
only if the function g is constant.

1.2. Pre-Schwarzian and Schwarzian derivatives of harmonic

mappings. The harmonic pre-Schwarzian derivative PH(f) and the
harmonic Schwarzian derivative SH(f) of an orientation preserving
harmonic mapping f = h+ g in the unit disk with dilatation ω = g′/h′

were introduced in [10]. These operators are defined, respectively, by
the formulas

PH(f) = P (h)−
ω ω′

1− |ω|2
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and

SH(f) = S(h) +
ω

1− |ω|2

(

h′′

h′
ω′ − ω′′

)

−
3

2

(

ω ω′

1− |ω|2

)2

,

where P (h) and S(h) are the classical pre-Schwarzian and Schwarzian
derivatives of h.
It is clear that when f is analytic (so that its dilatation is constant),

the harmonic pre-Schwarzian and Schwarzian derivatives of f coincide
with the classical definitions of the corresponding operators.
The harmonic pre-Schwarzian and Schwarzian norms of the function

f are defined, respectively, by ‖PH(f)‖ = supz∈D |PH(f)(z)|(1 − |z|2)
and ‖SH(f)‖ = supz∈D |SH(f)(z)|(1− |z|2)2.

For further properties of the harmonic pre-Schwarzian and Schwarzian
derivative operators and the motivation for their definition, see [10].

The Schwarzian operators PH and SH have proved to be useful to
generalize classical results in the setting of analytic functions to the
more general setting of harmonic mappings. This paper is another
sample of their usefulness, as will become apparent in the proofs of our
main results, Theorems 1 and 2 below.
At this point, we mention explicitly the following criterion of uni-

valence that generalizes the Nehari criterion stated above as well as
the criterion for quasiconformal extension of locally univalent analytic
functions due to Ahlfors and Weill [2]. The sharp value of the constant
δ0 has still to be determined [11].

Theorem C. Let f = h + g be an orientation preserving harmonic

mapping in D. Then, there exists a positive real number δ0 such that if

for all z ∈ D

‖SH(f)‖ = sup
z∈D

|SH(f)(z)| (1− |z|2)2 ≤ δ0 ,

then f is one-to-one in D. Moreover, if ‖SH(f)‖ ≤ δ0t for some t < 1,
then f has a quasiconformal extension to C ∪ {∞}.

The corresponding result, now in terms of the pre-Schwarzian de-
rivative, is as follows (see [10, Thm. 8]). In this case, an extra-term
involving the dilatation of the function f must be taken into account.
This extra-term is identically zero if f is analytic, so that the next the-
orem is the generalization to the classical criterion of univalence due
to Becker, Theorem B, to the cases when the functions considered are
harmonic.
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Theorem D. Let f = h + g be an orientation preserving harmonic

mapping in D with dilatation ω. If for all z ∈ D

(3) |PH(f)(z)| (1− |z|2) +
|ω′(z)| (1− |z|2)

1− |ω(z)|2
≤ 1 ,

then f is univalent. The constant 1 is sharp.

Criteria for quasiconformal extension of harmonic mappings in terms
of the harmonic pre-Schwarzian derivative that extend the correspond-
ing criteria in the analytic setting due to Becker [3] and Ahlfors [1] can
be found in [12].

We finish this section by pointing out the following remark that will
be important later in this paper.

It is not difficult to check that if f is an orientation preserving har-
monic mapping and φ is an analytic function such that the composition
F = f ◦φ is well defined, then F is an orientation preserving harmonic
mapping with dilatation ωF = ω ◦ φ. Moreover, for all z in the unit
disk,

(4) PH(F )(z) = PH(f)(φ(z)) · φ
′(z) +

φ′′(z)

φ′(z)

and

(5) SH(F )(z) = SH(f)(φ(z)) · (φ
′(z))

2
+ S(φ)(z) .

1.3. Hyperbolic derivatives. Let ω be an analytic self-map of the
unit disk (that is, ω is analytic in D and |ω(z)| < 1 for all |z| < 1).
The hyperbolic derivative ω∗ of such function ω is

ω∗(z) =
ω′(z) (1− |z|2)

1− |ω(z)|2
.

Notice that the second term in (3) coincides with |ω∗(z)|.

The Schwarz-Pick lemma proves that |ω∗(z)| ≤ 1 for all z in D and
that equality holds at some point z0 in the unit disk if and only if ω is
an automorphism of D. In this case, |ω∗| ≡ 1.
It is also easy to check that the chain rule for the hyperbolic de-

rivative holds: If ω and φ are two analytic self-maps of D and the
composition ω ◦ φ is well-defined, then

(ω ◦ φ)∗(z) = ω∗(φ(z)) · φ∗(z) .

In particular,

(6) |(ω ◦ φ)∗(z)| ≤ |ω∗(φ(z))| .



6 J.-M. HUUSKO AND M. J. MARTÍN

1.4. Valence of harmonic mappings. The zeros of a locally uni-
valent harmonic mapping f are isolated [7, p. 8]. Just as in the an-
alytic case, the valence of such a harmonic function f is defined by
supw∈C n(f, w), where n(f, w) is the number of points z ∈ D (count-
ing multiplicities) for which f(z) = w. The function f is said to
have bounded valence if there exists a positive integer N such that
supw∈C n(f, w) ≤ N .

2. A criterion for bounded valence of harmonic mappings

in terms of the pre-Schwarzian derivative

We now state one of the two main theorems in this paper. It gener-
alizes Theorem B to those cases when the function considered is just
harmonic.

Theorem 1. Let f = h + g be an orientation preserving harmonic

mapping in the unit disk with dilatation ω. If

(7) lim sup
|z|→1

(

|PH(f)(z)| (1− |z|2) +
|ω′(z)| (1− |z|2)

1− |ω(z)|2

)

< 1 ,

then there exists a positive integer N such that f takes every value at

most N times in D.

