ON BECKER'S UNIVALENCE CRITERION

JUHA-MATTI HUUSKO AND TONI VESIKKO

ABSTRACT. We study locally univalent functions f analytic in the unit disc \mathbb{D} of the complex plane such that $|f''(z)/f'(z)|(1-|z|^2) \leq 1+C(1-|z|)$ for all $z \in \mathbb{D}$ for some $0 < C < \infty$. Under this condition, function f is univalent in certain horodiscs. The sufficient conditions such that f is bounded, belongs to the Bloch space or belongs to the class of normal functions, are discussed. Moreover, we consider generalizations for locally univalent harmonic functions.

1. INTRODUCTION

Let f be meromorphic in the unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ of the complex plane. Moreover, let f be locally univalent, $f \in U_{\text{loc}}$ for short. Equivalently, the spherical derivative $f^{\#}(z) = |f'(z)|/(1+|f(z)|^2)$ is non-vanishing, and equivalently the Schwarzian derivative

$$S(f) = \left(\frac{f''}{f'}\right)' - \frac{1}{2}\left(\frac{f''}{f'}\right)^2$$

is analytic in \mathbb{D} . The celebrated Nehari univalence criterion states that if

$$|S(f)(z)| (1 - |z|^2)^2 \le 2, \quad z \in \mathbb{D},$$
(1.1)

then f is univalent [18, Theorem 1]. The result is sharp by an example by Hille [14, Theorem 1].

A result by B. Schwarz states that if

$$|S(f)(z)| (1 - |z|^2)^2 \le N, \quad r_0 \le |z| < 1, \tag{1.2}$$

for N = 2 and some $0 < r_0 < 1$, then f has finite valence [21, Corollary 1]. If (1.2) holds for N < 2, then f has a spherically continuous extension to $\overline{\mathbb{D}}$, see [8, Theorem 4]. Schwarz proved his result by showing that if $f \in U_{\text{loc}}$ and f(a) = f(b)for some $a \neq b$, then

$$\max_{\zeta \in \langle a, b \rangle} |S(f)(\zeta)| \, (1 - |\zeta|^2)^2 > 2, \tag{1.3}$$

where $\langle a, b \rangle$ is the hyperbolic segment between $a, b \in \mathbb{D}$, that is, a part of a circle orthogonal to $\partial \mathbb{D}$.

Chuaqui and Stowe [5, p. 564] asked whether

$$|S(f)(z)| (1 - |z|^2)^2 \le 2 + C(1 - |z|), \quad z \in \mathbb{D},$$
(1.4)

Date: April 18, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 34C10, 34M10.

Key words and phrases. Becker, Nehari, bounded, normal, univalent, valence.

This research was supported in part by the Academy of Finland #268009, and the Faculty of Science and Forestry of the University of Eastern Finland #930349.

where $0 < C < \infty$ is a constant, implies that f is of finite valence. The question remains open despite some progress was achieved in [10]. Steinmetz showed that if (1.3) holds, then f is normal, that is, $\sup_{z \in \mathbb{D}} f^{\#}(z)(1 - |z|^2) < \infty$ [22, p. 328].

Let f be analytic and locally univalent in \mathbb{D} , $f \in U^A_{\text{loc}}$ for short. In this case $f'(z) \neq 0$ for $z \in \mathbb{D}$ and the pre-Schwarzian P(f) = f''/f' is analytic in \mathbb{D} . Trivially, the Cauchy integral formula implies that if $\sup_{z\in\mathbb{D}} |f''(z)/f'(z)|(1-|z|^2)$ is small enough, then (1.1) holds and f is univalent in \mathbb{D} . The sharp bound for univalence is given by the famous Becker's univalence criterion [2, Korollar 4.1], which states that if $f \in U^A_{\text{loc}}$ satisfies f(0) = 0 and f'(0) = 1, and

$$\left|\frac{f''(z)}{f'(z)}\right| (1-|z|^2) \le \rho, \quad z \in \mathbb{D},$$
(1.5)

for $\rho \leq 1$, then f is univalent in \mathbb{D} , and if $\rho < 1$, then f has a quasi-conformal extension to $\overline{C} = \mathbb{C} \cup \{\infty\}$. For $\rho > 1$, condition (1.4) does not guarantee the univalence of f [3, Satz 6] which can in fact break brutally [9]. If (1.4) holds for $0 < \rho < 2$, then f is bounded, and in the case $\rho = 2$, f is a Bloch function, that is, $\sup_{z \in \mathbb{D}} |f'(z)|(1-|z|^2) < \infty$, and therefore f is normal.

Becker and Pommerenke discovered recently that if

$$\left|\frac{zf''(z)}{f'(z)}\right| (1-|z|^2) < \rho, \quad r_0 \le |z| < 1,$$

for $\rho < 1$ and some $r_0 \in (0, 1)$, then f has finite valence [4, Theorem 3.4]. As opposed to Schwarz's condition (1.2), the case of equality $\rho = 1$ remains open. Even more appealing would be to obtain a sharp lower bound similar to (??), in terms of the pre-Schwarzian.

In this paper, we consider the growth condition

$$\left|\frac{f''(z)}{f'(z)}\right| (1-|z|^2) \le 1 + C(1-|z|), \quad z \in \mathbb{D},$$
(1.6)

where $0 < C < \infty$ is an absolute constant, for $f \in U_{\text{loc}}^A$. When (1.5) holds, we detect that f is univalent in horodiscs $D(ae^{i\theta}, 1-a), e^{i\theta} \in \partial \mathbb{D}$, for some $a = a(C) \in (0, 1)$.

The remainder of this paper is organized as follows. The main results concerning univalence are stated in Section 2 and proved in Section 3. In Section 4 we discuss the sharpness of our results. Section 5 we define Bloch and normal functions and show that under condition (1.5), the function $f \in U_{\text{loc}}^A$ is bounded. Finally in Section (8) we state generalizations of our results to harmonic functions. Moreover, for sake of completeness, we discuss the harmonic counterparts of the results proven in [10].

2. Main results

First, we consider condition (1.4) locally near $\partial \mathbb{D}$. Recall that each analytic and univalent function f in \mathbb{D} satisfies

$$\left|\frac{zf''(z)}{f'(z)} - \frac{2|z|^2}{1 - |z|^2}\right| \le \frac{4|z|}{1 - |z|^2}, \quad z \in \mathbb{D},\tag{2.1}$$

and hence (1.4) for $\rho = 6$ [19, p. 21].

