ZUR THEORIE DER ASYMPTOTISCHEN POTENZREIHEN

VON

F. NEVANLINNA

HELSINKI 1918
ZUR THEORIE DER
ASYMPTOTISCHEN POTENZREIHEN

AKADEMISCHE ABHANDLUNG

VON

F. NEVANLINNA

Wird mit Genehmigung der Philosophischen Fakultät der Kaiserlichen
Alexanders Universität in Finnland am 30. Oktober 1918 um 10
Uhr vormittags im historisch-philologischen Auditorium
zur öffentlichen Verteidigung vorgelegt.

HELSINGFORS 1918

JOENSUU YLIOPISTON
KIRJASTO
HELSEINGFORS 1918
BUCHDRUCKEREI A.-G. SANA
Meinem hochverehrten Lehrer Herrn Professor Ernst Lindelöf spreche ich hiermit meinen tiefempfundenen Dank aus für seine Unterstützung bei der Wahl des Themas und für seine unermüdliche Anleitung während der Bearbeitung desselben.

Der Verfasser.
Druckfehlerverzeichnis.

S. 9. Zeile 2 v. o. lies \(|a_{n-1}| \leq M_{n-1}\) statt \(|a_{n-1}| < M_{n-1}\).
S. 10. Zeile 2 v. u., in dem Exponent des zweiten Gliedes rechts, lies \(r^k\) statt \(r^k\).
S. 11. Zeile 1 v. o., in dem Exponent des linken Gliedes, lies \(x^k\) statt \(x^k\).
S. 11. Zeile 14 v. o. lies „gross“ statt „klein“.
S. 13. Zeile 4 v. o. lies \(q' > q > q\) statt \(q' > q, q' > q\).
S. 16. Zeile 2 v. o. sind die Worte „sich ergibt“ zu streichen.
S. 19. Zeile 3 v. o. lies \(\bar{f}(x')\) statt \(\bar{f}(x)\).
S. 23. Zeile 3 v. o. lies \(e^{-e^Z}\) und \(e^{-e^Z}\) statt \(e^{e^Z}\) und \(e^{e^Z}\).
S. 24. Zeile 3 v. u. lies \(e^{-e^Z} + e^{-e^Z}\) statt \(e^{e^Z} + e^{e^Z}\); ausserdem ist die ganze Gleichung mit (B) zu bezeichnen.
S. 29. Zeile 2 v. u. lies \(R_n(x + \sigma r e^{i\omega})\) statt \(R_n(x + \sigma r e^{i\omega})\).
S. 30. Zeile 11 v. u. lies \(R'_n(x)\) statt \(R_n(x)\).
S. 40. Zeile 6 v. o. fehlt in den beiden letzten Gliedern der Ungleichung der Faktor \(A\); die obere Grenze des zweiten Summenzeichens soll \(\pi \) sein statt \(n\).
S. 42. Im rechten Gliede der Ungleichung (32)‘ lies \((\zeta - \varepsilon)^n\) statt \((\zeta - \varepsilon)^n\).
S. 43. Zeile 9 v. u. lies \(e^{i\theta x_0} = \zeta\) statt \(e^{i\theta x_0} \leq \zeta\).
S. 48. Zeile 2 v. u. lies \(n\circ 6\) statt \(n\circ 7\).
S. 55. Zeile 10 v. o. fehlt das Zeichen — vor dem Integral.
S. 58.Zeile 9, 10 und 14 v. o. lies \(q'\) statt \(q\); es ist \(q' > q\).
S. 61. Zeile 1 v. o. lies \(F(z + \sigma e^{i\theta})\) statt \(F_0(z + \sigma e^{i\theta})\).
S. 62. Zeile 7 v. u. lies \(e^{-n\psi i}\) statt \(e^{-n\psi i}\).
S. 63. Zeile 5 v. o. lies \(\sum a_n x^k\) statt \(\sum a_n x^k\).
S. 65. Zeile 3 v. u. lies \(T_0\) statt \(T\).
S. 67. Zeile 8 v. u. lies „deren“ statt „dessen“.
S. 69. Zeile 5 v. u. lies \(\gamma + 2 \varepsilon \omega\) statt \(\gamma + \varepsilon \omega\).
S. 78. Zeile 8 v. u. lies \(\sum_{1}^{\infty} a_n x^k\) statt \(\sum_{0}^{\infty} a_n x^k\).
S. 79. Zeile 9 v. o. lies „höherem“ statt „höheren“. 
Einleitung.


Dass eine Funktion \( f(x) \) auf einem ins Unendliche gehenden


Halbstrahl oder in einer Winkelumgebung $\alpha < \arg x < \beta$, $|x| > r$ des unendlich fernen Punktes der Ebene durch die Potenzreihe $\sum_{0}^{\infty} a_{r} x^{r}$ asymptotisch dargestellt wird, was durch das Zeichen

$$f(x) \sim \sum_{0}^{\infty} a_{r} x^{r}$$

angegeben wird, bedeutet gemäß der Poincaré'schen Definition (worauf wir noch später ausführlicher sprechen werden) dass, wenn

$$f(x) = \sum_{0}^{n-1} a_{r} x^{r} + R_{n}(x)$$

gesetzt wird, man für jedes $n$

$$|x^{n} R_{n}(x)| < M_{n}$$

hat, wo $M_{n}$ eine nur von $n$ abhängige Konstante bezeichnet. Der Charakter der Funktion $f(x)$ in der Umgebung des $\infty$-Punktes hängt nun einerseits von dem Gesetz $a_{n}$ ab, nach welchem sich die Konstanten $M_{n}$ mit wachsendem $n$ verändern, anderseits von der Grösse $\beta - \alpha$ der Winkelöffnung, innerhalb deren die asymptotische Darstellung besteht. Kann man eine solche endliche positive Konstante $q$ bestimmen, dass $M_{n}/q^{n}$ unter einer von $n$ unabhängigen Grenze $K$ liegt, so dass die Konstanten $M_{n}$ folglich mit wachsendem $n$ nicht schneller als $K q^{n}$ wachsen, so ist für $|x| > q$

$$\lim_{n \to \infty} R_{n}(x) = 0$$

und die Reihe $\sum_{0}^{\infty} a_{r} x^{r}$ somit für $|x| > q$ konvergent und die Funktion $f(x)$ demnach in dieser Umgebung des $\infty$-Punktes regulär. Dagegen ist die Reihe divergent, wenn $M_{n}/q^{n}$ für jedes noch so grosse positive $q$ mit wachsendem $n$ über alle Grenzen hinaus wächst. Der unendlich ferne Punkt der Ebene ist dann für die Funktion

\[\text{zu u}\]
$x < \beta$, $|x| > \gamma$

Potenzreihe $\sum_{0}^{\infty} \frac{a_n}{x^n}$

schen Definition den) dass, wenn eine singuläre Stelle, aber auch jetzt hängt die Art der Singularität wesentlich von den beiden obengenannten Umständen ab.

Offenbar bemüht, die bis dahin getrennt gestandenen Theorien der Poincaré'schen asymptotischen Reihen einerseits und die von Borel\textsuperscript{1)} entwickelte Theorie der summablen divergenten Reihen (wörüber des Näheren später) anderseits in Zusammenhang zu bringen, ist nun Watson dazu gekommen, die Konstanten $M_n$ einer Bedingung der Form

$$M_n \leq A \Gamma\left(\frac{n}{k} + 1\right)q^n$$

zu unterwerfen, wobei $k$, $q$ und $A$ positive von $n$ unabhängige Konstanten bezeichnen. Man erhält so eine spezielle Klasse von Funktionen mit zugehörigen asymptotischen Potenzreihen, deren gesonderte Untersuchung dadurch gerechtfertigt wird, dass einerseits die allernächsten asymptotischen Potenzreihenentwicklungen, zu denen man in der Analysis ungezwungen gekommen ist, tatsächlich dieser Klasse angehören, andererseits und vor allem jedoch dadurch, dass diejenigen Funktionen der Klasse, deren asymptotische Entwicklungen in einer Winkelungebung des $\varphi$-Punktes, mindestens von der Grösse $\frac{\pi}{k}$, bestehen, durch ihre asymptotische Potenzreihenentwicklung eindeutig bestimmt sind. Es ist nämlich zu bemerken, dass dies auf dem allgemeinen Standpunkte der Poincaré'schen Definition einer asymptotischen Potenzreihenentwicklung durchaus nicht der Fall ist.

Für $k = 1$ zeigt es sich nun, und dies ist wohl als das interessanteste der von Watson erlangten Resultate anzusehen, dass die oben abgesonderte Funktionsklasse, welche also dadurch charakterisiert ist, dass jede Funktion $f(x)$ der Klasse in einer Winkelungebung $\alpha < \arg x < \beta, (\beta - \alpha > \gamma), |x| > \gamma$ regulär ist und daselbst durch die Potenzreihe $\sum_{0}^{\infty} \frac{a_n}{x^n}$ derart asymptotisch dargestellt wird, dass für jedes $n$

\textsuperscript{1)} E. Borel: \textit{Leçons sur les séries divergentes}. Paris 1901.
\[ |x^n R_n(x)| = \left| x^n \left( f(x) - \sum_{0}^{n-1} \frac{a_r}{x^r} \right) \right| < An! q^n \]

ist, mit der Klasse von Funktionen, welche zu den divergenten, aber nach der von Borel entwickelten Methode mittels Laplace'scher Integrale absolut und gleichmäßig summabel Potenzreihen Anlass geben, identisch ist, so dass folglich die Borel'sche Theorie sich unter die allgemeinere Theorie der asymptotischen Potenzreihen subsummiert und hierdurch in der Tat sehr viel an Anwendbarkeit gewinnt.

In einer späteren, im Jahre 1912 erschienenen Arbeit führt Watson 1) die Untersuchung weiter, indem er zeigt, dass die divergenten asymptotischen Potenzreihen, welche nach der Borel'schen Methode absolut und gleichmäßig summabel sind, durch konvergente Fakultätenreihen ersetzt werden können, ein Resultat, welches Klarheit in die schon seit den Zeiten Stirling's bekannte Tatsache bringt, dass nämlich divergente Potenzreihen durch rein formelle Umwandlungen in gewissen Fällen konvergente Fakultätenreihen ergeben.

Die vorliegende Abhandlung ist nun ein Versuch, die von Watson gewonnenen Resultate, zu denen ich schon teilweise vor der Bekanntschaff mit seinen Untersuchungen auf anderem Wege gekommen war, nach neuen, möglichst einfachen und allgemeinen Methoden herzuleiten und, mit Hinblick auf eine im Jahre 1913 von Nörlund 2) erschienenen Arbeit über Fakultätenreihen, zu vertiefen. Hierbei führt die von uns angewandte Methode angespannt zu erheblichen Verallgemeinerungen, welche an sich und für die Anwendungen der Theorie nicht ohne Interesse sein dürften.


Im ersten Kapitel werden, nachdem einige Hilfssätze bewiesen sind, die GrundIde der Po
care'schen Theorie der asymptotischen
Potenzreihen dargestellt, wobei der die Differentiation dieser Reihen
treffende Zusatz, ungeachtet seiner Evidenz, neu sein dürfte.
Hierauf werden die Haupeigenschaften des sogenannten La
place'schen Integrals
\[ \int_0^\infty F(z) e^{-z^2} dz, \]
deren Kenntnis für das Folgende unentbehrlich ist, formuliert und
in aller Kürze bewiesen.
Im zweiten Kapitel wird dann die Cauchy'sche Integraltheorie
herangezogen mit deren Hilfe sich für die untersuchten Funktio-
nen einige fundamentale Integraldarstellungen ergeben. Hierauf
werden diese näher untersucht, und die erlangten Resultate in
einem Satz (S. 44) zusammengefasst. Das Kapitel schliesst mit
einem Beispiel, welches als Spezialfall die als Integrallogarithmus
bezeichnete Transzendenten enthält, wobei einige Punkte in der
Theorie dieser Transzendenten vervollständigt werden.
Im dritten und letzten Abschnitt wird schliesslich der Zusam-
mehang mit den konvergenten Faktorienreihen klargestellt. Bei
den Untersuchungen dieses Kapitels habe ich mich hauptsächlich
auf den Fall, wo die charakteristische Konstante \( k \) (vgl. S. 13)
den Wert 1 hat, beschränkt, da zur Herleitung der analogen
Resultate für beliebige positive Werte von \( k \) weit kompliziertere
Methoden nötig sind.
I.

Vorbereitende Sätze.

1. Um den Gegenstand vorliegender Abhandlung ohne Unterbrechungen behandeln zu können, wollen wir in diesem Kapitel diejenigen Definitionen und Sätze vorbereitender Art zusammensetzen, welche das Fundament der folgenden Darstellung bilden. Zuerst möge der bekannte Phragmén-Lindelöf'sche Satz \(^{1}\) angeführt werden, aus welchem wir dann ein wichtiges Korollar herleiten werden, welches, in präzisierter Form, den Inhalt eines von Watson\(^{2}\) herrührenden Lemma wiedergibt. Der genannte Satz lautet, in der speziellen Form in der wir ihn hier anwenden werden, folgendermassen:

Sei \( f(x) \) eine monogene Funktion der komplexen Variable \( x = re^{i\varphi} \), welche innerhalb des Winkels

\[
-\frac{\pi}{2a} < \varphi < \frac{\pi}{2a}
\]

regulär ist, und daselbst folgende Eigenschaften besitzt:

1o für jedes noch so kleine positive \( \varepsilon \) ist innerhalb des obigen Bereiches in einer gewissen Umgebung eines jeden endlichen Randpunktes die Bedingung

\[
| f(x) | < C + \varepsilon
\]

erfüllt, wo \( C \) eine Konstante bezeichnet;

---


20. Man kann eine solche positive Zahl \( k < a \) angeben, dass das Produkt
\[ e^{-r^k f(x)} \]
sich mit wachsendem \( r \) innerhalb des genannten Winkelgebietes gleichmässig der Grenze Null nähert.

Dann ist in jedem Punkte dieses Gebietes
\[ |f(x)| \leq C. \]

Auf den Beweis dieses Satzes wollen wir hier nicht näher eingehen, sondern verweisen auf die zitierte Abhandlung. Dagegen wollen wir hieraus als Korollar den Watson'schen Satz herleiten, welcher in folgender schärferer Form ausgesprochen werden kann:

Sei \( f(x) \) eine monogene Funktion der komplexen Variable \( x = re^{i\varphi} \), welche in jedem Punkt des Gebietes
\[ \left[ -\frac{\pi}{2k} < \varphi < \frac{\pi}{2k} \right] \]
regulär ist, und dagegen der Ungleichung
\[ |f(x)| < Ce^{-\sigma r^k} \]
genügt, wo \( C \) und \( \sigma \) positive Konstanten bezeichnen. Dann muss \( f(x) \) identisch gleich Null sein.

Zum Beweise genügt es zu zeigen, dass \( f(x) \) z. B. auf der positiven realen Achse verschwindet. Zu diesem Zwecke wählen wir eine positive Zahl \( T \), welche größer als \( \sigma \) sein soll, übrigens jedoch beliebig angenommen werden kann, und bilden die Funktion
\[ F(x) = e^{T r^k f(x)}. \]

Auf Grund der Ungleichung (B) findet man im Gebiete (A)
\[ |F(x)| \leq Ce^{-r \cos k \varphi} r^k, \]

wird also die positive Zahl \( a \) mittels der Gleichung
\[ \sigma = T \cos k \frac{\pi}{2a} \]
Zur Theorie der asymptotischen Potenzreihen.

< a angeben, dass
definiert \((k < a)\), so ist auf den Schenkeln des Winkelgebietes
\[|\varphi| \leq \frac{\pi}{2a}\]

\[|F(x)| < C,\]

während man in jedem Punkte dieses Gebietes \(|F(x)| < Ce^{-\frac{\pi}{2a}k}\)
hat. Wird also die positive Zahl \(k'\) so gewählt, dass \(k < k' < a\),
so ist für \(|\varphi| \leq \frac{\pi}{2a}\) gleichmässig
\[\lim_{r \to \infty} e^{-r^k} F(x) = 0,\]

und nach dem Phragmén-Lindelöf'schen Satze ist folglich auch in
ejedem inneren Punkte dieses Winkelgebietes \(|F(x)| < C\) oder
also \(|f(x)| < C e^{-\frac{\pi}{2a}k}|. Speciell hat man somit in jedem Punkte
\(x_0\) der positiven reellen Achse
\[|f(x_0)| < Ce^{-\frac{\pi}{2a}k}.\]

Da wir nun der positiven Zahl \(T\) keine weitere Bedingung als
\(T > \sigma\) auferlegt haben, so kann in der obigen Ungleichung \(T\)
beliebig gross, und die rechte Seite somit beliebig klein gemacht
werden, woraus folgt, dass \(f(x_0) = 0\) sein muss. Die Funktion
\(f(x)\) verschwindet also längs der positiven reellen Achse und muss
mithin identisch verschwinden, w. z. b. w.

Man kann den Bedingungen dieses Satzes eine etwas allgemeinere Form geben, wenn man die Voraussetzung, dass die Ungleichung (B) in dem Winkelgebiet \(|\varphi| \leq \frac{\pi}{2k}\) gilt, durch die allgemeinere ersetzt, dass diese Ungleichung innerhalb eines beliebigen Bereiches besteht, welcher einen Winkel von der Grösse \(\frac{\pi}{k}\) umfasst.

Wenn der Scheitel des Winkels in dem Punkt \(x = a\) liegt, so
cann man durch eine Transformation
\[x = e^{\lambda x} x^* + a\]
die Figur in eine solche Lage bringen, dass der Scheitel des
Winkels mit dem Nullpunkt und die Halbierungslinie desselben
mit der positiven reellen Achse zusammenfallen. Wird dann
gesetzt, so ist die Funktion \( \bar{f}(x') \) in dem Winkelgebiet \( |\varphi'| < \frac{\pi}{2k} \) regulär, und genügt daselbst der Ungleichung

\[
|\bar{f}(x')| < Ce^{-a|x|} e^{i\omega x + a\|}.
\]

Nun ist

\[
|e^{i\omega x + a}| \geq |\varphi| - |a| \geq r' - \frac{r'}{2k},
\]

so bald \( r' \geq 2 |a| \); mithin hat man in dem Teil \( r' \geq 2 |a| \) des Sektors \( |\varphi'| < \frac{\pi}{2k} \)

\[
|\bar{f}(x')| < Ce^{-a'r'}k,
\]

wo \( \sigma 2^{-k} = \sigma' \) gesetzt ist. Ferner ist in dem übrigbleibenden Teil dieses Sektors der Ausdruck

\[
|\bar{f}(x')| e^a'r'k.
\]

unter einer endlichen Grenze \( C_1 \), so dass, wenn \( C' \) die grössere der Zahlen \( C \) und \( C_1 \) ist, in dem ganzen Gebiet \( |\varphi'| < \frac{\pi}{2k} \)

\[
|\bar{f}(x')| < C'e^{-\sigma'r'}k,
\]

was nach dem eben bewiesenen Satze zur Folge hat, dass \( \bar{f}(x') \) und somit auch \( f(x) \) identisch verschwindet.

2. Wir werden im Folgenden eine Klasse von Funktionen behandeln, welche in einer gewissen Winkelumgebung eines singulären Punktes asymptotische Potenzreihenentwicklungen besitzen, und wollen deshalb an die Gründe der Poincaréschen Theorie der asymptotischen Potenzreihen erinnern.

Sei \( f(x) \) eine, in dem durch die Ungleichungen

\[
|x - x_0| < \gamma, \quad \varphi_1 < \arg(x - x_0) < \varphi_2
\]

definierten Gebiet, reguläre analytische Funktion, und es existiere

\[\text{ergibt} \]

\[\text{die} \]

\[\text{des} \]

\[\text{Da} \]

\[\text{die} \]

\[\text{Poincare:} \quad \text{Sur les integrales irregulieres des equations lineaires: Acta Math. Tom. 8.} \]

\[1) \]
eine solche unendliche Folge von Konstanten $a_0, a_1, \ldots, a_n, \ldots$, dass, wenn man
\[ f(x) = \sum_{0}^{n-1} a_v (x - x_0)^v + R_n(x) \]
setzt, der absolute Betrag von
\[ R_n(x) (x - x_0)^{-n} \]
für jeden Wert $n$ in dem genannten Gebiet unter einer endlichen Schranke $M_n$ liegt. Man sagt dann, die unendliche Reihe
\[ \sum_{0}^{\infty} a_v (x - x_0)^v \]
stelle die Funktion $f(x)$ in der Winkelumgebung $\varphi_1 < \arg(x - x_0) < \varphi_2$ des Punktes $x_0$ asymptotisch dar, was man
\[ f(x) \sim \sum_{0}^{\infty} a_v (x - x_0)^v \]
zu schreiben pflegt.

Aus der Gleichung
\[ R_n(x) = a_n (x - x_0)^n + R_{n+1}(x) \]
ergibt sich
\[ R_n(x) (x - x_0)^{-n} = a_n + (x - x_0) [R_{n+1}(x)(x - x_0)^{(n+1)}] \]
so dass folglich
\[ |a_n| < M_n + |x - x_0| M_{n+1}; \]
dies gilt nun für jedes noch so kleine $|x - x_0|$ und man hat somit

\[ |a_n| \leq M_n. \]

Ferner folgt aus der obigen Gleichung, dass in jedem Punkte des Sektors (1)
\[ |R_n(x)(x - x_0)^{-n} - a_n| < |x - x_0| M_{n+1}. \]
Da dies für jedes noch so kleine $|x - x_0|$ gilt, so sehen wir, dass die Gleichungen
\[ \lim_{x\to x_0} f(x) = a_0, \]
\[ \lim_{x\to x_0} (x - x_0)^{-n} [f(x) - \sum_{0}^{n-1} a_v (x - x_0)^v] = a_n, (n = 1, 2, \ldots) \]
innerhalb der Winkelumgebung $\varphi_1 < \arg (x - x_0) < \varphi_2$ des Punktes $x_0$ gleichmässig bestehen.

Aus diesen Gleichungen folgt unmittelbar, dass eine gegebene analytische Funktion in derselben Winkelumgebung eines Punktes $x_0$ nur eine einzige asymptotische Potenzreihenentwicklung besitzen kann, wenn sie überhaupt eine hat. Wenn also eine Funktion, die im Punkte $x_0$ regulär ist, innerhalb einer gewissen Winkelumgebung dieses Punktes eine asymptotische Potenzreihenentwicklung besitzt, so muss diese mit der TAYLORSchen Entwicklung der Funktion in der Umgebung des genannten Punktes identisch und somit konvergent sein. Also:

Wenn die Funktion $f(x)$ in einer gewissen Winkelumgebung des Punktes $x_0$ durch eine divergente, nach positiven Potenzen von $(x - x_0)$ fortschreitende Reihe asymptotisch dargestellt wird, so ist dieser Punkt sicher eine singuläre Stelle für die Funktion.

