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ON NON-NORMAL SOLUTIONS OF LINEAR

DIFFERENTIAL EQUATIONS

JANNE GRÖHN

(Communicated by Stephen Ramon Garcia)

Abstract. Normality arguments are applied to study the oscillation of solu-
tions of f ′′+Af = 0, where the coefficient A is analytic in the unit disc D and
supz∈D(1− |z|2)2|A(z)| < ∞. It is shown that such a differential equation may
admit a non-normal solution having prescribed uniformly separated zeros.

1. Introduction

The purpose of this paper is to consider the oscillation of solutions of

(1) f ′′ +Af = 0,

where the coefficient A is analytic in the unit disc D = {z ∈ C : |z| < 1}. Due to an
extensive existing literature on the subject, zero-sequences of individual solutions
of (1) can be described in various ways. However, it is curious how little is known of
the geometric zero distribution of the product of two linearly independent solutions
of (1).

Let f1 and f2 be linearly independent solutions of (1). By (1), the Wronskian
determinant W (f1, f2) = f1f ′

2 − f ′
1f2 is a non-zero complex constant. We deduce

that:

(i) Zeros of f1 and f2 are simple.
(ii) Zeros of f1f2 are simple.

Our plan is to elaborate these conclusions. Concerning (i), we focus on the separa-
tion between zeros of a non-trivial solution and zeros of its derivative. Discussion
of (ii) leads us to the concept of normality (in the sense of Lehto and Virtanen).
As a main result, we construct a coefficient A ∈ H∞

2 such that (1) admits a non-
normal solution having prescribed uniformly separated zeros. Here H∞

2 is the space
of those analytic functions g in D for which

‖g‖H∞
2

= sup
z∈D

(1− |z|2)2|g(z)| < ∞.

Finally, we consider normality of w = f1/f2 and obtain an estimate for the separa-
tion of zeros of f1f2 in the case A ∈ H∞

2 .
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2 JANNE GRÖHN

2. Separation of critical points

Our intention is to discuss the extent to which the separation properties of zeros
of solutions of (1) hold true for the critical points. The critical points of an analytic
function f are the zeros of the derivative f ′. In this paper, separation always refers
to the separation with respect to the hyperbolic metric.

Let f be a non-trivial (f %≡ 0) solution of (1) in the unit disc D. We may ask
the following questions and consider their relation to the growth of the coefficient.

(Q1) Are the zeros of f separated?
(Q2) Are the critical points of f separated?
(Q3) Are the zeros of f separated from the critical points of f?

We proceed to consider (Q1)-(Q3) under certain restrictions for the growth of
the coefficient A. If ψ : [0, 1) → (0, 1) is a non-increasing function such that

(2) K = sup
0≤r<1

ψ(r)

ψ
(

r+ψ(r)
1+rψ(r)

) < ∞,

and A is an analytic function satisfying

(3) sup
z∈D

|A(z)|
(
ψ(|z|)(1− |z|2)

)2
= M < ∞,

then (Q1) admits a complete answer according to [3, Theorem 11]. In particular,
these assumptions imply that any distinct zeros ζ1, ζ2 ∈ D of any non-trivial solution
f of (1) are separated in the hyperbolic metric by

#h(ζ1, ζ2) ≥ log
1 + ψ

(
|th(ζ1, ζ2)|

)
/max{K

√
M, 1}

1− ψ
(
|th(ζ1, ζ2)|

)
/max{K

√
M, 1}

,

and vice versa. Here th(ζ1, ζ2) is the hyperbolic mid-point of ζ1 and ζ2;

#h(ζ1, ζ2) =
1

2
log

1 + #p(ζ1, ζ2)

1− #p(ζ1, ζ2)
and #p(ζ1, ζ2) = |ϕζ1(ζ2)|

are the hyperbolic and the pseudo-hyperbolic distances between ζ1 and ζ2, respec-
tively; and ϕa(z) = (a − z)/(1 − az), a ∈ D, is an automorphism of D, which
coincides with its own inverse. We refer to [3, Section 2.3] for a detailed study
of the smoothness condition (2). The separation result above is an extension of
[20, Theorems 3-4] by B. Schwarz: if A ∈ H∞

2 , then the hyperbolic distance be-
tween any distinct zeros of any non-trivial solution of (1) is uniformly bounded
away from zero by a constant depending on ‖A‖H∞

2
, and vice versa.

