
ON BECKER’S UNIVALENCE CRITERION

JUHA-MATTI HUUSKO AND TONI VESIKKO

Abstract. We study locally univalent functions f analytic in the unit disc D
of the complex plane such that |f ′′(z)/f ′(z)| (1 − |z|2) ≤ 1 + C(1 − |z|) for all
z ∈ D for some 0 < C < ∞. Under this condition, function f is univalent
in certain horodiscs. The sufficient conditions such that f is bounded, belongs
to the Bloch space or belongs to the class of normal functions, are discussed.
Moreover, we consider generalizations for locally univalent harmonic functions.

1. Introduction

Let f be meromorphic in the unit disc D = {z ∈ C : |z| < 1} of the complex
plane. Moreover, let f be locally univalent, f ∈ Uloc for short. Equivalently, the
spherical derivative f#(z) = |f ′(z)|/(1+|f(z)|2) is non-vanishing, and equivalently
the Schwarzian derivative

S(f) =

(
f ′′

f ′

)′

− 1

2

(
f ′′

f ′

)2

is analytic in D. The celebrated Nehari univalence criterion states that if

|S(f)(z)| (1− |z|2)2 ≤ 2, z ∈ D, (1.1)

then f is univalent [18, Theorem 1]. The result is sharp by an example by Hille [14,
Theorem 1].
A result by B. Schwarz states that if

|S(f)(z)| (1− |z|2)2 ≤ N, r0 ≤ |z| < 1, (1.2)

for N = 2 and some 0 < r0 < 1, then f has finite valence [21, Corollary 1]. If
(1.2) holds for N < 2, then f has a spherically continuous extension to D, see [8,
Theorem 4]. Schwarz proved his result by showing that if f ∈ Uloc and f(a) = f(b)
for some a ̸= b, then

max
ζ∈⟨a,b⟩

|S(f)(ζ)| (1− |ζ|2)2 > 2, (1.3)

where ⟨a, b⟩ is the hyperbolic segment between a, b ∈ D, that is, a part of a circle
orthogonal to ∂D.
Chuaqui and Stowe [5, p. 564] asked whether

|S(f)(z)| (1− |z|2)2 ≤ 2 + C(1− |z|), z ∈ D, (1.4)
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where 0 < C < ∞ is a constant, implies that f is of finite valence. The question
remains open despite some progress was achieved in [10]. Steinmetz showed that
if (1.3) holds, then f is normal, that is, supz∈D f

#(z)(1− |z|2) <∞ [22, p. 328].
Let f be analytic and locally univalent in D, f ∈ UA

loc for short. In this case
f ′(z) ̸= 0 for z ∈ D and the pre-Schwarzian P (f) = f ′′/f ′ is analytic in D.
Trivially, the Cauchy integral formula implies that if supz∈D |f ′′(z)/f ′(z)|(1−|z|2)
is small enough, then (1.1) holds and f is univalent in D. The sharp bound for
univalence is given by the famous Becker’s univalence criterion [2, Korollar 4.1],
which states that if f ∈ UA

loc satisfies f(0) = 0 and f ′(0) = 1, and∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) ≤ ρ, z ∈ D, (1.5)

for ρ ≤ 1, then f is univalent in D, and if ρ < 1, then f has a quasi-conformal
extension to C = C ∪ {∞}. For ρ > 1, condition (1.4) does not guarantee the
univalence of f [3, Satz 6] which can in fact break brutally [9]. If (1.4) holds for
0 < ρ < 2, then f is bounded, and in the case ρ = 2, f is a Bloch function, that
is, supz∈D |f ′(z)|(1− |z|2) <∞, and therefore f is normal.
Becker and Pommerenke discovered recently that if∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) < ρ, r0 ≤ |z| < 1,

for ρ < 1 and some r0 ∈ (0, 1), then f has finite valence [4, Theorem 3.4]. As
opposed to Schwarz’s condition (1.2), the case of equality ρ = 1 remains open.
Even more appealing would be to obtain a sharp lower bound similar to (??), in
terms of the pre-Schwarzian.
In this paper, we consider the growth condition∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) ≤ 1 + C(1− |z|), z ∈ D, (1.6)

where 0 < C < ∞ is an absolute constant, for f ∈ UA
loc. When (1.5) holds,

we detect that f is univalent in horodiscs D(aeiθ, 1 − a), eiθ ∈ ∂D, for some
a = a(C) ∈ (0, 1).
The remainder of this paper is organized as follows. The main results con-

cerning univalence are stated in Section 2 and proved in Section 3. In Section 4
we discuss the sharpness of our results. Section 5 we define Bloch and normal
functions and show that under condition (1.5), the function f ∈ UA

loc is bounded.
Finally in Section (8) we state generalizations of our results to harmonic functions.
Moreover, for sake of completeness, we discuss the harmonic counterparts of the
results proven in [10].