Proposition 1. Let $f \in U_{loc}^A$ and $\zeta \in \partial \mathbb{D}$. If there exists a sequence $\{w_n\}$ of points in \mathbb{D} tending to ζ , such that

$$\left|\frac{f''(w_n)}{f'(w_n)}\right| (1 - |w_n|^2) \to c,$$
(2.2)

for some $c \in (6, \infty]$, then for each $\delta > 0$ there exists a point $w \in f(\mathbb{D})$ such that at least two of its distinct preimages belong to $D(\zeta, \delta) \cap \mathbb{D}$.

Conversely, if for each $\delta > 0$ there exists a point $w \in f(\mathbb{D})$ such that at least two of its distinct preimages belong to $D(\zeta, \delta) \cap \mathbb{D}$, then there exists a sequence $\{w_n\}$ of points in \mathbb{D} tending to ζ such that (2.2) holds for some $[1,\infty]$.

Example 2. It is clear that (2.2) with $c \in (6, \infty)$ does not imply that f is of infinite valence. For example, the polynomial $f(z) = (1-z)^{2n+1}$, $n \in \mathbb{N}$, satisfies the sharp inequality

$$\left|\frac{f''(z)}{f'(z)}\right|(1-|z|^2) \le 4n, \quad z \in \mathbb{D},$$

although $f(z) = \varepsilon^{2n+1}$ has n solutions in $D(1,\delta) \cap \mathbb{D}$ for each $\varepsilon \in (0,\delta)$, when $\delta \in (0, 1)$ is small enough (depending on n).

The function $f(z) = (1-z)^{-p}$, p > 0, satisfies the sharp inequality

$$\left|\frac{f''(z)}{f'(z)}\right| (1-|z|^2) \le 2(p+1), \quad z \in \mathbb{D},$$

and for each $p \in (2n, 2n+2]$, $n \in \mathbb{N} \cup \{0\}$, the valence of f is n+1 for suitably chosen points in the image set.

Under the condition (1.5), function f is bounded, see Proposition 10 in Section 5. Condition (1.5) implies that f is univalent in horodiscs.

Theorem 3. Let $f \in U_{loc}^A$ and assume that (1.5) holds for some $0 < C < \infty$. If 0 < C < 1, then f is univalent in \mathbb{D} . If $1 < C < \infty$, then there exists 0 < a < 1, a = a(C), such that f is univalent in all discs $D(ae^{i\theta}, 1-a), 0 \leq \theta < 2\pi$. In particular, we can choose $a = 1 - (1 + C)^{-2}$.

Let $f \in U_{\text{loc}}^A$ be univalent in each horodisc $D(ae^{i\theta}, 1-a), 0 \leq \theta < 2\pi$, for some 0 < a < 1. By the proof of [10, Theorem 6], for each $w \in f(\mathbb{D})$, the sequence of pre-images $\{z_n\} \in f^{-1}(w)$ satisfies

$$\sum_{z_n \in Q} (1 - |z_n|)^{1/2} \le K\ell(Q)^{1/2}$$
(2.3)

for any Carleson square Q. Here

$$Q = Q(I) = \left\{ re^{i\theta} : e^{i\theta} \in I, \ 1 - \frac{|I|}{2\pi} \le r < 1 \right\}$$

is called a Carleson square based on the arc $I \subset \partial \mathbb{D}$, and $|I| = \ell(Q)$ is the Euclidean arc length of I.

By choosing $Q = \mathbb{D}$ in (2.3), we obtain

$$n(f, r, w) = O\left(\frac{1}{\sqrt{1-r}}\right), \quad r \to 1^-,$$

where n(f, r, w) is the number of pre-images $\{z_n\} = f^{-1}(w)$ in the disc $\overline{D(0, r)}$. Namely, arrange $\{z_n\} = f^{-1}(w)$ by increasing modulus, and let $0 < |z_n| = r < |z_{n+1}|$ to deduce

$$(1-r)^{1/2}n(f,r,w) \le \sum_{k=0}^{n} (1-|z_k|)^{1/2} \le K\ell(\mathbb{D})^{1/2} < \infty,$$

for some $0 < K(a) < \infty$.

Theorem 4. Let $f \in U^A_{loc}$ be univalent in all Euclidean discs

$$D\left(\frac{C}{1+C}e^{i\theta}, \frac{1}{1+C}\right), \quad e^{i\theta} \in \partial \mathbb{D},$$

for some $0 < C < \infty$. Then

$$\left|\frac{f''(z)}{f'(z)}\right| (1-|z|^2) \le 2+4(1+K(z)), \quad z \in \mathbb{D},$$

where $K(z) \asymp (1 - |z|^2)$ as $|z| \to 1^-$.

In view of (2.1), Theorem 4 is sharp. Moreover, since (2.1) implies

$$\left|\frac{f''(z)}{f'(z)}\right| (1-|z|) \le \frac{4+2|z|}{1+|z|} \le 4$$

for univalent analytic functions f, Theorem 5 is sharp.

Theorem 5. Let $f \in U^A_{loc}$ be univalent in all Euclidean discs

$$D(ae^{i\theta}, 1-a) \subset \mathbb{D}, \quad e^{i\theta} \in \partial \mathbb{D}$$

for some 0 < a < 1. Then

$$\left|\frac{f''(z)}{f'(z)}\right|(1-|z|) \le 4, \quad a \le |z| < 1.$$
(2.4)

Proof. It is enough to prove (2.4) for |z| = a, since trivially f is univalent also in $D(be^{i\theta}, 1-b) \subset D(ae^{i\theta}, 1-a)$ for a < b < 1 and $e^{i\theta} \in \partial \mathbb{D}$. Moreover, by applying a rotation $z \mapsto \lambda z$, $\lambda \in \partial \mathbb{D}$, it is enough to prove (2.4) for z = a.

Let T(z) = a + (1-a)z for $z \in \mathbb{D}$. Now $g = f \circ T$ is univalent in \mathbb{D} and by (2.1)

$$\frac{g''(0)}{g'(0)} = \left| \frac{f''(T(0))}{f'(T(0))} \right| |T'(0)| = \left| \frac{f''(a)}{f'(a)} \right| (1-a) \le 4.$$

The assertion follows.