The question (Q2) admits an immediate negative answer, which is independent
of the growth of the coefficient. For example, (1) for A(z) = −6z/(z3+2) admits a
solution f(z) = z3+2, whose derivative has a two-fold zero at the origin. Even more
is true. The following example proves that if A ∈ H∞

2 , then zeros of the derivative
of a solution of (1) can have arbitrarily high multiplicity. Moreover, there is no
lower bound even for the separation of distinct critical points.

Example 1. Let {ζn}∞n=1 ⊂ D be a Blaschke-sequence, i.e.
∑∞

n=1(1 − |ζn|) < ∞,
and consider the Blaschke product

(4) B(z) =
∞∏

n=1

|ζn|
ζn

ζn − z

1− ζnz
, z ∈ D.
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NON-NORMAL SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS 3

Here we take the convention that |ζn|/ζn = 1 for ζn = 0. Now f(z) = 2/(B(z) + 2)
is a bounded solution of (1) with

A(z) =
2B′′(z) + B′′(z)B(z)− 2

(
B′(z)

)2
(
B(z) + 2

)2 , z ∈ D.

Since B is bounded, we have A ∈ H∞
2 . The same construction was also used in

the proof of [7, Theorem 8]. Since f ′(z) = −2B′(z)/(B(z) + 2)2, we deduce the
following:

(i) If {ζn}∞n=1 is a Blaschke-sequence such that for each N ∈ N there exists
a point whose multiplicity is greater than N , then f ′ has zeros of arbitrarily high
multiplicity.

(ii) If {ζn}∞n=1 is a Blaschke-sequence which contains two subsequences of two-
fold points whose pair-wise separation becomes arbitrarily small near the boundary
∂D, then the distinct critical points of f need not obey any pre-given separation.

+
The classical result [11, Theorem 8.2.2] due to C.-T. Taam, whose proof is based

on Sturm’s comparison theorem, implies a positive answer to the question (Q3).
We take the opportunity to state a parallel result with an alternative proof. Our
method also produces an estimate for the behavior of solutions near critical points.

Theorem 1. Let A be analytic in D, and let ψ : [0, 1) → (0, 1) be a non-increasing
function such that (2) holds. If A satisfies (3), then the hyperbolic distance between
any zero ζ ∈ D and any critical point a ∈ D of any non-trivial solution f of (1)
satisfies

(5) #h(ζ, a) ≥
1

2
log

1 + ψ(|a|)/max{K
√
2M, 1}

1− ψ(|a|)/max{K
√
2M, 1}

.

The proof of Theorem 1 depends on the following auxiliary lemma. Recall that

Sg =

(
g′′

g′

)′
− 1

2

(
g′′

g′

)2

is the Schwarzian derivative of the meromorphic function g.

Lemma A ([13, p. 91]). Let g be meromorphic in D and satisfy g′′(0) = 0,
‖Sg‖H∞

2
≤ 2 and (1 − |z|2)2|Sg(z)| ≤ 1 in some neighborhood |z| ≤ ρ < 1 of

the origin. Then g is analytic in D, and

|g′(z)| ≤ S|g′(0)|
1− |z|2

(
log

1 + |z|
1− |z|

)−2

, z ∈ D,

where S = S(ρ) is a finite positive constant.

Proof of Theorem 1. Let f be a solution of (1), where the coefficient A satisfies (3).
Let f# be a solution of (1), linearly independent of f , such that W (f, f#) = 1. If
we define w = f#/f , then

Sw = 2A, w′ =
1

f2
and w′′ = −2

f ′

f3
.

We conclude that w′′(z) = 0 if and only if z ∈ D is a critical point of f . Note that f
does not vanish at the critical points.