Was den oben besprochenen asymptotischen Potenzreihenentwicklungen ihren Wert verleiht und sie zu verschiedenen Anwendungen geeignet macht, ist einerseits die oft sehr gute Approximation, welche die Partialsummen bei genügender Annäherung an das Entwicklungszentrum (welches also im Allgemeinen eine singuläre Stelle der dargestellten Funktion ist) liefern, anderseits der von POINCARE (loc. cit.) nachgewiesene Umstand, dass diese Entwicklungen sich den meisten Fundamentaloperationen der Analysis gegenüber genauso wie gewöhnliche konvergente Potenzreihen verhalten. Somit lassen sich z. B. die rationalen Operationen nach bekannten Regeln vollziehen. Ferner darf eine asymptotische Entwicklung gliedweise integriert werden. Dagegen hat POINCARE in seiner oben zitierten Arbeit darauf aufmerksam gemacht, dass eine asymptotische Potenzreihe im Allgemeinen nicht gliedweise differenziert werden kann. Hierbei ist jedoch zu bemerken, dass POINCARE die dargestellte Funktion in einem eindimensionalen Gebiet, auf einer geraden Linie, betrachtet. Die Sache gestaltet sich
x_0 < \varphi_2$ des Punktes $x_0$

... dass eine gegebene Ebung eines Punktes Entwicklung besitzt so eine Funktion, die Winkelumgebung in Entwicklung der Punkte identisch und

sein Winkelumgebung h positiven Potenzreihen durch dargestellt wird, die für die Funktion.

en Potenzreihenentwicklung in verschiedenen Anwendungen, sehr gute Approxi-

mation der Annäherung an genügend eine sine

en hat Poincaré in gemacht, dass eine

ht gliedweise diffe-

zui bemerken, dass

indimensionalen Ge-

Sache gestaltet sich

anders, wenn man, wie wir es hier tun, asymptotische Entwick- lungen in Betracht zieht, die für analytische Funktionen in einem zweidimensionalen Gebiet gültig sind.

Bei der Behandlung dieser und vieler anderer Fragen wird es zweckmäßig sein den betreffenden singulären Punkt $x_0$ der Funktion, welcher zugleich das Entwicklungszentrum der zugehörigen asymptotischen Potenzreihe ist, in den unendlich fernem Punkt der Ebene zu verlegen. Wir betrachten demnach eine analytische Funktion $f(x)$, für welche der $\infty$-Punkt eine singuläre Stelle ist und welche folgende Eigenschaften besitzt:

Die Funktion ist regulär in jedem endlichen Punkt der durch

Ungleichungen

\[ r > \gamma, \quad \left| \varphi \right| < \frac{\pi}{2a}, \quad (x = r e^{i\varphi}) \]

definierten Winkelumgebung $T$ des $\infty$-Punktes.

Ferner besitze die Funktion in diesem Bereich eine asymptotische Potenzreihe Entwicklung

\[ f(x) \sim \sum_{r=1}^{\infty} \frac{a_r}{x^r}, \]

so dass, wenn

\[ f(x) = \sum_{r=1}^{n-1} \frac{a_r}{x^r} + R_n(x) \]
gesetzt wird, das Produkt

\[ |x^n R_n(x)| \]

für jedes ganzzahlige positive $n$ in dem Gebiet $T$ unter einer endlichen nur von $n$ abhängigen Konstante $M_n$ liegt.

Um die Darstellung einfacher zu gestalten haben wir hier dem Gebiet $T$ die obige spezielle Lage in Bezug auf den Nullpunkt und die reelle positive Achse gegeben. Ferner haben wir $a_0 = \lim_{x \to \infty} f(x) = 0$ angenommen, weil dies für die Darstellung der beiden folgenden Kapitel einige formelle Vorteile bietet. Die Allgemeinheit wird hierdurch nicht eingeschränkt, da man, falls $a_0 \neq 0$ wäre, statt $f(x)$ die Funktion $f(x) - a_0$ behandeln könnte.
Wir wollen also jetzt die Ableitung \( f'(x) \) der Funktion \( f(x) \) in Bezug auf ihr asymptotisches Verhalten für \( \lim x = \infty \) untersuchen. Hierbei gehen wir von der Gleichung

\[
f(x) = \sum_{1}^{r-2} \frac{a_{p}}{x^{p}} + \left( \frac{a_{n-1}}{x^{n-1}} + R_{n}(x) \right)
\]

aus, woraus sich durch Differentiation

\[
f'(x) = -\sum_{1}^{n-2} \frac{\nu a_{\nu}}{x^{\nu+1}} + R_{n}(x)
\]

ergibt, wo

\[
\tilde{R}_{n}(x) = -\left( \frac{n-1}{x^{n}} \right) a_{n-1} + R_{n}'(x).
\]

Man beschränke nun \( x \) auf ein Gebiet \( T' \), welches innerhalb des durch die Ungleichungen \((4)\) definierten Gebietes \( T \) liegt und dessen Randpunkte von denjenigen des Gebietes \( T \) Abstände mit einer von Null verschiedenen unteren Grenze \( \sigma \) haben. Dann ist gemäß der Cauchy'schen Integralformel für jedes dem Gebiet \( T' \) angehörige \( x \)

\[
R_{n}'(x) = \frac{1}{2\pi i} \int_{C_{\sigma}} \frac{R_{n}(z)}{(z-x)^2} \, dz = \frac{1}{2\pi \sigma} \int_{0}^{2\pi} R_{n}(x + \sigma e^{i\psi}) e^{-i\psi} \, d\psi,
\]

wo \( C_{\sigma} \) den um den Punkt \( x \) mit dem Halbmesser \( \sigma \) beschriebenen Kreis bezeichnet. Da nun ferner

\[
|R_{n}(x + \sigma e^{i\psi})| \leq \frac{M_{n}}{|x + \sigma e^{i\psi}|} \leq \frac{M_{n}}{(r - \sigma)^{n}}
\]

so erhält man

\[
|R_{n}'(x)| \leq \frac{1}{2\pi \sigma} \int_{0}^{2\pi} |R_{n}(x + \sigma e^{i\psi})| \, d\psi < \frac{M_{n}}{\sigma} \frac{1}{(r - \sigma)^{n}} = \frac{M_{n}}{\sigma^{1 - \sigma}} \frac{1}{r^{n}}.
\]

Demnach ist für jedes dem Gebiete \( T' \) angehörige \( x \)
Zur Theorie der asymptotischen Potenzreihen.

\[ |x^n R_n(x)| < (n-1) |a_{n-1}| + \frac{M_n}{\sigma (1 - \frac{\sigma}{r})^n} \]

oder da, gemäß (2), \( |a_{n-1}| < M_{n-1} \), und ferner \( r > \gamma + \sigma \),

\[ |x^n R_n(x)| < (n-1) M_{n-1} + \frac{M_n}{\sigma (1 + \frac{\sigma}{\gamma})^n}, \]

wonit folgendes Resultat bewiesen ist:

Die asymptotische Reihe (5) kann gliedweise differenziert werden, und zwar gilt die so erhaltene asymptotische Entwicklung der Ableitung in jedem inneren Gebiet \( T' \), dessen Randpunkte von denjenigen des Gebietes \( T \) Abstände mit einer von Null verschiedenen unteren Grenze haben.

3. Es wurde oben darauf aufmerksam gemacht, dass zu einer gegebenen Funktion nur eine asymptotische Potenzreihenentwicklung gehört, falls es überhaupt eine solche Entwicklung gibt. Es fragt sich nun ob auch das Umgekehrte gilt. Wir werden gleich sehen, dass dies im Allgemeinen nicht der Fall ist. Man kann im Gegenteil zeigen (vgl. Poincaré: loc. cit.), dass wenn eine Funktion \( f(x) \) in einer gewissen Winkelumgebung des Punktes \( x_0 \) eine asymptotische Potenzreihenentwicklung besitzt, es immer unendlich viele analytische Funktionen gibt, die in demselben Gebiet durch dieselbe Reihe asymptotisch dargestellt werden. Eine analytische Funktion ist also durch ihre asymptotische Potenzreihenentwicklung, falls eine solche vorhanden ist, nicht eindeutig bestimmt, wenn man die Gesamtheit aller analytischen Funktionen ins Auge fasst.

Indem wir jetzt diese Frage einer näheren Behandlung unterziehen, verlegen wir wieder den betreffenden singulären Punkt \( x_0 \) in den unendlich fernen Punkt der Ebene und betrachten eine Funktion \( f(x) \), welche den S. 7 genannten Bedingungen genügt.

Wir wollen nun vor allem zeigen, dass es im Gebiete \( T \) unendlich viele reguläre analytische Funktionen gibt, welche durch die-
selbe Reihe (5) asymptotisch dargestellt werden. Zu diesem Zweck betrachten wir die Funktion

\[ e^{-\sigma x k'} \]

wo \( \sigma \) und \( k' \) positive Konstanten bezeichnen, und \( k' \ll \alpha \) ist. Diese Funktion wird offenbar in dem durch die Ungleichungen (4) definierten Gebiet \( T \) durch die identisch verschwindende Potenzreihe asymptotisch dargestellt; in der Tat ist ja für jedes \( n \) und gleichmässig für \( |q| \leq \frac{\pi}{2\alpha} \)

\[ \lim_{x \to 2\alpha} x^n e^{-\sigma x k'} = 0, \]

und \( |x^n e^{-\sigma x k'}| \) liegt folglich, für jedes positive ganzzahlige \( n \), innerhalb des Gebietes \( T \) unter einer endlichen von \( x \) unabhängigen Grenze. Hierach stellt also die Reihe \( \sum_{n=1}^{\infty} \frac{a_n}{x^n} \) in dem Gebiet \( T \) die Funktion

\[ f(x) = e^{-\sigma x k'} \]

asymptotisch dar, welchen positiven Wert auch \( \sigma \) haben mag.

Da man nun erwarten kann, dass eine solche Klasse von Funktionen, deren jede einzelne durch ihre asymptotische Potenzreihen-entwicklung innerhalb dieser Klasse eindeutig bestimmt ist, besonders interessante Eigenschaften darbieten wird, so versuchen wir, durch Hinzuzufügung einer neuen Bedingung, die Funktion \( f(x) \) so zu begrenzen, dass hierdurch eine Klasse von Funktionen mit der genannten Eigenschaft definiert wird. In Bezug auf den Inhalt der hinzuzufliegenden Bedingung gibt das obige Beispiel einige Anleitung. Wir sehen nämlich, dass für jedes dem Gebiet \( T \) angehörige \( x \) und jedes positive ganzzahlige \( n \)

\[ |x^n e^{-\sigma x k'}| = x^n e^{-\sigma \cos k' r' x} \leq x^n e^{-\sigma \cos \frac{k' m}{2\alpha} x} \leq \left( \sigma \cos \frac{k' \pi}{2\alpha} \right)^{\frac{n}{k'}} \left( \frac{n}{k'} \right)^{\frac{n}{k'}} \]

oder, wenn \( \sigma \cos \frac{k' \pi}{2\alpha} = \varphi' \) gesetzt wird,

\[ \text{Die Ungleichung ist als linear napation (6) \( wo x \text{ ist} \). \( Ge \text{ die} \) asympto de auf eine selige zeit gegen bes \( wb \).} \]
Zur Theorie der asymptotischen Potenzreihen.

\[ |x^n e^{\alpha x^k}| \lesssim \left( \frac{n}{|k|} \right)^{\frac{1}{|k|}} e^{-\frac{n}{|k|}} q^n. \]

Diese obere Grenze wird in den Randpunkten \( x = q \left( \frac{n}{|k|} \right)^{\frac{1}{|k|}} e^{\pm \frac{n}{2|k|}} \) tatsächlich erreicht, und innerhalb des Winkels \( |\varphi| \leq \frac{\pi}{2|k|} \) gibt es also in der Nähe von diesen Randpunkten Punkte, in denen das links stehende Produkt der gefundenen oberen Grenze beliebig nahe kommt. Unterwirft man also die S. 7 charakterisierte Funktion \( f(x) \) noch der Bedingung 1)

\[ |x^n R_n(x)| = \left| x^n \left( f(x) - \sum_{r=1}^{n-1} a_r x^r \right) \right| \lesssim \left( \frac{n}{|k|} \right)^{\frac{n}{|k|}} e^{-\frac{n}{|k|}} q^n, \]

wo \( k \geq a \) sein soll, \( q \) dagegen keiner Einschränkung unterworfen ist, welche Ungleichung von einem gewissen Wert \( n \) an in dem Gebiet \( T \) gelten soll, so kann das obige Beispiel einer Funktion, die im Gebiet \( T \) durch die identisch verschwindende Potenzreihe asymptotisch dargestellt wird, offenbar nicht mehr benutzt werden; denn wie klein die Konstante \( \sigma \) oder wie gross die Konstante \( \varphi \) auch angenommen werden mag, so ist, da \( k \geq a > k' \), immer von einem gewissen Wert \( n \) an

\[ \left( \frac{n}{|k|} \right)^{\frac{n}{|k|}} e^{-\frac{n}{|k|}} q^n \lesssim \left( \frac{n}{|k|} \right)^{\frac{n}{|k|}} e^{-\frac{n}{|k|}} q^n. \]

In der Tat ist jedoch die Wirkung der oben gemachten Einschränkung der in Betracht zu ziehenden Funktionenklasse viel tiefgehender: man kann mittels des in n:o 1 bewiesenen Hilfssatzes zeigen, dass es unter der Bedingung (6) überhaupt keine analy-

1) Diese Bedingung könnte in der einfachen Form

\[ |x^n R_n(x)| \lesssim (C n)^k \]

geschrieben werden, wo \( C \) eine positive Konstante bezeichnet. Für die folgende Untersuchung ist es jedoch vorteilhafter die Form (6) beizubehalten, besonders weil die in derselben eingehende Konstante \( \varphi \) in der Folge eine wichtige Rolle spielen wird.
tische Funktion geben kann, welche im Gebiete \( T \) durch die identisch verschwindende Potenzreihe asymptotisch dargestellt wird, ohne selbst identisch zu verschwinden. Folgender Beweis ist eine Vereinfachung des von Watson gegebenen 1), wozu noch kommt, dass wir den Beweis auch für den Fall \( k = a \), welcher bei Watson ausgeschlossen ist, führen können.

Angenommen also, es sei \( \varphi (x) \) eine im Gebiete \( T \) reguläre analytische Funktion, welche daselbst durch die identisch verschwindende Potenzreihe gemäss der Bedingung (6) asymptotisch dargestellt wird. Wir behaupten, dass \( \varphi (x) = 0 \) sein muss.

Aus (6) folgt in diesem Fall, wo \( a_1 = a_2 = \cdots = 0 \) ist,

\[
| \varphi (x) | < \left( \frac{n}{k} \right)^n e^{-\frac{n}{k}} \left( \frac{q}{r} \right)^n = e^{\frac{1}{k}} \left[ \left( \frac{n}{k} \right)^n e^{-\frac{n+1}{k}} \left( \frac{q}{r} \right)^n \right].
\]

Folglich ist für \( \left( \frac{n}{k} \right)^n \leq \left( \frac{r}{q} \right)^n \leq \frac{n+1}{k} \)

\[
| \varphi (x) | < e^{\frac{1}{k}} e^{-\left( \frac{r}{q} \right)^k} = Ce^{-\left( \frac{r}{q} \right)^k},
\]

wenn die Ungleichung, da das Obige von einem gewissen Wert \( n_0 \)
 phấn für jede positive ganzzahlige \( n \) gilt, in dem ganzen Gebiet \( r > r, r \geq \varphi \left( \frac{n_0}{k} \right) \), \( | \varphi | < \frac{\pi}{2a} \) besteht, und da dieser Bereich ein Winkelgebiet von der Grösse \( \frac{\pi}{k} \left( \leq \frac{\pi}{a} \right) \) umfasst, muss die Funktion \( \varphi (x) \) nach dem Watson'schen Lemma identisch verschwinden, w. z. B. w.

Wenn wir also zu den S. 7 genannten Bedingungen noch die speziellere Bedingung (6) hinzufügen, wobei es nur wesentlich ist, das \( k \geq a \) und somit \( \frac{\pi}{a} \geq \frac{\pi}{k} \) sein soll, so ist nach dem Obenbewiesenen jede Funktion der so für ein bestimmtes \( k \), definierten Funktionsklasse \( (k) \) durch ihre asymptotische Potenzreihenentwicklung innerhalb dieser Klasse eindeutig bestimmt. Denn aus

Zur Theorie der asymptotischen Potenzreihen.

\[ f(x) = \sum_{i=1}^{n-1} \frac{a_r}{x^n} + R_n(x), \quad \tilde{f}(x) = \sum_{i=1}^{n-1} \frac{a_r}{x^n} + \tilde{R}_n(x), \]

wo innerhalb des Gebietes \( T \) von einem gewissen Wert \( n \) an

\[ |x^n R_n(x)| < \left(\frac{n}{k}\right)^k e^{-\frac{n}{k}} q^n, \quad |x^n \tilde{R}_n(x)| < \left(\frac{n}{\tilde{k}}\right)^{\tilde{k}} e^{-\frac{n}{\tilde{k}}} \tilde{q}^n, \]

folgt, wenn \( \varrho' > \varrho' > \tilde{\varrho} \) angenommen wird, dass in dem genannten Gebiet für genügend grosse Werte von \( n \)

\[ |x^n (f(x) - \tilde{f}(x))| < |x^n R_n(x)| + |x^n \tilde{R}_n(x)| < \]

\[ < 2 \left(\frac{n}{k}\right)^k e^{-\frac{n}{k}} q^n + \left(\frac{n}{\tilde{k}}\right)^{\tilde{k}} e^{-\frac{n}{\tilde{k}}} \tilde{q}^n, \]

woraus ja gemäss dem Obenbewiesenen folgt, dass \( f(x) - \tilde{f}(x) \equiv 0 \)

und mithin \( f(x) \equiv \tilde{f}(x) \) ist.

Die Funktionsklasse \( (k) \), welche der Gegenstand unserer Untersuchung sein wird, können wir also folgendermassen charakterisieren:

1. Jede der Klasse angehörige Funktion \( f(x) \) ist regulär in jedem endlichen Punkte des Gebietes \( T \):

\[ |\varphi| < \frac{\pi}{2\alpha} r^\gamma, \]

dessen Winkelöffnung \( \frac{\pi}{\alpha} \) mindestens gleich \( \frac{\pi}{k} \) ist; (es ist also \( \alpha \leq k \));

2. die Funktion \( f(x) \) wird in diesem Gebiet durch eine Potenzreihe

\[ \sum_{i=1}^{\infty} \frac{a_r}{x^n} \]

derart asymptotisch dargestellt, dass von einem gewissen Wert \( n \) an

\[ |x^n (f(x) - \sum_{i=1}^{n-1} \frac{a_r}{x^n})| < \left(\frac{n}{k}\right)^k e^{-\frac{n}{k}} q^n, \]

wo \( q \) irgendeine positive Konstante bezeichnet. 1)

1) Die Bedingung 2.0 könnte durch eine allgemeinere ersetzt werden; wie aus dem S. 12 geführten Eindeutigkeitsbeweis hervorgeht, genügt in der Tat
Aus der Ungleichung (6) folgt auf Grund der Stirling'schen Formel, wonach

\[ I \left( \frac{n}{k} \right) = \left( \frac{n}{k} \right)^{\frac{1}{k}} e^{-\frac{n}{k}} \sqrt{2 \pi \frac{n}{k} \left( 1 + \varepsilon_n \right)} \text{, wo } \lim_{n \to \infty} \varepsilon_n = 0, \]

dass im Gebiete \( T \) a fortiori, von einem gewissen Wert \( n \) an,

\[ |x^n \left( f(x) - \sum_{i=1}^{n-1} a_i x^i \right) | < I \left( \frac{n}{k} + 1 \right) \varphi^n. \]

\( (6)' \)

die Annahme, dass die Ungleichung (6), von einem gewissen Wert \( n \) an, in dem die Schenkel des Winkels \( \varphi < \frac{\pi}{2a} \) verbindenden Bande

\[ \varphi \left( \frac{a}{k} \right)^n \leq r \leq \varphi \left( \frac{a+1}{k} \right)^n \]

erfüllt ist. Indessen ist diese Bedingung nur scheinbar allgemeiner; man kann in der Tat zeigen, dass sie die Bedingung \( 2\alpha \) als Folge mit sich zieht.

Um dies einzusehen bemerken wir vorerst, dass man aus der Identität

\[ a_n = x^n \, R_n(x) - \frac{1}{x} \, R_{n+1}(x) \, x^n + 1 \]

für \( r = \varphi \left( \frac{n+1}{k} \right)^{\frac{1}{n}} \) die Abschätzung

\[ |a_n| < \left( \frac{n}{k} \right)^{\frac{1}{k}} e^{-\frac{n}{k}} \varphi^n + \left( \frac{n+1}{k} \right)^{\frac{1}{k}} e^{-\frac{n}{k}} \varphi^n =
\]

\[ \left( \frac{n}{k} \right)^{\frac{1}{k}} e^{-\frac{n}{k}} \varphi^n \left( 1 + \frac{n+1}{k} \right) \]

erhält, woraus, da \( \left( \frac{n+1}{n} \right)^{\frac{1}{k}} e^{-\frac{1}{k}} \), folgt

\( (6)' \)

\[ |a_n| < 2 \left( \frac{n}{k} \right)^{\frac{1}{k}} e^{-\frac{n}{k}} \varphi^n. \]

Sei nun \( \varepsilon \) eine beliebig kleine positive Zahl und man nehme \( n_0 \) so gross an, dass

\[ \left( \frac{n+1}{n} \right)^{\frac{1}{k}} e^{-\frac{1}{k}} < 1 + \varepsilon \]

für \( n > n_0 \), und dass ferner die oben genannte Verallgemeinerung der Bedingung \( 2\alpha \) (S. 13) und somit auch die Ungleichung \( (6)' \) für \( n \geq n_0 \) erfüllt sind.
Umgekehrt ist offenbar die Ungleichung (6) eine Folge der obigen, wenn man in der erstgenannten die Konstante \( q \) um beliebig wenig vergrößert. Diese Bedingungen sind somit gleichwertig und man kann je nach den Umständen die eine oder die andere Form gebrauchen.

Ferner erhält man aus der Ungleichung (2), wo jetzt, für genügend große Werte von \( n \),  \( M_n = \left( \frac{n}{k} \right)^{\frac{n}{k}} e^{\frac{n}{k}} q^n \) gesetzt werden kann, die für genügend große Werte \( n \) gültige Abschätzung

\[
|a_n| \leq r \left( \left| a_{n-1} \right| + |x^{n-1} R_{n-1}(x)| \right),
\]

und man erhält somit, für \( \varrho \left( \frac{n-1}{k} \right)^{\frac{n}{k}} \leq r \leq \varrho \left( \frac{n}{k} \right)^{\frac{n}{k}}, |\varrho| \leq \frac{\pi}{2\alpha} \), die Abschätzung

\[
|x^n R_n(x)| \leq \varrho \left( \frac{n}{k} \right)^{\frac{n}{k}} \cdot \frac{n-1}{2\alpha},
\]

also

\[
|x^n R_n(x)| \leq 3 \left( \frac{n}{k} \right)^{\frac{n}{k}} e^{\frac{n}{k}} q^n (1 + \varepsilon);
\]

und in derselben Weise erhält man allgemein für \( \varrho = n_0 + 1, n_0 + 2, \ldots, n \)

im Bande \( \varrho \left( \frac{n-1}{k} \right)^{\frac{n}{k}} \leq r \leq \varrho \left( \frac{n}{k} \right)^{\frac{n}{k}}, |\varrho| \leq \frac{\pi}{2\alpha} \) eine analoge Abschätzung.