It is possible to show that if (7) holds then all the analytic func-
tions ϕλ = h + λg, where |λ| = 1, have bounded valence in the unit
disk. However, we have not been able to prove directly that under the
assumption that ϕλ has bounded valence for all such λ, then f has
bounded valence too.
The proof of our main theorem will follow similar arguments to those

employed in the proof of Theorem B. However, the criterion of univa-
lence needed in the case when the function f is harmonic will be the
one provided in Theorem D instead of the classical criterion of uni-
valence due to Becker. The following lemma will be needed to prove
Theorem 1. We refer the reader to [5, Lemmas 2.2 and 3.3] (see also
[8]) for the details of the proof.

Lemma 1. Let ρ ∈ (1/2, 1) and α > 0. Then, there exist a univalent

analytic self-map ψ of the unit disk and a positive integer M such that

M
⋃

k=1

{

e
2kπi
M ψ(z) : z ∈ D

}

= {ζ : 2ρ− 1 < |ζ | < 1}

and

sup
z∈D

∣

∣

∣

∣

ψ′′(z)

ψ′(z)

∣

∣

∣

∣

(1− |z|2) < α .
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We now prove Theorem 1.

Proof. By (7), there exist a real number ρ with 1/2 < ρ < 1 and
β < 1 such that

(8) |PH(f)(z)| (1− |z|2) +
|ω′(z)| (1− |z|2)

1− |ω(z)|2
< β , 2ρ− 1 < |z| < 1 .

Since the function f is locally univalent and |z| ≤ 2ρ−1 is compact,
the function f takes every value at most L times in |z| ≤ 2ρ− 1.
Let now ψ be the univalent analytic self-map of the unit disk of

Lemma 1 with α = (1 − β)/2 > 0, so that for all positive integer
k ≤ M , the functions ψk = e2kπi/Mψ satisfy

(9) sup
z∈D

∣

∣

∣

∣

ψ′′
k(z)

ψ′
k(z)

∣

∣

∣

∣

(1− |z|2) <
1− β

2
.

For any such value of k, define the functions Fk = f ◦ ψk. These
are orientation preserving harmonic mappings in the unit disk with
dilatations ωk = ω ◦ ψk. Moreover, using (4), the triangle inequality,
the Schwarz-Pick lemma, and (6) we have that for all |z| < 1,

|PH(Fk)(z)| (1− |z|2) +
|ω′

k(z)| (1− |z|2)

1− |ωk(z)|2

≤ |PH(f)(ψk(z))| (1− |ψk(z)|
2) +

∣

∣

∣

∣

ψ′′
k(z)

ψ′
k(z)

∣

∣

∣

∣

(1− |z|2)

+
|ω′(ψk(z))| (1− |ψk(z)|

2)

1− |ω(ψk(z))|2
.

Bearing in mind the fact that for all z ∈ D and all k as above the
modulus |ψk(z)| > 2ρ− 1, (8), and (9), we conclude

|PH(Fk)(z)| (1− |z|2) +
|ω′

k(z)| (1− |z|2)

1− |ωk(z)|2
≤ β +

1− β

2
=

1 + β

2
< 1 .

Hence, by Theorem D, these functions Fk = f ◦ψk are univalent in the
unit disk. Since, by Lemma 1,

M
⋃

k=1

{ψk(z) : z ∈ D} = {ζ : 2ρ− 1 < |ζ | < 1} ,

it follows that f takes every value at mostM times in 2ρ−1 < |z| < 1,
and we obtain that f takes every value at most N = L +M times in
D. This completes the proof. �
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3. Schwarzian derivative criterion for finite valence of

harmonic mappings

A direct consequence of the following lemma is that the Schwarzian
derivative S(ψ) defined by (2) of the function ψ from Lemma 1 will
satisfy

(10) sup
z∈D

|S(ψ)(z)|(1− |z|2)2 < 4α +
α2

2
.

Though the result is folklore (see, for instance, [13, Proof of Lemma
10]), we include the proof for the sake of completeness.

Lemma 2. Let ψ be a locally univalent analytic function in the unit

disk. Assume that

sup
z∈D

∣

∣

∣

∣

ψ′′(z)

ψ′(z)

∣

∣

∣

∣

(1− |z|2) < α .

Then,

sup
z∈D

∣

∣

∣

∣

(

ψ′′(z)

ψ′(z)

)′∣
∣

∣

∣

(1− |z|2)2 < 4α .

Proof. In order to make the exposition more clear, let us use Ψ to
denote the analytic function P (ψ) = ψ′′/ψ′.
Given a fixed but arbitrary point z ∈ D, let r be the positive real

number that satisfies 2r2 = 1 + |z|2. Hence,

1− r2 = r2 − |z|2 =
1− |z|2

2
.

By hypotheses, for all |ζ | < 1,

|Ψ(ζ)| =

∣

∣

∣

∣

ψ′′(ζ)

ψ′(ζ)

∣

∣

∣

∣

<
α

1− |ζ |2
.

The Cauchy and Poisson integral formulas now give

|Ψ′(z)| =

∣

∣

∣

∣

1

2πi

∫

|ζ|=r

Ψ(ζ)

(ζ − z)2
dζ

∣

∣

∣

∣

<
α

1− r2
1

r2 − |z|2
1

2π

∫

2π

0

r2 − |z|2

|reiθ − z|2
dθ

=
α

1− r2
1

r2 − |z|2
=

4α

(1− |z|2)2
,

which completes the proof. �

A criterion of bounded valence for harmonic mappings in the unit
disk in terms or the harmonic Schwarzian derivative that generalizes
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Theorem A is as follows. The constant δ0 is equal to the one in Theo-
rem C.

Theorem 2. Let f = h + g be an orientation preserving harmonic

mapping in the unit disk with dilatation ω. If

(11) lim sup
|z|→1

|SH(f)(z)| (1− |z|2)2 < δ0 ,

then f has bounded valence in the unit disk.