2. Main results

First, we consider condition (1.4) locally near ∂D. Recall that each analytic and
univalent function f in D satisfies∣∣∣∣zf ′′(z)

f ′(z)
− 2|z|2

1− |z|2

∣∣∣∣ ≤ 4|z|
1− |z|2

, z ∈ D, (2.1)
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and hence (1.4) for ρ = 6 [19, p. 21].

Proposition 1. Let f ∈ UA
loc and ζ ∈ ∂D.

If there exists a sequence {wn} of points in D tending to ζ, such that∣∣∣∣f ′′(wn)

f ′(wn)

∣∣∣∣ (1− |wn|2) → c, (2.2)

for some c ∈ (6,∞], then for each δ > 0 there exists a point w ∈ f(D) such that
at least two of its distinct preimages belong to D(ζ, δ) ∩ D.
Conversely, if for each δ > 0 there exists a point w ∈ f(D) such that at least

two of its distinct preimages belong to D(ζ, δ) ∩ D, then there exists a sequence
{wn} of points in D tending to ζ such that (2.2) holds for some [1,∞].

Example 2. It is clear that (2.2) with c ∈ (6,∞) does not imply that f is of
infinite valence. For example, the polynomial f(z) = (1− z)2n+1, n ∈ N, satisfies
the sharp inequality ∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) ≤ 4n, z ∈ D,

although f(z) = ε2n+1 has n solutions in D(1, δ) ∩ D for each ε ∈ (0, δ), when
δ ∈ (0, 1) is small enough (depending on n).
The function f(z) = (1− z)−p, p > 0, satisfies the sharp inequality∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) ≤ 2(p+ 1), z ∈ D,

and for each p ∈ (2n, 2n + 2], n ∈ N ∪ {0}, the valence of f is n + 1 for suitably
chosen points in the image set.

Under the condition (1.5), function f is bounded, see Proposition 10 in Section 5.
Condition (1.5) implies that f is univalent in horodiscs.

Theorem 3. Let f ∈ UA
loc and assume that (1.5) holds for some 0 < C < ∞. If

0 < C ≤ 1, then f is univalent in D. If 1 < C < ∞, then there exists 0 < a < 1,
a = a(C), such that f is univalent in all discs D(aeiθ, 1 − a), 0 ≤ θ < 2π. In
particular, we can choose a = 1− (1 + C)−2.

Let f ∈ UA
loc be univalent in each horodisc D(aeiθ, 1− a), 0 ≤ θ < 2π, for some

0 < a < 1. By the proof of [10, Theorem 6], for each w ∈ f(D), the sequence of
pre-images {zn} ∈ f−1(w) satisfies∑

zn∈Q

(1− |zn|)1/2 ≤ Kℓ(Q)1/2 (2.3)

for any Carleson square Q. Here

Q = Q(I) =

{
reiθ : eiθ ∈ I, 1− |I|

2π
≤ r < 1

}
is called a Carleson square based on the arc I ⊂ ∂D, and |I| = ℓ(Q) is the
Euclidean arc length of I.
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By choosing Q = D in (2.3), we obtain

n(f, r, w) = O

(
1√
1− r

)
, r → 1−,

where n(f, r, w) is the number of pre-images {zn} = f−1(w) in the disc D(0, r).
Namely, arrange {zn} = f−1(w) by increasing modulus, and let 0 < |zn| = r <
|zn+1| to deduce

(1− r)1/2n(f, r, w) ≤
n∑

k=0

(1− |zk|)1/2 ≤ Kℓ(D)1/2 <∞,

for some 0 < K(a) <∞.

Theorem 4. Let f ∈ UA
loc be univalent in all Euclidean discs

D

(
C

1 + C
eiθ,

1

1 + C

)
, eiθ ∈ ∂D,

for some 0 < C <∞. Then∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) ≤ 2 + 4(1 +K(z)), z ∈ D,

where K(z) ≍ (1− |z|2) as |z| → 1−.

In view of (2.1), Theorem 4 is sharp. Moreover, since (2.1) implies∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|) ≤ 4 + 2|z|
1 + |z|

≤ 4

for univalent analytic functions f , Theorem 5 is sharp.