Hierauf aber folgt, für \( \varrho \left( \frac{n-2}{k} \right)^{\frac{n}{k}} \leq r \leq \varrho \left( \frac{n}{k} \right)^{\frac{n}{k}}, |\varrho| \leq \frac{\pi}{2\alpha} \), die Ungleichung

\[
|x^n R_n(x)| \leq \varrho \left( \frac{n}{k} \right)^{\frac{n}{k}} \cdot \frac{n-1}{2\alpha} q^n - 1 (1 + \varepsilon)
\]

folglich

\[
|x^n R_n(x)| \leq 5 \left( \frac{n}{k} \right)^{\frac{n}{k}} e^{\frac{n}{k}} q^n (1 + \varepsilon)^2.
\]
(8) \[ |a_n| < \left( \frac{n}{k} \right)^{-\frac{n}{k}} e^{-\frac{n}{k}} \varrho^n < \Gamma \left( \frac{n}{k} + 1 \right) \varrho^n \]
sich ergibt.

Ehe wir weiter gehen, wollen wir zuerst zeigen, dass die bei
der obigen Definition der Funktionsklasse (k) angenommene spe-
zielle Lage der Winkelöffnung T in der Tat unwesentlich ist, m.
a. W., dass die charakteristischen Eigenschaften einer der Klasse
angehörigen Funktion f(x) einer Bewegungstransformation
\[ x' = e^{i\varphi} x + a \]
gegenüber invariant sind (vgl. WATSON: loc. cit. S. 293).

Fährt man in dieser Weise fort so erhält man schliesslich die in Gebiete
\[ \varrho \left( \frac{n}{k} \right) \frac{1}{k} \leq r \leq \varrho \left( \frac{n}{k} \right) e^{-\frac{n}{k}} \varrho^n \left( 1 + \varrho \right)^{n-m}. \]

Wird also \( \varrho' > \varrho \left( 1 + \varrho \right) \) angenommen, so ist im genannten Gebiet für genü-
gende grosse Werte \( n \)
\[ |x^n R_n(x)| < \left( \frac{n}{k} \right)^{-\frac{n}{k}} e^{-\frac{n}{k}} \varrho'^n. \]

Um eine in dem komplementären Gebiet \( r \geq \varrho \left( \frac{n}{k} \right) \frac{1}{k} \), \( |\varrho| < \frac{\pi}{2a} \) gültige Ab-
schätzung zu erhalten benutzen wir die Identität
\[ R_n(x) = \sum_{r=0}^{p-1} a_n r^n x^n + R_n + p(x), \]
woraus sich
\[ |x^n R_n(x)| \leq \sum_{r=0}^{p-1} \left| a_n r^n x^n + R_n + p(x) r^n x^n + p \right| \]
ergibt. In dem Bande \( \varrho \left( \frac{n + p}{k} \right) \frac{1}{k} \leq r \leq \varrho \left( \frac{n + p + 1}{k} \right) \), \( |\varrho| < \frac{\pi}{2a} \) hat man
dennach
Man nehme also an, dass die Funktion \( f(x) \) in irgend einem Winkelgebiet \( W \) von der Größe \( \frac{\pi}{\alpha} \left( \leq \frac{\pi}{\beta} \right) \) für genügend grosse Werte \( x \) regulär ist und daselbst durch die Reihe \( \sum_{1}^{\infty} \frac{a_{\nu}}{x^{\nu}} \) gemäss der Bedingung (6) asymptotisch dargestellt wird. Mittels der obigen Transformation kann, wenn den Konstanten \( \omega \) und \( a \) geeignete Werte zuteilten werden, eine beliebige Lageveränderung des Winkels \( W \) vorgenommen werden. Hierbei geht die Funktion \( f(x) \) über in \( \tilde{f}(x) = f((x' - a)e^{-i\omega}) \), welche für genügend grosse Werte \( x' \) in dem transformierten Winkelbereich \( W' \) sich regulär verhält und daselbst die asymptotische Entwicklung

\[
x^{n} R_{n}(x) \leq 2 \vartheta^{n} \sum_{0}^{p-1} \left( \frac{n+\nu}{k} \right)^{\nu} e^{-\frac{n+\nu}{k}} < 2 \vartheta^{n} \sum_{0}^{p} \left( \frac{n+\nu}{k} \right)^{\nu} e^{-\frac{n+\nu}{k}}.
\]

Nun ist

\[
\left( \frac{n+\nu}{k} \right)^{\nu} = \left( \frac{n}{k} \right)^{\nu} \left( 1 + \frac{\nu}{n} \right)^{\nu} = \left( \frac{n}{k} \right)^{\nu} \left( 1 + \frac{\nu}{n} \right)^{\nu},
\]

und somit

\[
x^{n} R_{n}(x) \leq 2 \left( \frac{n}{k} \right)^{\nu} e^{-\frac{n}{k}} \vartheta^{n} \sum_{0}^{p} \left( 1 + \frac{\nu}{n} \right)^{\nu} e^{-\frac{\nu}{k}} < 2 \left( \frac{n}{k} \right)^{\nu} e^{-\frac{n}{k}} \vartheta^{n} \sum_{0}^{\omega} \left( 1 + \frac{\nu}{n} \right)^{\nu} e^{-\frac{\nu}{k}}.
\]

welche Ungleichung, da die rechte Seite von \( p \) unabhängig ist, in dem ganzen Gebiet \( r \geq 0, \left( \frac{n}{k} \right)^{\nu}, \vartheta < \frac{\pi}{\alpha} \) gelten muss. Ferner hat man
\[ f(x) = \sum_{n=1}^{\infty} a_n (x'-a)^n + R_n ((x'-a) e^{-i\omega}) \]

besitzt, wo für genügend große Werte \( n \)

\[ |(x'-a)^n R_n ((x'-a) e^{-i\omega})| < \left( \frac{n}{k} \right)^{\frac{n}{k}} e^{-\frac{n}{k}} q^n < \Gamma \left( \frac{n}{k} + 1 \right) q^n. \]

Nun ist

\[ \frac{1}{(x'-a)^{\nu}} = \frac{1}{x'\nu} \left( 1 - \frac{a}{x'} \right)^{-\nu} = \frac{1}{x'\nu} + \sum_{i=0}^{n-1} \frac{\mu^{i-\nu}}{x'^{i+1}} \frac{a^{i-\nu}}{i!} + r_n^\nu (x'), \]

wo gemäß der Darboux'schen Form des Taylor'schen Restgliedes

\[ \sum_{0}^{\infty} \left( 1 + \frac{\nu}{n} \right)^{\frac{n}{k}} e^{-\frac{\nu}{k}} < 1 + \int_{0}^{\infty} \left( 1 + \frac{x}{n} \right)^{\frac{n}{k}} e^{-\frac{x}{k}} dx = 1 + \left( \frac{k}{n} \right)^{\frac{n}{k}} e^{-\frac{k}{n}} \int_{0}^{\infty} t^{\frac{n}{k}} e^{-t} dt, \]

folglich

\[ \sum_{0}^{\infty} \left( 1 + \frac{\nu}{n} \right)^{\frac{n}{k}} e^{-\frac{\nu}{k}} < 1 + k \Gamma \left( \frac{n}{k} + 1 \right) \left( \frac{n}{k} \right)^{\frac{n}{k}} e^{-\frac{n}{k}} = 1 + \gamma \frac{2\pi k n}{(1 + s_n)}, \]

wo \( \lim s_n = 0 \). Wird also \( q^n > q \) angenommen, so ist für genügend große Werte \( n \) in dem oben genannten Gebiet

\[ |x^n R_n (x)| < \left( \frac{n}{k} \right)^{\frac{n}{k}} e^{-\frac{n}{k}} q^n. \]

Beachtet man nun noch, dass die Differenzen \( q' - q \) und \( q'' - q \) beliebig klein angenommen werden können, so sehen wir, dass man für jedes noch so kleine positive \( s \) eine solche von \( n \) unabhängige Zahl \( \xi \), grösser oder gleich \( \gamma \) und \( q \left( \frac{n}{k} \right)^{\frac{1}{k}} \), bestimmen kann, dass in dem ganzen Gebiet \( r > \xi \), \( |q| < \frac{\pi}{2\alpha} \) von einem gewissen Wert \( n \) an

\[ |x^n R_n (x)| < \left( \frac{n}{k} \right)^{\frac{n}{k}} e^{-\frac{n}{k}} (q + s)^n. \]

Hiermit ist aber die Equivalenz der in Anfang dieser Note genannten Bedingung einseits und der Bedingung \( 2\alpha (S. 13) \) anderseits festgestellt.
$$r_{n}(x') = \lambda_n C_{n-1}^{(n-1)} \left(1 - \theta \frac{a}{x'} \right)^{-n} \frac{a^{n-1}}{x'^{n}} \cdot (|\lambda_n| \leq 1, 0 < \theta < 1).$$

Es ergibt sich demnach

$$\bar{r}(x) = \sum_{r} a_{r} \frac{a_{r} + 1}{x'^{r}} + B_{n}(x'),$$

wo

$$a_{r} = \sum_{\mu=1}^{n-1} \alpha_{\mu} e^{i \omega} C_{\mu-1}^{(n-1)} \frac{a}{x'^{r}} - \mu,$$

und

$$B_{n}(x) = \sum_{\mu=1}^{n-1} \alpha_{\mu} e^{i \omega} \lambda_{n} C_{\mu-1}^{(n-1)} \left(1 - \theta \frac{a}{x'} \right)^{-n} \frac{a^{n-1}}{x'^{n}} + R_{n}(x' - a)e^{-\omega}.$$
klein angenommen werden kann. Da jedoch die Größe der Konstante $\varrho$ in der Definition unserer Klasse keine Rolle spielt, so ist unsere Behauptung hiermit bewiesen.

In unserer Definition der Funktionsklasse $(k)$ ist somit nur die Größe der durch die Ungleichungen (7) definierten Winkelöffnung $T$ von Belang: es soll $\frac{\pi}{a} \geq \frac{\pi}{k}$ sein. Eine der Klasse angehörende Funktion ist also dann unter allen in derselben Winkelumgebung des $\infty$-Punktes definierten gleichartigen Funktionen durch ihre asymptotische Entwicklung eindeutig bestimmt. Dagegen kann es sehr wohl eintreffen und trifft auch in vielen wichtigen Fällen wirklich ein, dass dieselbe Reihe in verschiedenen Winkelumbegungen des $\infty$-Punktes verschiedene Funktionen mit derselben charakteristischen Eigenschaft (6) asymptotisch darstellt.

4. Wir können das Obige in einer Hinsicht noch ergänzen, indem wir Folgendes beweisen:

Wenn die Winkelöffnung $\frac{\pi}{a}$ des Gebietes $T$, innerhalb dessen die Funktion $f(x)$ die 8, 13 aufgezählten Eigenschaften besitzt, grösser als, oder gleich $\frac{\pi}{k} + 2 \pi$ ist, so ist $f(x)$ in der Umgebung des $\infty$-Punktes regulär, und die zugehörige asymptotische Reihe somit konvergent.

In der Tat ist ja in diesem Fall der Bereich $T$ teilweise zweifach überdeckt, so dass es genügt wenn man zeigen kann, dass die den beiden Blättern des überdeckten Teiles entsprechenden Funktionselemente identisch und die Funktion somit in der Umgebung des $\infty$-Punktes eindeutig ist. Wir nehmen wieder das Gebiet $T$ symmetrisch in Bezug auf die reelle positive Achse an, und bezeichnen mit $f(x)$ das für $r > r_0, \varrho + \pi \leq \frac{\pi}{2k}$ definierte Funktionselement. Dieses Element setzen wir dann im positiven Sinn einen ganzen Umlauf analytisch fort, und gelangen so zu dem Element $\tilde{f}(x)$, welches in dem überlagernden Teil $r > r_0$
Zur Theorie der asymptotischen Potenzreihen.

Die Größe der Kon- 

cen spielt, so ist 

somit nur die 

Winkelöffnung 

e angehörige 

Umgebung des 

Punkts, in 

ihre asymp- 

tische Reihe 

dargestellt, 

dass für 

gilt. 

oder 

wenn 

besetzt, 

er Umgebung 

asymptotische Reihe 

ilweise zwei- 

n kann, 

tsprechenden 

in der Um- 

wieder das 

Achse an, 

definierte 

im positiven 

so zu 

Teil $r > y$

\[ \varphi(x) = f(x) - \bar{f}(x) \]

der genannten Elemente in dem zweifach überdeckten Teil der 
$x$-Ebene durch die identisch verschwindende Reihe in der Weise 

asymptotisch dargestellt, dass für genügend große Werte von $n$

\[ |x^n \varphi(x)| = |x^n(f(x) - \bar{f}(x))| \leq |x^n B_n(x)| + |x^n \bar{B}_n(x)| < \]

\[ < 2 \left( \frac{n}{k} \right)^k e^{-k q^n}, \]

was ja, da das in Frage stehende Gebiet einen Winkel von der 
Größe $\frac{\pi}{k}$ umfasst, gemäß des S. 12 bewiesen zur Folge hat, dass 

\[ \varphi(x) \] identisch verschwindet, so dass $\bar{f}(x)$ in der Tat in der 
Umgebung des unendlich fernen Punktes eindeutig und somit regulär 

ist, wie behauptet wurde.

Dagegen kann man, wie sich später ergeben wird, Beispiele 

von Funktionen angeben, deren asymptotische Entwicklung in 

einer Winkelumgebung des $\infty$-Punktes, dessen Öffnung dem Werte 

$\frac{\pi}{k} + 2\pi$ beliebig nahe kommt, gemäß der Bedingung (6) bestehen, 

ohne dass der unendlich ferne Punkt eine reguläre Stelle für die 

betreffende Funktion ist.

5. Da das sogenannte LAPLACE-ABEL'sche Integral

\[ I(x) = \int_0^\infty F(z) e^{-xz} \, dz \]

für die Entwicklung des folgenden Kapitels von grundlegender 

Bedeutung ist, wollen wir hier in aller Kürze an die Haupteigen-

schaffen dieses Integrais und deren Beweise erinnern.
Phragmén, Franel, Lerch und Pincherle haben gezeigt, dass das Konvergenzgebiet des Laplace-Abelschen Integrals, wenn es überhaupt für irgendein \( x \) konvergiert, immer eine gewisse Halbebene \( \sigma > \lambda \) ist, wo \( x = \sigma + it \) gesetzt ist. Die Zahl \( \lambda \) wird die Konvergenzabzisse des Integrals genannt. Diese Tatsache ist eine unmittelbare Folge des nachstehenden Hilfssatzes:

Wenn das Integral \( I(x) \) für \( x = x_0 = \sigma_0 + it_0 \) konvergiert, so konvergiert es in jedem Punkt der Halbebene \( \sigma > \sigma_0 \).

Zum Beweise setze man

\[
\int_0^\infty F(t) e^{-x_0 t} \, dt = \Phi(x),
\]
dann ist \( \Phi(0) = 0 \), \( \lim_{x \to \infty} \Phi(x) = I(x_0) \), und für jedes positive reelle \( z \) ist \( |\Phi(z)| < M \), wo \( M \) eine Konstante bezeichnet. Mittels partieller Integration ergibt sich nun

\[
\int_0^\infty F(z) e^{-x} \, dz = \int_0^\infty \Phi'(z) e^{-(x-x_0)z} \, dz = \Phi(Z) e^{-(x-x_0)Z} + (x-x_0) \int_0^Z \Phi(z) e^{-(x-x_0)z} \, dz.
\]

Lässt man hier \( Z \) ins Unendliche wachsen, so verschwindet, da der reelle Teil von \( x - x_0 \) gleich \( \sigma - \sigma_0 \) und somit positiv ist, das erste Glied rechts, während das zweite absolut konvergiert: in der Tat ist für jedes noch so grosse positive \( Z \)

\[
\int_0^Z |\Phi(z) e^{-(x-x_0)z}| \, dz < M \int_0^\infty e^{-(\sigma-\sigma_0)z} \, dz < \frac{M}{\sigma - \sigma_0},
\]

womit der Hilfssatz bewiesen ist.

Hieraus folgt, wie gesagt, die Existenz einer solchen reellen Zahl \( \lambda \), dass das Integral \( I(x) \) für \( \sigma > \lambda \) konvergiert, für \( \sigma < \lambda \) dagegen divergiert. Auf der Grenzgerade \( \sigma = \lambda \) kann sowohl Konvergenz als Divergenz eintreten.

Sei jetzt \( x_0 \) ein beliebiger der Konvergenzhalbebene angehöriger Punkt; dann ist nach Obigem für \( \sigma > \sigma_0 \),

\[
\text{Da nach obigen Ergebnissen,}
\]

so ist

\[
\text{Halbe}
\]

\[
\text{aus,}
\]

\[
\text{stellte}
\]

\[
\text{Integ}
\]

\[
\text{abso}
\]

\[
\text{renz}
\]

\[
\text{Zu}
\]

\[
\text{wo}
\]

\[
\text{best}
\]
Zur Theorie der asymptotischen Potenzreihen.

(12) \[ I(x) = (x - x_0) \int_0^\infty \Phi(z) e^{-(x-x_0)z} \, dz. \]

Dann für \( \sigma \geq \sigma_0 + \varepsilon, \varepsilon > 0 \),

\[ \int_0^\infty \Phi(z) e^{-(x-x_0)z} \, dz < M \int_0^\infty e^{\varepsilon z} \, dz = \frac{M}{\varepsilon - x}, \]

so konvergiert das Integral \( \int_0^\infty \Phi(z) e^{-(x-x_0)z} \, dz \) gleichmäßig in der Halbebene \( \sigma \geq \sigma_0 + \varepsilon \) und stellt somit einen in der Halbebene \( \sigma > \sigma_0 \) regulären analytischen Funktionszweig dar. Dasselbe gilt folglich auch von \( I(x) \), und da nun noch die Differenz \( \sigma_0 - \lambda \) beliebig klein angenommen werden kann, so schliessen wir hieraus, dass das Laplace-Abel'sche Integral \( I(x) \) in seiner Konvergenzhalbebene einen regulären analytischen Funktionszweig darstellt.

Betreffs der absoluten Konvergenz des Laplace-Abel'schen Integrals gilt ein dem obigen ganz analoger Satz. In der Tat sieht man unmittelbar, dass, wenn das Integral \( I(x) \) für \( x = x_0 \) absolut konvergiert, es auch in jedem Punkt der Halbebene \( \sigma > \sigma_0 \) absolut konvergieren muss. Der Bereich der absoluten Konvergenz ist somit auch eine gewisse Halbebene \( \sigma > \lambda \); es ist offenbar \( \lambda \geq \lambda \).

Wir wollen hier einige Worte über die Grösse der Differenz \( \lambda - \lambda \) einschalten, indem wir durch ein Beispiel zeigen, dass diese Differenz jeden beliebigen positiven Wert annehmen kann. Zu diesem Zweck betrachte man das Integral

\[ \varphi(x) = \int_0^\infty e^{i \omega z} e^{-xz} \, dz, \]

wo \( \omega \) eine beliebige positive Konstante ist. Der Bereich der absoluten Konvergenz ist hier offenbar die Halbebene \( \sigma > 0 \), so dass \( \lambda = 0 \). Um das wahre Gebiet der bedingten Konvergenz zu bestimmen, substituieren wir vorerst
\[ e^{\alpha z} = t, \quad z = \frac{1}{\omega} \log t, \]

wodurch das Integral in

\[ \varphi(x) = \frac{1}{\omega} \int_1^\infty e^{i\pi t} t^{-\frac{x}{\omega} - 1} \, dt \]

übergänge. Wir können hier \( x \) reel voraussetzen und sehen dann, dass die notwendige und hinreichende Bedingung für die Konvergenz dieses Integrals die Konvergenz der beiden Integrale

\[ \int_1^\infty \cos(\pi t) t^{-\frac{x}{\omega} - 1} \, dt \quad \text{und} \quad \int_1^\infty \sin(\pi t) t^{-\frac{x}{\omega} - 1} \, dt \]

ist. Da nun diese Integrale offenbar für \( x > -\omega \) konvergieren, für \( x < -\omega \) dagegen divergieren, so sehen wir, dass der wahre Konvergenzbereich dieses Integrals die Halbebene \( \sigma > -\omega \) ist, so dass \( \lambda = -\omega \). Die Differenz \( \lambda - \lambda \) hat also für unser Integral den Wert \( \omega \), und kann somit jeden beliebigen positiven Wert annehmen.

6. Wir wollen jetzt einen wichtigen Spezialfall, welcher mit Hinsicht auf die nachfolgende allgemeine Theorie für uns besondere Bedeutung hat, etwas eingehender behandeln. Wir nehmen an, dass die unter dem Integralzeichen stehende Funktion \( F(z) \) folgenden Bedingungen genügt:

1. \( \text{Die Funktion } F(z) \text{ ist regulär in jedem inneren endlichen Punkt des Gebietes} \)
   \[
   (A) \quad |\omega| \leq \delta, \quad (z = \rho e^{i\omega}),
   \]
   wo \( \delta > 0 \), und vorhällt sich auf dem Rande stetig.

2. \( \text{Es existiert eine solche reelle Zahl } \gamma, \text{ dass in dem Winkelgebiet } (A) \text{ gleichmässig} \)
   \[
   \lim_{\gamma \to \infty} e^{\gamma + e^{\delta} \xi} F(z) = 0,
   \]
   und zwar für jedes noch so kleine positive \( \varepsilon \).

Hieraus folgt zunächst, dass es für jedes positive \( \varepsilon \) eine solche

\[
\text{nur } \text{während jedes Integ}
\]

\[
\text{ebenentisch midf über } Z \text{ und}
\]

\[
\text{der}
\]
Zur Theorie der asymptotischen Potenzreihen.

nur von \( \varepsilon \) abhängige Konstante \( C(\varepsilon) \) gibt, dass in dem Gebiet \((A)\) einschliesslich den Rand

\[
\left| F(z) \right| \leq C(\varepsilon) e^{c|\arg z|}. \tag{13}
\]

Ferner folgt aus der letzgenannten Eigenschaft, dass jedem Argumentwert \( \omega \) aus dem Winkel \( |\omega| \leq \vartheta \) eine solche Zahl \( \lambda_{\omega} \) entspricht, dass für jedes noch so kleine positive \( \varepsilon \)

\[
\lim_{\varepsilon \to 0} e^{-i\omega + \varepsilon} F(\varrho e^{i\omega}) = 0,
\]

während dies für negative Werte von \( \varepsilon \) nicht mehr gilt. Für jedes positive \( \varepsilon \) kann man also eine solche, nur von \( \omega \) und \( \varepsilon \) abhängige Konstante \( C(\omega, \varepsilon) \) finden, dass für \( \arg z = \omega \)

\[
\left| F(z) \right| \leq C(\omega, \varepsilon) e^{c|\omega + \varepsilon|}. \tag{14}
\]

Betrefis der für \( |\omega| \leq \vartheta \) definierten reellen Funktion \( \lambda_{\omega} \) merke man übrigens, dass sie gemäß eines Satzes von Phragmén-Lindelöf (loc. cit.) stetig ist.

Das der positiven reellen Achse entlang genommene Laplace'sche Integral

\[
I_0(x) = \int_0^\infty F(z) e^{-xz} \, dz
\]

konvergiert nun, gemäß (14), absolut in jedem Punkt der Halbebene \( \Re(z) = \sigma > \lambda_0 \) und definiert daselbst einen regulären analytischen Funktionszweig. Wir wollen zeigen, dass diese Funktion mittels der bekannten Methode der Drehung des Integrationsweges über das ganze von den Halbebenen \( \Re(x e^{i\omega}) > \lambda_0, |\omega| \leq \vartheta \) überdeckten Gebiet analytisch fortgesetzt werden kann.