3. Becker's criterion

Proof of Proposition 1. To prove the first assertion, assume on the contrary that there exists $\delta > 0$ such that f is univalent in $D(\zeta, \delta) \cap \mathbb{D}$. Without loss of generality, we may assume that $\zeta = 1$. Let T be a conformal map of \mathbb{D} onto a domain $\Omega \subset D(\zeta, \delta) \cap \mathbb{D}$ with the following properties:

(i) $T(\zeta) = \zeta$; (ii) $\partial \Omega \supset \{e^{i\theta} : |\arg \zeta - \theta| < t\}$ for some t > 0; (iii) $\left|\frac{T''(z)}{T'(z)}\right| (1 - |z|^2)^{\frac{1}{2}} \le 1 - \rho$ for all $z \in \mathbb{D}$, where $\rho \in (0, 1)$ is any pregiven number.

The existence of such a map follows, for instance, by [7, Lemma 8]. Then

$$\left|\frac{f''(T(z))}{f'(T(z))}T'(z) + \frac{T''(z)}{T'(z)}\right| (1-|z|^2) \le 6, \quad z \in \mathbb{D},$$

by (2.1), since $f \circ T$ is univalent in \mathbb{D} . Moreover, $\frac{T''(z)}{T'(z)}(1-|z|^2) \to 0$, as $|z| \to 1^-$, by (iii). Let $\{w_n\}$ be a sequence such that $w_n \to \zeta$, and define z_n by $T(z_n) = w_n$. Then $z_n \to \zeta$, and since T' belongs to the disc algebra by [7, Lemma 8], we have

$$1 < \frac{(1 - |T(z_n)|^2)}{|T'(z_n)|(1 - |z_n|^2)} \to 1^+, \quad n \to \infty.$$

It follows that

$$\begin{split} &\limsup_{n \to \infty} \left| \frac{f''(w_n)}{f'(w_n)} \right| (1 - |w_n|^2) \\ &= \limsup_{n \to \infty} \left| \frac{f''(T(z_n))}{f'(T(z_n))} \right| (1 - |T(z_n)|^2) \\ &= \limsup_{n \to \infty} \left| \frac{f''(T(z_n))}{f'(T(z_n))} \right| |T'(z_n)| (1 - |z_n|^2) \frac{(1 - |T(z_n)|^2)}{|T'(z_n)|(1 - |z_n|^2)} \le 6, \end{split}$$

which is the desired contradiction.

To prove the second assertion, assume on the contrary that (2.2) fails, so that there exist $\rho \in (0, 1)$ and $\delta \in (0, 1)$ such that

$$\left|\frac{f''(z)}{f'(z)}\right|(1-|z|^2) \le \rho, \quad z \in D(\zeta,\delta) \cap \mathbb{D}.$$
(3.1)

If $g = f \circ T$, then (3.1) and (i)–(iii) yield

$$\begin{aligned} \left| \frac{g''(z)}{g'(z)} \right| (1 - |z|^2) &\leq \left| \frac{f''(T(z))}{f'(T(z))} \right| |T'(z)|^2 (1 - |z|^2) + \left| \frac{T''(z)}{T'(z)} \right| (1 - |z|^2) \\ &\leq \left| \frac{f''(T(z))}{f'(T(z))} \right| (1 - |T(z)|^2) + 1 - \rho \leq 1 \end{aligned}$$

for all $z \in \mathbb{D}$. Hence g is univalent in \mathbb{D} by Becker's univalence criterion, and so is f on Ω . This is clearly a contradiction.

Proof of Theorem 3. It is enough to consider the case $\theta = 0$. Let T(z) = a + (1-a) for $z \in \mathbb{D}$, and $g = f \circ T$. Then

$$\begin{aligned} (1-|z|^2) \left| \frac{g''(z)}{g'(z)} \right| &= (1-|z|^2) \left| \frac{f''(T(z))}{f'(T(z))} \right| |T'(z)| \\ &= \left| \frac{f''(T(z))}{f'(T(z))} \right| (1-|T(z)|^2) \frac{(1-|z|^2)|T'(z)|}{1-|T(z)|^2} \\ &\leq (1+C(1-|T(z)|)) \frac{(1-|z|^2)(1-a)}{1-|T(z)|^2} \\ &\leq (1+C(1-|a+(1-a)z|)) \frac{(1-|z|^2)(1-a)}{1-|a+(1-a)z|^2}. \end{aligned}$$

By the next lemma, for $a = 1 - (1 + C)^{-2}$, g is univalent in \mathbb{D} and f is univalent in D(a, 1-a). The assertion follows.

Lemma 6. Let $1 < C < \infty$. Then

$$\left(1 + C\left(1 - \left|\frac{C^2 + 2C}{C^2 + 2C + 1} + \frac{1}{(1+C)^2}z\right|\right)\right) \times \frac{(1 - |z|^2)\frac{1}{(1+C)^2}}{1 - \left|\frac{C^2 + 2C}{C^2 + 2C + 1} + \frac{1}{(1+C)^2}z\right|^2} \le 1,$$

for $z \in \mathbb{D}$.

Proof. Let $h: [0,1) \to \mathbb{R}, h(t) = (1 + C(1-t))/(1-t^2)$. Then

$$h'(t) = \frac{-Ct^2 + 2(1+C)t - C}{(1-t^2)^2} = 0$$

if and only if $t = t_C = \frac{1+C-\sqrt{1+2C}}{C} \in (0,1)$. Hence, h is strictly decreasing on $[0, t_C]$ and strictly increasing on $[t_C, 1]$. If

$$t_C \ge t = \left| \frac{C^2 + 2C}{C^2 + 2C + 1} + \frac{1}{(1+C)^2} z \right|,$$

then

$$h(t)(1-|z|^2)\frac{1}{(1+C)^2} \le h(0)(1-|z|^2)\frac{1}{(1+C)^2} \le \frac{1}{1+C} \le 1.$$

If

$$t_C < t = \left| \frac{C^2 + 2C}{C^2 + 2C + 1} + \frac{re^{i\theta}}{(1+C)^2} \right| \le \frac{C^2 + 2C + r}{C^2 + 2C + 1} = t',$$

then, by

$$1 - t' = \frac{1 - r}{(1 + C)^2}, \quad 1 + t' = \frac{2(1 + C)^2 - (1 - r)}{(1 + C)^2},$$

we obtain

$$h(t)\frac{(1-|z|^2)}{(1+C)^2} \le h(t')\frac{1-r^2}{(1+C)^2}$$

= $\frac{1+C(1-t')}{1-(t')^2}\frac{1-r^2}{(1+C)^2}$
= $\frac{(1+C)^2+C(1-r)}{2(1+C)^2-(1-r)}(1+r) \le 1,$ (3.2)

if

$$k_C(r) = (1+r) \left[(1+C)^2 + C(1-r) \right] + 1 - r \le 2(1+C)^2.$$

Since $k_C(1) \le 2(1+C)^2$ and

$$k'_C(r) = (1+C)^2 + C(1-r) - C(1+r) - 1 > 0$$

for r < 1 + C/2, inequality (3.2) holds and the assertion follows.