If f does not have any critical points in D, then there is nothing to prove. Let
a ∈ D be a critical point of f , and consider two separate cases.
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Case a = 0. Define the meromorphic function g in D by g(z) = w
(
ψ(0)rz

)
, where

r = 1/max{K
√
2M, 1}. Since w′′(0) = 0, we conclude that g′′(0) = 0. Now

(1− |z|2)2|Sg(z)| = (1− |z|2)2
∣∣Sw

(
ψ(0)rz

)∣∣ψ(0)2r2

≤ 2M

(
ψ(0)

ψ
(
ψ(0)

)
)2

r2 ≤ 1, z ∈ D.

By Lemma A, g is analytic in D, which means that w does not have any poles in
the pseudo-hyperbolic disc ∆p(0,ψ(0)r) = {z ∈ D : #p(z, 0) < ψ(0)r}, and

∣∣w′(ψ(0)rz
)∣∣ψ(0)r ≤ S|w′(0)|ψ(0)r

1− |z|2

(
log

1 + |z|
1− |z|

)−2

, z ∈ D.

Since f2 = 1/w′, we deduce that
∣∣f
(
ψ(0)rz

)∣∣2

|f(0)|2 ≥ 1

S
(1− |z|2)

(
log

1 + |z|
1− |z|

)2

, z ∈ D,

and hence f has no zeros in ∆p(0,ψ(0)r).

Case a %= 0. Define the meromorphic function

ga(z) =
1

w
(
ϕa(ψ(|a|)rz)

)
− Ca

, z ∈ D,

where r = 1/max{K
√
2M, 1} and Ca = w(a) − w′(a)(1 − |a|2)/a is a complex

constant. Note that Ca %= w(a), since w′(a) %= 0. Furthermore, the choice of Ca

yields g′′a(0) = 0. We obtain

(1− |z|2)2|Sga(z)| = (1− |z|2)2
∣∣Sw

(
ϕa(ψ(|a|)rz)

)∣∣ ∣∣ϕ′
a

(
ψ(|a|)rz

)∣∣2ψ(|a|)2r2

≤ 2M



 ψ(|a|)
ψ
(

|a|+ψ(|a|)
1+|a|ψ(|a|)

)




2

r2 ≤ 1, z ∈ D.

By Lemma A, ga is analytic in D, which means that w does not attain the value
Ca in the pseudo-hyperbolic disc ∆p(a,ψ(|a|)r) = {z ∈ D : #p(z, a) < ψ(|a|)r}.
Moreover, there exists a constant 0 < S < ∞ such that

∣∣w′(ϕa(ψ(|a|)rz)
)∣∣∣∣ϕ′

a(ψ(|a|)rz)
∣∣ψ(|a|)r

∣∣w
(
ϕa(ψ(|a|)rz)

)
− Ca

∣∣2

≤ S |w′(a)|(1− |a|2)ψ(|a|)r
|w(a)− Ca|2

1

1− |z|2

(
log

1 + |z|
1− |z|

)−2

, z ∈ D.

Since f2 = 1/w′, we deduce that
∣∣f
(
ϕa(ψ(|a|)rz)

)∣∣2

|f(a)|2 ≥ 1

S

|w(a)− Ca|2∣∣w
(
ϕa(ψ(|a|)rz)

)
− Ca

∣∣2

∣∣ϕ′
a(ψ(|a|)rz)

∣∣
1− |a|2

× (1− |z|2)
(
log

1 + |z|
1− |z|

)2

, z ∈ D,

and hence f has no zeros in ∆p(a,ψ(|a|)r). The claim follows. !
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NON-NORMAL SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS 5

The assertion converse to Theorem 1 is false. If f is a non-vanishing solution
of (1), then zeros and critical points of f are trivially separated from each other.
However, regardless of the existence of a zero-free solution, the coefficient A can
grow arbitrarily fast. This follows easily by considering self-compositions of the
exponential function, for example.

Remark 1. An estimate for the separation between zeros and critical points, which
turns out to be weaker than (5), is immediately available by means of ϕ-normal
functions, since
(
f ′

f

)#

(z) =

∣∣(f ′/f)′(z)
∣∣

1 +
∣∣(f ′/f)(z)

∣∣2
≤

∣∣f ′′(z)f(z)
∣∣+

∣∣f ′(z)
∣∣2

∣∣f(z)
∣∣2 +

∣∣f ′(z)
∣∣2

≤
∣∣A(z)

∣∣+ 1, z ∈ D.