Proof. The argument of the proof is analogous to the one used to
prove Theorem 1.
Condition (11) implies that there exist a real number ρ with 1/2 <

ρ < 1 and ε > 0 such that

(12) |SH(f)(z)| (1− |z|2)2 < δ0 − ε , 2ρ− 1 < |z| < 1 .

The function f is locally univalent and |z| ≤ 2ρ − 1 is compact.
Therefore f takes every value at most L times in |z| ≤ 2ρ− 1.
Consider the analytic self-map of the unit disk ψ of Lemma 1 with

α =
√
16 + 2ε− 4. Then, by Lemma 2, we have that (10) holds. Thus,

for all positive integer k ≤M , the functions ψk = e2kπi/Mψ satisfy

(13) sup
z∈D

|S(ψk)(z)| (1− |z|2)2 < 4α+
α2

2
= ε .

Using (5), the triangle inequality, the Schwarz-Pick lemma, the fact
that for all z ∈ D and all k the modulus |ψk(z)| > 2ρ − 1, (12), and
(13), we have that the functions Fk = f ◦ ψk, k = 1, 2, . . . ,M , will
satisfy that for all |z| < 1,

|SH(Fk)(z)| 1− |z|2)2 ≤ |SH(f)(ψk(z))| (1− |ψk(z)|
2)2

+ |S(ψk)(z)|(1− |z|2)2

< δ0 − ε+ ε = δ0 .

Hence, by Theorem D, these functions Fk = f ◦ ψk are univalent in
the unit disk and, as in the proof of Theorem 1, it follows that f takes
every value at mostM times in 2ρ−1 < |z| < 1. We then again obtain
that f takes every value at most N = L+M times in D. �
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ON BECKER’S UNIVALENCE CRITERION

JUHA-MATTI HUUSKO AND TONI VESIKKO

Abstract. We study locally univalent functions f analytic in the unit disc D
of the complex plane such that |f ′′(z)/f ′(z)| (1 − |z|2) ≤ 1 + C(1 − |z|) holds
for all z ∈ D, for some 0 < C < ∞. If C ≤ 1, then f is univalent by Becker’s
univalence criterion. We discover that for 1 < C < ∞ the function f remains
to be univalent in certain horodiscs. Sufficient conditions which imply that f
is bounded, belongs to the Bloch space or belongs to the class of normal func-
tions, are discussed. Moreover, we consider generalizations for locally univalent
harmonic functions.

1. Introduction

Let f be meromorphic in the unit disc D = {z ∈ C : |z| < 1} of the complex
plane C. Then f is locally univalent, denoted by f ∈ UM

loc, if and only if its
spherical derivative f#(z) = |f ′(z)|/(1 + |f(z)|2) is non-vanishing. Equivalently,
the Schwarzian derivative

S(f) =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

of f is an analytic function. If z0 ∈ D is a pole of f , we define f#(z0) =
limw→z f

#(w) and S(f)(z0) = limw→z0 S(f)(w) along w ∈ D where f(w) 6= 0.
Both the Schwarzian derivative S(f) and the pre-Schwarzian derivative P (f) =
f ′′/f ′ can be derived from the Jacobian Jf = |f ′|2 of f , namely

P (f) =
∂

∂z
(log Jf ), S(f) = P (f)′ − 1

2
P (f)2. (1.1)

According to the famous Nehari univalence criterion [19, Theorem 1], if f ∈ UM
loc

satisfies

|S(f)(z)| (1− |z|2)2 ≤ N, z ∈ D, (1.2)

for N = 2, then f is univalent. The result is sharp by an example by Hille [14,
Theorem 1].

Binyamin Schwarz [22] showed that if f(a) = f(b) for some a 6= b for f ∈ UM
loc,

then

max
ζ∈〈a,b〉

|S(f)(ζ)| (1− |ζ|2)2 > 2. (1.3)

Date: May 17, 2017.
2010 Mathematics Subject Classification. Primary 34C10, 34M10.
Key words and phrases. Univalence criterion, bounded function, Bloch space, normal function.
This research was supported in part by the Academy of Finland #268009, and the Faculty of

Science and Forestry of the University of Eastern Finland #930349.
1

ar
X

iv
:1

70
5.

05
73

8v
1 

 [
m

at
h.

C
V

] 
 1

6 
M

ay
 2

01
7
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Here 〈a, b〉 = {ϕa(ϕa(b)t) : 0 ≤ t ≤ 1} is the hyperbolic segment between a and b
and

ϕa(z) =
a− z
1− az

(1.4)

is an automorphism of the unit disc. Condition (1.3) implies that if

|S(f)(z)| (1− |z|2)2 ≤ N, r0 ≤ |z| < 1, (1.5)

for N = 2 and some 0 < r0 < 1, then f has finite valence [22, Corollary 1]. If
(1.5) holds for N < 2, then f has a spherically continuous extension to D, see [7,
Theorem 4].

Chuaqui and Stowe [5, p. 564] asked whether

|S(f)(z)| (1− |z|2)2 ≤ 2 + C(1− |z|), z ∈ D, (1.6)

where 0 < C < ∞ is a constant, implies that f is of finite valence. The question
remains open despite of some progress achieved in [10]. Steinmetz [23, p. 328]
showed that if (1.6) holds, then f is normal, that is, the family {f ◦ ϕa : a ∈ D}
is normal in the sense of Montel. Equivalently, ‖f‖N = supz∈D f

#(z)(1−|z|2) <∞.
A function f analytic in D is locally univalent, denoted by f ∈ UA

loc, if and only
if Jf = |f ′|2 is non-vanishing. By the Cauchy integral formula, if g is analytic
in D, then

|g′(z)|(1− |z|2)2 ≤ 4 max
|ζ|= 1+|z|2

2

|g(ζ)|(1− |ζ|2), z ∈ D.