Proof of Theorem 4. Let 0 < C/(1+C) < |a| < 1 and $g(z) = f(\varphi_a(r_a z))$, where $\varphi_a(z) = (a-z)/(1-\overline{a}z)$ for $a \in \mathbb{D}$, and

$$r_a^2 = \frac{|a| - \frac{C}{1+C}}{|a| \left(1 - |a| \frac{C}{1+C}\right)}.$$

Pseudo-hyperbolic disc $\Delta_p(\alpha, \rho) = \{z \in \mathbb{D} : |\varphi_\alpha(z)| \le \rho\}, \ \alpha \in \mathbb{D}, \ 0 < \rho < 1,$ satisfies

$$\Delta_p(\alpha, \rho) = D\left(\frac{1 - \rho^2}{1 - |\alpha|^2 \rho^2} \alpha, \frac{1 - |\alpha|^2}{1 - |\alpha|^2 \rho^2} \rho\right).$$

We deduce

$$\Delta_p(a, r_a) \subset D\left(\frac{a}{|a|}\frac{C}{1+C}, \frac{1}{1+C}\right),$$

so that g is univalent in \mathbb{D} . Now

$$\frac{g''(0)}{g'(0)} = \frac{f''(a)}{f'(a)}\varphi'_a(0)r_a + \frac{\varphi''_a(0)}{\varphi'_a(0)}r_a = -\frac{f''(a)}{f'(a)}(1-|a|^2)r_a + 2\overline{a}r_a.$$

By (2.1), $|g''(0)/g'(0)| \le 4$ and therefore

$$\left|\frac{f''(a)}{f'(a)}(1-|a|^2) - 2\overline{a}\right| \le \frac{4}{r_a},$$

which implies

$$\left|\frac{f''(a)}{f'(a)}\right| (1-|a|^2) \le 2 + \frac{4}{r_a} = 2 + 4(1+K(a)),$$

where

$$\begin{split} K(a) &= \frac{1}{r_a} - 1 = \frac{1 - r_a^2}{r_a(1 + r_a)} \sim \frac{1}{2} (1 - r_a^2) = \frac{1}{2} \frac{\frac{C}{1 + C} (1 - |a|^2)}{|a| \left(1 - |a| \frac{C}{1 + C}\right)} \sim \frac{C}{2} (1 - |a|^2), \\ \text{as } |a| \to 1^-. \end{split}$$

JUHA-MATTI HUUSKO AND TONI VESIKKO

4. Sharpness of results (sketch)

For each $A \in \mathcal{H}(\mathbb{D})$ there exists $h \in U_{\text{loc}}$ such that $A = S_h/2$. Namely, $h = f_1/f_2$, where f_1, f_2 are any two linearly independent solutions of

$$f'' + Af = 0. (4.1)$$

Note that $h = f_1/f_2$ is univalent in $D \subset \mathbb{D}$ if and only if each non-trivial solution of (4.1) has at most one zero in D. Function f is a solution of

$$f'' + A_1 f' + A_0 f = 0$$

if and only if the standard transformation $g = f e^{-\int A_1}$ satisfies (4.1) for

$$A = A_0 - \frac{1}{4}A_1^2 - \frac{1}{2}A_1'.$$

Therefore f''/f' = B if and only if $g = fe\left(\int f''/f'\right) = ff'$ satisfies

$$g'' + \frac{1}{2}S(f)g = 0.$$

Example 7. Let f be a locally univalent analytic function in \mathbb{D} such that

$$f'(z) = \left(\frac{1+z}{1-z}\right)^{\frac{1}{2}} e^{\frac{C\zeta z}{2}}, \quad \zeta \in \partial \mathbb{D}, \quad z \in \mathbb{D}.$$

Then

$$\frac{f''(z)}{f'(z)} = \frac{1}{1-z^2} + \frac{C\zeta}{2},$$

hence

$$\left|\frac{zf''(z)}{f'(z)}\right| (1-|z|^2) \le |z|(1+C(1-|z|)), \quad z \in \mathbb{D},$$

and so f is univalent in \mathbb{D} if $C \leq 1$ by Becker's univalence criterion. Moreover, $f''(0)/f'(0) = 1 + C\zeta/2$, so for $\zeta = 1$ the function f is not univalent if C > 10. Can we get a good lower bound for the valence depending on C? Is it true that if $C \geq cn^2$ for some c > 0, then the valence for a suitably chosen point in the image set is at least n for each $n \in \mathbb{N}$?

This method can also be used to construct examples with larger error functions than linear ones.

Example 8. Let $g, w \in \mathcal{H}(\mathbb{D})$ such that $w(z) = \int_0^z e^{g(\zeta)} d\zeta$. Now $w'(z) = e^{g(z)}$, and

$$\frac{w''}{w'} = \frac{e^g g'}{e^g} = g'$$

Choose $g(\zeta) = i4\pi\zeta$ so that $g' = i4\pi$. Now

$$w(1/2) = \int_0^{1/2} e^{i4\pi\zeta} d\zeta = \frac{e^{i2\pi} - 0}{i4\pi} = 0 = w(0).$$

Choose g such that

$$\int_0^{z_1} e^{g(\zeta)} \, d\zeta = \int_0^{z_2} e^{g(\zeta)} \, d\zeta,$$

or equivalently

$$\int_{z_1}^{z_2} e^{g(\zeta)} \, d\zeta = 0,$$

and

$$|\zeta||g'(\zeta)|(1-|\zeta|^2) \le 1, \quad \zeta \in [z_1, z_2],$$

but

$$|\zeta_0||g'(\zeta_0)|(1-|\zeta_0|^2) > 1$$

for some $\zeta_0 \in \mathbb{D}$.