See [1, Theorem 4]. Normal functions are considered further in Section 3.

Note the following special case of Theorem 1 (or [11, Theorem 8.2.2]).

Corollary 2. If A ∈ H∞
2 , then the hyperbolic distance between any zero and any

critical point of any non-trivial solution of (1) is uniformly bounded away from
zero.

The following examples examine the sharpness of (5). Example 2 is originally
due to Hille [10, p. 552].

Example 2. Let 0 < γ < ∞. Then, the differential equation (1) with

A(z) = (1 + 4γ2)/(1− z2)2, z ∈ D,
admits the solution

f(z) =
√
1− z2 sin

(
γ log

1 + z

1− z

)
, z ∈ D,

whose zeros ζn = (eπn/γ − 1)/(eπn/γ + 1) are real for all n ∈ Z [20, p. 162]. The
hyperbolic distance between two consecutive zeros is precisely π/(2γ). Since f is
a real differentiable function on the real axis, we conclude that f has a critical point
in each open interval (ζn, ζn+1), n ∈ N. This means that there exists a sequence
{an}∞n=1 of real critical points of f such that #h(ζn, an) remains uniformly bounded
above as n → ∞. +

Example 3. Let 1 < q < ∞. Then, the differential equation (1) with

A(z) =
(
p′(z)

)2
+

1

2
Sp(z), p(z) =

(
log

e

1− z

)q

, z ∈ D,

admits the solution

f(z) =
1√
p′(z)

sin
(
p(z)

)
, z ∈ D,

whose zeros ζn = 1 − exp(1 − (nπ)1/q), n ∈ Z, are real [3, Example 12]. Since f
is a real differentiable function on the real axis, there exists a sequence {an}∞n=1 of
real critical points of f such that an ∈ (ζn, ζn+1) for n ∈ N, and

#h(ζn+1, an) ≤ #h(ζn+1, ζn) .
π

2q

(
nπ

)1/q−1
, n → ∞,

where . denotes a two-sided estimate up to an absolute constant.
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If ψ(r) = 2−1
(
log(e/(1−r))

)1−q
, then (2) is satisfied for K =

(
log(2e)

)q−1
, and

there exists a constant M = M(q) such that (3) holds. Moreover,

1

2
log

1 + ψ(|an|)/max{K
√
2M, 1}

1− ψ(|an|)/max{K
√
2M, 1}

. ψ(|an|)
max{K

√
2M, 1}

≥ ψ(ζn+1)

max{K
√
2M, 1}

. (nπ)1/q−1

max{K
√
2M, 1}

, n → ∞.

We conclude that, in this case, both sides of (5) are asymptotically of the same
order of magnitude. +

3. Normality of solutions

A meromorphic function f in D is normal (in the sense of Lehto and Virtanen) if

sup
z∈D

(1− |z|2) f#(z) < ∞,

where f# = |f ′|/(1 + |f |2) is the spherical derivative of f . For more details on
normal functions, we refer to [5, 17].

Assume that A ∈ H∞
2 . Let f1 be a non-trivial solution of (1) whose zero-sequence

is {ζn}∞n=1 ⊂ D. By [8, Proposition 7], f1 is normal if and only if

(6) sup
n∈N

(1− |ζn|2)|f ′
1(ζn)| < ∞.

Equivalently, f1 is normal if and only if

sup
n∈N

(1− |ζn|2)
1

|f2(ζn)|
< ∞,

where f2 is any solution of (1) which is linearly independent to f1.
By solving a certain interpolation problem, we conclude our main result. Recall

that the sequence {ζn}∞n=1 ⊂ D is called uniformly separated if

inf
k∈N

∏

n∈N\{k}
#p(ζn, ζk) > 0,

while the Hardy space Hp for 0 < p < ∞ consists of those analytic functions f in D
for which

‖f‖Hp = lim
r→1−

(
1

2π

∫ 2π

0
|f(reiθ)|p dθ

)1/p

< ∞.

