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Abstract In 1984, Gehring and Pommerenke proved that if the Schwarzian deriva-
tive S(f) of a locally univalent analytic function f in the unit disk was such that
lim sup, 1 [S(/) (@) — 1z1%)? < 2, then there would exist a positive integer N
such that f takes every value at most N times. Recently, Becker and Pommerenke
have shown that the same result holds in those cases when the function f satisfies
that lim sup,, ., | f"(2)/f"(2)| (1 — |z|?) < 1. In this paper, we generalize these two
criteria for bounded valence of analytic functions to the cases when f is only locally
univalent and harmonic.
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1 Introduction

Let D be the unit disk in the complex plane C. Itis well known that if a locally univalent
function f in ID satisfies

f// (Z)

P =
1PN = sup 70

zeD

‘a—m%sL

then f is globally univalent in ID. This criterion of univalence in due to Becker [3].
Becker and Pommerenke showed that the constant 1 is sharp [4].

The quotient P(f) = f”/f’ is the pre-Schwarzian derivative of f. The quantity
I P(f)]|l defined above is said to be the pre-Schwarzian norm of f.

Nehari [15] proved that if a locally univalent analytic function f in ID satisfies

ISCHI = Squ)IS(f)(Z)I (1-lz)* <2, (1)
zZ€e
then f is globally univalent in D. Here, S(f) denotes the Schwarzian derivative of f
defined by
_riy =t = (L) S (LY
Mﬁ—PU)—fHﬁ)—<ﬂ> z(f). )

The Schwarzian norm ||S(f)| of f equals the supremum in (1).

The valence of an analytic mapping f in DD is defined by sup,,.c n(f, w), where
n(f, w) is the number of points z € D (counting multiplicities) for which f(z) = w.
The function f is said to have bounded valence if there exists a positive integer N
such that sup,,.cn(f, w) < N, that is, if there is a positive integer N such that f
takes every value at most N times in .

A criterion for the bounded valence of analytic functions in terms of the Schwarzian
derivative has been known for some time. Binyamin Schwarz [16], using techniques
from the theory of differential equations, proved that if a locally univalent analytic
function f in ID satisfies

IS(H@I A —z1H* <2

for all z in an annulus 0 < ry < |z] < 1, then f has bounded valence. The authors
in [9] show that the slightly stronger condition stated in Theorem A below suffices
to ensure not only that the locally univalent analytic function f in the unit disk has
a spherically continuous extension to I but also the criterion for bounded valence of
analytic functions that we now enunciate.

Theorem A Let f be a locally univalent analytic function in the unit disk. If

limsup [S(f)(2)] (1 — |z1*)? < 2,

|z|—>1

then f has bounded valence.
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Only recently the bounded valence criterion corresponding to that stated in Theo-
rem A, now in terms of the pre-Schwarzian derivative, has been obtained [5, Thm. 3.4].

Theorem B Let f be a locally univalent analytic function in the unit disk. If

f// (Z)

1—1z1%) <1,
f/(z)( lzI7) <

lim sup
|z]—>1

then there exists a positive integer N such that f takes every value at most N times in

D.

The main aim of this paper was to generalize the criteria for bounded valence stated
in Theorems A and B for locally univalent analytic functions in the unit disk to the
case of harmonic functions.

Perhaps it is appropriate to stress that we have not been able to find any paper
containing bounded valence criteria for harmonic functions in ID. The article [6], which
gathers bounded valence criteria for Weierstrass-Enneper /ifts of planar harmonic
mappings to their associated minimal surfaces, should be mentioned at this point.

2 Background
2.1 Harmonic Mappings

A complex-valued harmonic function f in the unit disk D can be writtenas f = h+3,
where both / and g are analytic in . This representation is unique up to an additive
constant that is usually determined by imposing the condition that the function g fixes
the origin. The representation f = h + g is then unique and is called the canonical
representation of f.