Zu diesem Zweck nehmen wir vorläufig an, dass \( \vartheta < \pi \) ist, und betrachten das Integral

\[
I_\omega(x) = \int_0^\infty F(z) e^{-xz} \, dz,
\]

wo \( \omega \) irgendeinen dem Winkel \((A)\) angehörigen Wert hat. Aus der Ungleichung (14) folgt, dass dieses Integral für jedes der Halb
ebene \( \Re(x e^{i\omega}) > \lambda_0 \) angehörige \( x \) absolut konvergiert und daselbst einen regulären analytischen Funktionszweig definiert. Da nun \( |\omega| \leq \Phi < \pi \), so überdecken sich die Halbebenen \( \Re(x) > \lambda_0 \) und \( \Re(x e^{i\omega}) > \lambda_0 \) teilweise (Fig. 1 a); wir wollen zeigen, dass die zugehörigen Funktionselemente \( I_0(x) \) und \( I_0(x) \) in diesem gemeinsamen Teil übereinstimmen, so dass folglich \( I_0(x) \) die Funktion \( I_0(x) \) in die Halbebene \( \Re(x e^{i\omega}) > \lambda_0 \) analytisch fortsetzt. Zu diesem Zweck genügt es zu zeigen, dass die genannten Funktionen \( z \) b. in den weit entfernten Punkten des Strahles \( \arg x = -\frac{\omega}{2} \) übereinstimmen.

Sei also \( x \) ein Punkt auf dieser Gerade, welcher für die beiden genannten Halbebenen gemeinsam ist. Wir integrieren die Funktion \( F(x) e^{-xz} \) im positiven Sinn über die Begrenzung des in Fig. 1 b abgebildeten Sektors \( S \). Da diese Funktion innerhalb des Sektors regulär und auf dem Rande stetig ist, ergibt sich gemäß des Cauchy'schen Integralsatzes

\[
\int_{S} F(z) e^{-xz} \, dz = 0,
\]

was auch

\[
\int_{0}^{R} F(z) e^{-xz} \, dz + i \int_{0}^{\infty} F(Re^{i\Phi}) e^{-xRe^{i\Phi} + i\Psi} \, d\psi - \int_{0}^{R e^{i\omega}} F(z) e^{-xz} \, dz = 0
\]

geschrieben werden kann. Gemäß (B) erhält man nun...
Zur Theorie der asymptotischen Potenzreihen.

\[ R \int_0^{\infty} F(Re^{i\psi})e^{-x Re^{i\psi}} \, d\psi \leq C(\varepsilon) R \int_0^{\infty} e^{-\left(\frac{|x|}{2} \cos\left(\psi - \frac{\omega}{2}\right) - \frac{\varepsilon}{2}\right) R} \, d\psi, \]

da ferner \( |\psi - \frac{\omega}{2}| \leq \frac{|\omega|}{2} = \frac{\pi}{2} - \delta (\delta > 0) \), so ist das letzte Integral kleiner als
\[ C\pi R e^{-|x| \sin \delta - \varepsilon/2} R. \]

Folglich verschwindet das längs dem Kreisbogen genommene Integral mit wachsendem \( R \), wenn \( x = re^{\frac{\omega}{2} i} \) und \( r > \frac{2 - \frac{1}{2}}{\sin \delta} \) ist. Für diese Werte \( x \) ist demnach
\[ \int_0^{\infty} F(z) e^{-x z} \, dz = \int_0^{\infty} F(z) e^{-xz} \, dz, \]
d. h. \( I_0(x) = I_\infty(x) \), womit die Behauptung für den Fall \( \theta < \pi \) bewiesen ist.

Wenn \( \theta \geq \pi \) ist, so schalte man zwischen 0 und \( \theta \) die Winkelwerte \( \theta_1, \theta_2, \ldots, \theta_{n-1} \) derart ein, dass \( \theta_{\nu} - \theta_{\nu-1} < \pi \) (\( \theta_0 = 0, \theta_n = \theta \)), worauf man das obige Verfahren \( n \)-mal successiv anwenden kann.

II.

Anwendung der Cauchy'schen Integraltheorie.

7. Wir wollen jetzt die Untersuchung der S. 13 charakterisierten Funktionsklasse fortsetzen, und zeigen, mit Zuhilfenahme der Cauchy'schen Integraltheorie, zu diesem Zweck vor allem, dass jede dieser Klasse angehörige Funktion \( f(x) \) durch ein gewisses Laplace'sches Integral dargestellt werden kann.

Um hierbei den wahren Gültigkeitsbereich der in Aussicht gestellten Integraldarstellung zu finden, müssen wir einige vorbereitende Überlegungen anstellen. Man setze hierzu wieder \( x = re^{i\theta} \) und betrachte die durch die Gleichung
\[ \Re(x^k) = r^k \cos k \phi = l^k \]

in diesem gemeinsamen \( \arg x = -\frac{\omega}{2} \)

Hier für die beiden hier integrierten die Begrenzung des Integrationsintervalls innerhalb des Trapez ergibt sich ge-
definierte Kurvenschar. Hier bezeichnet $l$ einen reellen nicht negativen Parameter, während $k$ die S. 13 eingeführte charakteristische Zahl ist. Der zwischen den Asymptoten $y = \pm \frac{\pi}{2k}$ belegene Ast der Kurve, welcher in Bezug auf die positive reelle Achse symmetrisch ist und diese in dem Punkt $r = l$ schneidet, begrenzt ein unendliches rechts von der Kurve belegenes Gebiet

$$\Re (x^k) > l^k,$$

welches für $l = 0$ mit dem Winkelbereich $|\varphi| < \frac{\pi}{2k}$ zusammenfällt und mit wachsendem $l$ dann immer mehr ins Unendliche rückt (Fig. 2).

Da nun die Funktion $f(x)$ in dem Gebiet $r > \gamma, |\varphi| < \frac{\pi}{2a} \left(= \frac{\pi}{2k}\right)$ regulär ist, so ist sie auch für $l \geq \gamma$ in dem oben betrachteten Gebiet regulär. Man lasse jetzt $l$ so lange abnehmen, wie diese Sachlage besteht. Wenn die Funktion in dem ganzen Winkelgebiet $|\varphi| < \frac{\pi}{2k}$ regulär ist, so kann man $l$ bis zum Werte Null abnehmen lassen; ist dies dagegen nicht der Fall, so wird man für ein gewisses positives $l = l_0 \leq \gamma$ auf einen oder mehrere singuläre Punkte der Funktion $f(x)$ stossen. Wird der rechts von der Kurve $\Re (x^k) > l_0^k$ belegene Bereich mit $T_0$ bezeichnet, so ist also $T_0$ das größte unter den oben betrachteten, verschiedenen Werten von $l$ entsprechenden, Gebieten, innerhalb deren die Funktion $f(x)$ regulär ist. Aus den S. 13 aufgezählten Eigenschaften dieser Funktion schliesst man nun unmittelbar Folgendes:

Für jedes $l > l_0$ ist die Funktion $f(x)$ regulär in dem Bereich

$$\Re (x^k) > l^k,$$
Zur Theorie der asymptotischen Potenzreihen.

einschließlich den Rand, und wird in diesem Gebiet durch die Reihe \( \sum_{r=1}^{\infty} \frac{a_r}{x^r} \) derart asymptotisch dargestellt \(^1\), dass von einem gewissen Wert \( n \) an für \( r = |x| > \gamma \)

\[
|x^n (f(x) - \sum_{r=1}^{n-1} \frac{a_r}{x^r})| < \left( \frac{n}{k} \right)^n e^{-k \gamma^n}.
\]

\(^1\) Das S. 9 ausgesprochene Resultat betreffs der Derivierten einer Funktion, welche in einer gewissen Winkelumgebung des \( \alpha \)-Punktes eine asymptotische Potenzreiheentwicklung besitzt, kann auf Grund der obigen spezifizierten Eigenschaften der Funktion \( f(x) \) präzisiert werden, wenn man zugleich von den Ergebnissen der Fussnote S. 13 Gebrauch macht.

Zunächst ist die Derivierte \( f'(x) \) für \( l > l_0 \) regulär in dem Gebiet \( \Re (x^k) \geq t^k \).

Ferner erhält man, wenn

\[
f(x) = \sum_{r=1}^{n-1} \frac{a_r}{x^r} + R_n(x)
\]

gesetzt wird,

\[
f'(x) = -\sum_{r=1}^{n-1} \frac{a_r}{x^{r+1}} + R_n'(x).
\]

Wir nehmen jetzt \( l' > l \) an, beschränken \( x \) auf das Gebiet \( \Re (x^k) \geq t^k \) und bezeichnen mit \( \sigma_r \) den kürzesten Abstand des Punktes \( x = re^{i\psi} \) der Kurve \( \Re (x^k) = t^k \) von den Punkten der Kurve \( \Re (x^k) = l^k \). Dann ist für jedes dem oben genannten Gebiet angehörige \( x \)

\[
R_n'(x) = \frac{1}{2\pi i \sigma_r} \int_0^{2\pi} R_n(x + \sigma_r e^{i\psi}) e^{-i\psi} d\psi.
\]

Es gibt nun, wie leicht einzusehen, zwei solche von Null verschiedene endliche positive Konstante \( c \) und \( C \) \((c < C)\), dass \( c r^{1-k} < \sigma_r < C r^{1-k} \). Ferner hat man für genügend große Werte von \( n \)

\[
R_n(x + \sigma_r e^{i\omega}) \leq \frac{M_n}{|x + \sigma_r e^{i\psi}|^n} \leq \frac{M_n}{(r - \sigma_r)} , \text{ wo } M_n = \left( \frac{n}{k} \right)^n e^{-k \gamma^n}.
\]

Folglich ist
Insbesondere liegt also $|xf'(x)|$ in dem genannten Gebiet unter einer endlichen Schranke $M_1$, so dass folglich

\[ |f(x)| < \frac{M_1}{r} < \frac{M_1}{\lambda_0} = M_0. \]

8. Nach diesen Vorbereitungen bilden wir das oben betrachtete Gebiet $\mathcal{R}(x^k) \geq t^k$ mittels der Transformation

\[ |R_n'(x)| \leq \frac{1}{2\pi \sigma r} \int_0^{2\pi} R_n(x + \sigma_r e^{i\theta}) d\theta \leq \frac{M_n}{\sigma_r (r - \sigma_r)} \leq \frac{M_n}{c} \left( \frac{k}{r - \lambda_0} \right)^n \cdot \frac{1}{r^{n+1}} \]

Nun ist, für $\varphi \left( \frac{n}{k} \right) \leq r \leq \varphi \left( \frac{n+1}{k} \right)$

\[ \frac{k}{r - \lambda_0} \leq \varphi \left( \frac{n+1}{k} \right) \frac{1}{1 - C} \frac{n}{k} \frac{1 - C}{\varphi \left( \frac{n}{k} \right)} \frac{n}{k} \frac{1}{1 - C} \]

und da hier die rechte Seite sich mit wachsendem $n$ dem Grenzwert 1 nähert, so hat man, wenn $\varphi' > \varphi$ angenommen wird, für genügend grosse Werte von $n$ und für $\varphi \left( \frac{n}{k} \right) \leq r \leq \varphi \left( \frac{n+1}{k} \right)$

\[ |x^{n+1} R_n(x)| \leq \frac{M_n}{c} \left( \frac{k}{r - \lambda_0} \right)^n \frac{1}{r^{n+1}} \varphi^{n+1} : \]

Hierauf aber folgt, gemäß der Fußnote S. 13, dass man eine solche positive Zahl $\gamma$ bestimmen kann, dass diese Ungleichung in dem ganzen Gebiet $\mathcal{R}(x^k) \geq t^k, |x| > \gamma'$ für genügend grosse Werte von $n$ gilt. Hierbei können also die Differenzen $\gamma - \lambda_0$ und $\varphi' - \varphi$ beliebig klein angenommen werden.

Wir sehen somit, dass alle Resultate, welche wir auf Grund der S. 28 genannten Eigenschaften der Funktion $f(x)$ herleiten werden, auch für die Derivierten $f'(x)$ gelten, wenn die Reihe $\sum_1^\infty \frac{\varphi}{x^r}$ durch die mittels gliedweiser Differentiation erhaltene Potenzreihe $\sum_1^\infty \frac{\varphi}{x^{\gamma'}}$ und die Zahl $\gamma$ durch $\gamma'$ ersetzt werden, wobei noch die Zahl $\varphi$ um beliebig wenig vergrössert werden muss; und Ähnliches gilt auch für die übrigen Derivierten höherer Ordnung.
Zur Theorie der asymptotischen Potenzreihen.

\[ \xi = x^k \]

auf die Halbebene

\[ \Re (\xi) \geq \ell^k \]

ab. Die Funktion \( f(x) \) wird hierbei in die Funktion \( f'\left(\frac{1}{k^\ell}\right) = \tilde{f}(\xi) \)
transformiert, welche gemäß des in no 7 gesagten folgenden Bedingungen genügt.

Die Funktion \( \tilde{f}(\xi) \) ist in der Halbebene \( \Re (\xi) \geq \ell^k \) regulär und wird daselbst durch die Reihe \( \sum_{v=1}^{\infty} \frac{a_v}{\xi^v} \)
derart asymptotisch dargestellt, dass für \( |\xi| > \gamma^k \) und für genügend grosse Werte \( n \)

(17) \[ |\xi^k \left( \tilde{f}(\xi) - \sum_{v=1}^{n-1} \frac{a_v}{\xi^v} \right)| = \left| \frac{n}{k} \xi^k \tilde{R}_n(\xi) \right| < \left( \frac{n}{k} \right)^k e^{-\frac{n}{k}} q^n. \]

Insbesondere ist in der genannten Halbebene, gemäß (16),

(18) \[ |\tilde{f}(\xi)| < \frac{M}{|\xi|^k}. \]

Sei jetzt \( S \) das Segment, welches die Gerade \( \Re (\xi) = \ell^k \) von einem grossen um den Nullpunkt mit dem Halbmesser \( R \) beschriebenen Kreis abschneidet. Da \( \tilde{f}(\xi) \) und somit auch \( \frac{\tilde{f}(\xi)}{\xi} \)
innerhalb und auf dem Rande dieses Segments regulär ist, so ergibt sich für jedes \( \xi \) innerhalb des Segments gemäß der Cauchy'schen Integralformel

\[ \frac{\tilde{f}(\xi)}{\xi} = \frac{1}{2\pi i} \int_{\mathcal{S}} \frac{\tilde{f}(u)}{u-\xi} \, du, \]

wobei das Integral längs dem Rande in negativem Sinn genommen werden soll. Lässt man hier \( R \) ins Unendliche wachsen, so verschwindet auf Grund der Ungleichung (18) der dem Kreisbogen entsprechende Teil des Integrals und man erhält somit die in der ganzen Halbebene \( \Re (\xi) > \ell^k \) gültige Darstellung.
\[ \mathcal{F}(\xi) = \lim_{T \to \infty} \frac{1}{2\pi i} \int_{i_{k^+} - iT}^{i_{k^+} + iT} \frac{f(u)}{u} e^{i \xi u} \, du. \]

Sei jetzt \( N \) eine beliebige positive Zahl; wir benutzen die Identität
\[ \frac{1}{\xi - u} = \int_0^N e^{-i \xi - u} \, d\xi + \frac{e^{-i \xi - u} N}{\xi - u}, \]
mit deren Hilfe sich, da die Integrationsintervalle endlich sind und die Umkehrung der Integrationsfolge somit erlaubt ist,
\[ \frac{1}{2\pi i} \int_{i_{k^-} - iT}^{i_{k^-} + iT} \frac{f(u)}{u} e^{i \xi u} \, du = \int_0^N e^{-i \xi - u} \, d\xi + \frac{1}{2\pi i} \int_{i_{k^-} - iT}^{i_{k^-} + iT} \frac{f(u)}{u} e^{i \xi u} \, du + R(T, N), \]
ergibt, wo
\[ R(T, N) = \frac{1}{2\pi i} \int_{i_{k^-} - iT}^{i_{k^-} + iT} \frac{f(u)}{u} e^{i \xi u} \, du. \]
Wir lassen nun \( T \) ins Unendliche wachsen und beachten vor allem wie das innere Integral des ersten Gliedes auf der rechten Seite der Gleichung (20) sich hierbei verhält. Für reelle nicht-negative Werte von \( \xi \) hat man nach (18)
\[ \frac{1}{2\pi} \left| \int_{i_{k^-} - iT}^{i_{k^-} + iT} \frac{f(u)}{u} e^{i \xi u} \, du \right| < M e^{k_{k^-}} \int_{i_{k^-} - iT}^{i_{k^-} + iT} \frac{du}{u} = K e^{k_{k^-}}, \]
wo also \( K \) eine von \( T \) und \( \xi \) unabhängige positive Konstante bezeichnet. Das Integral
\[ \mathcal{F}(\xi) = \lim_{T \to \infty} \frac{1}{2\pi i} \int_{i_{k^-} - iT}^{i_{k^-} + iT} \frac{f(u)}{u} e^{i \xi u} \, du = \frac{1}{2\pi i} \int_{i_{k^-} - i\infty}^{i_{k^-} + i\infty} \frac{f(u)}{u} e^{i \xi u} \, du \]
konvergiert somit für jedes reelle nicht-negative \( \xi \) absolut. Da ferner...
Zur Theorie der asymptotischen Potenzreihen.

\[
\left| \frac{1}{2\pi i} \int_{i^{-\infty}}^{i^{k+iT}} \frac{f(u)}{u} e^{\xi u} \, du - \frac{1}{2\pi i} \int_{i^{-k}}^{i^{-k+iT}} \frac{f(u)}{u} e^{\xi u} \, du \right| < \frac{M_1 e^{i\xi T}}{\pi} \int_{i^{k+iT}}^{i^{k+i\infty}} \frac{|du|}{u^{1+\frac{1}{k}}} < M_2 e^{i\xi T} \int_{T}^{\infty} \frac{dt}{t^{1+\frac{1}{k}}} = \frac{k M_1 e^{i\xi T}}{\pi T^{1/k}},
\]

so ist die Konvergenz für jedes positive \( N \) gleichmäßig innerhalb des Intervalls \( 0 \leq \xi \leq N \). 1) und das Integral (21) stellt somit für \( \xi \geq 0 \) eine stetige Funktion \( F(\xi) \) dar.

Aus Obigem schliesst man nun unmittelbar, dass das erste Glied in der rechten Seite der Gleichung (20) bei wachsendem \( T \) gegen den bestimmten endlichen Grenzwert

\[
\int_{0}^{N} F(\xi) e^{-\xi z} d\xi
\]

konvergiert.

Für das Restintegral \( R(T, N) \) erhalten wir wiederum die Abschätzung

\[
|R| < \frac{1}{2\pi} \int_{i^{-k}}^{i^{-k+iT}} \left| \frac{f(u)}{u} \right| e^{-\frac{\beta (t - i^{k})}{u}} \frac{1}{u^{1+\frac{1}{k}}} \, du;
\]

1) Betreffs des Integrals (21) sei hier noch bemerkt, dass es auch für jedes negative reelle \( \xi \) konvergiert, jedoch für diese Werte \( \xi \) identisch verschwindet. In der Tat sieht man mit Hilfe des Cauchy'schen Integralsatzes leicht ein, dass der Wert des Integrals von \( l \) unabhängig ist, falls nur \( l > \lambda_0 \). Da nun anderseits

\[
|F(\xi)| < K e^{i\xi T},
\]

so sehen wir, dass \( |\tilde{F}(\xi)| \) für jedes negative reelle \( \xi \) beliebig klein gemacht werden kann und somit gleich Null sein muss. (Der Wert von \( K \) hängt zwar von \( l \) ab, jedoch derart, dass \( K \) bei wachsendem \( l \) abnimmt.) Für komplexe Werte von \( \xi \) divergiert dagegen das in Frage stehende Integral, da der Integrand dann in den entfernten Teilen des Integrationsweges ins Unendliche wächst.
bezeichnet man also das Maximum von \( \left| \frac{\xi}{\mu} - 1 \right|^{-1} \) auf der Gerade \( \Re(\mu) = k \) mit \( M \), so ergibt sich bei Beachtung der Ungleichung (18) für jedes noch so grosse positive \( T \)

\[
\left| R \right| < \frac{MM_0}{2\pi} e^{-2\Re(\xi) - kN} \int_{-\infty}^{+\infty} \frac{dt}{it^2 + t^2} = \frac{MM_0}{2\pi} e^{-2\Re(\xi) - kN}.
\]

Aus (19) und (20) ergibt sich somit auf Grund des Obigen

\[
\left| \bar{f}(\xi) - \frac{1}{2\pi} \int_{-\infty}^{\infty} \bar{F}(\xi') e^{-i\xi' \xi} \, d\xi' \right| < \frac{MM_0}{2\pi} e^{-2\Re(\xi) - kN}.
\]

Da nun \( \Re(\xi) > l^* \), so verschwindet die rechte Seite für \( \lim N = \infty \) und man erhält somit für jedes der Halbebene \( \Re(\xi) > l^* \) angehörige \( \xi \) die Formel

\[
\bar{f}(\xi) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \bar{F}(\xi') e^{-i\xi' \xi} \, d\xi'.
\]

Da nun jedoch die Differenz \( l - \lambda_0 \) von vornherein beliebig klein angenommen werden kann, und die Funktion \( \bar{F}(\xi) \) von \( l \) unabhängig ist, insofern \( l > \lambda_0 \) (vgl. die Fußnote S. 33), so muss diese Darstellung in der Tat in der ganzen Halbebene \( \Re(\xi) > \lambda_0^* \) gelten. Anderseits ist es klar, dass wir so, wenigstens falls \( \lambda_0 > 0 \), den wahren Gültigkeitsbereich der obigen Formel gefunden haben, denn wie es in no 5 gezeigt wurde ist das Konvergenzgebiet eines LAPOlace'schen Integrals im allgemeinen in gewisse Halbebene, innerhalb dessen das Integral eine reguläre analytische Funktion definiert; aus der Definition der Zahl \( \lambda_0 \) folgt aber, dass die Gerade \( \Re(\xi) = \lambda_0^* \), falls \( \lambda_0 > 0 \), wenigstens eine singuläre Stelle der Funktion \( \bar{f}(\xi) \) enthält.

Gehen wir nun schliesslich mittels der Transformation \( \xi = x^k \) von der \( \xi \) — Ebene zurück zu der \( x \) — Ebene, so erhalten wir für unsere Funktion \( f(x) \) die in Aussicht gestellte LAPOlace'sche Integraldarstellung

\[
\text{(22)}
\]

\[
\text{wenn der Fall}
\]

\[
\text{also won}
\]

\[
\text{totis erst}
\]

\[
\text{F(1)}
\]

\[
\text{und}
\]

\[
\text{(23)}
\]

\[
\text{wo}
\]

\[
\text{(24)}
\]

\[
\text{mit}
\]
(22) 
\[ f(x) = x^k \int_0^\infty F(\xi) e^{-x^k \xi} \, d\xi, \]

welche also innerhalb des Gebietes \( T_0 \), d. h. für \( \Re(x^k) > \lambda_0^k \) gilt. Falls \( \lambda_0 > 0 \), so ist dies auch der wahre Gültigkeitsbereich dieser Formel.

9. Vorläufig wurde tatsächlich nur von der Ungleichung (18), also von der Eigenschaft (16) der Funktion \( f(x) \) Gebrauch gemacht, wonach das Produkt \( |x f(x)| \) für jedes \( l > \lambda_0 \) in dem Gebiet \( \Re(x^k) > t^k \) unter einer endlichen Grenze belegen ist. Die asymptotischen Eigenschaften, in ihrem ganzen Umfange, spiegeln sich erst in den besonderen analytischen Eigenschaften der Funktion \( \bar{F}(\xi) \), zu deren Untersuchung wir jetzt übergehen.