Theorem 3. Let {ζn}∞n=1 ⊂ D be a uniformly separated sequence having infinitely
many points. Then, there exists A = A({ζn}∞n=1) ∈ H∞

2 such that (1) admits a
solution f having the following properties:

(i) the zero-sequence of f is {ζn}∞n=1;
(ii) f belongs to the Hardy space Hp for any sufficiently small 0 < p < ∞;
(iii) f is non-normal.

Normal solutions of (1) are known to possess some nice properties. For example,
all normal solutions of (1) belong to the Hardy space Hp for any sufficiently small
0 < p < ∞ provided that |A(z)|2(1 − |z|2)3 dm(z) is a Carleson measure; see
[8, Corollary 9] for the result and discussion on the Carleson measure condition.
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NON-NORMAL SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS 7

The proof of Theorem 3 relies on the following auxiliary result. Recall that the
space BMOA contains those functions g ∈ H2 for which

sup
a∈D

∥∥g(ϕa(z))− g(a)
∥∥
H2 < ∞.

Lemma 4. Let {ζn}∞n=1 ⊂ D be a uniformly separated sequence having infinitely
many points, and assume that {wn}∞n=1 ⊂ C satisfies

sup
n∈N

(1− |ζn|2) |wn| ≤ S < ∞.

Then, there exists g = g({ζn}∞n=1, {wn}∞n=1) ∈ BMOA such that

(i) g′(ζn) = wn for n ∈ N;
(ii) lim sup

n→∞
Re g(ζn) = ∞.

Proof. Let ξ ∈ ∂D be an accumulation point of {ζn}∞n=1, and let B be the cor-
responding Blaschke product given by (4). Since {ζn}∞n=1 is uniformly separated,
there exists a constant 0 < δ < 1 such that

(7) (1− |ζn|2)|B′(ζn)| ≥ δ, n ∈ N.

Define the sequence {νn}∞n=1 by

νn =
1

B′(ζn)

(
wn − 1

ξ − ζn

)
, n ∈ N,

and note that

|νn| ≤
1− |ζn|2

(1− |ζn|2)|B′(ζn)|

(
|wn|+

1

|ξ − ζn|

)
≤ S + 2

δ
< ∞, n ∈ N.

Let h be a bounded analytic function in D which solves the interpolation problem
h(ζn) = νn for n ∈ N. Existence of such a function h follows from [2, Theorem 3].
Finally, define (with a suitable branch of the logarithm)

g(z) = B(z)h(z) + log
1

ξ − z
, z ∈ D.

Now g ∈ BMOA, and g′(ζn) = B′(ζn) νn + 1/(ξ − ζn) = wn for n ∈ N. Moreover,

lim sup
n→∞

Re g(ζn) = lim sup
n→∞

log
1

|ξ − ζn|
= ∞,

since ξ is an accumulation point of {ζn}∞n=1. !

Proof of Theorem 3. We apply a method which was also used in [7, pp. 359–360].
Let B be the Blaschke product in (4), and define the sequence {wn}∞n=1 by

wn = −1

2

B′′(ζn)

B′(ζn)
, n ∈ N.

Now

sup
n∈N

(1− |ζn|2)|wn| = sup
n∈N

(1− |ζn|2)2|B′′(ζn)|
2(1− |ζn|2)|B′(ζn)|

≤
‖B′′‖H∞

2

2δ
< ∞,

where δ is the constant in (7). Let g be the function given by Lemma 4.
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8 JANNE GRÖHN

Define f = Beg. By construction, f has the prescribed zeros {ζn}∞n=1. Since
g ∈ BMOA, f ∈ Hp for any sufficiently small 0 < p < ∞ [4, Theorem 1]. Following
the argument in [7, pp. 359–360], we conclude that

A = −f ′′

f
= −B′′ + 2B′g′

B
− (g′)2 − g′′

is analytic in D, since the interpolation property Lemma 4(i) guarantees that A has
a removable singularity at each point ζn for n ∈ N. We also have A ∈ H∞

2 , since
{ζn}∞n=1 is uniformly separated and g ∈ BMOA; see [7] for more details. Since f is
a solution of (1) with A ∈ H∞

2 and

lim sup
n→∞

(1− |ζn|2)|f ′(ζn)| = lim sup
n→∞

(1− |ζn|2)|B′(ζn)| eRe g(ζn)

≥ δ · lim sup
n→∞

eRe g(ζn) = ∞,

we conclude that f is non-normal [8, Proposition 7]. !