Consequently, the inequality

‖S(f)‖H∞2 ≤ 4‖P (f)‖H∞1 +
1

2
‖P (f)‖2H∞1

holds. Here, we denote ‖g‖H∞p = supz∈D |g(z)|(1 − |z|2)p for 0 < p < ∞. Thus,

each one of the conditions (1.2), (1.5) and (1.6) holds if |f ′′(z)/f ′(z)|(1 − |z|2) is
sufficiently small for z ∈ D. Note also that conversely

‖P (f)‖H∞1 ≤ 2 + 2

√
1 +

1

2
‖S(f)‖H∞2 ,

see [20, p. 133].
The famous Becker univalence criterion [2, Korollar 4.1] states that if f ∈ UA

loc

satisfies

|zP (f)| (1− |z|2) ≤ ρ, z ∈ D, (1.7)

for ρ ≤ 1, then f is univalent in D, and if ρ < 1, then f has a quasi-conformal
extension to C = C ∪ {∞}. For ρ > 1, condition (1.7) does not guarantee the
univalence of f [3, Satz 6] which can in fact break brutally [8]. If (1.7) holds for
0 < ρ < 2, then f is bounded, and in the case ρ = 2, f is a Bloch function, that
is, ‖f‖B = supz∈D |f ′(z)|(1− |z|2) <∞.

Becker and Pommerenke proved recently that if∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) < ρ, r0 ≤ |z| < 1, (1.8)
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for ρ < 1 and some r0 ∈ (0, 1), then f has finite valence [4, Theorem 3.4]. However,
the case of equality ρ = 1 in (1.8) is open and the sharp inequality corresponding
to (1.3), in terms of the pre-Schwarzian, has not been found yet.

In this paper, we consider the growth condition∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) ≤ 1 + C(1− |z|), z ∈ D, (1.9)

where 0 < C < ∞ is an absolute constant, for f ∈ UA
loc. When (1.9) holds,

we detect that f is univalent in horodiscs D(aeiθ, 1 − a), eiθ ∈ ∂D, for some
a = a(C) ∈ [0, 1). Here D(a, r) = {z ∈ C : |z − a| < r} is the Euclidean disc
with center a ∈ C and radius 0 < r <∞.

The remainder of this paper is organized as follows. In Section 2, we see that un-
der condition (1.9) the function f ∈ UA

loc is bounded. Weaker sufficient conditions
which imply that the function f is either bounded, a Bloch function or a normal
function are investigated. The main results concerning univalence are stated in
Section 3 and proved in Section 4. Finally in Section 5 we state generalizations of
our results to harmonic functions. Moreover, for sake of completeness, we discuss
the harmonic counterparts of the results proven in [10].

2. Distortion theorems

Recall that each meromorphic and univalent function f in D satisfies (1.2) for
N = 6. This is the converse of Nehari’s theorem, discovered by Kraus [17]. In the
same fashion, each analytic and univalent function f in D satisfies∣∣∣∣zf ′′(z)

f ′(z)
− 2|z|2

1− |z|2

∣∣∣∣ ≤ 4|z|
1− |z|2

, z ∈ D, (2.1)

and hence (1.7) holds for ρ = 6, which is the converse of Becker’s theorem [21,
p. 21].

The class S consists of functions f univalent and analytic in D such that f(0) = 0
and f ′(0) = 1. Among all functions in S, the Koebe function

k(z) =
z

(1− z)2
=

1

(1− z)2
− 1

1− z
,

has the extremal growth. Namely, by inequality (2.1), each f ∈ S satisfies

|f (j)(z)| ≤ k(j)(|z|),
∣∣∣∣f (j+1)(z)

f (j)(z)

∣∣∣∣ ≤ k(j+1)(|z|)
k(j)(|z|)

, j = 0, 1, (2.2)

for z ∈ D \ {0} and j = 0, 1. Moreover, k satisfies condition (1.2), for N = 6, with
equality for each z ∈ D.

Bloch and normal functions emerge in a natural way as Lipschitz mappings.
Denote the Euclidean metric by dE, and define the hyperbolic metric in D as

dH(z, w) =
1

2
log

1 + |ϕz(w)|
1− |ϕz(w)|

, z, w ∈ D,
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where ϕz(w) is defined as in (1.4), and the chordal metric in C = C ∪ {∞} by
setting

χ(z, w) =
|z − w|√

1 + |z|2
√

1 + |w|2
, χ(z,∞) =

1√
1 + |z|2

, z ∈ C, w ∈ C.

Then each f ∈ B is a Lipschitz function from (D, dH) to (C, dE) with a Lipschitz
constant equal to ‖f‖B, and each f ∈ N is a Lipschitz map from (D, dH) to (C, χ)
with constant ‖f‖N . To see the first claim, assume that f is analytic in D such
that

|f(z)− f(w)| ≤MdH(z, w), z, w ∈ D.
By letting w → z, we obtain |f ′(z)|(1 − |z|2) ≤ M , for all z ∈ D, and conclude
that ‖f‖B ≤M . Conversely, if f ∈ B, then

|f(z)− f(w)| ≤
∫
〈z,w〉
|f ′(ζ)||dζ| ≤ sup

ζ∈〈z,w〉
|f ′(ζ)|(1− |ζ|2)dH(z, w),

and we conclude that f is a Lipschitz map with a constant M ≤ ‖f‖B.
In the same fashion as above, we deduce that∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ ≤ B

1− |z|2
+
C(1− |z|)

1− |z|2
, z ∈ D,

for some 0 < B,C <∞, is equivalent to∣∣∣∣log
f ′(z)

f ′(w)

∣∣∣∣ ≤ BdH(z, w) + C

(
1− |z + w|

2
+
|z − w|

2

)
dH(z, w), z, w ∈ D.

This follows from the fact that the hyperbolic segment 〈z, w〉 is contained in the
disc D ((z + w)/2, |z − w|/2), which yields

1− |ζ| ≤ 1− |z + w|
2

+
|z − w|

2
, ζ ∈ 〈z, w〉 .