According to a theorem of Lewy [14], a harmonic mapping f = h + g is locally
univalent in D if and only if its Jacobian Jy = |’ | — |¢’|? is different from zero in
the unit disk. Hence, every locally univalent harmonic mapping is either orientation
preserving (if Jy > 0 in D) or orientation reversing (if Jy < 0). Note that f is
orientation reversing if and only if f is orientation preserving. This trivial observation
allows us to restrict ourselves to those cases when the locally univalent harmonic
mappings considered preserve the orientation so that |h'|> — |g’|*> > 0. Hence, the
analytic function 4 in the canonical representation of f = h + g is locally univalent
and the dilatation @ = g’/ '’ is analytic in D and maps the unit disk into itself.

Itis clear that the harmonic mapping f = h+g is analytic if and only if the function
g is constant.

2.2 Pre-Schwarzian and Schwarzian Derivatives of Harmonic Mappings

The harmonic pre-Schwarzian derivative Py ( f) and the harmonic Schwarzian deriva-
tive Sua(f) of an orientation preserving harmonic mapping f = h + g in the unit
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disk with dilatation @ = g’/ h’ were introduced in [10]. These operators are defined,
respectively, by the following formulas:

oo

PH(f)IP(h)—m

and

@ (K 30 @ \?
S — S(h e =y oy _ 2 _*Y ’
u(p) ()+1—|w|2(h/“’ “’) 2<1—|w|2>

where P (h) and S(h) are the classical pre-Schwarzian and Schwarzian derivatives of
h.

It is clear that when f is analytic (so that its dilatation is constant), the harmonic
pre-Schwarzian and Schwarzian derivatives of f coincide with the classical definitions
of the corresponding operators.

The harmonic pre-Schwarzian and Schwarzian norms of the function f are
defined, respectively, by | Pu(/)Il = sup.ep |Pu(/)(@I(1 — |z[*) and [Su(N)] =
supep [Su (@11 — z[H)?.

For further properties of the harmonic pre-Schwarzian and Schwarzian derivative
operators and the motivation for their definition, see [10].

The Schwarzian operators Py and Sy have proved to be useful to generalize classical
results in the setting of analytic functions to the more general setting of harmonic
mappings. This paper is another example of their usefulness, as will become apparent
in the proofs of our main results, Theorems 1 and 2 below.

At this point, we mention explicitly the following criterion of univalence that gen-
eralizes the Nehari criterion stated above as well as the criterion for quasiconformal
extension of locally univalent analytic functions due to Ahlfors and Weill [2]. The
sharp value of the constant §¢ has still to be determined [11].

Theorem C Let f = h + g be an orientation preserving harmonic mapping in D.
Then, there exists a positive real number 8y such that if for all z € D

ISu(HII = sup ISH(S) (@] (1= [z*)* < o,

then f is one-to-one in D. Moreover, if | Su(f)|| < dot for some t < 1, then f has a
quasiconformal extension to C U {oo}.

The corresponding result, now in terms of the pre-Schwarzian derivative, is as
follows (see [10, Thm. 8]). In this case, an extra-term involving the dilatation of the
function f must be taken into account. This extra-term is identically zero if f is
analytic so that the next theorem is the generalization to the classical criterion of
univalence due to Becker, Theorem B, to the cases when the functions considered are
harmonic:

Theorem D Let f = h + g be an orientation preserving harmonic mapping in D
with dilatation w. If for all z € D
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/ 1— 2
Pa(H @I (1 — ) + DU 3
I~ 0@

then f is univalent. The constant 1 is sharp.

Criteria for quasiconformal extension of harmonic mappings in terms of the har-
monic pre-Schwarzian derivative that extend the corresponding criteria in the analytic
setting due to Becker [3] and Ahlfors [1] can be found in [12].