The following result shows that two non-zero distinct values can be prescribed
for a normal solution of (1) under the restriction A ∈ H∞

2 . This result should be
compared to [7, Theorem 8], in which one non-zero value is prescribed.

Theorem 5. Assume that a, b ∈ C are non-zero and distinct. Let {αn}∞n=1 ⊂ D and
{βn}∞n=1 ⊂ D be two Blaschke sequences, and let Bα and Bβ be the corresponding
Blaschke products. If there exists a constant µ such that

(8) |Bα(z)|+ |Bβ(z)| ≥ µ > 0, z ∈ D,

then there is A = A(a, b, {αn}∞n=1, {βn}∞n=1) such that |A(z)|2(1 − |z|2)3dm(z) is
a Carleson measure (thus A ∈ H∞

2 ), and (1) admits a bounded non-vanishing
normal solution f for which

(9) f(αn) = a, f(βn) = b, n ∈ N.

Condition (8) is satisfied, for example, if {αn}∞n=1 ∪ {βn}∞n=1 is uniformly sepa-
rated. Of course, this is not necessary for (8) to hold.

Proof of Theorem 5. By (8) and [2, Theorem 2], there exists a bounded analytic
function h such that

(10) h(αn) = 0, h(βn) = 1, n ∈ N.

Now,

f(z) = exp

(
log a+ h(z) log

b

a

)
, z ∈ D,

is a bounded and non-vanishing solution of (1), where

A = −f ′′

f
= −

(
h′ · log b

a

)2

− h′′ · log b

a
.

Solution f is normal by (6), and (9) follows from (10). Since h is bounded, we
conclude that log f ∈ BMOA and hence |A(z)|2(1 − |z|2)3 dm(z) is a Carleson
measure by [8, Theorem 4(i)]. In particular, A ∈ H∞

2 . !
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NON-NORMAL SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS 9

If f is a normal meromorphic function, then by [23, Theorem 1] there exists
a constant C = C(f) such that

(11) sup
z∈D

(
(1− |z|2) (f ′)#(z)

) (
(1− |z|2) f#(z)

)
≤ C < ∞,

while the converse statement is known to be false [15, Theorem 3]. By combining
Theorem 3 and the following result, we conclude that a differential equation (1)
with A ∈ H∞

2 may admit a non-normal solution satisfying (11).

Theorem 6. Suppose that f is a solution of (1), where A is analytic in D. Then
(f ′)#(z) f#(z) ≤ 4−1 |A(z)| for all z ∈ D.

Proof. The claim is trivially true for the critical points of f . Similarly, at the zeros
of f the claim follows from (1). For any z ∈ D, for which f ′(z) %= 0 and f(z) %= 0,

|A(z)| =
∣∣∣∣
f ′′(z)

f(z)

∣∣∣∣ =
∣∣∣∣
f ′′(z)

f ′(z)

∣∣∣∣

∣∣∣∣
f ′(z)

f(z)

∣∣∣∣ ≥ 4

∣∣∣ f
′′(z)

f ′(z)

∣∣∣
|f ′(z)|−1 + |f ′(z)|

∣∣∣ f
′(z)
f(z)

∣∣∣
|f(z)|−1 + |f(z)|

= 4 (f ′)#(z) f#(z).

Here we applied the inequality x−1 + x ≥ 2 for 0 < x < ∞. !

4. Normality of the quotient

Let f1 and f2 be linearly independent solutions of (1) with A ∈ H∞
2 . We may

apply [20, Theorem 3] to the zero-sequences of f1 and f2 to conclude that both
zero-sequences are separated in the hyperbolic metric, but it is unclear whether
these zero-sequences are separated from each other. Concerning the case of the
complex plane, see [6, Theorem 2.6].