We may deduce some relationships between the classes B and N . By the
Schwarz-Pick lemma, each bounded analytic function belongs to B. If f ∈ B,
then both f ∈ N and ef ∈ N . This is clear, since χ(z, w) ≤ dE(z, w) for all
z, w ∈ C and since the exponential function is Lipschitz from (C, dE) to (C, χ).
Moreover, since each rational functionR is Lipschitz from (C, χ) to itself, R◦f ∈ N
whenever f ∈ N . However, it is not clear when f 2 ∈ N implies f ∈ N .

If f ∈ UM
loc is univalent, then both f, f ′ ∈ N by the estimate

(f (j))#(z) =
|f (j+1)(z)|

1 + |f (j)(z)|2
≤ 1

2

∣∣∣∣f (j+1)(z)

f (j)(z)

∣∣∣∣
and (2.2). However, it is not clear if f ′′ ∈ N . At least, each primitive g of an
univalent function satisfies g′′ ∈ N . Recently, similar normality considerations
which have connections to differential equations, were done in [9].

If f ∈ UA
loc and there exists 0 < δ < 1 such that f is univalent in each pseudo-

hyperbolic disc ∆(a, δ) = {z ∈ D : |ϕa(z)| < δ}, for a ∈ D, then f is called uni-
formly locally univalent. By a result of Schwarz, this happens if and only if
supz∈D |S(f)(z)|(1 − |z|2)2 < ∞, or equivalently if log f ′ ∈ B. Consequently, the
derivative of each uniformly locally univalent function is normal.
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By using arguments similar to those in the proof of [4, Theorem 3.2] and in [16],
we obtain the following result.

Theorem 1. Let f be meromorphic in D such that∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ ≤ ϕ(|z|), 0 ≤ R ≤ |z| < 1, (2.3)

for some ϕ : [R, 1)→ [0,∞).

(i) If

lim sup
r→1−

(1− r) exp

(∫ r

R

ϕ(t) dt

)
<∞, (2.4)

then sup
R<|z|<1

|f ′(z)|(1− |z|2) <∞.

(ii) If ∫ 1

R

exp

(∫ s

R

ϕ(t) dt

)
ds <∞, (2.5)

then sup
R<|z|<1

|f(z)| <∞.

Proof. Let ζ ∈ ∂D. Let R ≤ ρ < r < 1 and note that f ′ is non-vanishing on the
circle |z| = ρ. Then∣∣∣∣log

f ′(rζ)

f ′(ρζ)

∣∣∣∣ ≤ ∫ r

ρ

∣∣∣∣f ′′(tζ)

f ′(tζ)

∣∣∣∣ dt ≤ ∫ r

ρ

ϕ(t) dt.

Therefore

|f ′(rζ)| ≤ |f ′(ρζ)| exp

(∫ r

ρ

ϕ(t) dt

)
,

which implies the first claim. By another integration,

|f(rζ)− f(ρζ)| ≤ |f ′(ρζ)|
∫ r

ρ

exp

(∫ s

ρ

ϕ(t) dt

)
ds.

Hence,

|f(z)| ≤M(ρ, f) +M(ρ, f ′)

∫ 1

ρ

exp

(∫ s

ρ

ϕ(t) dt

)
ds <∞

for ρ < |z| < 1. �

The assumptions in Theorem 4(i) and (ii) are satisfied, respectively, by the
functions

ϕ(t) =
2

1− t2
=

(
log

1 + t

1− t

)
and

ψ(t) =
B

1− t2
+

C

1− t2

(
log

e

1− t

)−(1+ε)
,

where 0 < ε <∞, 0 < B < 2 and 0 < C <∞.
By Theorem 1, if f is meromorphic in D and satisfies (2.3) and (2.4) for some ϕ,

then f ∈ N . Moreover, if f is also analytic in D, then f ∈ B, and if (2.5) holds,
then f is bounded.
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3. Main results

Next we turn to present our main results. We consider Becker’s condition in
a neighborhood of a boundary point ζ ∈ ∂D as well as univalence in certain
horodiscs. Furthermore, we state some distortion type estimates similar to the
converse of Becker’s theorem. Some examples which concerning the main results
and the distribution of preimages of a locally univalent function are discussed.

Theorem 2. Let f ∈ UA
loc and ζ ∈ ∂D.

If there exists a sequence {wn} of points in D tending to ζ such that∣∣∣∣f ′′(wn)

f ′(wn)

∣∣∣∣ (1− |wn|2)→ c (3.1)

for some c ∈ (6,∞], then for each δ > 0 there exists a point w ∈ f(D) such that
at least two of its distinct preimages belong to D(ζ, δ) ∩ D.

Conversely, if for each δ > 0 there exists a point w ∈ f(D) such that at least
two of its distinct preimages belong to D(ζ, δ) ∩ D, then there exists a sequence
{wn} of points in D tending to ζ such that (3.1) holds for some c ∈ [1,∞].

Example 3. It is clear that (3.1), c ∈ (6,∞), does not imply that f is of infinite
valence. For example, the polynomial f(z) = (1 − z)2n+1, n ∈ N, satisfies the
sharp inequality ∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) ≤ 4n, z ∈ D,

although f(z) = ε2n+1 has n solutions in D(1, δ) ∩ D for each ε ∈ (0, δ) when
δ ∈ (0, 1) is small enough (depending on n).

The function f(z) = (1− z)−p, 0 < p <∞, satisfies the sharp inequality∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) ≤ 2(p+ 1), z ∈ D,

and for each p ∈ (2n, 2n + 2], n ∈ N ∪ {0}, the valence of f is n + 1 for suitably
chosen points in the image set.

Under the condition (1.9), function the f is bounded, see Theorem 1 in Section 2.
Condition (1.9) implies that f is univalent in horodiscs.