Example 9. One way to try to find an example of f such that it satisfies

$$\left|\frac{f''(z)}{f'(z)}\right| (1-|z|^2) \le 1 + \varepsilon (1-|z|), \quad z \in \mathbb{D},\tag{4.2}$$

for some ε smaller than the linear rate is to consider $f' = e^g$, where $g \in \mathcal{B} \setminus \mathcal{B}_0$ is lacunary. Take, for example, $g(z) = \sum_{k=0}^{\infty} z^{2^k}$ and calculate

$$\frac{rg'(r)}{1-r} = \frac{cr}{(1-r)^2} + h(r)$$

for a certain c > 0, from which we might find sharp inequality (4.2) for some error function ε . Then we should be able to judge the valence of $f = \int eg$. This approach seems quite technical.

5. Distortion theorems

Denote by S the class of $f \in U_{loc}^A$ univalent in \mathbb{D} with f(0) = 0 and f'(0) = 1. By inequality (2.1), the Koebe function

$$k(z) = \frac{z}{(1-z)^2} = \frac{1}{(1-z)^2} - \frac{1}{1-z},$$

is extremal in \mathcal{S} . Namely, each $f \in \mathcal{S}$ satisfies

$$|f^{(j)}(z)| \le k^{(j)}(|z|), \quad \left|\frac{f^{(j+1)}(z)}{f^{(j)}(z)}\right| \le \frac{k^{(j+1)}(|z|)}{k^{(j)}(|z|)}, \quad j = 0, 1,$$
 (5.1)

for $z \in \mathbb{D} \setminus \{0\}$ and j = 0, 1. Moreover, $|S(f)(z)| \leq 6(1 - |z|^2)^{-2} = |S_k(|z|)|$ for $f \in \mathcal{S}$. This is the converse of Nehari's theorem, discovered by Kraus [16].

A meromorphic function $f: \mathbb{D} \to \overline{C} = \mathbb{C} \cup \{\infty\}$ is normal, denoted by $f \in \mathcal{N}$ if the family $\{f \circ \varphi_a : a \in \mathbb{D}\}$ is normal in the sense of Montel. An equivalent condition is that $\|f\|_{\mathcal{N}} = \sup_{z \in \mathbb{D}} f^{\#}(z)(1-|z|^2) < \infty$. Similarly, the Bloch space $\mathcal{B} \subset \mathcal{N}$ consists of functions f analytic in \mathbb{D} such that $\|f\|_{\mathcal{B}} = \sup_{z \in \mathbb{D}} |f'(z)|(1-|z|^2) < \infty$. Here $f^{\#}$ is the spherical derivative of f, defined as

$$f^{\#}(z) = \frac{|f'(z)|}{1 + |f(z)|^2}$$

outside the poles of f, and as a limit $f^{\sharp}(a) = \lim_{z \to a} f^{\sharp}(z)$ whenever $a \in \mathbb{D}$ is a pole of f. Consequently, $f^{\#}$ is a continuous function and non-vanishing if and only if f is locally univalent.

Bloch and normal functions emerge in a natural way as Lipschitz mappings. Denote the Euclidean metric by d_E and define the hyperbolic metric in \mathbb{D} by setting

$$d_H(z,w) = \frac{1}{2} \log \frac{1 + |\varphi_z(w)|}{1 - |\varphi_z(w)|}, \quad z, w \in \mathbb{D}.$$

Each $f \in \mathcal{B}$ is a Lipschitz function from (\mathbb{D}, d_H) to (\mathbb{C}, d_E) with constant $||f||_{\mathcal{B}}$. Namely, if f is analytic in \mathbb{D} such that

$$|f(z) - f(w)| \le M d_H(z, w), \quad z, w \in \mathbb{D},$$

then by letting $w \to z$, we obtain $|f'(z)|(1-|z|^2) \le M$, for all $z \in \mathbb{D}$. Conversely, if f, we obtain

$$|f(z) - f(w)| \le \int_{\langle z, w \rangle} |f'(\zeta)| |d\zeta| \le \sup_{\zeta \in \langle z, w \rangle} |f'(\zeta)| (1 - |\zeta|^2) d_H(z, w),$$

and hence

$$|f(z) - f(w)| \le ||f||_{\mathcal{B}} d_H(z, w), \quad z, w \in \mathbb{D}.$$

Each $f \in \mathcal{N}$ is a Lipschitz map from (\mathbb{D}, d_H) to (\overline{C}, χ) , where

$$\chi(z,w) = \frac{|z-w|}{\sqrt{1+|z|^2}\sqrt{1+|w|^2}}, \quad \chi(z,\infty) = \frac{1}{\sqrt{1+|z|^2}}$$

is the chordal metric. The Lipschitz constant of $f \in \mathcal{N}$ is found to be equal to

$$||f||_{\mathcal{N}} = \sup_{z \in \mathbb{D}} \frac{|f'(z)|}{1 + |f(z)|^2} (1 - |z|^2).$$

In general, integration along hyperbolic segments seems to be a useful method, and we note some facts about the growth condition (1.5) considered in this paper. For $z, w \in \mathbb{D}$, the hyperbolic segment $\langle z, w \rangle$ is contained in the disc D((z+w)/2, |z-w|/2), which yields

$$1 - |\zeta| \le 1 - \frac{|z+w|}{2} + \frac{|z-w|}{2}, \quad \zeta \in \langle z, w \rangle.$$

Consequently, by integrating along hyperbolic segments, we note that the condition

$$\left|\frac{f''(z)}{f'(z)}\right| \le \frac{B}{1-|z|^2} + \frac{C(1-|z|)}{1-|z|^2}, \quad z \in \mathbb{D},$$
(5.2)

for some $0 < B, C < \infty$, is equivalent to

$$\left|\log\frac{f'(z)}{f'(w)}\right| \le d_H(z,w)^B + C\left(1 - \frac{|z+w|}{2} + \frac{|z-w|}{2}\right) d_H(z,w), \quad z,w \in \mathbb{D}.$$

Trivially, condition (5.4) implies a Nehari-type condition with a linear error. If g analytic in \mathbb{D} satisfies $|g(z)| \leq \varphi(|z|)$, for $z \in \mathbb{D}$, then by Cauchy's integral formula $|g'(z)| \leq \varphi(|\zeta|)(|\zeta|^2 - |z|^2)^{-1}$ for all $|z| < |\zeta| < 1$. Hence, condition (5.4) for some constants $0 < B, C < \infty$ implies

$$|S(f)(z)|(1-|z|^2)^2 \le 4B + \frac{B^2}{2} + (4C + BC)(1-|z|) + \frac{C^2}{2}(1-|z|)^2.$$

Of course, this estimate is usually far from being sharp.