We finish this section by pointing out the following remark that will be important
later in this paper:

It is not difficult to check that if f is an orientation preserving harmonic mapping
in D with dilatation w and ¢ is an analytic function in the unit disk with ¢ (D) C D,
then the composition F' = f o ¢ is an orientation preserving harmonic mapping in D
with dilatation wr = w o ¢. Moreover, for all z in the unit disk,

Pu(F)(2) = Pu(H @) - ¢ (0) + =& @
5
and 5
SH(F)@) = Su(NB@) - (¢'@) + S@)@). 5)

2.3 Hyperbolic Derivatives

Let w be an analytic self-map of the unit disk (that is, w is analytic in D and |w(z)| < 1
for all |z| < 1). The hyperbolic derivative w* of such function w is

o' (2) (1= |z|*)
1 —lw()?

w*(z) =

Notice that the second term in (3) coincides with |w™*(2)|.

The Schwarz—Pick lemma proves that |w*(z)| < 1 for all z in D and that equality
holds at some point zg in the unit disk if and only if @ is an automorphism of D. In
this case, |o*| = 1.

It is also easy to check that the chain rule for the hyperbolic derivative holds: if @
and ¢ are two analytic self-maps of D and the composition w o ¢ is well-defined, then

(@0 $)*(2) = 0" (¢(2) - $" ().

Since |¢*| < 1 we have

(@0 $)* ()] < 0" (@(2))]. Q)

2.4 Valence of Harmonic Mappings

The zeros of a locally univalent harmonic mapping f are isolated [7, p. 8]. Just as in the
analytic case, the valence of such a harmonic function f is defined by sup,, .c n(f, w),
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where n(f, w) is the number of points z € I (counting multiplicities) for which
f(z) = w. The function f is said to have bounded valence if there is a positive integer
N such that sup,, .cn(f, w) < N.

3 A Criterion for Bounded Valence of Harmonic Mappings in Terms of
the Pre-Schwarzian Derivative

We now state one of the two main theorems in this paper. It generalizes Theorem B to
those cases when the function considered is just harmonic.

Theorem 1 Let f = h + g be an orientation preserving harmonic mapping in the
unit disk with dilatation w. If

lo' ()| (1 — |z|2>> 4

. 2
lim sup (IPH(f)(Z)| =1zl + 1 —|w(2)?

[z|—1

)

then there exists a positive integer N such that f takes every value at most N times in
D.

It is possible to show that if (7) holds then all the analytic functions ¢, = h + Ag,
where |A| = 1, have bounded valence in the unit disk. However, we have not been
able to prove directly that under the assumption that if ¢, has bounded valence for all
such A, then f has bounded valence too.

The proof of our main theorem will follow similar arguments to those employed
in the proof of Theorem B. However, the criterion of univalence needed in the case
when the function f is harmonic will be the one provided in Theorem D instead of the
classical criterion of univalence due to Becker. The following lemma will be needed
to prove Theorem 1. We refer the reader to [5, Lem. 2.2 and 3.3] (see also [8]) for the
details of the proof.

Lemmal Letp € (1/2,1) and o > 0. Then, there exist a univalent analytic self-map
¥ of the unit disk and a positive integer M such that

M
U {e2km‘/MW(Z): zeD}={§3 20—1<¢l <1}

k=1
and

V' (2)

¥'(2)

(1— |z|2) <a.

sup
zeD

We now prove Theorem 1.
Proof By (7), there exists a real number p with 1/2 < p < 1 and 8 < 1 such that

lo' ()| (1 = |z?)

2
IPRCH@IA = 1219+ = 7

<B, 20—-1<|zl < 1. (8)
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Since the function f is locally univalent and |z| < 2p — 1 is compact, the function
f takes every value at most L times in |z| < 2p — 1.

Let now i be the univalent analytic self-map of the unit disk of Lemma 1 with
o = (1—p)/2 > 0.Then, for all positive integer k < M, the functions ¥, = k71/My,
satisfy

1 —
‘( <—ﬂ~ ©)

2

wk< 2)

For each such value of k, define the functions Fy = f o v. These are orientation
preserving harmonic mappings in the unit disk with dilatations wy = w o V.
Now, on the one hand, using (6) we have

zeID)

| ()] (1 = |z]*)
1 — o ()

= |wp (@) = [(@ o Y)"(2)]
o' (Y ()] (1 = ¥ (@)