Theorem 4. Let f ∈ UA
loc and assume that (1.9) holds for some 0 < C < ∞. If

0 < C ≤ 1, then f is univalent in D. If 1 < C <∞, then there exists 0 < a < 1,
a = a(C), such that f is univalent in all discs D(aeiθ, 1 − a), 0 ≤ θ < 2π. In
particular, we can choose a = 1− (1 + C)−2.

Let f ∈ UA
loc be univalent in each horodisc D(aeiθ, 1− a), 0 ≤ θ < 2π, for some

0 < a < 1. By the proof of [10, Theorem 6], for each w ∈ f(D), the sequence of
pre-images {zn} ∈ f−1(w) satisfies∑

zn∈Q

(1− |zn|)1/2 ≤ K`(Q)1/2 (3.2)

for any Carleson square Q and some constant 0 < K <∞ depending on a. Here

Q = Q(I) =

{
reiθ : eiθ ∈ I, 1− |I|

2π
≤ r < 1

}
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is called a Carleson square based on the arc I ⊂ ∂D and |I| = `(Q) is the Euclidean
arc length of I.

By choosing Q = D in (3.2), we obtain

n(f, r, w) = O

(
1√

1− r

)
, r → 1−,

where n(f, r, w) is the number of pre-images {zn} = f−1(w) in the disc D(0, r).
Namely, arrange {zn} = f−1(w) by increasing modulus, and let 0 < |zn| = r <
|zn+1| to deduce

(1− r)1/2n(f, r, w) ≤
n∑
k=0

(1− |zk|)1/2 ≤ K`(D)1/2 <∞

for some 0 < K(a) <∞.

Theorem 5. Let f ∈ UA
loc be univalent in all Euclidean discs

D

(
C

1 + C
eiθ,

1

1 + C

)
, eiθ ∈ ∂D,

for some 0 < C <∞. Then∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) ≤ 2 + 4(1 +K(z)), z ∈ D,

where K(z) � (1− |z|2) as |z| → 1−.

In view of (2.1), Theorem 5 is sharp. Moreover, since (2.1) implies∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|) ≤ 4 + 2|z|
1 + |z|

≤ 4

for univalent analytic functions f , the next theorem is sharp as well.

Theorem 6. Let f ∈ UA
loc be univalent in all Euclidean discs

D(aeiθ, 1− a) ⊂ D, eiθ ∈ ∂D,

for some 0 < a < 1. Then∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|) ≤ 4, a ≤ |z| < 1. (3.3)

Example 7. Let f = fC,ζ be a locally univalent analytic function in D such that
f(−1) = 0 and

f ′(z) = −i
(

1 + z

1− z

) 1
2

e
Cζz
2 , ζ ∈ ∂D, z ∈ D.

Then
f ′′(z)

f ′(z)
=

1

1− z2
+
Cζ

2
,
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hence (1.9) holds and f is univalent in D if C ≤ 1 by Becker’s univalence criterion.
If f is univalent, then f − f(0) ∈ S and we obtain for ζ = 1,

1 ≥ f ′(x)

k′(x)
=
e
Cx
2 (1− x)5/2

(1 + x)1/2
∼ 1 + Cx/2

1 + 3x
, x→ 0+.

Therefore, if C > 6, then f is not univalent.
The boundary curve ∂f(D) has a cusp at f(−1) = 0. When ζ = −i, the cusp has

its worst behavior, and by numerical calculations the function f is not univalent
if C > 2.21. Moreover, as C increases, the valence of f increases, see Figure 1.

The curve {f(eit) : t ∈ (0, π]} is a spiral unwinding from f(−1). We may calcu-
late the valence of f by counting how many times h(t) = Re(f(eit)) changes its sign
on (0, π]. Numerical calculations suggest that the valence of f is approximately
equal to 100

63
C.

(a) f(D) for C = 2.21 and ζ = −i. (b) f(D) for C = 30 and ζ = −i.

Figure 1. Image domain f(D) for different values of C. In (A),
∂f(D) is a simple closed curve. In (B), the valences of red, green and
blue parts of f(D), under f , are one, two and three, respectively.

4. Proofs of main results

In this section, we proof the results stated in Section 3.

Proof of Theorem 2. To prove the first assertion, assume on the contrary that
there exists δ > 0 such that f is univalent in D(ζ, δ)∩D. Without loss of generality,
we may assume that ζ = 1. Let T be a conformal map of D onto a domain
Ω ⊂ D(ζ, δ) ∩ D with the following properties:

(i) T (ζ) = ζ;
(ii) ∂Ω ⊃ {eiθ : | arg ζ − θ| < t} for some t > 0;

(iii)
∣∣∣T ′′(z)T ′(z)

∣∣∣ (1 − |z|2) 1
2 ≤ 1 − ρ for all z ∈ D, where ρ ∈ (0, 1) is any pregiven

number.
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The existence of such a map follows, for instance, by [6, Lemma 8]. Then∣∣∣∣f ′′(T (z))

f ′(T (z))
T ′(z) +

T ′′(z)

T ′(z)

∣∣∣∣ (1− |z|2) ≤ 6, z ∈ D,

by (2.1), since f ◦ T is univalent in D. Moreover, T ′′(z)
T ′(z)

(1− |z|2)→ 0, as |z| → 1−,

by (iii). Let {wn} be a sequence such that wn → ζ, and define zn by T (zn) = wn.
Then zn → ζ, and since T ′ belongs to the disc algebra by [6, Lemma 8], we have

1 <
1− |T (zn)|2

|T ′(zn)|(1− |zn|2)
→ 1+, n→∞.