Zu diesem Zweck substituieren wir in das Definitionsintegral (21) dieser Funktion
\[ \bar{f}(u) = \sum_{v=1}^{n-1} \frac{a_v}{u^k} + R_n(u), \]
und erhalten so
\[ \bar{F}(\xi) = \sum_{v=1}^{n-1} \frac{a_v}{2\pi i} \int_{l^k-i\infty}^{l^k+i\infty} u^{-\xi} e^{\xi u} \, du + \Phi_n(\xi), \]
wo
\[ \Phi_n(\xi) = \frac{1}{2\pi i} \int_{l^k-i\infty}^{l^k+i\infty} \frac{R_n(u)}{u} e^{\xi u} \, du. \]

Um die Werte der in (23) vorkommenden Integrale zu ermitteln, betrachte man allgemeiner das Integral
\[ I(a, \xi) = \frac{1}{2\pi i} \int_{l^k-i\infty}^{l^k+i\infty} u^{a-1} e^{\xi u} \, du, \]
wo ζ reel und positiv, α reel und negativ sein soll. Wenn man ζ_u = t setzt, so geht das Integral über in

\[ I(α, ζ) = \frac{1}{2\pi i} \int_{ζ}^{t + i\infty} e^{ζ - 1} \, dζ = \frac{H(α)}{ζ^α}. \]

Hier hängt das Integral \( H(α) \) nur scheinbar von ζ ab, denn der Wert des Integrals ist offenbar von der Abzisse der Integrationsgerade unabhängig, falls diese positiv ist. Um den Wert dieses Integrals zu bestimmen, deformieren wir den Integrationsweg kontinuierlich, bis er die in Fig. 3 dargestellte Form annimmt, was auf Grund des Cauchy'schen Integral satzes erlaubt ist. Die Integrationsvariable t kommt aus dem Unendlichen mit dem Argument – π, beschreibt mit einem beliebig kleinen Halbmesser σ um den Nullpunkt einen Kreis \( c_σ \), geht dann mit dem Argument π wieder ins Unendliche. Bei Benutzung dieses Integrationsweges sieht man sogleich, dass \( H(α) \) eine ganze Funktion ist. Wird nun

\[ t = re^{−πi} \]

gesetzt und das Integral den drei Teilen des Integrationsweges entsprechend zerlegt, so ergibt sich

\[ H(α) = \frac{e^{-αn}}{2\pi i} \int_{c_σ} e^{-τ} \, dτ + \frac{\sin \frac{πα}{2}}{π} \int_{c_σ} e^{-τ} \, dτ + \frac{\sin \frac{πα}{2}}{π} \int_{0}^{∞} e^{-τ} \, dτ. \]

Wenn \( \Re (α) > 0 \), so verschwindet das erste Glied rechts für \( \lim \sigma = 0 \), und wir erhalten somit zunächst für diese Werte von α

\[ H(α) = \frac{\sin \frac{πα}{2}}{π} \int_{0}^{∞} e^{-τ} \, dτ = \frac{\sin \frac{πα}{2}}{π} Γ(α) = \frac{1}{Γ(1 - α)}. \]

Da jedoch beide Seiten dieser Gleichung ganze Funktionen der Variable α sind, so muss sie für alle Werte von α gelten. Föglich ist
oll. Wenn man

\[ I(\alpha, \xi) = \frac{1}{\Gamma(1 - \alpha) \xi^{\alpha}}, \]

so dass man speziell für \( \alpha = -\frac{\nu}{k} \)

\[ I\left(-\frac{\nu}{k}, \xi\right) = \frac{1}{2\pi i} \int_{i^{k-\infty}}^{i^{k+i\infty}} \Gamma\left(-\frac{\nu}{k}\right) e^{\xi u} du = \frac{\xi^{-\frac{\nu}{k}}}{\Gamma\left(-\frac{\nu}{k} + 1\right)} \]

erhält. Die Gleichung (23) kann somit

\[ \Phi_n(\xi) = \sum_{i}^{n-1} \frac{a_{\nu}}{\Gamma\left(-\frac{\nu}{k} + 1\right)} \xi^{-\nu} + \Phi_n(\xi) \]

geschrieben werden.

Wir wollen jetzt das für reelle positive Werte von \( \xi \), durch
(24) definierte Restglied \( \Phi_n(\xi) \) abschätzen und bemerken hierzu vor allem, dass der Wert des Integrals, wie derjenige des Integrals (21) selber, von \( l \) unabhängig ist, wenn \( l > \lambda_0 \); \( l \) kann somit beliebig vergrößert werden. Bei Beachtung von (17) erhält man nun für \( l > \gamma \) von einem gewissen Wert \( n \) an

\[ |\Phi_n(\xi)| \leq \frac{1}{2\pi} \int_{i^{k-\infty}}^{i^{k+i\infty}} \frac{R_n(u)}{u} e^{i\xi u} du \]

oder auch

\[ |\Phi_n(\xi)| \leq \left(\frac{n}{k}\right)^{\frac{k}{k}} e^{i\xi u} \left(\frac{u}{l}\right)^{\frac{n}{k}} \frac{1}{2\pi} \int_{-\infty}^{+\infty} dt \frac{e^{-\frac{t^2}{2k}}}{(t^2 + 1)^{n+k}}. \]

Nun ist, so bald \( n \geq k \)

\[ \int_{-\infty}^{+\infty} \frac{dt}{(1 + t^2)^{\frac{n+k}{2k}}} \leq \int_{-\infty}^{+\infty} \frac{dt}{1 + t^2} = \pi \]
und somit

\[ |\Phi_n(\zeta)| \leq \frac{1}{2} \left(\frac{n}{k}\right) \delta^{-\frac{1}{k}} \left(\frac{q}{l}\right)^n. \]

Dies gilt nun, wie gesagt, welchen Wert \( l \) auch haben mag, wenn nur \( l > \gamma \). Insbesondere können wir also, für genügend große Werte von \( n \),

\[ l = \left(\frac{n}{k}\right) \zeta^{-\frac{1}{k}} \]

setzen, für welchen Wert die rechte Seite der obigen Ungleichung ihr Minimum in Bezug auf \( l \) erreicht. Man erhält so die endgültige Abschätzung

(26)

\[ |\Phi_n(\zeta)| \leq \frac{1}{2} \left(\frac{n}{k}\right) \delta^{-\frac{1}{k}} \left(\frac{q}{l}\right)^n, \]

woraus zu sehen ist, dass

\[ \lim_{n \to \infty} \Phi_n(\zeta) = 0 \]

sobald \( q^{\frac{1}{k}} < 1 \) oder \( \zeta < \frac{1}{q^{\frac{1}{k}}} \) ist, so dass folglich, gemäß (25), die Funktion \( \bar{F}(\zeta) \) innerhalb des Kreises \( |\zeta| < \frac{1}{q^{\frac{1}{k}}} \) durch die konvergente Reihe

(27)

\[ \bar{F}(\zeta) = \sum_{n=1}^{\infty} \frac{a_n}{n!} \left(\frac{\zeta}{k}\right)^n \]

analytisch fortgesetzt wird; wir sehen, dass die Funktion sich in diesem Kreis regulär verhält, mit Ausnahme des Nullpunktes; wenn \( \zeta \) diesen Punkt umkreist, permutieren sich die verschiedenen Zweige der Funktion.

10. Im Vorhergehenden wurde die Funktion \( \bar{F}(\zeta) \) in der Umgebung des Nullpunktes untersucht. Wir wollen nun von dem Integral (21) ausgehend zeigen, dass das den Argumentwerten \( |\arg \zeta| < \pi \) der Umgebung des Nullpunktes entsprechende Element dieser
Funktion längs der positiven reellen Achse analytisch fortgesetzt werden kann.

Zu diesem Zweck wählen wir eine beliebige ganze positive Zahl \(n\) und bestimmen hierauf die zweite ganze Zahl \(m\) so, dass
\[
kn < m \leq kn + 1.
\]

Man führe jetzt in das Integral (21)
\[
\overline{f}(u) = \sum_{1}^{m} \frac{a_{\nu}}{u^{\nu}} + \overline{R}_{m+1}(u)
\]
ein, was
\[
\overline{F}(\xi) = \sum_{1}^{m} \frac{a_{\nu}}{\Gamma \left( \frac{\nu}{k} + 1 \right) + \frac{1}{2\pi i} \int_{k-i\infty}^{k+i\infty} \frac{R_{m+1}(u)}{u} e^{\xi u} du}
\]
ergibt. Wird \(l > \gamma\) angenommen, so findet man leicht auf Grund der Ungleichungen (17) und (28), dass das Integral
\[
\frac{1}{2\pi i} \int_{k-i\infty}^{k+i\infty} \frac{R_{m+1}(u)}{u^{n-1}} e^{\xi u} du
\]
für \(\nu = 0, 1, \ldots, n\) und jedes reelle nicht negative \(\xi\) absolut, und in jedem endlichen Intervall \(0 \leq \xi \leq N\) gleichmässig konvergiert. Dies gilt für jedes noch so grosse \(n\), wenn \(m\) immer gemäss den Bedingungen (28) angenommen wird, und aus der Formel (29) ist somit zu sehen, dass die Funktion \(\overline{F}(\xi)\) in jedem Punkte der positiven reellen Achse bestimmte kontinuierliche Derivierte aller Ordnungen besitzt. Für die \(n\)-te Derivierte ergibt sich nämlich gemäss (29) der Ausdruck
\[
\overline{F}^{(n)}(\xi) = S_{n} + I_{n},
\]
wo
\[
S_{n} = \sum_{1}^{m} \frac{\nu}{\Gamma \left( \frac{\nu}{k} - 1 \right) \cdots \frac{\nu}{\Gamma \left( \frac{\nu}{k} - n + 1 \right)}} \frac{a_{\nu}}{\Gamma \left( \frac{\nu}{k} + 1 \right)} \xi^{\nu-n},
\]
\[ I_n = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} R_{m+1}(u) u^{n-1} e^{u} \, du. \]

Nun lässt sich gemäß der Ungleichung (8) S. 16 eine solche von \( \nu \) unabhängige positive Konstante \( A \) bestimmen, dass
\[ |a_{\nu}| < A \Gamma\left(\frac{\nu}{k} + 1\right) q^{\nu}, \]
so dass folglich, gemäß (28),
\[ |S_n| < \xi^{-a} \sum_{k=1}^{m} \frac{\nu}{k} \left| \frac{\nu}{k} - 1 \right| \cdots \left| \frac{\nu}{k} - n + 1 \right| \left( q^{\frac{1}{k}} \xi \right)^{\nu} < \]
\[ \xi^{-a} \sum_{k=1}^{m} \frac{\nu}{k} \left( m - 1 \right) \cdots \left( m - n + 1 \right) \xi^{-a} \sum_{k=1}^{m} \left( q^{\frac{1}{k}} \xi \right)^{\nu}. \]
Hier ist
\[ \frac{m}{k} \left( \frac{m}{k} - 1 \right) \cdots \left( \frac{m}{k} - n + 1 \right) = \frac{\Gamma\left(\frac{m}{k} + 1\right)}{\Gamma\left(\frac{m}{k} - n + 1\right)} < \frac{\Gamma\left(\frac{n+1}{k} + \frac{1}{k}\right)}{\Gamma\left(\xi\right)}, \]
wo \( \Gamma(\xi) \) das Minimum von \( \Gamma(x) \) für reelle positive Werte von \( x \) bezeichnet (\( 1 < \xi < 2 \)); ferner ist für \( q^{\frac{1}{k}} < 1 \)
\[ \sum_{k=1}^{m} \left( q^{\frac{1}{k}} \xi \right)^{\nu} < m \xi^{\nu} \quad \text{bei} \quad m \leq nk + 1 = k \left( n + \frac{1}{k} \right), \]
für \( q^{\frac{1}{k}} \geq 1 \) wiederum
\[ \sum_{k=1}^{m} \left( q^{\frac{1}{k}} \xi \right)^{\nu} \leq m \left( q^{\frac{1}{k}} \right)^{m} \xi^{\nu} \leq k \left( n + \frac{1}{k} \right) \left( q^{\frac{1}{k}} \xi \right) q^{n} \xi^{n}. \]
Folglich hat man für \( \xi < \frac{1}{q^{k}} \)
\[ |S_n| < S_{\Gamma}\left( n + 1 + \frac{1}{k} \right) \left( n - \frac{1}{k} \right) \xi^{-a} < S_{\Gamma}\left( n + 2 + \frac{1}{k} \right) \xi^{-a}, \]
während für \( \xi \geq \frac{1}{q^{k}} \)

so folgt, gemäß (31)
\[ |S_n| < ST \left( n + 1 + \frac{1}{\kappa} \right) \left( \frac{1}{\kappa} \right)^n \]

\[ < ST \left( n + 2 + \frac{1}{\kappa} \right) \left( \frac{1}{\kappa} \right)^n; \]

hierbei bezeichnet \( S \) eine von \( n \) und \( \xi \) unabhängige positive Konstante.

Ferner erhalten wir für genügend grosse Werte von \( n \)

\[ |I_n| < \frac{1}{2\pi i} \int_{\kappa - i\infty}^{\kappa + i\infty} \left| \frac{\Gamma \left( n + 1 + \frac{1}{\kappa} \right)}{\Gamma (\xi)} \right| \left| e^{i\kappa \xi} \right| \, du < \]

\[ < \Gamma \left( \frac{m + 1}{\kappa} + 1 \right) \varrho^{m+1} e^{i\kappa \xi} \left( \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{dt}{(V^{2k} + t^2)^{\frac{m+1}{k} - n+1}} \right). \]

Nun ist gemäß (28)

\[ \Gamma \left( \frac{m + 1}{\kappa} + 1 \right) \leq \Gamma \left( n + 1 + \frac{2}{\kappa} \right); \]

ferner ist für \( \varrho < 1 \), \( \varrho^{m+1} < \varrho (q^k)^n \), für \( \varrho \geq 1 \) wiederum \( \varrho^{m+1} \leq \varrho^2 (q^k)^n \).

Schliesslich hat man

\[ \int_{-\infty}^{+\infty} \frac{dt}{(V^{2k} + t^2)^{\frac{m+1}{k} - n+1}} = -\frac{1}{\kappa} \int_{-\infty}^{+\infty} \frac{d\tau}{(V^{1/k} + \tau^2)^{\frac{m+1}{k} - n+1}}. \]

woraus auf Grund der Ungleichungen (28) zu sehen ist, dass dieses Integral immer unter einer von \( n \) unabhängigen Grenze liegt.

Alles zusammengenommen gibt es also eine solche von \( n \) und \( \xi \) unabhängige Konstante \( I \), dass

\[ |I_n| < II \left( n + 1 + \frac{2}{\kappa} \right) (q^k)^n e^{i\kappa \xi}. \]

Da nun bekanntlich für jedes \( \sigma \)

\[ \lim_{\eta \to \infty} \frac{\Gamma (n + 1 + \sigma)}{n! \eta^\sigma} = 1, \]

so folgt aus den oben für \( |S_n| \) und \( |I_n| \) gefundenen Abschätzungen, gemäß (30), dass für jedes \( \ell > \gamma \) und jedes noch so kleine positive \( \varepsilon \) von einem gewissen Wert \( n \) an die Ungleichung
(32) \[ |\tilde{F}^{(n)}(\xi)| < n! \left( q^k + \varepsilon \right)^n e^{k\varepsilon}, \]
für \( \xi \geq \frac{1}{q^k} \) besteht, während für \( \varepsilon < \xi < \frac{1}{q^k} \):
(32') \[ |\tilde{F}^{(n)}(\xi)| < n! (\xi - \varepsilon)^n, \]

Seien nun \( \xi_0 \) und \( \xi \) \( (\xi > \xi_0) \) zwei beliebige Punkte der positiven reellen Achse. Da die Funktion \( \tilde{F}'(\xi) \), wie oben bemerkt wurde, in jedem Punkt dieser Achse endliche kontinuierliche Derivierten jeder Ordnung besitzt, so können wir die Taylor’sche Formel anwenden und erhalten somit
\[
\tilde{F}(\xi) = \sum_{0}^{n-1} \tilde{F}^{(n)}(\xi_0) (\xi - \xi_0)^n + \psi_n,
\]
wo \( \psi_n \) nach Darboux in der Form
\[
\psi_n = n! \tilde{F}^{(n)}(\xi_0 + \delta (\xi - \xi_0)) (\xi - \xi_0)^n, \quad (|\delta| \leq 1, 0 < \delta < 1),
\]
dargestellt werden kann. Folglich ist für \( \xi_0 \geq \frac{1}{q^k} \) gemäß (32)
\[
|\psi_n| < \left[ (q^k + \varepsilon) (\xi - \xi_0) \right]^n e^{k\varepsilon},
\]
und somit, für \( 0 \leq \xi - \xi_0 < (q^k + \varepsilon)^{-1} \),
\[
\lim_{n \to \infty} \psi_n = 0,
\]
so dass folglich
(33) \[ \tilde{F}(\xi) = \sum_{0}^{\infty} \tilde{F}^{(n)}(\xi_0) (\xi - \xi_0)^n. \]

In genau derselben Weise zeigt man auf Grund der Ungleichung (32'), dass diese Entwicklung für \( \varepsilon \leq \xi_0 < \frac{1}{q^k} \) in dem Intervalle \( 0 \leq \xi - \xi_0 < \xi_0 - \varepsilon \) gilt. Beachtet man nun noch, dass \( \varepsilon \) beliebig klein angenommen werden kann, so folgt hieraus, dass die rechts stehende Taylor’sche Reihe für \( \xi_0 \geq \frac{1}{q^k} \) in jedem Punkt des Kreises \( |\xi - \xi_0| < \frac{1}{q^k} \) konvergiert und ein in diesem Kreis reguläres Funk-
Unter der Theorie der asymptotischen Potenzreihen.

von Joseph Liouville.

1. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart, und die analytische Funktion der positiven Funktionenart.

2. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

3. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

4. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

5. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

6. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

7. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

8. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

9. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

10. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

11. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

12. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

13. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

14. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

15. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

16. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

17. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

18. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

19. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.

20. Bemerkung; die analytische Funktion der positiven Funktionenart, die analytische Funktion der positiven Funktionenart.
11. Wir setzen jetzt
\[ \xi = z^k, \]
wodurch die Funktion \( F(\xi) \) in die Funktion
\[ F(z^k) = F(z) \]
übergeht. Der Kreis \( |\xi| < \frac{1}{q^k} \) innerhalb dessen die Funktion \( F(\xi) \) durch die Reihe (27) dargestellt wird, wird hierbei auf den Kreis \( |z| < \frac{1}{q} \), und die Gebiete \( G_k(q) \) und \( G_k(q') \) auf zwei Gebiete \( G_k(q) \) und \( G_k(q') \) der \( z \)-Ebene (vgl. Fig. 4 b, welche für den Fall \( k > 1 \) gezeichnet ist) abgebildet.

![Fig. 4 a.](image)

![Fig. 4 b.](image)

Überträgt man nun die bisher in diesem Kapitel gewonnenen Resultate auf die Funktion \( F(z) \), so können wir folgendes zusammenfassende Resultat aussprechen:

Wenn die Funktion \( f(z) \) den S. 28 aufgezählten Bedingungen genügt, so definiert das Integral
\[(35)\]
\[ F(z) = \frac{1}{2 \pi i} \int_{C}^{\infty} \frac{f(u)}{u} e^{z u} du, \]
wo \( l > \lambda_0 \), für reelle nicht negative Werte von \( z \) eine Funktion \( F(z) \), welche in der durch den Kreis \( |z| < \frac{1}{q} \) definierten Umgebung des Nullpunktes regulär ist und durch die konvergente Potenzreihe
\[(36)\]
\[ F(z) = \sum_{1}^{\infty} \frac{a_n}{r \left( \frac{v}{k} + 1 \right)} z^n \]
dargestellt wird; ferner lässt sich diese Funktion längs der positiven reellen Achse analytisch fortsetzen, derart, dass die erweiterte Funk-
Zur Theorie der asymptotischen Potenzreihen.

45

4 b.

Die Funktion \( F(z) \) bei auf den Kreis um Gebiete \( G_k(q) \) der Fall \( k > 1 \) genügen.

Mittels der Funktion lässt sich die Funktion \( f(x) \) innerhalb des Gebietes \( \Re(x^k) > \lambda_0 \) durch das Laplace'sche Integral

\[
    f(x) = x^k \int_0^\infty F(z^k) e^{-x^k z} \, dz
\]

definieren.

Für den Fall \( k = 1 \) enthält das Oberflächen als Spezialfall, zwar in erheblich schärferer Form, ein bereits von Watson (loc. cit. S. 303—310) gefundenes Resultat. Die Herleitung ist jedoch bei uns eine ganz andere, und wie es scheint, natürlicher und einfacher. Vor allem möchten wir darauf aufmerksam machen, dass wir von dem in no 3 bewiesenen Eindeutigkeitssatze keinen Gebrauch gemacht haben; im Gegenteil ist durch das Obige u. A. ein zweiter Beweis des genannten Satzes erbracht. Bei Watson bildet dagegen die Anwendung dieses Satzes geradezu den springenden Punkt seiner Herleitung.

12. In dem allgemeinen Fall, wo die Winkelöffnung \( \frac{\pi}{a} \) des Gebietes \( T \), innerhalb dessen die Funktion \( f(x) \) den S. 13 genannten Bedingungen genügt, größer als \( \frac{\pi}{k} \) ist, kann das oben ausgesprochene Resultat in leicht ersichtlicher Weise ergänzt werden. Man kann dann für jedes \( \omega \) aus dem Intervall \( |\omega| \leq \frac{\pi}{2a} - \frac{\pi}{2k} = \theta \) mittels der Gebiete

\[
    \Re(x e^{i\omega} k) > \lambda_0
\]

die nicht negative Zahl \( \lambda_0 (\leq \gamma) \) in derselben Weise definieren, wie die Zahl \( \lambda_0 \) in no 7 mittels der Gebiete \( \Re(x^k) > \lambda_0 \) definiert wurde. Falls \( \lambda_0 > 0 \), so ist das Gebiet \( \Re(x e^{i\omega} k) > \lambda_0 \) das grösste

\( C(e, q) e^{(q + e)k} \Re(x^k) \) genügt.

\( \Re(x^k) > \lambda_0 \) durch das Laplace'sche Integral.
unter den obengenannten Gebieten, innerhalb dessen die Funktion \( f(x) \) regulär ist; für jedes \( t > \lambda_n \) wird die Funktion in dem Gebiet 
\[ \Re (x e^{i\omega} t^k) \geq t^k \]
durch die Reihe \( \sum_{n=1}^{\infty} \frac{a_n}{x^n} \) derart asymptotisch dargestellt, dass von einem gewissen Wert \( n \) an für \( |x| > \gamma \)
\[ |x^n (f(x) - \sum_{n=1}^{n-1} \frac{a_n}{x^n})| < \left( \frac{n-1}{k} \right)^n e^{-\frac{n}{k} \lambda_n} \]

Von diesen Tatsachen ausgehend beweist man nun genaue wie es im Vorhergehenden geschehen ist, dass die durch das Integral
\[ \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} f(z) e^{zt} \frac{dz}{u} \]
in den Punkten des Strahles \( \arg z = \omega \) definierte Funktion innerhalb des Kreises \( |z| < \frac{1}{\rho} \) in die Reihe (36) entwickelt werden kann und somit mit der Funktion \( F(z) \) zusammenfällt; ferner, dass diese Funktion sich längs dem genannten Strahl in derselben Weise wie längs der reellen positiven Achse analytisch fortsetzen lässt, wobei die analytische Fortsetzung in dem, dem Gebiet \( G(\rho') \) entsprechenden Bereich der Ungleichung (37) genügt. Statt \( C(\varepsilon, \rho') \) erhält man zwar eine neue Konstante \( C_\varepsilon (\varepsilon, \rho') \) und \( \Re (z^k) \) ist jetzt durch \( \Re (\varepsilon e^{-i\omega} t^k) \) zu ersetzen. Die Funktion \( F(z) \) ist somit in dem ganzen Winkelgebiet
\[ |\arg z| \leq \frac{\pi}{2a} - \frac{\pi}{2k} = \theta \]
regulär und es lässt sich für jedes noch so kleine positive \( \varepsilon \) eine solche Konstante \( C(\varepsilon) \) bestimmen, dass daselbst
\[ |F(z)| < C(\varepsilon) e^{\varepsilon|z|^k} |z|^{-k} \]
(39)

Mittels dieser Funktion lässt sich die Funktion \( f(x) \) für jeden dem obigen Winkel angehörenden Winkelwert \( \omega \) innerhalb des Gebietes
\[ |x| > \gamma \]
darstellen.