The hyperbolic distance between any two distinct zeros of f1f2 is known to be
uniformly bounded away from zero, for example, if there exists a constant 0 < C <
∞ such that

(1− |z|2)2|A(z)| ≤ 1 + C(1− |z|), z ∈ D.
See [9, Corollary 4], which is essentially a restatement of [21, Corollary, p. 328].

If f1 and f2 are linearly independent solutions of (1), then w = f1/f2 is a locally
univalent meromorphic function in D such that the Schwarzian derivative Sw satis-
fies Sw = 2A; see [12, Theorem 6.1]. If A ∈ H∞

2 , then to prove that the hyperbolic
distance between any two distinct zeros of f1f2 is uniformly bounded away from
zero it is sufficient to show that the hyperbolic distance between any zero and any
pole of w is uniformly bounded away from zero. Recall that all normal functions
satisfy this property by the Lipschitz-continuity (as mappings from D equipped
with the hyperbolic metric to the Riemann sphere with the chordal metric).

Suppose that w is a meromorphic function satisfying Sw ∈ H∞
2 . Does it follow

that w is normal? In favor of the affirmative answer, recall that ‖Sw‖H∞
2

≤ 2 implies
that w is univalent [18, Theorem I] and hence normal [17, p. 53]. As surprising as it
is, the answer to this question is negative. By a result [14] due to P. Lappan, there
exists a uniformly locally univalent analytic function in D which is not normal. In
a subsequent paper [16, Theorem 5], Lappan presents a concrete function having
these properties. This function

(12) (1− z)−
1+10i
100 − (1− z)−

1
100

emerges as a primitive of a function univalent in D.
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If w is meromorphic in D, and there exists 0 < δ ≤ 1 such that w is univalent
in each pseudo-hyperbolic disc ∆p(a, δ) = {z ∈ D : #p(z, a) < δ} for a ∈ D, then
w is called uniformly locally univalent. We give a short proof for the following
well-known lemma for the convenience of the reader.

Lemma B. A meromorphic function w in D satisfies Sw ∈ H∞
2 if and only if w

is uniformly locally univalent.

Proof. Suppose that w is meromorphic and Sw ∈ H∞
2 . If ‖Sw‖H∞

2
≤ 2, then the

assertion follows from [18, Theorem I]; for the meromorphic case, see [19, Corol-
lary 6.4]. If ‖Sw‖H∞

2
> 2, then define ga(z) = w(ϕa(δz)) for a ∈ D and δ =

(2/‖Sw‖H∞
2
)1/2. Now

|Sga(z)|(1− |z|2)2 =
∣∣Sw

(
ϕa(δz)

)∣∣∣∣ϕ′
a(δz)

∣∣2δ2(1− |z|2)2 ≤ ‖Sw‖H∞
2
δ2 = 2, z ∈ D,

and hence Nehari’s theorem implies that w is univalent in ∆p(a, δ) for any a ∈ D.
Conversely, suppose that w is meromorphic and uniformly locally univalent.

Then, A = 2−1Sw is analytic in D, and the hyperbolic distance between any two
distinct zeros of any non-trivial solution of (1) is uniformly bounded away from
zero. Now [20, Theorem 4] implies Sw ∈ H∞

2 . !
Since Sw ∈ H∞

2 does not imply that w is normal, it is natural to ask whether
we can estimate the growth of the spherical derivative of w. For example, if w is
the uniformly locally univalent function in (12), then

sup
z∈D

(1− |z|2)2w#(z) ≤ sup
z∈D

(1− |z|2)2 |w′(z)| < ∞

by the distortion theorem of analytic univalent functions [19, p. 21], while

sup
z∈D

(1− |z|2)α w#(z) = ∞, α < 1/100 + 1,

by the proof of [16, Theorem 4]. It turns out that the uniform local univalence
does restrict the growth of the spherical derivative. Due to an application of the
Cauchy-Schwarz inequality, the estimate in Theorem 7 is probably not sharp.

Theorem 7. Let w be a meromorphic function in D such that Sw ∈ H∞
2 . Then

(13) sup
z∈D

(1− |z|2)α w#(z) < ∞

for all α for which
(
1 + ‖Sw‖H∞

2
/2
)1/2

+ 1 < α < ∞.