For more details, see [10, p. 879]. It follows that

lim sup
n→∞

∣∣∣∣f ′′(wn)

f ′(wn)

∣∣∣∣ (1− |wn|2)
= lim sup

n→∞

∣∣∣∣f ′′(T (zn))

f ′(T (zn))

∣∣∣∣ (1− |T (zn)|2)

= lim sup
n→∞

∣∣∣∣f ′′(T (zn))

f ′(T (zn))

∣∣∣∣ |T ′(zn)|(1− |zn|2)
(1− |T (zn)|2)
|T ′(zn)|(1− |zn|2)

≤ 6,

which is the desired contradiction.
To prove the second assertion, assume on the contrary that (3.1) fails, so that

there exist ρ ∈ (0, 1) and δ ∈ (0, 1) such that∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) ≤ ρ, z ∈ D(ζ, δ) ∩ D. (4.1)

If g = f ◦ T , then (4.1) and (i)–(iii) yield∣∣∣∣g′′(z)

g′(z)

∣∣∣∣ (1− |z|2) ≤ ∣∣∣∣f ′′(T (z))

f ′(T (z))

∣∣∣∣ |T ′(z)|(1− |z|2) +

∣∣∣∣T ′′(z)

T ′(z)

∣∣∣∣ (1− |z|2)
≤
∣∣∣∣f ′′(T (z))

f ′(T (z))

∣∣∣∣ (1− |T (z)|2) + 1− ρ ≤ 1

for all z ∈ D. Hence g is univalent in D by Becker’s univalence criterion, and so is
f on Ω. This is clearly a contradiction. �

Proof of Theorem 4. Assume that condition (1.9) holds for some 0 < C ≤ 1. Now∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) ≤ |z|(1 + C(1− |z|)) ≤ |z|+ 1− |z| = 1,

and hence f is univalent in D by Becker’s univalence criterion.
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Assume that (1.9) holds for some 1 < C <∞. It is enough to consider the case
θ = 0. Let T (z) = a+ (1− a)z for z ∈ D, and g = f ◦ T . Then

(1− |z|2)
∣∣∣∣g′′(z)

g′(z)

∣∣∣∣ = (1− |z|2)
∣∣∣∣f ′′(T (z))

f ′(T (z))

∣∣∣∣ |T ′(z)|

=

∣∣∣∣f ′′(T (z))

f ′(T (z))

∣∣∣∣ (1− |T (z)|2)(1− |z|2)|T ′(z)|
1− |T (z)|2

≤ (1 + C(1− |T (z)|)) (1− |z|2)(1− a)

1− |T (z)|2

≤ (1 + C(1− |a+ (1− a)z|)) (1− |z|2)(1− a)

1− |a+ (1− a)z|2
.

By the next lemma, for a = 1− (1 + C)−2, g is univalent in D and f is univalent
in D(a, 1− a). The assertion follows. �

Lemma 8. Let 1 < C <∞. Then, for z ∈ D,(
1 + C

(
1−

∣∣∣∣ C2 + 2C

C2 + 2C + 1
+

1

(1 + C)2
z

∣∣∣∣))× (1− |z|2) 1
(1+C)2

1−
∣∣∣ C2+2C
C2+2C+1

+ 1
(1+C)2

z
∣∣∣2 ≤ 1.

Proof. Let h : [0, 1)→ R, be defined by h(t) = (1 + C(1− t))/(1− t2). Then

h′(t) =
−Ct2 + 2(1 + C)t− C

(1− t2)2
= 0

if and only if t = tC = 1+C−
√
1+2C

C
∈ (0, 1). Hence, h is strictly decreasing on

[0, tC ] and strictly increasing on [tC , 1]. If

t =

∣∣∣∣ C2 + 2C

C2 + 2C + 1
+

1

(1 + C)2
z

∣∣∣∣ ≤ tC ,

then

h(t)(1− |z|2) 1

(1 + C)2
≤ h(0)(1− |z|2) 1

(1 + C)2
≤ 1

1 + C
≤ 1.

On the other hand, if

tC < t =

∣∣∣∣ C2 + 2C

C2 + 2C + 1
+

reiθ

(1 + C)2

∣∣∣∣ ≤ C2 + 2C + r

C2 + 2C + 1
= t′,

then we obtain

h(t)
(1− |z|2)
(1 + C)2

≤ h(t′)
1− r2

(1 + C)2
=

(1 + C)2 + C(1− r)
2(1 + C)2 − (1− r)

(1 + r) ≤ 1, (4.2)

provided that

kC(r) = (1 + r)
[
(1 + C)2 + C(1− r)

]
+ 1− r ≤ 2(1 + C)2.

Since kC(1) ≤ 2(1 + C)2 and

k′C(r) = (1 + C)2 + C(1− r)− C(1 + r)− 1 > 0

for r < 1 + C/2, inequality (4.2) holds. This ends the proof of the lemma. �
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Proof of Theorem 5. Let a ∈ D, 0 < C/(1 + C) < |a| < 1 and g(z) = f(ϕa(raz)),
where ϕa(z) is defined as in (1.4). Moreover, let

r2a =
|a| − C

1+C

|a|
(
1− |a| C

1+C

) .
The pseudo-hyperbolic disc ∆p(α, ρ) = {z ∈ D : |ϕα(z)| ≤ ρ} with center α ∈ D
and radius 0 < ρ < 1 satisfies

∆p(α, ρ) = D (ξ(α, ρ), R(α, ρ)) = D

(
1− ρ2

1− |α|2ρ2
α,

1− |α|2

1− |α|2ρ2
ρ

)
.

We deduce

∆p(a, ra) = D

(
a

|a|
C

1 + C
,R(a, ra)

)
⊂ D

(
a

|a|
C

1 + C
,

1

1 + C

)
,

so that g is univalent in D. Now

g′′(0)

g′(0)
=
f ′′(a)

f ′(a)
ϕ′a(0)ra +

ϕ′′a(0)

ϕ′a(0)
ra = −f

′′(a)

f ′(a)
(1− |a|2)ra + 2ara.