Theorem 5. Let f ∈ UA
loc be univalent in all Euclidean discs

D(aeiθ, 1− a) ⊂ D, eiθ ∈ ∂D

for some 0 < a < 1. Then∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|) ≤ 4, a ≤ |z| < 1. (2.4)

Proof. It is enough to prove (2.4) for |z| = a, since trivially f is univalent also in
D(beiθ, 1− b) ⊂ D(aeiθ, 1− a) for a < b < 1 and eiθ ∈ ∂D. Moreover, by applying
a rotation z 7→ λz, λ ∈ ∂D, it is enough to prove (2.4) for z = a.
Let T (z) = a+(1−a)z for z ∈ D. Now g = f ◦T is univalent in D and by (2.1)∣∣∣∣g′′(0)g′(0)

∣∣∣∣ = ∣∣∣∣f ′′(T (0))

f ′(T (0))

∣∣∣∣ |T ′(0)| =
∣∣∣∣f ′′(a)

f ′(a)

∣∣∣∣ (1− a) ≤ 4.

The assertion follows. �
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3. Becker’s criterion

Proof of Proposition 1. To prove the first assertion, assume on the contrary that
there exists δ > 0 such that f is univalent inD(ζ, δ)∩D. Without loss of generality,
we may assume that ζ = 1. Let T be a conformal map of D onto a domain
Ω ⊂ D(ζ, δ) ∩ D with the following properties:

(i) T (ζ) = ζ;
(ii) ∂Ω ⊃ {eiθ : | arg ζ − θ| < t} for some t > 0;

(iii)
∣∣∣T ′′(z)
T ′(z)

∣∣∣ (1 − |z|2) 1
2 ≤ 1 − ρ for all z ∈ D, where ρ ∈ (0, 1) is any pregiven

number.

The existence of such a map follows, for instance, by [7, Lemma 8]. Then∣∣∣∣f ′′(T (z))

f ′(T (z))
T ′(z) +

T ′′(z)

T ′(z)

∣∣∣∣ (1− |z|2) ≤ 6, z ∈ D,

by (2.1), since f ◦ T is univalent in D. Moreover, T ′′(z)
T ′(z)

(1− |z|2) → 0, as |z| → 1−,

by (iii). Let {wn} be a sequence such that wn → ζ, and define zn by T (zn) = wn.
Then zn → ζ, and since T ′ belongs to the disc algebra by [7, Lemma 8], we have

1 <
(1− |T (zn)|2)

|T ′(zn)|(1− |zn|2)
→ 1+, n→ ∞.

It follows that

lim sup
n→∞

∣∣∣∣f ′′(wn)

f ′(wn)

∣∣∣∣ (1− |wn|2)

= lim sup
n→∞

∣∣∣∣f ′′(T (zn))

f ′(T (zn))

∣∣∣∣ (1− |T (zn)|2)

= lim sup
n→∞

∣∣∣∣f ′′(T (zn))

f ′(T (zn))

∣∣∣∣ |T ′(zn)|(1− |zn|2)
(1− |T (zn)|2)

|T ′(zn)|(1− |zn|2)
≤ 6,

which is the desired contradiction.
To prove the second assertion, assume on the contrary that (2.2) fails, so that

there exist ρ ∈ (0, 1) and δ ∈ (0, 1) such that∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) ≤ ρ, z ∈ D(ζ, δ) ∩ D. (3.1)

If g = f ◦ T , then (3.1) and (i)–(iii) yield∣∣∣∣g′′(z)g′(z)

∣∣∣∣ (1− |z|2) ≤
∣∣∣∣f ′′(T (z))

f ′(T (z))

∣∣∣∣ |T ′(z)|2(1− |z|2) +
∣∣∣∣T ′′(z)

T ′(z)

∣∣∣∣ (1− |z|2)

≤
∣∣∣∣f ′′(T (z))

f ′(T (z))

∣∣∣∣ (1− |T (z)|2) + 1− ρ ≤ 1

for all z ∈ D. Hence g is univalent in D by Becker’s univalence criterion, and so is
f on Ω. This is clearly a contradiction. �
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Proof of Theorem 3. It is enough to consider the case θ = 0. Let T (z) = a+(1−a)
for z ∈ D, and g = f ◦ T . Then

(1− |z|2)
∣∣∣∣g′′(z)g′(z)

∣∣∣∣ = (1− |z|2)
∣∣∣∣f ′′(T (z))

f ′(T (z))

∣∣∣∣ |T ′(z)|

=

∣∣∣∣f ′′(T (z))

f ′(T (z))

∣∣∣∣ (1− |T (z)|2)(1− |z|2)|T ′(z)|
1− |T (z)|2

≤ (1 + C(1− |T (z)|)) (1− |z|2)(1− a)

1− |T (z)|2

≤ (1 + C(1− |a+ (1− a)z|)) (1− |z|2)(1− a)

1− |a+ (1− a)z|2
.