Since $\chi(z, w) \leq d_E(z, w)$, for all $z, w \in \mathbb{C}$, we have $\mathcal{B} \subset \mathcal{N}$. By the Schwarz-pick lemma, each bounded analytic function f satisfies $||f||_{\mathcal{B}} \leq \sup_{z \in \mathbb{D}} |f(z)|$.

Since the exponential function is Lipschitz from (\mathbb{C}, d_E) to (\mathbb{C}, ∞) , we have $\exp(\mathcal{B}) \subset \mathcal{N}$. Moreover, since each rational function R is Lipschitz from (\overline{C}, χ) to itself, $R \circ f \in \mathcal{N}$ whenever $f \in \mathcal{N}$. However, it is not clear if $f^2 \in \mathcal{N}$ implies $f \in \mathcal{N}$.

If f is univalent, then both $f, f' \in \mathcal{N}$ by the estimate

$$(f^{(j)})^{\sharp} = \frac{|f^{(j+1)}(z)|}{1+|f^{(j)}(z)|^2} \le \frac{1}{2} \left| \frac{f^{(j+1)}(z)}{f^{(j)}(z)} \right|$$

and (5.5). However, it is not clear if $f'' \in \mathcal{N}$. At least, each primitive g of an univalent function satisfies $g'' \in \mathcal{N}$.

A function $f \in U_{\text{loc}}^A$ is uniformly locally univalent if there exists $\delta > 0$ such that f is univalent in each pseudo-hyperbolic disc $\Delta(a, \delta) = \{z \in \mathbb{D} : d_{ph}(z, a) < \delta\}$. By a result of Schwarz, this is the case if and only if $S(f) \in H_2^\infty$. An equivalent condition is $\log f' \in \mathcal{B}$ and therefore each uniformly locally univalent function is normal.

By using arguments similar to those in the proof of [4, Theorem 3.2], we obtain the following result.

Theorem 10. Let f be meromorphic in \mathbb{D} and let

$$\left|\frac{f''(z)}{f'(z)}\right| \le \varphi(|z|), \quad 0 \le R \le |z| < 1,$$
(5.3)

for some $\varphi : [R, 1) \to [0, \infty)$. If

$$\limsup_{r \to 1^{-}} (1-r) \exp\left(\int_{R}^{r} \varphi(t) \, dt\right) < \infty, \tag{5.4}$$

then

$$\sup_{R < |z| < 1} |f'(z)| (1 - |z|^2) < \infty.$$

Further, if

$$\int_{R}^{1} \exp\left(\int_{R}^{s} \varphi(t) \, dt\right) \, ds < \infty, \tag{5.5}$$

then

$$\sup_{R<|z|<1}|f(z)|<\infty.$$

Proof. Let $\zeta \in \partial \mathbb{D}$. Let $R \leq \rho < r < 1$ and note that f' is non-vanishing on the circle $|z| = \rho$. Then

$$\left|\log\frac{f'(r\zeta)}{f'(\rho\zeta)}\right| \le \int_{\rho}^{r} \left|\frac{f''(t\zeta)}{f'(t\zeta)}\right| \, dt \le \int_{\rho}^{r} \varphi(t) \, dt.$$

Therefore

$$|f'(r\zeta)| \le |f'(\rho\zeta)| \exp\left(\int_{\rho}^{r} \varphi(t) dt\right),$$

which implies the first claim. By another integration,

$$|f(r\zeta) - f(\rho\zeta)| \le |f'(\rho\zeta)| \int_{\rho}^{r} \exp\left(\int_{\rho}^{s} \varphi(t) \, dt\right) \, ds.$$

Hence,

$$|f(z)| \le M(\rho, f) + M(\rho, f') \int_{\rho}^{1} \exp\left(\int_{\rho}^{s} \varphi(t) \, dt\right) \, ds < \infty$$

for $\rho < |z| < 1$.

For example, function

$$\varphi(t) = \frac{2}{1-t^2} = \left(\log\frac{1+t}{1-t}\right)'$$

satisfies (5.2), and for any $0 < \varepsilon < \infty$, 0 < B < 2 and $0 < C < \infty$,

$$\psi(t) = \frac{B}{1-t^2} + \frac{C}{1-t^2} \left(\log \frac{e}{1-t}\right)^{-(1+\varepsilon)}$$

satisfies (5.2).

By Theorem (10), if f is meromorphic in \mathbb{D} and satisfies (5.1) and (5.2) for some φ , then $f \in \mathcal{N}$. Moreover, if f is also analytic in \mathbb{D} , then $f \in \mathcal{B}$, and if (5.3) holds, then f is bounded.

For $f \in U_{\text{loc}}^A$, we have not found $\varphi : [0,1) \to [0,\infty]$ such that condition (5.2) would imply $f \in \mathcal{N}$ but would not imply $f \in \mathcal{B}$.

If $f \in S$, then by (5.5), $M(\rho, f)$ and $M(\rho, f')$ have an upper bound which is independent of f. In [4, Theorem 3.2] it was shown that if f is analytic in \mathbb{D} such that f(0) = 0, f'(0) = 1 and (1.4) holds, then |f(z)| < 11.48 for $z \in \mathbb{D}$.

6. Generalizations for harmonic functions

A complex-valued harmonic function f in \mathbb{D} has a unique representation $f = h + \overline{g}$, where both h and g are analytic in \mathbb{D} and g(0) = 0.

Function $f = h + \overline{g}$ is locally univalent if and only if its Jacobian $J_f = |h'|^2 - |g'|^2$ is non-vanishing [17]. We consider $f = h + \overline{g}$ locally univalent such that f is orientation preserving, $f \in U_{\text{loc}}^H$ for short. In this case $J_f = |h'|^2 - |g'|^2 > 0$, which implies that $h \in U_{\text{loc}}^A$ and the dilatation $\omega_f = \omega = g'/h'$ is analytic in \mathbb{D} and maps \mathbb{D} into itself.