Wird \( h \) ersetzter,

woraus,

folgt, 1

und so:

\[ |x| > \gamma \]

\[ \infty \text{-Punkt} \]

\[ n: 4 \text{ a} \]

13.

erbringe lich Eu
Gebietes $\Re (x e^{i \omega}) > \lambda^k \omega$ durch das Laplace'sche Integral
\[ f(x) = x^k \int_0^1 F(z^k) e^{-x k z} \, dz \]
darstellen.

Wenn die Winkelöffnung $\frac{\pi}{\alpha}$ des Gebietes $T$ den Wert $\frac{x}{k} + 2 \pi$ erreicht oder sogar überschreitet, so ist $\vartheta > x$ und die Funktion $F(z)$ ist somit eine ganze Funktion, welche in jedem endlichen Punkt der $z$-Ebene der Ungleichung (39) genügt. Wird also das Maximum von $|F(z)|$ auf dem Kreise $|z| = R$ mit $M(R)$ bezeichnet, so hat man, da die Reihe (36) jetzt beständig konvergiert, für jedes positive $R$
\[ \frac{|a_\nu|}{R^{\nu + 1}} < M(R) < C(e) e^{(y + \varepsilon) R^k}. \]

Wird hier die rechte Seite durch ihr Minimum in Bezug auf $R$ ersetzt, so erhält man
\[ \frac{|a_\nu|}{R^{\nu + 1}} < C(e) \left( \frac{\nu}{k} \right)^{-\frac{\nu}{k}} e^{k (y + \varepsilon)^v}, \]
woraus, gemäß der Stirling'schen Formel,
\[ |a_\nu| < C(e) \sqrt{2 \pi} \frac{\nu}{k} (y + \varepsilon)^v (1 + \varepsilon_\nu), \lim_{\nu \to \infty} \varepsilon_\nu = 0, \]
folgt. Folglich ist die asymptotische Reihe $\sum_{\nu=1}^{\infty} \frac{a_\nu}{x^\nu}$ für $|x| > y + \varepsilon$, und somit, da $\varepsilon$ beliebig klein angenommen werden kann, für $|x| > y$ konvergent, und die Funktion $f(x)$ in der Umgebung des $\infty$-Punktes regulär. Wir sind so von neuem zu dem schon in no 4 auf anderem Wege gefundenen Resultat gelangt.

13. Wir wollen jetzt die früher in Aussicht gestellte Ergänzung erbringen, indem wir durch ein Beispiel zeigen, dass es tatsächlich Funktionen gibt, welche den S. 13 genannten Bedingungen...
in einem Gebiet genügen, dessen Winkelöffnung den Wert $\frac{\pi}{k} + 2\pi$ beliebig nahe kommen kann, ohne dass die Funktion in der Umgebung des $\infty$-Punktes regulär ist. Das benutzte Beispiel würde zugleich ein helles Licht auf die Verhältnisse, welche für die meisten und wichtigsten Anwendungen der in dieser Arbeit dargestellten allgemeinen Theorie (z. B. in der Theorie der linearen Differential- und Differenzengleichungen) charakteristisch sind, und wir wollen es desshalb ziemlich ausführlich behandeln.

Wir betrachten den durch das Laplace'sche Integral

$$\varphi(x) = x^k \int_0^\infty \frac{e^{-xz}}{1 + x^k} \, dz$$

(41)

für $\Re(x^k) > 0$, d. h. in dem Winkelgebiet $|\arg x| = |\varphi| < 2\pi/k$ definierten analytischen Funktionszweig, und stellen uns vor allem die Aufgabe, diesen Zweig in der ganzen Umgebung des $\infty$-Punktes analytisch fortzusetzen. Zu diesem Zweck bemerken wir vorerst, dass die Funktion

$$\frac{1}{1 + z^k}$$

für welche der Nullpunkt im Allgemeinen eine transzendente singuläre Stelle ist und welche in den Punkten

$$z = e^{(2n+1)k\pi i}, \quad (n = 0, \pm 1, \ldots),$$
einfache Pole hat, sich in jedem endlichen Punkte des Winkelbereiches $|\arg z| < k\pi$ regulär verhält und für $\lim z = 0$ sich stetig dem Grenzwert 1 nähert. Da ferner für jedes noch so kleine positive $\delta$, innerhalb und auf dem Rande des Winkelbereiches $|\arg z| \leq k(\pi - \delta)$,

$$\left| \frac{1}{1 + z^k} \right| \leq \frac{1}{\sin \delta},$$

so folgt hieraus gemäß des in no 7 gezeigten, dass die Funktion $\varphi(x)$ durch Drehung des Integrationsweges zunächst über das
Zur Theorie der asymptotischen Potenzreihen.

gänze von den Winkeln \(| k \varphi + \omega | < \frac{\pi}{2k} \), \(| \omega | < k \pi \), überdeckte Gebiet d. h. in dem Winkelbereich

\[ | \varphi | < \frac{\pi}{2k} + \pi \]

analytisch fortgesetzt werden kann. Den so erhaltenen Funktionszweig, welcher also durch das Integral

\[ x^k \int_{0}^{\infty} \frac{e^{-x z}}{1 + \frac{1}{z^k}} \, dz \]

für \(| \omega | < k \pi \) dargestellt wird, bezeichnen wir mit \( q_0(x) \).

Lässt man nun den Drehungswinkel \( \omega \) des Integrationsweges noch weiter über den Wert \( k \pi \) hinaus wachsen, so wird der Pol \( z = e^{i k \pi} \) überstrichen und der Wert des Integrals macht einen Sprung indem er wieder in den Zweig \( q_0(x) \) zurückfällt und bei wachsendem \( \omega \) für \( k \pi < \omega < 3k \pi \) die Werte \( q_0(x) \) von neuem repitierit; und dies wiederholt sich offenbar auch weiterhin bei jeder Passage eines der singulären Punkte \( z = e^{(2n + 1) k \pi i} (n = 0, 1, \ldots) \).

Lässt man wiederum die Integrationsgerade, in negativem Sinn sich drehend, die Pole \( z = e^{(2n + 1) k \pi i} (n = -1, -2, \ldots) \) über- schreiten, so geschieht offenbar dasselbe. Wir sehen somit, dass das Integral (42) für jedes ganzzahlige \( n \), für \( (2n + 1) k \pi < \omega < (2n + 1) k \pi \) in dem Winkelgebiet

\[ | \varphi + n 2 \pi | < \frac{\pi}{2k} + \pi \]

den Funktionszweig \( q_0(x) \) wiederholt.

Diese Bemerkung kann nun in leicht ersichtlicher Weise zur Fortsetzung des Elementes \( q_0(x) \) in der ganzen Umgebung des \( \infty \)-Punktes verwertet werden. Die Unstetigkeiten in der Wertfolge des Integrals (42) rühren nämlich offenbar davon her, dass der Integrand in den von der Integrationsgerade überstrichenen singulären Punkten von Null verschiedene Residuen hat. Wird also bei jeder Sprungstelle das dem überstrichenen Pol entspre-
chende, mit 2\pi i multiplizierte Residuum hinzuaddiert oder abgezogen, je nachdem die Integrationsgerade sich in positivem oder negativem Sinn dreht, so werden die Unstetigkeiten aufgehoben und man kann die Funktion von dem Zweige \( \varphi_0(x) \) ausgehend in beiden Umlaufrichtungen beliebig weit fortsetzen.

Wir beginnen uns damit den Zweig \( \varphi_0(x) \) einen vollen Umlauf in beiden Richtungen fortzusetzen. Da die Residuen der Funktion

\[
\frac{xe^{-x^2}}{1 + z^k}
\]

in den Polen \( z = e^{-k\pi i} \) und \( z = e^{k\pi i} \) die Werte

\[
-k \cdot x^k e^{-k\pi i - x^k e^{-k\pi i}} \quad \text{bzw.} \quad -k \cdot x^k e^{k\pi i - x^k e^{k\pi i}}
\]

haben, so findet man für \( \varphi(x) \), wenn von dem für \( |\arg x| < \frac{\pi}{2k} + \pi \) definierten Funktionszweig \( \varphi_0(x) \) ausgegangen wird, nach einem vollen Umlauf in positiver Richtung, den Wert

\[
\varphi(x) = \varphi_0(x) + 2\pi kix^k e^{k\pi i - x^k e^{k\pi i}}
\]

während man nach einem Umlauf in negativer Richtung

\[
\varphi(x) = \varphi_0(x) - 2\pi kix^k e^{-k\pi i - x^k e^{-k\pi i}}
\]

erhält. Bei der weiteren Fortsetzung der Funktion \( \varphi(x) \) kommen nur noch neue Exponentialausdrücke der oben Art hinzu, und wir sehen somit, dass es bei der Untersuchung der Funktion \( \varphi(x) \) vor allem auf die Klarlegung der Eigenschaften des Zweiges \( \varphi_0(x) \) ankommt.

Wir wollen nun zeigen, dass dieser Funktionszweig eine asymptotische Potenzreihenentwicklung der S. 13 charakterisierten Art besitzt. Bei Beachtung der Identität

\[
\frac{1}{1 + z^k} = \sum_{0}^{n} \frac{(-1)^p}{z^k} + (-1)^q \cdot \sum_{1}^{n} \frac{z^k}{1 + z^k}
\]

erhält man aus (42), welches Integral ja für \( |\varphi| < k\pi \) die Funktion \( \varphi_0(x) \) in den Punkten des Winkelbereiches \( |\varphi| < \frac{\pi}{2k} + \pi \) definiert, zunächst

oder, da

hat,

(44)

wo

Nun ist

fölglich

und für

wobei
Zur Theorie der asymptotischen Potenzreihen.

\[
\varphi_0(x) = \sum_{n=0}^{\infty} (-1)^n x^n \int_0^\infty z^n e^{-x^k z} \, dz + R_n(x),
\]

oder, da man für \(|k \varphi + \omega| < \frac{\pi}{2}\)

\[
x^k \int_0^\infty z^k e^{-x^k z} \, dz = \frac{\Gamma\left(\frac{\nu}{k} + 1\right)}{x^{\nu}}
\]

hat,

\[
\varphi_0(x) = \sum_{n=0}^{\infty} (-1)^n \frac{\Gamma\left(\frac{\nu}{k} + 1\right)}{x^{\nu}} + R_n(x),
\]

wo

\[
R_n(x) = (-1)^n \int_0^\infty \frac{z^n e^{\pm x^k z}}{1 + z^k} \, dz.
\]

Nun ist für \(|\arg z| = |\omega| < k\pi\)

\[
\left|\frac{1}{1 + z^k}\right| \leq \frac{1}{\sin \frac{\omega}{k}},
\]

und für \(|\omega| \leq \frac{k\pi}{2}\) genauer

\[
\left|\frac{1}{1 + z^k}\right| \leq 1;
\]

folglich hat man

\[
|R_n(x)| < \left|\frac{\nu}{\sin \frac{\omega}{k}}\right| \int_0^\infty z^n e^{-x^k z \cos (k\varphi + \omega)} \, dz
\]

\[
= \left|\frac{1}{\nu^{\frac{n}{k}}} \frac{\Gamma\left(\frac{n}{k} + 1\right)}{\sin \frac{\omega}{k}} \right|^{\frac{n+1}{k}} \sec (k\varphi + \omega)
\]

wobei \(|\sin \frac{\omega}{k}| \) für \(|\omega| \leq \frac{k\pi}{2}\) durch 1 ersetzt werden kann.
Die Ungleichung (45) gilt für jedes \( |\omega| < k\pi \) wenn \( \frac{k\varphi + \omega}{2} \) ist; wird also \( \omega = -\frac{k\varphi}{p} \) gesetzt, wo \( p > 1 \), übrigens jedoch vorläufig unbestimmt sei, so gilt die obige Ungleichung wenn gleichzeitig \( \frac{|\varphi|}{p} < \pi \) und \( k\left(1 - \frac{1}{p}\right)|\varphi| < \frac{\pi}{2} \), oder also wenn \( |\varphi| < p\pi \)
und zugleich \( |\varphi| < \frac{\pi}{2k\left(1 - \frac{1}{p}\right)} \) ist. Wir bestimmen nun \( p \) derart, dass
\[
p\pi = \frac{\pi}{2k\left(1 - \frac{1}{p}\right)},
\]
woaus \( p = 1 + \frac{1}{2k} (> 1) \) folgt. Demnach ergibt sich aus (45) die für \( |\varphi| < p\pi = \pi + \frac{\pi}{2k} \) gültige Abschätzung
\[
|x^n R_n(x)| < \frac{p^{n+1}}{\sin \left(\frac{\varphi}{1 + \frac{1}{2k}}\right)} \left[\sec \left(\frac{\varphi}{2} + \frac{\pi}{2k}\right)\right]^{n+1},
\]
wobei \( \sin \left(\frac{\varphi}{1 + \frac{1}{2k}}\right) \) für \( |\omega| = \frac{k|\varphi|}{p} \leq \frac{k\pi}{2} \), also für \( |\varphi| \leq \frac{1}{2} \left(\pi + \frac{\pi}{2k}\right) \)
durch 1 ersetzt werden kann.

Aus der Gleichung (44) ist somit auf Grund der obigen Ungleichung zu sehen, dass der Zweig \( q_0(x) \) der Funktion \( q(x) \) für \( |\arg x| < \pi + \frac{\pi}{2k} - \delta \) durch die Potenzreihe
\[
S = \sum_0^{\infty} (-1)^n \frac{r^k}{x^n}
\]
gemäß der Bedingung (6)' (S. 14) asymptotisch dargestellt wird, und zwar wie klein das positive \( \delta \) auch angenommen werden mag. Die Winkelöffnung \( \frac{\pi}{k} + 2\pi - 2\delta \) kann somit dem kritischen Wert \( \frac{\pi}{k} + 2\pi \) beliebig nahe kommen, und dennoch ist die dargestellte Funktion keineswegs in der Umgebung des \( \infty \)-Punktes regulär.
Zur Theorie der asymptotischen Potenzreihen.

Die in dem ganzen Winkelbereich $|\varphi| < \pi + \frac{\pi}{2k}$ gültige Abschätzung (46) kann in den verschiedenen Teilen dieses Winkels durch genaueere ersetzt werden. Erstens kann in der Ungleichung (45), wenn $|\varphi| < \pi$ ist, $\omega = -k\varphi$ gesetzt werden, und man erhält so die für $|\varphi| < \pi$ gültige Abschätzung

$$
|x^n R_n(x)| < \frac{I^\left(\frac{n}{k}+1\right)}{|\sin \varphi|},
$$

wo $|\sin \varphi| = \frac{\pi}{2}$ durch 1 ersetzt werden darf. Um in den Winkelgebieten $\pi < |\varphi| < \pi + \frac{\pi}{2k}$ gültige genauere Abschätzungen zu erhalten, machen wir von den Formeln (43) und (43') Gebrauch. Bezeichnet $x = re^{i\varphi}$ einen, z. B. dem Winkelgebiet $\pi < \varphi < \pi + \frac{\pi}{2k}$ angehörigen Punkt und $x' = re^{i\varphi'}$ den unter diesem Punkt belegenen Punkt des Winkelgebietes $\pi < \varphi < -\pi + \frac{\pi}{2k}$, wobei also $\varphi = \varphi' + 2\pi$, und $x'$ in Funktionen, welche in der Umgebung des $\infty$-Punktes eindeutig sind, durch $x$ ersetzt werden kann, so ergibt sich aus der Formel (43)

$$
R_n(x) = R_n(x') + 2\pi ikx^ne^{ik\pi i - \pi e^{ik\pi i}}.
$$

Nun ist gemäß (47)

$$
|x^n R_n(x')| < \frac{I^\left(\frac{n}{k}+1\right)}{|\sin \varphi'|},
$$

während das Maximum des mit $x^n$ multiplizierten absolut genommenen zweiten Gliedes der Gleichung (48), welches für

$$
r = \left(\frac{n}{k}+1\right)^{\frac{1}{k}}[\sec k(\varphi' + \pi)]^{\frac{1}{k}}
$$

erreicht wird, gleich

$$
2\pi k\left(\frac{n}{k}+1\right)^{\frac{n}{k}+1}e^{-\frac{n}{k}-1}[\sec k(\varphi - \pi)]^{\frac{n}{k}+1} = M_n(\varphi)
$$
ist. Da nun das Verhältnis der rechten Seite der Ungleichung (49) zu dem obigen Ausdrucke für jedes dem Winkel \( \pi \leq \varphi \leq \pi + \frac{\pi}{2k} \) angehörige \( \varphi \) sich mit wachsendem \( n \) dem Grenzwert Null nähert, so ergibt sich aus der Gleichung (48), dass

\[
\max | x^n R_n(x) | = M_n(\varphi)(1 + \varepsilon_n(\varphi))
\]

angeschrieben werden kann, wo \( \lim n = \infty \) für jedes dem oben genannten Winkel angehörige \( \varphi \). Der Ausdruck (50) gibt somit auf jedem, dem genannten Winkel angehörigen Strahl-arg \( x = \varphi \) den asymptotischen Wert der wahren oberen Grenze des Produktes \( | x^n R_n(x) | \) für \( \lim n = \infty \) an; und auf Grund der Formel (43) findet man in derselben Weise, dass dies auch für \( -\pi > \varphi > -\pi + \frac{\pi}{2k} \)

wirkt, wenn \( \sec k(\varphi - \pi) \) durch \( \sec k(\varphi + \pi) \) ersetzt wird.

Die oben angewandten Formeln (43) und (43) zeigen uns übrigens den sozusagen inneren Grund warum die asymptotische Darstellung durch die Reihe \( S \) für \( | \varphi | = \pi + \frac{\pi}{2k} \) nicht mehr gelten kann; wir sehen nämlich dass die Funktion \( \varphi(x) \) auf diesen Strahlen mit wachsendem \( r \) unendlich von derselben Ordnung wie \( r^k \) wird, und lässt man \( \varphi \) größer als \( \pi + \frac{\pi}{2k} \) bzw. kleiner als

\( -\pi + \frac{\pi}{2k} \) werden, so wird die Funktion mit wachsendem \( r \) unendlich wie ein gewisser mit \( r^k \) multiplizierter Exponentialausdruck. In
dessen tritt die asymptotische Darstellung in den Winkelgebieten

\( \pi + \frac{3\pi}{2k} < | \varphi | < \pi + \frac{5\pi}{2k} \) wieder in Kraft, hat jedoch jetzt einen wesentlich anderen Charakter als vorher. Zwar erhält man in diesem Winkelgebiet Abschätzungen derselben Art wie die durch die Gleichung (51) ausgedrückte, aber die Winkelöffnungen der Gültigkeitsbereiche erreichen nicht die Größe \( \frac{\pi}{k} \), welche erforderlich ist damit eine asymptotische Potenzreihendarstellung mit Restglied-

\[ R_n(x) \]

1) Dies gilt, wenn \( k \geq 1 \); falls \( k < 1 \) so gestaltet sich die Sache etwas anders.
Ungleichung \( \varphi < \pi + \frac{\pi}{2k} \)

Null nähert, abgeschätzungen der obigen Art zu der von uns untersuchten Klasse angehöre. Wächst \( |\varphi| \) weiter, so wird die Funktion \( \varphi (x) \) wiederum für \( |\arg x| \geq \pi + \frac{5\pi}{2k} \) mit wachsendem \( r \) unendlich; indessen wollen wir dem geneigten Leser die weitere Verfolgung der Beziehungen zwischen der Reihe \( S \) und der Funktion \( \varphi (x) \) überlassen, indem wir statt dessen einige Worte dem Spezialfall \( k = 1 \) widmen.

Für \( k = 1 \) erhält man

\[
\varphi (x) = x \int_{0}^{\infty} \frac{e^{-x}}{1 + z} \, dz - \alpha \int_{0}^{\infty} \frac{e^{-t}}{x + r} \, dt = x e^{-x} \int_{x}^{\infty} \frac{e^{-t}}{t} \, dt = x e^{-x} \ln (e^{-x}),
\]

wo

\[
\ln (u) = \int_{0}^{u} \frac{dz}{\log z}
\]

den sogenannten Integrallogarithmus bezeichnet. Werden die in diesem Niveau gefundenen Resultate auf diese wichtige Transzendente übertragen, so sehen wir u. A., dass die bekannte asymptotische Potenzreihe Entwicklung

\[
e^{x} \ln (e^{-x}) \sim \sum_{n=0}^{\infty} (-1)^{n} \frac{\varphi^{n+1}}{x^{n+1}},
\]

welche meines Wissens bisher nur als für \( |\arg x| = |\varphi| < \pi \) gültig angesehen worden ist \( 1) \), in der Tat in dem ganzen Winkelgebiet \( |\varphi| < \frac{3\pi}{2} \) besteht. Wird \( e^{x} \ln (e^{-x}) = \sum_{n=0}^{\infty} (-1)^{n} \frac{\varphi^{n+1}}{x^{n+1}} + R_{n} (x) \) gesetzt, so ist in diesem Gebiet, gemäß (46)

\[
|x^{n+1} R_{n} (x)| < \frac{n!}{\sin \frac{2}{3} \varphi} \left( \frac{\sec \varphi}{3} \right)^{n+1},
\]

wo \( \sin \frac{2}{3} \varphi \) für \( |\varphi| \leq \frac{3\pi}{4} \) durch 1 ersetzt werden kann. Diese

---

\( 1) \) Vgl. z. B. NIELSEN: *Handbuch der Theorie des Integrallogarithmus*; auch WATSON gibt in seiner schon öfters zitierten Abhandlung diesen Gültigkeitsbereich an.
allgemeingültige Abschätzung kann gemäß (47) und (51) durch
folgende genauere Abschätzungen ersetzt werden:

Für \( |\varphi| < \pi \) ist

\[
|2^{n+1} \mathcal{H}_n(x)| \leq \frac{n!}{\sin \varphi},
\]

wo \( |\sin \varphi| \) für \( |\varphi| \leq \frac{\pi}{2} \) durch 1 ersetzt werden darf. Ferner ist

für \( \pi < |\varphi| < \frac{3\pi}{2} \)

\[
\max |x^{n+1} \mathcal{H}_n(x)| = 2\pi (n + 1)^{n+1} e^{-n^{-1}} |\sec \varphi|^{n+1}(1 + \varepsilon_n(\varphi)),
\]

wo \( \lim_{n \to \infty} \varepsilon_n(\varphi) = 0 \).

III.

Behandlung einiger wichtiger Spezialfälle. Zusammenhang
mit der Theorie der Faktorienreihen.