By (2.1), |g′′(0)/g′(0)| ≤ 4 and therefore∣∣∣∣f ′′(a)

f ′(a)
(1− |a|2)− 2a

∣∣∣∣ ≤ 4

ra
,

which implies ∣∣∣∣f ′′(a)

f ′(a)

∣∣∣∣ (1− |a|2) ≤ 2 +
4

ra
= 2 + 4(1 +K(a)),

where

K(a) =
1

ra
− 1 =

1− r2a
ra(1 + ra)

∼ 1

2
(1− r2a) =

1

2

C
1+C

(1− |a|2)
|a|
(
1− |a| C

1+C

) ∼ C

2
(1− |a|2),

as |a| → 1−. �

Proof of Theorem 6. It suffices to prove (3.3) for |z| = a, since trivially f is univa-
lent also in D(beiθ, 1− b) ⊂ D(aeiθ, 1− a) for a < b < 1 and eiθ ∈ ∂D. Moreover,
by applying a rotation z 7→ λz, λ ∈ ∂D, it is enough to prove (3.3) for z = a.

Let T (z) = a+ (1−a)z for z ∈ D. Now g = f ◦T is univalent in D and by (2.1)∣∣∣∣f ′′(a)

f ′(a)

∣∣∣∣ (1− a) =

∣∣∣∣f ′′(T (0))

f ′(T (0))

∣∣∣∣ |T ′(0)| =
∣∣∣∣g′′(0)

g′(0)

∣∣∣∣ ≤ 4.

The assertion follows. �
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5. Generalizations for harmonic functions

Let f be a complex-valued and harmonic function in D. Then f has the unique
representation f = h + g, where both h and g are analytic in D and g(0) = 0. In
this case, f = h + g is orientation preserving and locally univalent, denoted by
f ∈ UH

loc, if and only if its Jacobian Jf = |h′|2−|g′|2 > 0, by a result by Lewy [18].
In this case, h ∈ UA

loc and the dilatation ωf = ω = g′/h′ is analytic in D and
maps D into itself. Clearly f = h + g is analytic if and only if the function g is
constant.

For f = h + g ∈ UH
loc, equation (1.1) yields the harmonic pre-Schwarzian and

Schwarzian derivatives:

P (f) = P (h)− ω ω′

1− |ω|2
.

and

S(f) = S(h) +
ω

1− |ω|2

(
h′′

h′
ω′ − ω′′

)
− 3

2

(
ω ω′

1− |ω|2

)2

.

This generalization of P (f) and S(f) to harmonic functions was introduced and
motivated in [11].

There exists 0 < δ0 < 2 such that if f ∈ UH
loc satisfies (1.2) for N = δ0, then f

is univalent in D, see [1] and [12]. The sharp value of δ0 is not known. Moreover,
if f ∈ UH

loc satisfies

|P (f)| (1− |z|2) +
|ω′(z)|(1− |z|2)

1− |ω(z)|2
≤ 1, z ∈ D,

then f is univalent. The constant 1 is sharp, by the sharpness of Becker’s uni-
valence criterion. If one of these mentioned inequalities, with a slightly smaller
right-hand-side constant, holds in an annulus r0 < |z| < 1, then f is of finite
valence [15].

Conversely to these univalence criteria, there exist absolute constants 0 <
C1, C2 < ∞ such that if f ∈ UH

loc is univalent, then (1.2) holds for N = C1

and (1.7) holds for ρ = C2, see [13]. The sharp values of C1 and C2 are not known.
By the above-mentioned analogues of Nehari’s criterion, Becker’s criterion and

their converses, we obtain generalizations of the results in this paper for harmonic
functions. Of course, the correct operators and constants have to be involved.
Theorem 2 and its analogue [10, Theorem 1] for the Schwarzian derivative S(f)
are valid as well. Moreover, Theorems 4, 5, and 6 are valid. We leave the details
for the interested reader.

We state the important generalization of [10, Theorem 3] for harmonic functions
here. It gives a sufficient condition for the Schwarzian derivative of f ∈ UH

loc such
that the preimages of each w ∈ f(D) are separated in the hyperbolic metric. Here
ξ(z1, z2) is the hyperbolic midpoint of the hyperbolic segment 〈z1, z2〉 for z1, z2 ∈ D.

Theorem 9. Let f = h+ g ∈ UH
loc such that

|SH(f)|(1− |z|2) ≤ δ0(1 + C(1− |z|)), z ∈ D,
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for some 0 < C <∞. Then each pair of points z1, z2 ∈ D such that f(z1) = f(z2)
and 1− |ξ(z1, z2)| < 1/C satisfies

dH(z1, z2) ≥ log
2− C1/2(1− |ξ(z1, z2)|)1/2

C1/2(1− |ξ(z1, z2)|)1/2
. (5.1)

Conversely, if there exists a constant 0 < C < ∞ such that each pair of points
z1, z2 ∈ D for which f(z1) = f(z2) and 1− |ξ(z1, z2)| < 1/C satisfies (5.1), then

|SH(f)|(1− |z|2) ≤ C2(1 + ΨC(|z|)(1− |z|)1/3), 1− |z| < (8C)−1,

where ΨC is positive, and satisfies ΨC(|z|)→ (2(8C)1/3)+ as |z| → 1−.

We have not found a natural criterion which would imply that f = h+ g ∈ UH
loc

is bounded. However, the inequality |g′(z)| < |h′(z)| can be utilized. A domain
D ⊂ C is starlike if for some point a ∈ D all linear segments [a, z], z ∈ D, are
contained in D. Let h ∈ UA

loc be univalent, let h(D) be starlike with respect to
z0 ∈ h(D) and f = h+ g ∈ UH

loc. Then the function

z 7→ Ω(z) =
g(z)− g(z0)

h(z)− h(z0)

maps D into D. To see this, let a ∈ D and let R = h−1([h(z0), h(a)]) be the
pre-image of the segment [h(z0), h(a)] under h. Then

|h(a)− h(z0)| =
∫
R

|h′(ζ)||dζ| ≥
∣∣∣∣∫
R

g′(ζ) dζ

∣∣∣∣ = |g(a)− g(z0)|.

Consequently, if f = h+ g ∈ UH
loc is such that h(D) is starlike and bounded, then

f(D) is bounded.
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