By the next lemma, for a = 1− (1 + C)−2, g is univalent in D and f is univalent
in D(a, 1− a). The assertion follows. �

Lemma 6. Let 1 < C <∞. Then(
1 + C

(
1−

∣∣∣∣ C2 + 2C

C2 + 2C + 1
+

1

(1 + C)2
z

∣∣∣∣))×
(1− |z|2) 1

(1+C)2

1−
∣∣∣ C2+2C
C2+2C+1

+ 1
(1+C)2

z
∣∣∣2 ≤ 1,

for z ∈ D.

Proof. Let h : [0, 1) → R, h(t) = (1 + C(1− t))/(1− t2). Then

h′(t) =
−Ct2 + 2(1 + C)t− C

(1− t2)2
= 0

if and only if t = tC = 1+C−
√
1+2C

C
∈ (0, 1). Hence, h is strictly decreasing on

[0, tC ] and strictly increasing on [tC , 1]. If

tC ≥ t =

∣∣∣∣ C2 + 2C

C2 + 2C + 1
+

1

(1 + C)2
z

∣∣∣∣ ,
then

h(t)(1− |z|2) 1

(1 + C)2
≤ h(0)(1− |z|2) 1

(1 + C)2
≤ 1

1 + C
≤ 1.

If

tC < t =

∣∣∣∣ C2 + 2C

C2 + 2C + 1
+

reiθ

(1 + C)2

∣∣∣∣ ≤ C2 + 2C + r

C2 + 2C + 1
= t′,

then, by

1− t′ =
1− r

(1 + C)2
, 1 + t′ =

2(1 + C)2 − (1− r)

(1 + C)2
,
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we obtain

h(t)
(1− |z|2)
(1 + C)2

≤ h(t′)
1− r2

(1 + C)2

=
1 + C(1− t′)

1− (t′)2
1− r2

(1 + C)2

=
(1 + C)2 + C(1− r)

2(1 + C)2 − (1− r)
(1 + r) ≤ 1,

(3.2)

if

kC(r) = (1 + r)
[
(1 + C)2 + C(1− r)

]
+ 1− r ≤ 2(1 + C)2.

Since kC(1) ≤ 2(1 + C)2 and

k′C(r) = (1 + C)2 + C(1− r)− C(1 + r)− 1 > 0

for r < 1 + C/2, inequality (3.2) holds and the assertion follows. �

Proof of Theorem 4. Let 0 < C/(1 + C) < |a| < 1 and g(z) = f(φa(raz)), where
φa(z) = (a− z)/(1− az) for a ∈ D, and

r2a =
|a| − C

1+C

|a|
(
1− |a| C

1+C

) .
Pseudo-hyperbolic disc ∆p(α, ρ) = {z ∈ D : |φα(z)| ≤ ρ}, α ∈ D, 0 < ρ < 1,
satisfies

∆p(α, ρ) = D

(
1− ρ2

1− |α|2ρ2
α,

1− |α|2

1− |α|2ρ2
ρ

)
.

We deduce

∆p(a, ra) ⊂ D

(
a

|a|
C

1 + C
,

1

1 + C

)
,

so that g is univalent in D. Now
g′′(0)

g′(0)
=
f ′′(a)

f ′(a)
φ′
a(0)ra +

φ′′
a(0)

φ′
a(0)

ra = −f
′′(a)

f ′(a)
(1− |a|2)ra + 2ara.

By (2.1), |g′′(0)/g′(0)| ≤ 4 and therefore∣∣∣∣f ′′(a)

f ′(a)
(1− |a|2)− 2a

∣∣∣∣ ≤ 4

ra
,

which implies ∣∣∣∣f ′′(a)

f ′(a)

∣∣∣∣ (1− |a|2) ≤ 2 +
4

ra
= 2 + 4(1 +K(a)),

where

K(a) =
1

ra
− 1 =

1− r2a
ra(1 + ra)

∼ 1

2
(1− r2a) =

1

2

C
1+C

(1− |a|2)
|a|

(
1− |a| C

1+C

) ∼ C

2
(1− |a|2),

as |a| → 1−. �
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4. Sharpness of results (sketch)

For each A ∈ H(D) there exists h ∈ Uloc such that A = Sh/2. Namely, h =
f1/f2, where f1, f2 are any two linearly independent solutions of

f ′′ + Af = 0. (4.1)

Note that h = f1/f2 is univalent in D ⊂ D if and only if each non-trivial solution
of (4.1) has at most one zero in D. Function f is a solution of

f ′′ + A1f
′ + A0f = 0

if and only if the standard transformation g = fe−
∫
A1 satisfies (4.1) for

A = A0 −
1

4
A2

1 −
1

2
A′

1.

Therefore f ′′/f ′ = B if and only if g = fe
(∫

f ′′/f ′) = ff ′ satisfies

g′′ +
1

2
S(f)g = 0.

Example 7. Let f be a locally univalent analytic function in D such that

f ′(z) =

(
1 + z

1− z

) 1
2

e
Cζz
2 , ζ ∈ ∂D, z ∈ D.