* = 10
< |0 (Y (2)] I (W@ (10)
On the other hand, by (4) and the triangle inequality we get
2 / 2 v (2) )
| Pa(Fi) ()] (1 — [z]7) = [Pa(f) Wi @) ¥ (1A — [z]7) + @) (1 —1z%).
Kz

This yields, using (9) and [/} (2)|(1 — [z]*) < 1 — [¢%(2)|* (by the Schwarz-Pick
lemma), the inequality

1—
[Pu(F) @] (1= 1217 < [Pu(H W@ (1= [ @) + — -  ab

Finally, bearing in mind the fact that for all z € D and all k as above the modulus
[V (2)] > 2p — 1 and (8), we conclude from (10) and (11) that

/ 1 — 2
Pr(F @) (1 — 22y + @1 d = 1219

1 — Jor(2)]?
’ 1— ) -
= PRGN - @ + . (I//f(j)l)clu((Wk(zl)il)ﬁlkz(Z)I ) 2 :
<p+ # = # < 1.

Hence, by Theorem D, these functions Fy = f o iy are univalent in the unit disk.
Since, by Lemma 1,

M
U tw@:zeDi={c:20 -1 <2 < 1},

@ Springer



J.-M. Huusko, M. J. Martin

it follows that f takes every value at most M timesin2p — 1 < |z| < 1, and we obtain
that f takes every value at most N = L + M times in D. This completes the proof. O

4 Schwarzian Derivative Criterion for Finite Valence of Harmonic
Mappings

A direct consequence of the following lemma is that the Schwarzian derivative S(1)
defined by (2) of the function ¥ from Lemma 1 will satisfy

o2
sup IS @1 = [2%)? < 4o + . (12)

zeD

Though the result is folklore (see, for instance, [13, Proof of Lem. 10]), we include
the proof for the sake of completeness.

Lemma 2 Let yr be a locally univalent analytic function in the unit disk. Assume that

I»/f//(Z) 2
1— .
Sy | TR =
Then,
w”(Z) ' 2.2
1— 4o
e <w’(z)> (el =da

Proof In order to make the exposition clearer, let us use ¥ to denote the analytic

function P(yr) = " /y'.

Given a fixed but arbitrary point z € I, let r be the positive real number that satisfies
2r? = 1 + |z|*. Hence,

1= z)?
12 =2 _ 1.2 = '
r r |z] 2
By hypothesis, for all [¢] < 1,
v () o
W ()l = < .
| T T

The Cauchy and Poisson integral formulas now give

1 v ()
— 8 4
2 /m:r C—o2

o 1 1 2 r2_ |Z|2
< 22 25— 0 > o
1—rers—|zI° 27 Jo |re'? —z|

o 1 4o

I e e e E D

W) =

which completes the proof. O
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Now we prove a criterion for bounded valence of harmonic mappings in the unit
disk in terms or the harmonic Schwarzian derivative that generalizes Theorem A. The
constant Jg is equal to the one in Theorem C.

Theorem 2 Let f = h + g be an orientation preserving harmonic mapping in the
unit disk with dilatation w. If

lim sup [Su(£)(2)| (1 — |z]*)? < S0, (13)

[z]—1

then f has bounded valence in the unit disk.

Proof The argument of the proof is analogous to the one used to prove Theorem 1.
Condition (13) implies that there exist a real number p with 1/2 < p < 1 and
& > 0 such that

ISH(H@IA =z <8 —e, 20—1<zl < 1. (14)

The function f is locally univalent and |z| < 2p — 1 is compact. Therefore, f takes
every value at most L times in |z] < 2p — 1.
Consider the analytic self-map of the unit disk ¢ of Lemma 1 with ¢ =

/16 + 2¢ — 4. Then, by Lemma 2, we have that (12) holds. Thus, for all positive
integer k < M, the functions ¥y = e2kmi/M Y satisfy
2
2,2 o
sup [S(¥) ()] (1 — [z]7)° < 4o + 5 == (15)

zeD

Using (5), the triangle inequality, the Schwarz—Pick lemma, the fact that for all
z € D and all k the modulus |y (z)| > 2p — 1, (14), and (15), we have that the
functions Fy = f oy, k= 1,2,..., M, will satisfy that for all |z| < 1,

2
ISu(FO@1 (1 = 2P = 1Su(H W@ (1= W@ )
HS W @I — [2*)?

<8y — &+ &= 2.