Clearly $f = h + \overline{g}$ is analytic if and only if the function g is constant.

For $f \in U_{\text{loc}}^A$, the pre-Schwarzian P(f) = f''/f' can be defined in terms of the Jacobian $J_f = |f'|^2$. Namely $P(f) = \frac{\partial}{\partial z}(\log J_f)$ and $S(f) = P(f)' - \frac{1}{2}P(f)^2$. By extending this definition to $f = h + \overline{g} \in U_{\text{loc}}^H$, we obtain the harmonic pre-Schwarzian derivative

$$P_H(f) = \frac{\partial}{\partial z} \left(\log J_f \right) = P(h) - \frac{\overline{\omega} \, \omega'}{1 - |\omega|^2}$$

and harmonic Schwarzian derivative

$$S_H(f) = S(h) + \frac{\overline{\omega}}{1 - |\omega|^2} \left(\frac{h''}{h'}\omega' - \omega''\right) - \frac{3}{2} \left(\frac{\overline{\omega}\,\omega'}{1 - |\omega|^2}\right)^2.$$

These operators were introduced and motivated in [11].

If $f \in U_{\text{loc}}^H$ and $\psi \in U_{\text{loc}}^A$, then $F = f \circ \psi \in U_{\text{loc}}^H$ with dilatation $\omega_F = \omega_f \circ \psi$ and the chain rules

$$P_H(F)(z) = P_H(f)(\varphi(z)) \cdot \varphi'(z) + \frac{\varphi''(z)}{\varphi'(z)}, \quad z \in \mathbb{D},$$

and

$$S_H(F)(z) = S_H(f)(\varphi(z)) \cdot (\varphi'(z))^2 + S(\varphi)(z), \quad z \in \mathbb{D},$$

hold. There exists $0 < \delta_0 < 1$ such that if $f \in U_{\text{loc}}^H$ satisfies

$$|S_H(f)(z)|(1-|z|^2)^2 \le \delta_0, \tag{6.1}$$

for $z \in \mathbb{D}$, then f is univalent in, see [1] and [12]. The sharp value of δ_0 is not known. Moreover, if $f \in U_{\text{loc}}^H$ satisfies

$$|P_H(f)(z)|(1-|z|^2) + \frac{|\omega'(z)|}{1-|\omega(z)|^2}(1-|z|^2) \le 1,$$
(6.2)

for $z \in \mathbb{D}$, then f is univalent. The constant 1 is sharp, by the sharpness of Becker's univalence criterion. If one of the inequalities (8.1) and (8.2), with a slightly smaller right-hand-side constant, holds in an annulus $r_0 < |z| < 1$, then f is of finite valence [15].

Conversely to these univalence criteria, there exist absolute constants $0 < C_1, C_2 < \infty$ such that if $f \in U_{\text{loc}}^H$ is univalent, then

$$\sup_{z \in \mathbb{D}} |P_H(f)(z)| \left(1 - |z|^2\right) \le C_1, \tag{6.3}$$

and

$$\sup_{z \in \mathbb{D}} |S_H(f)(z)| (1 - |z|^2)^2 \le C_2,$$

see [13]. The sharp values of C_1 and C_2 are not known.

We obtain generalizations to some of the results in this paper for harmonic functions.

Proposition 11. Let $f \in U_{loc}^H$ and $\zeta \in \partial \mathbb{D}$.

If there exists a sequence $\{w_n\}$ of points in \mathbb{D} tending to ζ , such that

$$|P_H(f)(w_n)| (1 - |w_n|^2) + \frac{|\omega'(w_n)|}{1 - |\omega(w_n)|^2} (1 - |w_n|^2) \to c,$$
(6.4)

for some $c \in (C_1 + 1, \infty]$, where C_1 is defined as in (8.3), or

$$|S_H(f)(w_n)| (1 - |w_n|^2)^2 \to c, \tag{6.5}$$

for some $c \in (C_2, \infty]$, then for each $\delta > 0$ there exists a point $w \in f(\mathbb{D})$ such that at least two of its distinct preimages belong to $D(\zeta, \delta) \cap \mathbb{D}$.

If for each $\delta > 0$ there exists a point $w \in f(\mathbb{D})$ such that at least two of its distinct preimages belong to $D(\zeta, \delta) \cap \mathbb{D}$, then there exists a sequence $\{w_n\}$ of points in \mathbb{D} tending to ζ such that (8.4) holds for some $[1, \infty]$. Moreover, for some sequence $\{w_n\}$ of points in \mathbb{D} tending to ζ condition (8.5) holds for some $c \in [\delta_0, \infty]$. **Theorem 12.** Let $f = h + \overline{g} \in U_{loc}^H$ such that

$$S_H(f)|(1-|z|^2) \le \delta_0(1+C(1-|z|)), \quad z \in \mathbb{D},$$

for some $0 < C < \infty$. Then each pair of points $z_1, z_2 \in \mathbb{D}$ such that $f(z_1) = f(z_2)$ and $1 - |\xi(z_1, z_2)| < 1/C$ satisfies

$$d_H(z_1, z_2) \ge \log \frac{2 - C^{1/2} (1 - |\xi(z_1, z_2)|)^{1/2}}{C^{1/2} (1 - |\xi(z_1, z_2)|)^{1/2}}.$$
(6.6)

Conversely, if there exists a constant $0 < C < \infty$ such that each pair of points $z_1, z_2 \in \mathbb{D}$ for which $f(z_1) = f(z_2)$ and $1 - |\xi(z_1, z_2)| < 1/C$ satisfies (8.6), then

$$|S_H(f)|(1-|z|^2) \le C_2(1+\Psi_C(|z|)(1-|z|)^{1/3}), \quad 1-|z| < (8C)^{-1},$$

where Ψ_C is positive, and satisfies $\Psi_C(|z|) \to (2(8C)^{1/3})^+$ as $|z| \to 1^-$.