Then
f ′′(z)

f ′(z)
=

1

1− z2
+
Cζ

2
,

hence ∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) ≤ |z|(1 + C(1− |z|)), z ∈ D,

and so f is univalent in D if C ≤ 1 by Becker’s univalence criterion. Moreover,
f ′′(0)/f ′(0) = 1 + Cζ/2, so for ζ = 1 the function f is not univalent if C > 10.
Can we get a good lower bound for the valence depending on C? Is it true that if
C ≥ cn2 for some c > 0, then the valence for a suitably chosen point in the image
set is at least n for each n ∈ N?
This method can also be used to construct examples with larger error functions

than linear ones.

Example 8. Let g, w ∈ H(D) such that w(z) =
∫ z

0
eg(ζ) dζ. Now w′(z) = eg(z),

and
w′′

w′ =
egg′

eg
= g′

Choose g(ζ) = i4πζ so that g′ = i4π. Now

w(1/2) =

∫ 1/2

0

ei4πζ dζ =
ei2π − 0

i4π
= 0 = w(0).

Choose g such that ∫ z1

0

eg(ζ) dζ =

∫ z2

0

eg(ζ) dζ,
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or equivalently ∫ z2

z1

eg(ζ) dζ = 0,

and

|ζ||g′(ζ)|(1− |ζ|2) ≤ 1, ζ ∈ [z1, z2],

but

|ζ0||g′(ζ0)|(1− |ζ0|2) > 1

for some ζ0 ∈ D.

Example 9. One way to try to find an example of f such that it satisfies∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) ≤ 1 + ε(1− |z|), z ∈ D, (4.2)

for some ε smaller than the linear rate is to consider f ′ = eg, where g ∈ B \ B0 is

lacunary. Take, for example, g(z) =
∑∞

k=0 z
2k and calculate

rg′(r)

1− r
=

cr

(1− r)2
+ h(r)

for a certain c > 0, from which we might find sharp inequality (4.2) for some
error function ε. Then we should be able to judge the valence of f =

∫
eg. This

approach seems quite technical.

5. Distortion theorems

Denote by S the class of f ∈ UA
loc univalent in D with f(0) = 0 and f ′(0) = 1.

By inequality (2.1), the Koebe function

k(z) =
z

(1− z)2
=

1

(1− z)2
− 1

1− z
,

is extremal in S. Namely, each f ∈ S satisfies

|f (j)(z)| ≤ k(j)(|z|),
∣∣∣∣f (j+1)(z)

f (j)(z)

∣∣∣∣ ≤ k(j+1)(|z|)
k(j)(|z|)

, j = 0, 1, (5.1)

for z ∈ D \ {0} and j = 0, 1. Moreover, |S(f)(z)| ≤ 6(1 − |z|2)−2 = |Sk(|z|)| for
f ∈ S. This is the converse of Nehari’s theorem, discovered by Kraus [16].
A meromorphic function f : D → C = C∪{∞} is normal, denoted by f ∈ N if

the family {f ◦ φa : a ∈ D} is normal in the sense of Montel. An equivalent condi-
tion is that ∥f∥N = supz∈D f

#(z)(1−|z|2) <∞. Similarly, the Bloch space B ⊂ N
consists of functions f analytic in D such that ∥f∥B = supz∈D |f ′(z)|(1−|z|2) <∞.
Here f# is the spherical derivative of f , defined as

f#(z) =
|f ′(z)|

1 + |f(z)|2

outside the poles of f , and as a limit f ♯(a) = limz→a f
♯(z) whenever a ∈ D is a

pole of f . Consequently, f# is a continuous function and non-vanishing if and
only if f is locally univalent.
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Bloch and normal functions emerge in a natural way as Lipschitz mappings.
Denote the Euclidean metric by dE and define the hyperbolic metric in D by
setting

dH(z, w) =
1

2
log

1 + |φz(w)|
1− |φz(w)|

, z, w ∈ D.

Each f ∈ B is a Lipschitz function from (D, dH) to (C, dE) with constant ∥f∥B.
Namely, if f is analytic in D such that

|f(z)− f(w)| ≤MdH(z, w), z, w ∈ D,

then by letting w → z, we obtain |f ′(z)|(1− |z|2) ≤M , for all z ∈ D. Conversely,
if f , we obtain

|f(z)− f(w)| ≤
∫
⟨z,w⟩

|f ′(ζ)||dζ| ≤ sup
ζ∈⟨z,w⟩

|f ′(ζ)|(1− |ζ|2)dH(z, w),

and hence

|f(z)− f(w)| ≤ ∥f∥BdH(z, w), z, w ∈ D.
Each f ∈ N is a Lipschitz map from (D, dH) to (C, χ), where

χ(z, w) =
|z − w|√

1 + |z|2
√

1 + |w|2
, χ(z,∞) =

1√
1 + |z|2

is the chordal metric. The Lipschitz constant of f ∈ N is found to be equal to

∥f∥N = sup
z∈D

|f ′(z)|
1 + |f(z)|2

(1− |z|2).