Hence, by Theorem D, these functions F; = f o ¥y are univalent in the unit disk
and, as in the proof of Theorem 1, it follows that f takes every value at most M times
in2p — 1 < |z] < 1. We then obtain that f takes every value at most N = L + M
times in . O

Acknowledgements We would like to thank the referees for their careful reading of the manuscript and
for their useful suggestions.

References

1. Ahlfors, L.: Sufficient conditions for quasiconformal extension. Ann. Math. Stud. 79, 23-29 (1974)

@ Springer



J.-M. Huusko, M. J. Martin

10.

11.

12.

14.

15.
16.

. Ahlfors, L.V., Weill, G.: A uniqueness theorem for Beltrami equations. Proc. Am. Math. Soc. 13,

975-978 (1962)

. Becker, J.: Lownersche differentialgleichung und quasikonform fortsetzbare schlichte functionen. J.

Reine Angew. Math. 255, 23-43 (1972)

. Becker, J., Pommerenke, Ch.: Schlichtheitskriterien und Jordangebiete. J. Reine Angew. Math. 354,

74-94 (1984)

. Becker, J., Pommerenke, Ch.: Locally univalent functions and the Bloch and Dirichlet norm. Comput.

Methods Funct. Theory 16, 43-52 (2016)

. Chuaqui, M., Duren, P., Osgood, B.: Schwarzian derivative criteria for valence of analytic and harmonic

mappings. Math. Proc. Camb. Philos. Soc. 143, 473-486 (2007)

. Duren, P.: Harmonic Mappings in the Plane. Cambridge University Press, Cambridge (2004)
. Gallardo-Gutiérrez, E.A., Gonzadlez, M.J., Pérez-Gonzilez, F., Pommerenke, Ch., Ritty4, J.: Locally

univalent functions, VMOA and the Dirichlet space. Proc. Lond. Math. Soc. 106, 565-588 (2013)

. Gehring, FW., Pommerenke, Ch.: On the Nehari univalence criterion and quasicircles. Comment.

Math. Helvetici 59, 226-242 (1984)

Herndndez, R., Martin, M.J.: Pre-Schwarzian and Schwarzian derivatives of harmonic mappings. J.
Geom. Anal. 25, 64-91 (2015)

Hernédndez, R., Martin, M.J.: Criteria for univalence and quasiconformal extension of harmonic map-
pings in terms of the Schwarzian derivative. Arch. Math. (Basel) 104, 53-59 (2015)

Hernédndez, R.: Quasiconformal extensions of harmonic mappings. Ann. Acad. Sci. Fenn. Ser. A. 1
Math. 38, 617-630 (2013)

. Huusko, J.-M., Korhonen, T., Reijonen, A.: Linear differential equations with solutions in the growth

space H{SO. Ann. Acad. Sci. Fenn. Math. 41, 399-416 (2016)

Lewy, H.: On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Am. Math. Soc.
42, 689-692 (1936)

Nehari, Z.: The Schwarzian derivative and schlicht functions. Bull. Am. Math. Soc. 55, 545-551 (1949)
Schwarz, B.: Complex nonoscillation theorems and criteria of univalence. Trans. Am. Math. Soc. 80,
159-186 (1955)

@ Springer



	Criteria for Bounded Valence of Harmonic Mappings
	Abstract
	1 Introduction
	2 Background
	2.1 Harmonic Mappings
	2.2 Pre-Schwarzian and Schwarzian Derivatives of Harmonic Mappings
	2.3 Hyperbolic Derivatives
	2.4 Valence of Harmonic Mappings

	3 A Criterion for Bounded Valence of Harmonic Mappings in Terms of the Pre-Schwarzian Derivative
	4 Schwarzian Derivative Criterion for Finite Valence of Harmonic Mappings
	Acknowledgements
	References