14. In diesem Kapitel wollen wir einige in vielen Hinsichten
intressante Spezialfälle behandeln, welche auch zugleich die bei den
Anwendungen am häufigsten vorkommenden sind. Vor allem ver-
dient der Fall, wo die im Vorhergehenden mit \( k \) bezeichnete cha-
arakteristische Zahl gleich 1 ist, besondere Beachtung. Die S. 13
festgestellten fundamentalen Eigenschaften der Funktion \( f(x) \) neh-
mern dann folgende speziellere Form an: die Funktion ist regulär
in einem Gebiet \( r > \gamma, |\varphi| < \frac{\pi}{2a} \), \( x = re^{i\varphi} \), dessen Winkelöff-
nung \( \frac{\pi}{a} \) nicht kleiner als \( \pi \) ist, und wird in diesem Bereich durch
die Potenzreihe \( \sum_{n=1}^{\infty} \frac{a_n}{x^n} \) derart asymptotisch dargestellt, dass von ei-
nem gewissen Wert \( n \) an

\[
\begin{align*}
&\text{Sei } \lambda \\
&\text{ist, dass } \\
&\lambda > 0, \\
&\text{endliche Gemäss Integral}
\end{align*}
\]

\[
\begin{align*}
&\text{wo } l > 0 \\
&\text{definiert, } \mathfrak{H}(x) >
\end{align*}
\]

dargestellt

dargestellt

Wass

setzung

zwecker
tend ein

Wir

Zahl von
Zur Theorie der asymptotischen Potenzreihen.

\begin{equation}
\left| x^n \left( f(x) - \sum_{1}^{n-1} a_{x^i} \right) \right| < n^n e^{-n} q^n < n! q^n.
\end{equation}

Sei \( \lambda \) eine nicht negative reelle Zahl, welche dadurch bestimmt ist, dass die Halbebene \( \Re(x) > \lambda \) die grösste der Bereiche \( \Re(x) > l \geq 0 \) ist innerhalb deren die Funktion \( f(x) \) regulär ist; falls \( \lambda > 0 \), so enthält also die Halbebene \( \Re(x) > l \) wenigstens eine endliche singuläre Stelle der Funktion \( f(x) \) sobald \( l < \lambda \) ist. Gemäss dem in no 8 Bewiesenen schliessen wir dann, dass das Integral

\begin{equation}
\int \frac{f(u)}{u} e^{iz} du,
\end{equation}

wo \( l > \lambda \) ist, für reelle nicht negative Werte von \( z \) eine Funktion definiert, mittels welcher die Funktion \( f(x) \) in der Halbebene \( \Re(x) > \lambda \) durch das LAPLACE'sche Integral

\begin{equation}
f(x) = x \int_{0}^{\infty} F(z) e^{-xz} dz
\end{equation}

dargestellt werden kann. Ferner folgt aus dem in no 9 Bewiesen, dass die Funktion \( F(z) \) in der Umgebung \( |z| < \frac{1}{\lambda} \) des Nullpunktes regulär ist, und durch die konvergente Potenzreihe

\begin{equation}
F(z) = \sum_{1}^{\infty} \frac{a_{z^n}}{n!} z^n
\end{equation}

dargestellt wird.

Was die Entwicklung betrifft, welche die analytische Fortsetzung der Funktion \( F(z) \) längs der positiven reellen Achse bezeichnen, so gestalten sie sich im vorliegenden Spezialfall bedeutend einfacher und leiten auch zu einem eleganteren Endergebnis.

Wir führen zunächst, unter \( n \) eine beliebige positive, ganze Zahl verstanden, in das Integral (55)
\[ f(u) = \sum_{1}^{n} \frac{a_v}{u^v} + R_{n+1}(u) \]

ein, und erhalten
\[ F(z) = \sum_{1}^{n} \frac{a_v z^v}{v!} + \frac{1}{2 \pi i} \int_{l-i \infty}^{l+i \infty} \frac{R_{n+1}(u)}{u} e^{zu} \, du. \]

Wird hier \( l > \gamma \) angenommen, so kann diese Gleichung \( n \)-mal nach \( z \) differenziert werden, wodurch sich
\[ F^{(n)}(z) = a_n + \frac{1}{2 \pi i} \int_{l-i \infty}^{l+i \infty} R_{n+1}(u) u^{n-1} e^{zu} \, du \]
ergibt. Nun ist für genügend grosse Werte \( n \), gemäß der Ungleichung (8) S. 16, \( |a_n| < n! q^n \) und ferner \( |R_{n+1}(u)| < n! q^n \frac{1}{|u|^{n+1}} \), so dass folglich
\[ |F^{(n)}(z)| < n! q^n e^{\gamma z} \left( e^{-\gamma z} + \frac{1}{2 \pi i} \int_{l-i \infty}^{l+i \infty} \frac{du}{u^{n+1}} \right), \]
oder, da \( e^{-\gamma z} \leq 1 \) und
\[ \int_{l-i \infty}^{l+i \infty} \frac{du}{u^{n+1}} = \int_{-\gamma}^{\gamma} t = \pi, \]
hat,
\[ |F^{(n)}(z)| < \left( 1 + \frac{1}{2 \gamma} \right) n! q^n e^{\gamma z}. \]

Diese Ungleichung, welche im vorliegenden Fall in die Stelle der beiden Ungleichungen (32) und (32) tritt, gilt also von einem gewissen Wert \( n \) an für jedes nicht negative reelle \( z \), wie klein die positive Differenz \( l - \gamma \) auch sein mag. Hieraus schliesst man aber auf Grund der TAYLOR’schen Formel mit dem DARBoux’schen Restglied (vgl. S. 42), dass die Funktion \( F(z) \) für jedes \( z_0 \geq 0 \) in dem Kreise \( |z - z_0| < \frac{1}{\gamma} \) und somit in dem ganzen von die-
sen Kreisen überdeckten Gebiet \( G(q) \) (Fig. 5) regulär ist. Ferner beweist man, wie es S. 43 geschehen ist, dass es für jedes \( q' > q \) und jedes noch so kleine positive \( \epsilon \) eine solche nur von diesen Größen abhängige Konstante \( C(\epsilon, q') \) gibt, dass innerhalb und auf dem Rande des Gebietes \( G(q') \)

\[
|F(z)| < C(\epsilon, q') e (\varphi + \epsilon) \Re(z).
\]

Wir können somit als Endergebnis den folgenden Satz aus sprechen:

Sei \( f(x) \) eine Funktion welche in der Halbebene \( \Re(x) > \lambda \geq 0 \) regulär ist und daselbst durch die Potenzreihe \( \sum_{n=1}^{\infty} \frac{a_n}{x^n} \) derart asymptotisch dargestellt wird, dass für \( |x| = r > \gamma \) und für genügend grosse Werte \( n \) die Ungleichung (54) besteht; dann definiert das Integral (55) für \( t > \lambda \) und reelle nicht negative Werte \( z \) eine von \( l \) unabhängige Funktion \( F(z) \), welche in der Umgebung \( |z| < \frac{1}{\varrho} \) des Nullpunktes regulär ist und daselbst in die konvergente Potenzreihe (57) entwickelt werden kann. Ferner lässt sich diese Funktion längs der positiven reellen Achse derart analytisch fortsetzen, dass die erweiterte Funktion sich in dem ganzen, von den Kreisen \( |z - z_0| < \frac{1}{\varrho}, z_0 \geq 0 \), überdeckten Gebiet \( G(q) \) regulär verhält und in jedem inneren Gebiet \( G(q') (q' > q) \) für jedes noch so kleine positive \( \epsilon \) der fundamentalen Ungleichung (59) genügt.

Mittels dieser Funktion lässt sich die Funktion \( f(x) \) für \( \Re(x) > \lambda \) durch das Laplace'sche Integral (56) darstellen.

Dieser Satz, welcher in schärferer Gestaltung das von Watson in seiner schon vielfach zitierten Arbeit auf anderem Wege gefundenen Hauptresultat wiedergibt, enthüllt einen bemerkenswerten Zusammenhang zwischen der Theorie der asymptotischen und der
im Borel'schen Sinne summabel divergenten Potenzreihen). Unterwirft man nämlich die Borel'sche Definition einer kleinen unwesentlichen Abänderung, so ist gemäß seiner Terminologie die divergente Potenzreihe

\[ \sum_{1}^{\infty} \frac{a_{\nu}}{x^{\nu}} \]

absolut und gleichmässig summabel, wenn die sog. assozierte Funktion

\[ F'(z) = \sum_{1}^{\infty} \frac{a_{\nu}}{\nu!} z^{\nu} \]

in einem die positive reelle Achse umfassenden Streifen (z. B. derselben Art wie das Gebiet \( G(q) \)) regulär ist und wenn überhaupt in diesem Streifen gleichmässig

\[ \lim_{z \to \infty} e^{-hz} F^{(n)}(z) = 0, \quad n = 0, 1, 2, \ldots, \]

wo \( F^{(n)}(z) \) die n-te Derivierte bezeichnet (\( F^{(0)}(z) = F(z) \)), und \( k \) eine positive Zahl ist.

Nun zeigt uns die Ungleichung (59), dass die Bedingungen (60) für unsere Funktion \( F(z) \) in jedem Gebiet \( G(q') \), wo \( q' > q \), wirklich erfüllt sind, wenn \( k > \gamma \) angenommen wird. In der Tat, wenn \( q' > q'' > q \) ist und \( \sigma \) eine positive Zahl \( < \frac{1}{q''} - \frac{1}{q'} \) bezeichnet, so hat man für jedes \( z \) innerhalb oder auf dem Rande des Gebietes \( G(q') \)

\[ F^{(n)}(z) = \frac{n!}{2\pi i} \int_{S} F(z + \sigma e^{\psi i}) e^{-n\psi i} d\psi, \]

so dass folglich gemäß (59)

Zur Theorie der asymptotischen Potenzreihen.

| \( F^{(n)}(z) | < \frac{n!}{2 \pi i} \int_{0}^{2\pi} F_0(z + \sigma e^{i \theta}) \, d\theta \leq \frac{n!}{\sigma^n} C(\varepsilon, \varphi') e^{(\varepsilon + \varphi') (\Re(z) + \sigma)}, \]

woraus die Behauptung folgt.

Die Summe der divergenten Potenzreihe wird nach Borel durch das Integral

\[
\int_{0}^{\infty} F\left(\frac{t}{x}\right) e^{-t} \, dt = x \int_{0}^{\infty} F(z) e^{-xz} \, dz
\]
definiert und ist somit präzise gleich der Funktion \( f(x) \), welche durch die Reihe asymptotisch dargestellt wird.

Wir sehen somit, dass die von uns behandelte Potenzreihe absolut und gleichmäßig summabel ist und als Summe die Funktion \( f(x) \) hat, welche durch die Reihe asymptotisch dargestellt wird.

15. Wir wollen jetzt zeigen, dass die im vorhergehenden formulierten Satz umgekehrt werden kann, indem wir Folgendes beweisen:

Sei \( F(z) \) eine in dem Kreise \( |z| < \frac{1}{q} \) durch die Potenzreihe

\[
F(z) = \sum_{n=0}^{\infty} a_n z^n
\]
definierte Funktion, welche sich in dem Gebiete \( G(q) \) regulär verhält, und für jedes \( \varphi' > q \) und jedes noch so kleine positive \( \varepsilon \) in dem Gebiet \( G(\varphi') \) der Ungleichung

\[
|F(z)| < C(\varepsilon, \varphi') e^{(\varepsilon + \varphi') \Re(z)}
\]
genügt; dann definiert das Laplace'sche Integral

\[
f(x) = x \int_{0}^{\infty} F(z) e^{-xz} \, dz
\]
a eine Funktion \( f(x) \), welche für \( \Re(z) > \gamma \) regulär ist und für
jedes noch so kleine positive \( \varepsilon \) in der Halbebene \( \Re(x) \geq \gamma + \varepsilon \) durch die Reihe \( \sum_{\nu=1}^{\infty} \frac{a_{\nu}}{x^\nu} \) derart asymptotisch dargestellt wird, dass für jedes \( \xi' > \xi \) und für genügend grosse Werte von \( n \)

\[
\left| x^{n} \left( f(x) - \sum_{\nu=1}^{n-1} \frac{a_{\nu}}{x^\nu} \right) \right| < n! \xi'^{n}.
\]

Zunächst ist es klar, dass das Integral (62), welches auf Grund der Ungleichung (59) für \( \Re(x) > \gamma \) absolut konvergiert, gemäss den in n:o 5 dargestellten allgemeinen Eigenschaften des Laplace'schen Integrals in dieser Halbebene einen Funktionszweig definiert, welcher wenigstens für \( \Re(x) > \gamma \) regulär ist. Es erübrigt uns noch die asymptotischen Eigenschaften dieser Funktion zu untersuchen.

Durch \( (n+1) \)-malige wiederholte partielle Integration erhält man zunächst für \( \Re(x) > \gamma \)

\[
f(x) = \sum_{\nu=1}^{n-1} \frac{a_{\nu}}{x^\nu} + R_{n}(x),
\]

wo

\[
R_{n}(x) = \frac{1}{x^n} \left( a_{n} + \int_{0}^{\infty} F^{(n+1)}(z) e^{-xz} \, dz \right).
\]

Nun ist für jedes nicht negative reelle \( z \) und jedes \( \xi' > \xi \) auf Grund der Ungleichung (59)

\[
| F^{(n)}(z) | = \frac{n! \xi'^{n}}{2 \pi} \int_{0}^{2 \pi} \left| F \left( z + \frac{e^{\phi i}}{\xi'} \right) e^{-n \phi} \, d\psi \right| < \frac{n! \xi'^{n}}{2 \pi} \int_{0}^{2 \pi} \left| F \left( z + \frac{e^{\phi i}}{\xi'} \right) \right| \, d\psi < C(\varepsilon, \xi') n! \xi'^n e^{\psi + \varepsilon (z + \frac{1}{\xi'})},
\]

oder also

\[
| F^{(n)}(z) | < K(\varepsilon, \xi') n! \xi'^{n} e^{\psi + \varepsilon z},
\]

wo \( K(\varepsilon, \xi') \) eine neue nur von \( \varepsilon \) und \( \xi' \) abhängige positive Konstante ist. Speziell erhält man für \( z = 0 \)

\[
| a_{n} | = | F^{(n)}(0) | < K(\varepsilon, \xi') n! \xi'^{n}.
\]
Da ferner für $\Re(x) \geq \gamma + 2\varepsilon$
\[
\left| \int_0^\infty F^{(n+1)}(x) e^{-xz} dz \right| < K(\varepsilon, \varrho')(n+1)! \varrho'^{n+1} \int_0^\infty e^{-x\varepsilon} dx = \frac{K(\varepsilon, \varrho')(n+1)! \varrho'^{n+1}}{\varepsilon},
\]
so ergibt sich für diese Werte von $x$
\[
|x^n R_n(x)| < |a_n| + \int_0^\infty F^{(n+1)}(x) e^{-x\varepsilon} dx < \frac{K(\varepsilon, \varrho') n! \varrho'^{n} \left(1 + (n+1)\frac{(\varrho')}{\varepsilon}\right)}{\varepsilon};
\]
wird also $\varrho'' > \varrho'$ angenommen, so ist in der Halbebene $\Re(x) \geq \gamma + 2\varepsilon$
von einem gewissen Wert $n$ an
\[
|x^n R_n(x)| < n! \varrho'^n.
\]
Beachtet man nun noch dass $\varepsilon$ und die Differenz $\varrho'' - \varrho'$ beliebig klein angenommen werden können, so ist unser Satz hiermit vollständig bewiesen.

16. Wir kehren jetzt zu dem in no 14 bewiesenen Satz zurück, und werden im Folgenden von diesem Satz ausgehend zeigen, dass die im allgemeinen divergente asymptotische Potenzreihe - Entwicklung der Funktion $f(x)$ durch eine konvergente Fakultätenreihe ersetzt werden kann. Der interessante Zusammenhang, welcher zwischen den divergenten Potenzreihen- und den Fakultätenreihen-Entwicklungen existiert, von mehreren Autoren schon seit Stirling flüchtig berührt, ist wohl zuerst von Watson 1) streng begründet worden. Da jedoch die diesbezügliche Arbeit WATSONS, was die Einfachheit und Eleganz der Darstellung und die Präzision der erlangten Resultate betrifft, noch ziemlich viel zu wünschen übrig läßt, so wollen wir hier die Frage zur erneuten Behandlung auf-

nehmen, zumal da nach dem Erscheinen der Watson'schen Abhandlung Nórlund 1) eine Untersuchung von grundlegender Bedeutung über Funktionen, welche durch konvergente Faltättenreihen definiert sind, publiziert hat.

Wir könnten hierbei von einem allgemeinen von Nórlund (loc. cit. Théorème VIII) aufgestellten Kriterium für Funktionen, welche konvergente Faltättenreihen zulassen, Gebrauch machen; indessen wollen wir im Folgenden das Problem direkt und durch Benutzung möglichst elementarer Hilfsmittel behandeln.

Wir gehen also von den Voraussetzungen und Ergebnissen des in no 14 formulierten Satzes aus, wonach die Funktion \( f(x) \) in der Halbebene \( \Re(x) > \lambda \) durch das Laplace'sche Integral

\[
(56) \quad f(x) = x \int_0^\infty F(z) e^{-xz} \, dz
\]
dargestellt werden kann; die Funktion \( F(z) \) ist in dem Gebiet \( G(\varphi) \) regulär und genügt für jedes \( \varphi' > \varphi \) und jedes noch so kleine positive \( \varepsilon \) in dem Gebiet \( G(\varphi') \) der Ungleichung

\[
(59) \quad |F(z)| < C(\varepsilon, \varphi') e^{(\varphi + \varepsilon)\Re(z)},
\]
wo \( C(\varepsilon, \varphi') \) eine nur von \( \varepsilon \) und \( \varphi' \) abhängige Konstante ist.

Zur Herleitung des in Aussicht gestellten Resultates führen wir in das Integral (56) eine neue Integrationsvariable mittels der Transformation

\[
(64) \quad e^{-z} = t^\omega; \quad z = -\frac{1}{\omega} \log t = -\frac{1}{\omega} \log \frac{1}{t}
\]
ein, wo \( \omega \) eine vorläufig unbestimmte positive Konstante bezeichnet. Ehe wir diese Substitution ausführen, wollen wir jedoch zuerst die durch (64) vermittelte konforme Abbildung ins Auge fassen.

Zu diesem Zweck setzen wir

\[
(65) \quad z = \xi + i\eta, \quad t = |t| e^{i\psi},
\]

wodurch die betreffende Transformation in das reelle Gleichungsspar
\[ \xi = -\frac{1}{\omega} \log |t|, \eta = -\frac{\psi}{\omega} \]
zerfällt. Für unseren Zweck ist es besonders wichtig die Bildkurve des Kreises \(|t - 1| = 1\) der \(t\)-Ebene zu kennen. Die Gleichung dieses Kreises kann \(|t| = 2 \cos \psi\) geschrieben werden, und die gesuchte Kurve kann somit durch die Gleichungen
\[ \xi = -\frac{1}{\omega} \log (2 \cos \psi), \eta = -\frac{\psi}{\omega}, \]
welche die rechtwinkligen Koordinaten des Punktes \(z\) als Funktionen des Parameters \(\psi\) ausdrücken, dargestellt werden. Wenn der Punkt \(t\) von dem

Nullpunkt ausgeland, den genannten Kreis in positivem Sinn durchläuft, wobei \(\psi\) von dem Wert \(\psi = -\frac{\pi}{2}\) bis zu dem Wert \(\psi = \frac{\pi}{2}\) wächst, so beschreibt gemäß den Gleichungen (66) der Punkt \(z\) die in Fig. 6b abgebildete Kurve. Diese Bildkurve ist symmetrisch in Bezug auf die reelle Achse und schneidet diese für \(\psi = 0\) in dem Punkt \(\xi = -\frac{\log 2}{\omega}\), während die imaginäre Achse für \(\psi = \pm \frac{\pi}{3}\) in den Punkten \(\eta = \mp \frac{\pi}{3\omega}\) geschnitten wird; ferner besitzt sie die Asymptoten \(\eta = \pm \frac{\pi}{2\omega}\) denen sie sich für \(\lim \xi = +\infty\) nähert. Diese Kurve begrenzt ein (rechts belegenes) Gebiet \(T\), welches durch die Transformation (64) eineindeutig und konform auf dem Kreis \(|t - 1| \leq 1\) abgebildet wird, derart, dass die Rand-
punkte \( z = \infty, t = 0 \) und die inneren Punkte \( z = 0, t = 1 \) einander entsprechen.

Wir bestimmen jetzt die positive Konstante \( \omega \) gemäß der Bedingung

\[
\omega > \frac{\pi \varrho}{2};
\]

wird nun \( \varrho' \) so angenommen dass \( \frac{2\omega}{\pi} \geq \varrho' > \varrho \), so liegt der Bereich \( T_\omega \) gänzlich innerhalb des Gebietes \( G(\varrho') \), wo die Funktion \( F(z) \) regulär ist und der Ungleichung (59) genügt. In der Tat fällt ja dann der rechts von der imaginären Achse belegene Teil des Gebietes \( T_\omega \) zwischen den Geraden \( \eta = \pm \frac{1}{\varrho'} \); wenn wiederum \( z = \xi + i\eta \) einen Punkt auf dem links von der imaginären Achse belegenen Teil der Kurve (66) bezeichnet, so ist \( |\xi| \leq \frac{\log \varrho}{\omega} \), \( |\eta| \leq \frac{\pi}{3 \omega} \) und somit

\[
|z| = (\xi^2 + \eta^2)^{1/2} \leq \frac{1}{\omega} \left( \log^2 \varrho + \frac{\pi^2}{9} \right)^{1/2} < \frac{\pi}{\omega} \sqrt{\frac{2}{9} \log \varrho} = \frac{\pi}{2 \omega} \sqrt{\frac{8}{9}} < \frac{\pi}{2 \omega} \leq \frac{1}{\varrho'}.
\]

Nachdem wir so \( \omega \) gemäß (67) fixiert haben, führen wir in dem Integral (56) die Substitution (64) aus und erhalten

\[
f(x) = \frac{x}{\omega} \int_0^1 F \left( \frac{1}{\omega} \log \frac{1}{t} \right) t^{x-1} \mathrm{d}t = \frac{1}{\omega} \int_0^1 \Phi(t) t^{x-1} \mathrm{d}t.
\]

Hier muss nun vor allem die Funktion \( \Phi(t) \) untersucht werden, da die Funktion \( F(z) \) innerhalb und auf dem Rand des Gebietes \( T_\omega \) regulär ist, und dieses Gebiet in obengenannter Weise durch die Transformation (64) auf den Kreis \( |t - 1| < 1 \) konform abgebildet wird, so schliessen wir unmittelbar, dass die Funktion \( \Phi(t) \) innerhalb und auf dem Rand dieses Kreises, mit alleiniger Ausnahme des Nullpunktes, welcher dem unendlich fernen Punkt des Gebietes \( T_\omega \) entspricht, regulär ist. Folglich lässt sich die Funktion \( \Phi(t) \) für \( |t - 1| < 1 \) in eine nach den positiven Potenzen von \( (1 - t) \) fortschreitende Reihe

(69) entwickeln.