In general, integration along hyperbolic segments seems to be a useful method,
and we note some facts about the growth condition (1.5) considered in this paper.
For z, w ∈ D, the hyperbolic segment ⟨z, w⟩ is contained in the discD ((z + w)/2, |z − w|/2),
which yields

1− |ζ| ≤ 1− |z + w|
2

+
|z − w|

2
, ζ ∈ ⟨z, w⟩ .

Consequently, by integrating along hyperbolic segments, we note that the condi-
tion ∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ ≤ B

1− |z|2
+
C(1− |z|)
1− |z|2

, z ∈ D, (5.2)

for some 0 < B,C <∞, is equivalent to∣∣∣∣log f ′(z)

f ′(w)

∣∣∣∣ ≤ dH(z, w)
B + C

(
1− |z + w|

2
+

|z − w|
2

)
dH(z, w), z, w ∈ D.

Trivially, condition (5.4) implies a Nehari-type condition with a linear error. If g
analytic in D satisfies |g(z)| ≤ φ(|z|), for z ∈ D, then by Cauchy’s integral formula
|g′(z)| ≤ φ(|ζ|)(|ζ|2 − |z|2)−1 for all |z| < |ζ| < 1. Hence, condition (5.4) for some
constants 0 < B,C <∞ implies

|S(f)(z)|(1− |z|2)2 ≤ 4B +
B2

2
+ (4C +BC)(1− |z|) + C2

2
(1− |z|)2.

Of course, this estimate is usually far from being sharp.
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Since χ(z, w) ≤ dE(z, w), for all z, w ∈ C, we have B ⊂ N . By the Schwarz-pick
lemma, each bounded analytic function f satisfies ∥f∥B ≤ supz∈D |f(z)|.
Since the exponential function is Lipschitz from (C, dE) to (C,∞), we have

exp(B) ⊂ N . Moreover, since each rational function R is Lipschitz from (C, χ)
to itself, R ◦ f ∈ N whenever f ∈ N . However, it is not clear if f 2 ∈ N implies
f ∈ N .
If f is univalent, then both f, f ′ ∈ N by the estimate

(f (j))♯ =
|f (j+1)(z)|

1 + |f (j)(z)|2
≤ 1

2

∣∣∣∣f (j+1)(z)

f (j)(z)

∣∣∣∣
and (5.5). However, it is not clear if f ′′ ∈ N . At least, each primitive g of an
univalent function satisfies g′′ ∈ N .
A function f ∈ UA

loc is uniformly locally univalent if there exists δ > 0 such that
f is univalent in each pseudo-hyperbolic disc ∆(a, δ) = {z ∈ D : dph(z, a) < δ}.
By a result of Schwarz, this is the case if and only if S(f) ∈ H∞

2 . An equivalent
condition is log f ′ ∈ B and therefore each uniformly locally univalent function is
normal.
By using arguments similar to those in the proof of [4, Theorem 3.2], we obtain

the following result.

Theorem 10. Let f be meromorphic in D and let∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ ≤ φ(|z|), 0 ≤ R ≤ |z| < 1, (5.3)

for some φ : [R, 1) → [0,∞). If

lim sup
r→1−

(1− r) exp

(∫ r

R

φ(t) dt

)
<∞, (5.4)

then

sup
R<|z|<1

|f ′(z)|(1− |z|2) <∞.

Further, if ∫ 1

R

exp

(∫ s

R

φ(t) dt

)
ds <∞, (5.5)

then

sup
R<|z|<1

|f(z)| <∞.

Proof. Let ζ ∈ ∂D. Let R ≤ ρ < r < 1 and note that f ′ is non-vanishing on the
circle |z| = ρ. Then∣∣∣∣log f ′(rζ)

f ′(ρζ)

∣∣∣∣ ≤ ∫ r

ρ

∣∣∣∣f ′′(tζ)

f ′(tζ)

∣∣∣∣ dt ≤ ∫ r

ρ

φ(t) dt.

Therefore

|f ′(rζ)| ≤ |f ′(ρζ)| exp
(∫ r

ρ

φ(t) dt

)
,
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which implies the first claim. By another integration,

|f(rζ)− f(ρζ)| ≤ |f ′(ρζ)|
∫ r

ρ

exp

(∫ s

ρ

φ(t) dt

)
ds.