Proof. By assumption, the differential equation (1) with A = 2−1Sw admits two
linearly independent solutions f1 and f2 such that w = f1/f2. By [9, Theorem 2],
all solutions f of (1) satisfy

sup
z∈D

(1− |z|2)α |f(z)| < ∞,

(
1 + ‖Sw‖H∞

2
/2
)1/2 − 1

2
< α < ∞.

By the Cauchy integral formula,

(14) sup
z∈D

(1− |z|2)α |f ′(z)|2 < ∞,
(
1 + ‖Sw‖H∞

2
/2
)1/2

+ 1 < α < ∞.

As in [22], we write

w# =
|w′|

1 + |w|2 =
1

1
|w′| +

|w2|
|w′|

=
|W (f1, f2)|
|f1|2 + |f2|2

.
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By means of the Cauchy-Schwarz inequality, we deduce that

|W (f1, f2)|2 =
∣∣f1(z)f ′

2(z)− f ′
1(z)f2(z)

∣∣2

≤
(
|f1(z)|2 + |f2(z)|2

) (
|f ′

1(z)|2 + |f ′
2(z)|2

)
, z ∈ D.

In conclusion, w# ≤ |W (f1, f2)|−1
(
|f ′

1|2 + |f ′
2|2

)
. Now, the assertion follows from

(14) when applied to f1 and f2. !

Finally, we return to the problem which is mentioned in the beginning of Sec-
tion 4. In particular, if f1 and f2 are linearly independent solutions of (1) with
A ∈ H∞

2 , then w = f1/f2 satisfies (13) for some sufficiently large α = α(‖A‖H∞
2
)

with 1 < α < ∞, by Theorem 7. Now [1, Theorem 4] implies that there exists
a constant δ = δ(f1, f2) with 0 < δ < 1 such that

#p(ζ1, ζ2) ≥ δ ·max
{
(1− |ζ1|2)α−1, (1− |ζ2|2)α−1

}

whenever ζ1, ζ2 ∈ D are points for which f1(ζ1) = 0 = f2(ζ2).
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[9] Janne Gröhn and Jouni Rättyä, On oscillation of solutions of linear differential equations,
J. Geom. Anal., DOI 10.1007/s12220-016-9701-3

[10] Einar Hille, Remarks on a paper be Zeev Nehari, Bull. Amer. Math. Soc. 55 (1949), 552–553.
MR0030000

[11] Einar Hille, Ordinary differential equations in the complex domain, Dover Publications, Inc.,
Mineola, NY, 1997. Reprint of the 1976 original. MR1452105

[12] Ilpo Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in
Mathematics, vol. 15, Walter de Gruyter & Co., Berlin, 1993. MR1207139

[13] Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics,
vol. 109, Springer-Verlag, New York, 1987. MR867407

[14] Peter Lappan, A non-normal locally uniformly univalent function, Bull. London Math. Soc.
5 (1973), 291–294. MR0330467

Licensed to University of Eastern Finland. Prepared on Tue Oct 25 08:51:55 EDT 2016 for download from IP 193.167.228.172.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2785866
http://www.ams.org/mathscinet-getitem?mr=0141789
http://www.ams.org/mathscinet-getitem?mr=3084433
http://www.ams.org/mathscinet-getitem?mr=0425128
http://www.ams.org/mathscinet-getitem?mr=1029707
http://www.ams.org/mathscinet-getitem?mr=1694317
http://www.ams.org/mathscinet-getitem?mr=2914364
http://arxiv.org/abs/1410.2777
http://arxiv.org/abs/1410.2777
http://dx.doi.org/10.1007/s12220-016-9701-3
http://www.ams.org/mathscinet-getitem?mr=0030000
http://www.ams.org/mathscinet-getitem?mr=1452105
http://www.ams.org/mathscinet-getitem?mr=1207139
http://www.ams.org/mathscinet-getitem?mr=867407
http://www.ams.org/mathscinet-getitem?mr=0330467


12 JANNE GRÖHN
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