Theorem 13. Let $f = h + \overline{g} \in U_{loc}^H$ with dilatation $\omega = g'/h'$ such that

$$|P_H(f)(z)|(1-|z|^2) + \frac{|\omega'(z)|}{1-|\omega(z)|^2}(1-|z|^2) \le 1 + C(1-|z|), \quad z \in \mathbb{D},$$

for some $0 < C < \infty$. Then there exists 0 < a = a(C) < 1 such that f is univalent in $D(ae^{i\theta}, 1-a)$ for all $0 \le \theta < 2\pi$.

It is not clear how the boundedness of $f \in U^H_{\text{loc}}$ could be studied. A domain $D \subset \mathbb{C}$ is starlike if for some point $a \in D$, all linear segments $[a, z], z \in D$ are contained in D. Let $h \in U^A_{\text{loc}}$ be univalent, let $h(\mathbb{D})$ be starlike with respect to $z_0 \in h(\mathbb{D})$ and $f = h + \overline{g} \in U^H_{\text{loc}}$. Then the function

$$z \mapsto \Omega(z) = \frac{g(z) - g(z_0)}{h(z) - h(z_0)}$$

maps \mathbb{D} into \mathbb{D} . To see this, let $a \in \mathbb{D}$ and let $R = h^{-1}([h(z_0), h(a)])$ be the pre-image of the segment $[h(z_0), h(a)]\gamma$ under h. Then

$$|h(a) - h(z_0)| = \int_R |h'(\zeta)| |d\zeta| \ge \left| \int_R g'(\zeta) \, d\zeta \right| = |g(a) - g(z_0)|.$$

Theorem 14. Let $f \in U_{loc}^H$ be univalent in all Euclidean discs

$$D(ae^{i\theta}, 1-a) \subset \mathbb{D}, \quad e^{i\theta} \in \partial \mathbb{D},$$

for some 0 < a < 1. Then

$$\left|\frac{f''(z)}{f'(z)}\right|(1-|z|) \le C_1, \quad a \le |z| < 1,$$

where C_1 is defined as in (8.3).

Theorem 15. Let $f \in U_{loc}^H$ be univalent in all Euclidean discs

$$D\left(\frac{C}{1+C}e^{i\theta}, \frac{1}{1+C}\right), \quad e^{i\theta} \in \partial \mathbb{D},$$

for some $0 < C < \infty$. Then

$$\left|\frac{f''(z)}{f'(z)}\right| (1-|z|^2) \le 2 + C_1(1+K(z)), \quad z \in \mathbb{D},$$

where $K(z) \approx (1 - |z|^2)$ as $|z| \rightarrow 1^-$, and C_1 is defined as in (8.3).

References

- L. V. Ahlfors and G. Weill, A uniqueness theorem for Beltrami equations, Proc. Amer. Math. Soc. 13 (1962), 975–978.
- J. Becker, Lünersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, (German) J. Reine Angew. Math. 255 (1972), 23–43.
- [3] J. Becker and Ch. Pommerenke, Schlichtheitskriterien und Jordangebiete, J. Reine Angew. Math. 354, 74–94 (1984)
- [4] J. Becker and Ch. Pommerenke, Locally univalent functions and the Bloch and Dirichlet norm, Comput. Methods Funct. Theory 16, 43–52 (2016)
- [5] M. Chuaqui and D. Stowe, Valence and oscillation of functions in the unit disk, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 2, 561–584.
- [6] J.A. Cima and G. Schober, Analytic functions with bounded mean oscillation and logarithms of Hp functions. Math. Z. 151 (1976), no. 3, 295–300.
- [7] E.A. Gallardo-Gutiérrez, M.J. González, F. Pérez-González, Ch. Pommerenke and J. Rättyä, *Locally univalent functions*, VMOA and the Dirichlet space, Proc. Lond. Math. Soc. (3) **106** (2013), no. 3, 565–588.
- [8] F. Gehring and Ch. Pommerenke, On the Nehari univalence criterion and quasicircles, Comment. Math. Helvetici 59 (1984), 226–242.
- [9] J. Gevirtz, The set of infinite valence values of an analytic function. https://arxiv.org/abs/1508.05416
- [10] J. Gröhn, J. Rättyä, On oscillation of solutions of linear differential equations. https://arxiv.org/abs/1611.05667
- [11] R. Hernández and M. J. Martín, Pre-Schwarzian and Schwarzian derivatives of harmonic mappings, J. Geom. Anal. 25 (2015), 64–91.
- [12] R. Hernández and M. J. Martín, Quasiconformal extensions of harmonic mappings, Ann. Acad. Sci. Fenn. Ser. A. I Math. 38 (2013), 617–630.
- [13] R. Hernández and M. J. Martín, Pre-Schwarzian and Schwarzian derivatives of harmonic mappings. J. Geom. Anal. 25 (2015), no. 1, 64–91.
- [14] E. Hille, Oscillation Theorems in the Complex Domain, Trans. Amer. Math. Soc. 23 (1922), no. 4, 350–385.
- [15] J.-M. Huusko, M. Martín, *Criteria for bounded valence of harmonic mappings*. Submitted manuscript.
 - https://arxiv.org/abs/1611.05667
- [16] W. Kraus, Über den Zusammenhang einiger Characteristiken eines einfach zusammenhängenden Bereiches mit der Kreisabbildung, Mitt. Math. Sem. Giessen 21 (1932), 1–28. de Gruyter Studies in Mathematics, 15. Walter de Gruyter & Co., Berlin, 1993.
- [17] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689–692.
- [18] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545–551.
- [19] Ch. Pommerenke, Univalent functions. With a chapter on quadratic differentials by Gerd Jensen, Studia Mathematica/Mathematische Lehrbücher, Band XXV. Vandenhoeck & Ruprecht, Göttingen, 1975.
- [20] J. Rättyä, Integration operator acting on Hardy and weighted Bergman spaces. Bull. Austral. Math. Soc. 75 (2007), no. 3, 431–446.
- [21] B. Schwarz, Complex nonoscillation theorems and criteria of univalence, Trans. Amer. Math. Soc. 80 (1955), 159–186.
- [22] N. Steinmetz, Locally univalent functions in the unit disk, Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), no. 2, 325–332.

JUHA-MATTI HUUSKO AND TONI VESIKKO

DEPARTMENT OF PHYSICS AND MATHEMATICS, UNIVERSITY OF EASTERN FINLAND, P.O. Box 111, FI-80101 JOENSUU, FINLAND *E-mail address*: juha-matti.huusko@uef.fi

Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland

E-mail address: tonive@student.uef.fi