Hence,

|f(z)| ≤M(ρ, f) +M(ρ, f ′)

∫ 1

ρ

exp

(∫ s

ρ

φ(t) dt

)
ds <∞

for ρ < |z| < 1. �
For example, function

φ(t) =
2

1− t2
=

(
log

1 + t

1− t

)′

satisfies (5.2), and for any 0 < ε <∞, 0 < B < 2 and 0 < C <∞,

ψ(t) =
B

1− t2
+

C

1− t2

(
log

e

1− t

)−(1+ε)

satisfies (5.2).
By Theorem (10), if f is meromorphic in D and satisfies (5.1) and (5.2) for

some φ, then f ∈ N . Moreover, if f is also analytic in D, then f ∈ B, and if (5.3)
holds, then f is bounded.
For f ∈ UA

loc, we have not found φ : [0, 1) → [0,∞] such that condition (5.2)
would imply f ∈ N but would not imply f ∈ B.
If f ∈ S, then by (5.5), M(ρ, f) and M(ρ, f ′) have an upper bound which is

independent of f . In [4, Theorem 3.2] it was shown that if f is analytic in D such
that f(0) = 0, f ′(0) = 1 and (1.4) holds, then |f(z)| < 11.48 for z ∈ D.

6. Generalizations for harmonic functions

A complex-valued harmonic function f in D has a unique representation f =
h+ g, where both h and g are analytic in D and g(0) = 0.
Function f = h+g is locally univalent if and only if its Jacobian Jf = |h′|2−|g′|2

is non-vanishing [17]. We consider f = h + g locally univalent such that f is
orientation preserving, f ∈ UH

loc for short. In this case Jf = |h′|2−|g′|2 > 0, which
implies that h ∈ UA

loc and the dilatation ωf = ω = g′/h′ is analytic in D and
maps D into itself.
Clearly f = h+ g is analytic if and only if the function g is constant.
For f ∈ UA

loc, the pre-Schwarzian P (f) = f ′′/f ′ can be defined in terms of the
Jacobian Jf = |f ′|2. Namely P (f) = ∂

∂z
(log Jf ) and S(f) = P (f)′ − 1

2
P (f)2.

By extending this definition to f = h + g ∈ UH
loc, we obtain the harmonic pre-

Schwarzian derivative

PH(f) =
∂

∂z
(log Jf ) = P (h)− ω ω′

1− |ω|2
.

and harmonic Schwarzian derivative

SH(f) = S(h) +
ω

1− |ω|2

(
h′′

h′
ω′ − ω′′

)
− 3

2

(
ω ω′

1− |ω|2

)2

.
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These operators were introduced and motivated in [11].
If f ∈ UH

loc and ψ ∈ UA
loc, then F = f ◦ψ ∈ UH

loc with dilatation ωF = ωf ◦ψ and
the chain rules

PH(F )(z) = PH(f)(φ(z)) · φ′(z) +
φ′′(z)

φ′(z)
, z ∈ D,

and

SH(F )(z) = SH(f)(φ(z)) · (φ′(z))
2
+ S(φ)(z), z ∈ D,

hold. There exists 0 < δ0 < 1 such that if f ∈ UH
loc satisfies

|SH(f)(z)|(1− |z|2)2 ≤ δ0, (6.1)

for z ∈ D, then f is univalent in, see [1] and [12]. The sharp value of δ0 is not
known. Moreover, if f ∈ UH

loc satisfies

|PH(f)(z)|(1− |z|2) + |ω′(z)|
1− |ω(z)|2

(1− |z|2) ≤ 1, (6.2)

for z ∈ D, then f is univalent. The constant 1 is sharp, by the sharpness of
Becker’s univalence criterion. If one of the inequalities (8.1) and (8.2), with a
slightly smaller right-hand-side constant, holds in an annulus r0 < |z| < 1, then f
is of finite valence [15].
Conversely to these univalence criteria, there exist absolute constants 0 <

C1, C2 <∞ such that if f ∈ UH
loc is univalent, then

sup
z∈D

|PH(f)(z)| (1− |z|2) ≤ C1, (6.3)

and

sup
z∈D

|SH(f)(z)| (1− |z|2)2 ≤ C2,

see [13].The sharp values of C1 and C2 are not known.
We obtain generalizations to some of the results in this paper for harmonic

functions.

Proposition 11. Let f ∈ UH
loc and ζ ∈ ∂D.

If there exists a sequence {wn} of points in D tending to ζ, such that

|PH(f)(wn)| (1− |wn|2) +
|ω′(wn)|

1− |ω(wn)|2
(1− |wn|2) → c, (6.4)

for some c ∈ (C1 + 1,∞], where C1 is defined as in (8.3), or

|SH(f)(wn)| (1− |wn|2)2 → c, (6.5)

for some c ∈ (C2,∞], then for each δ > 0 there exists a point w ∈ f(D) such that
at least two of its distinct preimages belong to D(ζ, δ) ∩ D.
If for each δ > 0 there exists a point w ∈ f(D) such that at least two of its

distinct preimages belong to D(ζ, δ) ∩ D, then there exists a sequence {wn} of
points in D tending to ζ such that (8.4) holds for some [1,∞]. Moreover, for
some sequence {wn} of points in D tending to ζ condition (8.5) holds for some
c ∈ [δ0,∞].
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Theorem 12. Let f = h+ g ∈ UH
loc such that

|SH(f)|(1− |z|2) ≤ δ0(1 + C(1− |z|)), z ∈ D,
for some 0 < C <∞. Then each pair of points z1, z2 ∈ D such that f(z1) = f(z2)
and 1− |ξ(z1, z2)| < 1/C satisfies

dH(z1, z2) ≥ log
2− C1/2(1− |ξ(z1, z2)|)1/2

C1/2(1− |ξ(z1, z2)|)1/2
. (6.6)

Conversely, if there exists a constant 0 < C < ∞ such that each pair of points
z1, z2 ∈ D for which f(z1) = f(z2) and 1− |ξ(z1, z2)| < 1/C satisfies (8.6), then

|SH(f)|(1− |z|2) ≤ C2(1 + ΨC(|z|)(1− |z|)1/3), 1− |z| < (8C)−1,

where ΨC is positive, and satisfies ΨC(|z|) → (2(8C)1/3)+ as |z| → 1−.

Theorem 13. Let f = h+ g ∈ UH
loc with dilatation ω = g′/h′ such that

|PH(f)(z)|(1− |z|2) + |ω′(z)|
1− |ω(z)|2

(1− |z|2) ≤ 1 + C(1− |z|), z ∈ D,

for some 0 < C <∞. Then there exists 0 < a = a(C) < 1 such that f is univalent
in D(aeiθ, 1− a) for all 0 ≤ θ < 2π.

It is not clear how the boundedness of f ∈ UH
loc could be studied. A domain

D ⊂ C is starlike if for some point a ∈ D, all linear segments [a, z], z ∈ D are
contained in D. Let h ∈ UA

loc be univalent, let h(D) be starlike with respect to
z0 ∈ h(D) and f = h+ g ∈ UH

loc. Then the function

z 7→ Ω(z) =
g(z)− g(z0)

h(z)− h(z0)

maps D into D. To see this, let a ∈ D and let R = h−1([h(z0), h(a)]) be the
pre-image of the segment [h(z0), h(a)]γ under h. Then

|h(a)− h(z0)| =
∫
R

|h′(ζ)||dζ| ≥
∣∣∣∣∫

R

g′(ζ) dζ

∣∣∣∣ = |g(a)− g(z0)|.

Theorem 14. Let f ∈ UH
loc be univalent in all Euclidean discs

D(aeiθ, 1− a) ⊂ D, eiθ ∈ ∂D,
for some 0 < a < 1. Then∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|) ≤ C1, a ≤ |z| < 1,

where C1 is defined as in (8.3).

Theorem 15. Let f ∈ UH
loc be univalent in all Euclidean discs

D

(
C

1 + C
eiθ,

1

1 + C

)
, eiθ ∈ ∂D,

for some 0 < C <∞. Then∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ (1− |z|2) ≤ 2 + C1(1 +K(z)), z ∈ D,
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where K(z) ≍ (1− |z|2) as |z| → 1−, and C1 is defined as in (8.3).
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[10] J. Gröhn, J. Rättyä, On oscillation of solutions of linear differential equations.
https://arxiv.org/abs/1611.05667

[11] R. Hernández and M. J. Mart́ın, Pre-Schwarzian and Schwarzian derivatives of harmonic
mappings, J. Geom. Anal. 25 (2015), 64–91.

[12] R. Hernández and M. J. Mart́ın, Quasiconformal extensions of harmonic mappings, Ann.
Acad. Sci. Fenn. Ser. A. I Math. 38 (2013), 617–630.

[13] R. Hernández and M. J. Mart́ın, Pre-Schwarzian and Schwarzian derivatives of harmonic
mappings. J. Geom. Anal. 25 (2015), no. 1, 64–91.

[14] E. Hille, Oscillation Theorems in the Complex Domain, Trans. Amer. Math. Soc. 23 (1922),
no. 4, 350–385.

[15] J.-M. Huusko, M. Mart́ın, Criteria for bounded valence of harmonic mappings. Submitted
manuscript.
https://arxiv.org/abs/1611.05667
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