Wir Nullpunkte der Funktion \( \epsilon \) folglich und außerdem verstären

(70)

Diese Kreise folglich

(71) entwickeln der

(72)

(73)
(69) \[ \Phi(t) = \sum_{l=1}^{\infty} c_l(\omega)(1 - t)^l \]

entwickelt, wo

\[ c_l = (-1)^l \frac{\Phi^{(l)}(1)}{l!} \]

Wir wollen nun das Verhalten der Funktion in der Nähe des Nullpunktes untersuchen. Aus der Ungleichung (59) folgt unmittelbar, da gemäß (64) \( \Re(z) = -\frac{1}{\omega} \log |t| \), dass für jedes positive \( \varepsilon \)

\[ |\Phi(t)| < C(\varepsilon, \varepsilon') |t|^{-\frac{1}{\omega}(y + \varepsilon)} \]

folglich ist für jedes noch so kleine \( \varepsilon \) und gleichmäßig innerhalb und auf dem Rande des Kreises \( |t - 1| \leq 1 \)

\[ \lim_{t \to 1} t^{\varepsilon + \varepsilon} \Phi(t) = 0 \]

Man betrachte nun, unter \( \varepsilon \) eine beliebig kleine positive Zahl verstanden, die Funktion

\[ \psi_\varepsilon(t) = t^{\varepsilon + 2} - 1 \Phi(t) = t^{\varepsilon + 2} - 1 \frac{\Phi(t)}{t^{\varepsilon + 2}} \]

Diese Funktion ist regulär innerhalb und auf dem Rande des Kreises \( |t - 1| \leq 1 \), mit Ausnahme des Nullpunktes, und kann folglich in diesem Kreis in die konvergente Potenzreihe

\[ \psi_\varepsilon(t) = \sum_{l=1}^{\infty} k_l(1 - t)^l \]

entwickelt werden, dessen Koeffizienten \( k_l \) mit den Koeffizienten \( c_l \) der Reihe (69) durch die Formel

\[ c_n = \sum_{\nu} C^{(a + \nu - 2)}_{\nu} k_{n - \nu} \]
verbunden sind, wo der Kürze wegen \( \frac{\gamma}{\omega} + 2 \varepsilon = \alpha \) gesetzt ist und
\[ C_{n}^{(\alpha)} \]
den Binomialkoeffizienten
\[ C_{\mu}^{(\mu)} = \frac{\mu (\mu - 1) \cdots (\mu - \nu + 1)}{\nu!} \]
bezeichnet, wobei \( C_{0}^{(\mu)} = 1 \) zu setzen ist.

Ferner ergibt sich aus der Gleichung (70), dass es eine solche endliche nur von \( \varepsilon \) abhängige positive Konstante \( M(\varepsilon) \) gibt, dass innerhalb auf dem Rande des Kreises \( |t - 1| \leq 1 \)
\[ |t^{1-\varepsilon} \psi_\varepsilon (t) | = |t^{m+\varepsilon} \Phi(t)| < M(\varepsilon) ; \]
der Koeffizient \( k_{\nu} \) der Reihe (72) kann somit durch das Integral
\[ k_{\nu} = \frac{(-1)^{n+\pi}}{2\pi i} \int_{c} \psi_\varepsilon (1 + e^{\psi}) e^{-n\psi} d\psi \]
dargestellt werden, und man erhält
\[ |k_{\nu}| < \frac{1}{2\pi} \int_{-\pi}^{\pi} \psi_\varepsilon (1 + e^{\psi}) |d\psi < \frac{M(\varepsilon)}{2\pi} \int_{-\pi}^{\pi} \left( 2 \cos \frac{\psi}{2} \right)^{\varepsilon-1} d\psi = K(\varepsilon) , \]
wo \( K(\varepsilon) \) eine endliche nur von \( \varepsilon \) abhängige positive Konstante bezeichnet. Aus der Gleichung (73) ergibt sich somit
\[ |c_{n}| \leq \sum_{0}^{n} C_{\nu}^{(\alpha + n - 2)} |k_{n-\nu}| < K(\varepsilon) \sum_{0}^{n} C_{\nu}^{(\alpha + n - 2)} , \]
ooder, da man
\[ \sum_{0}^{n} C_{\nu}^{(\alpha + n - 2)} = C_{n}^{(\alpha + n - 1)} \frac{\Gamma(\alpha + n)}{\Gamma(a) n!} \]
hat,
\[ |c_{n}| < \frac{K(\varepsilon) \Gamma(\alpha + n)}{\Gamma(a) n!} = \frac{K(\varepsilon) \Gamma(\frac{\gamma}{\omega} + 2 \varepsilon + n)}{\Gamma(\frac{\gamma}{\omega} + 2 \varepsilon) n!} . \]
Sei jetzt $\delta$ eine beliebig kleine positive Zahl; da die Reihe
(69) für $\delta \leq t \leq 1$ gleichmäßig konvergiert, so erhält man zunächst

\[ \int_{\delta}^{1} \Phi(t) t^{x-1} \, dt = \sum_{r=1}^{\infty} c_r \int_{\delta}^{1} (1 - t)^{r} t^{x-1} \, dt. \]

Da ferner für jedes nicht negative $\delta$ und für $\Re\left(\frac{\omega}{\omega}\right) > 0$

\[ \int_{\delta}^{1} (1 - t)^{r} t^{x-1} \, dt \leq \int_{\delta}^{1} (1 - t)^{r} \frac{\Re\left(\frac{\omega}{\omega}\right)}{1 + \Re\left(\frac{\omega}{\omega}\right) \nu + 1} \, dt \leq \int_{\delta}^{1} (1 - t)^{r} t^{x-1} \, dt \leq \frac{\Gamma\left(\Re\left(\frac{\omega}{\omega}\right)\right) \nu!}{\Gamma\left(\Re\left(\frac{\omega}{\omega}\right) + \nu + 1\right)}, \]

so ergibt sich gemäß der Ungleichung (74)

\[ \left| c_r \int_{\delta}^{1} (1 - t)^{r} t^{x-1} \, dt \leq K(\varepsilon) \frac{\Gamma\left(\Re\left(\frac{\omega}{\omega}\right)\right) \Gamma\left(\Re\left(\frac{\omega}{\omega}\right) + 2\varepsilon + \nu\right)}{\Gamma\left(\Re\left(\frac{\omega}{\omega}\right) + \nu + 1\right)}, \]

Beachtet man nun noch, dass gemäß der Formel (31) S. 41

\[ \frac{\Gamma\left(\Re\left(\frac{\omega}{\omega}\right) + 2\varepsilon + \nu\right)}{\Gamma\left(\Re\left(\frac{\omega}{\omega}\right) + \nu + 1\right)} = \nu \left(1 + \Re\left(\frac{\omega}{\omega}\right) - \frac{2\varepsilon + \nu}{\omega}\right) \left(1 + \varepsilon\nu\right) \]

geschrieben werden kann, wo $\lim_{\nu \to \infty} \varepsilon\nu = 0$, so findet man, dass die Reihe (75) für $\Re\left(\frac{\omega}{\omega}\right) > \nu + \varepsilon \omega$ absolut konvergiert und ferner, dass die Konvergenz in dem Intervall $0 \leq \delta \leq 1$ gleichmäßig ist. Für die genannten Werte von $x$ besteht somit die Gleichung (75) auch für $\delta = 0$ und man erhält somit die Faktorienreihenentwicklung

\[ f(x) = \frac{x}{\omega} \sum_{\nu=0}^{\infty} c_r(x) (x + \nu) \frac{\Gamma\left(\frac{x}{\omega}\right)}{\Gamma\left(\frac{x}{\omega} + \nu + 1\right)} = \sum_{\nu=0}^{\infty} \frac{c_r(x) \nu!}{\Gamma\left(\frac{x}{\omega} + 1\right) \Gamma\left(\frac{x}{\omega} + 2\right) \cdots \Gamma\left(\frac{x}{\omega} + \nu\right)}, \]
welche also, da $\varepsilon$ beliebig klein angenommen werden kann in der Halbebene $\Re (x) > \gamma$ absolut konvergiert und daselbst die Funktion $f(x)$ darstellt.

Bemerkt man nun noch, dass das Verhalten der Funktion $f(x)$ für $\Re (x) < \gamma$ in der obigen Untersuchung gar keine Rolle spielt, so können wir das gefundene Resultat in folgendem Satze zusammenfassen:

Sei $f(x)$ eine analytische Funktion, welche in der Halbebene $\Re (x) > \gamma > 0$ regulär ist und daselbst durch die Reihe $\sum_{r=1}^{\infty} \frac{a_r}{x^r}$ derart asymptotisch dargestellt wird, dass für genügend grosse Werte von $n$

$\left| x^n \left( f(x) - \sum_{r=1}^{n-1} \frac{a_r}{x^r} \right) \right| < n! \; a^n;$

dann kann diese Funktion in der Halbebene $\Re (x) > \gamma$ durch eine absolut konvergente Fakultätenreihe

$f(x) = \sum_{r=1}^{\infty} \frac{c_r(\omega)}{\left( \frac{x}{\omega} + 1 \right) \left( \frac{x}{\omega} + 2 \right) \cdots \left( \frac{x}{\omega} + \nu \right)}$

dargestellt werden, wo der positive Parameter $\omega$ der Bedingung

$\omega > \frac{\pi \theta}{2}$

unterworfen ist.

17. Wir wollen jetzt eine Revision der bisher in diesem Kapitel gewonnenen Resultate vornehmen, was uns einen tieferen Einblick in die Art der Singularität verschaffen wird, welche die von uns behandelten Funktionen in dem unendlich fernen Punkt der Ebene besitzen. Den Anfang machen wir mit dem Beweis des folgenden Satzes:

Sei $f(x)$ eine analytische Funktion, welche für jedes noch so kleine positive $\varepsilon$ in der Halbebene $\Re (x) \geq \Delta + \varepsilon$, wo $\Delta$ eine nicht negative reelle Zahl bezeichnet, regulär und begrenzt ist.
Ferner stelle die Reihe \( \sum_{n=1}^{\infty} \frac{a_r}{x^n} \) diese Funktion in der Halbebene \( \Re(x) \geq \gamma > \Delta \) asymptotisch dar, derart, dass für genügend grosse Werte von \( n \)
\[
| x^n \left( f(x) - \sum_{r=1}^{n-1} \frac{a_r}{x^r} \right) | < n! \vartheta^n.
\]

Dann besteht diese asymptotische Darstellung in der Tat für jedes noch so kleine positive \( \varepsilon \) in der Halbebene \( \Re(x) \geq \Delta + \varepsilon \), und zwar derart, dass, wenn \( \Delta < \lambda < \gamma \) ist, in der Halbebene \( \Re(x) \geq \lambda + \varepsilon \) von einem gewissen Wert \( n \) an die Ungleichung

\[
| x^n \left( f(x) - \sum_{r=1}^{n-1} \frac{a_r}{x^r} \right) | < n! \left[ \frac{\gamma - \Delta}{\lambda - \Delta} \vartheta \right]^n.
\]

besteht.

Zum Beweise betrachten wir das Integral

\[
F(z) = \frac{1}{2\pi i} \int_{l-i\infty}^{l+i\infty} \frac{f(u)}{u} e^{zu} \, du,
\]
wo die Abzisse \( l \) des Integrationsweges zunächst grösser als \( \gamma \) angenommen werden muss. In der Tat lässt sich jedoch zeigen, dass die Zahl \( l \) sich beliebig der Grenze \( \Delta \) nähern darf. Um dies einzusehen, bemerke man, dass die Funktion \( f(x) \) gemäss der ersten Voraussetzung unseres Satzes für jedes noch so kleine positive \( \varepsilon \) auf der Gerade \( \Re(x) = \Delta + \varepsilon \) absolut genommen unter einer endlichen Grenze liegt, während dasselbe gemäss der zweiten Voraussetzung auf der Gerade \( \Re(x) = \gamma \) für das Produkt \( xf(x) \) gilt. Da nun ferner die Funktion \( f(x) \) in dem Streifen \( \Delta + \varepsilon \leq \Re(x) \leq \gamma \) begrenzt ist, so folgt aus den Sätzen von PIRAGMÉN und LINDÉLÖF 1), dass, wenn \( x = l + it \) gesetzt wird, das Produkt

\[
| t | | f(l + it) | \text{ in dem Streifen } \Delta + \varepsilon \leq l \leq \gamma \text{ unter einer}
\]

endlichen Grenze liegt. Hieraus folgt aber die Richtigkeit der Behauptung unmittelbar auf Grund des Cauchy'schen Integralsatzes.

Für nicht negative reelle Werte von \( z \) kann somit die Funktion \( F(z) \) durch das Integral

\[
F(z) = \frac{1}{2\pi i} \int_{\Delta + \varepsilon - i\infty}^{\Delta + \varepsilon + i\infty} \frac{f(u)}{u - z} \, du
\]
dargestellt werden, wo \( \varepsilon \) eine beliebig kleine positive Zahl bezeichnet. Hieraus folgt nun, dass für \( z \geq 0 \)

\[
|F(z)| < \frac{e^{\frac{1}{2}A + \varepsilon^2}}{2\pi} \int_{\Delta + \varepsilon - i\infty}^{\Delta + \varepsilon + i\infty} \frac{|f(u)|}{|u|} \, du = K(\varepsilon) e^{\frac{1}{2}A + \varepsilon^2},
\]

wo \( K(\varepsilon) \) eine endliche nur von \( \varepsilon \) abhängige Konstante ist.

Andererseits folgt aber aus der zweiten der oben gemachten Voraussetzungen, gemäß des in Nr. 14 formulierten Satzes, dass man für jedes \( q' > q \) und jedes noch so kleine positive \( \varepsilon \) eine solche nur von diesen Größen abhängige positive Konstante \( C(q,q') \) finden kann, dass innerhalb und auf dem Rande des Gebietes \( G(q') \)

\[
|F(z)| < C(q,q') e^{\frac{1}{2}A + \varepsilon^2} \varepsilon,
\]

wobei \( z = \xi + i\eta \) gesetzt ist.

Aus den beiden Ungleichungen (80) und (81) schließt man nun mittels der von Phragmén und Lindelöf benutzten Beweismethode, dass es sich eine solche nur von \( \varepsilon \) und \( q' \) abhängige positive Konstante \( C'(q,q') \) bestimmt lässt, dass innerhalb und auf dem Rande des Gebietes \( G(q') \) die Ungleichung

\[
|F(z)| < C'(q,q') e^{\frac{1}{2}A + \varepsilon^2 + q'(\eta - \Delta + i\eta)|\varepsilon|}
\]

besteht.

Zur Begründung dieser Behauptung betrachte man das Produkt

\[
\Phi(z) = e^{-(\frac{1}{2}A + \varepsilon^2 + i\varepsilon q' - \frac{A}{2}z^2)} F(z).
\]

Die Funktion \( \Phi(z) \) ist innerhalb und auf dem Rande der oberen Hälfte des Gebietes \( G(q') \) regulär und genügt daselbst, da
Zur Theorie der asymptotischen Potenzreihen.

(83) \[ e^{-(\lambda + \mu \epsilon + i\epsilon') \frac{\nu - \lambda'}{2}} = e^{-(\lambda + \epsilon + \epsilon' \nu - \lambda') \eta} \]

gemäß (81) der Ungleichung
\[ |\Phi(z)| < C(\epsilon', q') e^{\nu - \lambda' \eta - \epsilon' \eta} \leq C(\epsilon, q') e^{\nu - \lambda' \eta}. \]

Insbesondere liegt also |\Phi(z)| für \( \eta = \frac{1}{q'} \), \( \xi > 0 \) unter einer endlichen Grenze und nach (80) und (83) gilt dies auch für \( \eta = 0 \), \( \xi > 0 \), so dass folglich auf der ganzen Berandung der oberen Hälfte des Gebietes \( G(q') \)
\[ |\Phi(z)| < C'(\epsilon, q'). \]

wo \( C'(\epsilon, q') \) nur von \( \epsilon \) und \( q' \) abhängt. Aus dem Obigen schliessen wir nun gemäß einem der Sätze von PRAGMÉN-LINDBLÖF (Acta Math., T. 31, S. 388), dass die letztere Ungleichung auch in jedem inneren Punkte des betrachteten Gebietes gilt, woraus unmittelbar folgt, dass die Ungleichung (82) zunächst in der oberen Hälfte des Gebietes \( G(q') \) besteht. In genau derselben Weise zeigt man nun durch Betrachtung des Produktes
\[ e^{-(\lambda + \mu \epsilon + i\epsilon') \frac{\nu - \lambda'}{2} + \epsilon''} F(z), \]

dass sie auch in den Punkten der unteren Hälfte und somit innerhalb und auf dem Rand des ganzen Gebietes \( G(q') \) gilt.

Es sei jetzt \( \lambda \) eine beliebige dem Intervalle \( \Delta < \lambda < \gamma \) angehörende Zahl und man nehme \( \lambda' \) so an, dass \( \lambda < \lambda' \leq \gamma \), wobei die Differenz \( \lambda' - \lambda \) übrigens beliebig klein sein darf. Aus (82) ergibt sich, dass man innerhalb und auf dem Rand des von den Kreisen
\[ |z - z_0| \leq \frac{\lambda' - \lambda}{\gamma - \lambda'} \left( \leq \frac{1}{q'} \right), z_0 \geq 0, \]
überdecken Gebietes \( G\left(\frac{\nu - \lambda'}{\lambda' - \lambda} q'\right) \)
\[ |F(z)| < C'(\epsilon, q') e^{\nu - \epsilon''} \xi \]

hat, und zwar wie klein die positiven Grössen \( \epsilon \) und \( q' - q \) auch sein mögen. Wird nun die Differenz \( q' - q \) so klein angenommen, dass
so folgt aus dem in no 15 bewiesenen Satze, dass die Funktion \( f(x) \) durch die Reihe \( \sum_{1}^{\infty} a_x \) derart asymptotisch dargestellt wird, dass die Ungleichung (79) für jedes noch so kleine positive \( \varepsilon \) in der Halbebene \( \Re(x) \geq \lambda + \varepsilon \) besteht, sobald \( n \) genügend gross ist. Bedenkt man nun noch dass die positive Differenz \( \lambda' - \lambda \) von Vornherein beliebig klein gemacht werden kann, so ist der Beweis unseres Satzes hiermit erbracht.

Falls die im Vorhergehenden behandelte Funktion \( f(x) \) nicht für jedes positive \( \varepsilon \) in der Halbebene \( \Re(x) \geq \varepsilon \) sowohl regulär als begrenzt ist, so gibt es eine positive Zahl \( \varepsilon \) derart, dass diese Bedingungen für jedes positive \( \varepsilon \) in der Halbebene \( \Re(x) \geq \varepsilon + \varepsilon \) erfüllt sind, während dies in der Halbebene \( \Re(x) \geq \varepsilon - \varepsilon > 0 \) nicht mehr der Fall ist, wie klein das positive \( \varepsilon' \) auch angenommen werden mag. Wenn also die Funktion \( f(x) \) in dem Streifen \( \varepsilon - \varepsilon' \leq \Re(x) \leq \varepsilon + \varepsilon \) regulär ist, so ist sie sicherlich nicht begrenzt. Ja, es lässt sich sogar zeigen, dass die Funktion dann in diesem Streifen nicht einmal von endlicher Ordnung in Bezug auf die Ordinate \( t \) der Variable \( x = l + it \) sein kann. In der Tat: wäre diese Behauptung unrichtig, so könnte man eine solche positive Zahl \( \mu \) bestimmen, dass das Produkt \( |l^{-\mu} f(l + it)| \) für \( \varepsilon - \varepsilon' \leq l \leq \varepsilon + \varepsilon \) unter einer endlichen Grenze liegt. Aus unserem Satze folgt nun, da wir \( \Lambda = \varepsilon \) annehmen können, dass \( |f(l + it)| \) für \( l = \varepsilon + \varepsilon \) höchstens der Ordnung \( -1 \) in Bezug auf \( t \) ist, während die Ordnung für \( l = \varepsilon - \varepsilon \) gemäss der Antithese höchstens gleich \( \mu \), ist. Aus Obigem schliesst man nun auf Grund des S. 66 zitierten Phragmén-Lindelöfschen Satzes, dass das Produkt

\[
|l^{i \varepsilon + \varepsilon - l^{\mu + 1}} f(l + it)|
\]

in dem Streifen \( \varepsilon - \varepsilon' \leq l \leq \varepsilon + \varepsilon \) unter einer endlichen Schranke liegt, woraus folgt, dass die Funktion \( f(x) \) selbst in der Halbebene

sowohl noch so serer Annahme \( \varepsilon' \) Behau

Wis anzieh Satzes bene, \( f \) entwic
Aus w

m. \( \gamma - \Delta \)

klein in no

U:

f(x)

konve

dav

ding

(77)
sowohl regulär als beschränkt ist, und zwar würde dies für jedes noch so kleine positive ε gelten. Dies widerspricht jedoch unserem Voraussetzungen betreffs der Funktion f(x), da wir durch Annahme eines hinreichend kleinen ε die Abzisse der obigen Halbebene kleiner als x machen können. Hiermit ist aber die obige Behauptung bewiesen.

Wir wollen jetzt die im mo 16 gefundenen Resultate heranziehen. Aus den Voraussetzungen unseres oben bewiesenen Satzes folgt dann zunächst, dass die Funktion f(x) in der Halbebene \( \Re(x) > \gamma \) in eine absolut konvergente Reihe der Form (77) entwickelt werden kann, wobei \( \omega \) der Bedingung \( \omega > \frac{\pi q}{2} \) genügt.

Aus unserem Satz in Verbindung mit dem S. 70 formulierten Resultat ergibt sich jedoch unmittelbar, dass die Funktion f(x) nicht nur in der obengenannten Halbebene, sondern für jedes \( \lambda > \Delta \) in der Halbebene \( \Re(x) > \lambda + \epsilon \) in eine absolut konvergente Fakultätreihe der obigen Art sich entwickeln lässt, wobei für \( \Delta < \lambda < \gamma \), da gemäß (79) für diese Werte von \( \lambda \) an die Stelle von \( q \) der Ausdruck \( \frac{\lambda - \Delta}{\lambda - \Delta q} \) tritt, der Parameter \( \omega \) der Bedingung \( \omega > \frac{\gamma - \Delta}{\lambda - \Delta q} \) unterworfen ist. Da nun hierbei das positive ε beliebig klein sein kann, so können wir folgende Verallgemeinerung des in mo 16 bewiesenen Satzes aussprechen:

Unter den S. 71 genannten Voraussetzungen kann die Funktion f(x) für jedes \( \lambda > \Delta \) in der Halbebene \( \Re(x) > \lambda \) durch eine absolut konvergente Fakultätreihe

\[
f(x) = \sum_{n=0}^{\infty} \frac{c_n(\omega) \nu!}{(\frac{x}{\omega} + 1) \left( \frac{x}{\omega} + 2 \right) \cdots \left( \frac{x}{\omega} + \nu \right)}
\]

dargestellt werden, wobei die positive Zahl \( \omega \) für \( \lambda \geq \gamma \) der Bedingung
(78) \[ \omega > \frac{\pi \theta}{2}, \]

für \( \lambda < \Delta < \gamma \) wiederum der Bedingung

(84) \[ \omega > \frac{\gamma - \Delta}{\lambda - \Delta} \frac{\pi \theta}{2\alpha} \]

unterworfen ist.

Für ein gegebenes \( \omega > \frac{\pi \theta}{2} \) konvergiert die Reihe (77) folglich absoluw wenigstens in der Halbebene

\[ \Re (x) > \Delta + (\gamma - \Delta) \frac{\pi \theta}{2\omega} \]

und stellt dar die Funktion \( f(x) \) dar.

Die obigen Untersuchungen haben uns in Berührung mit einigen Resultaten gebracht, welche Nörlund in seiner S. 64 zitierten Arbeit über Faktorenreihen dargestellt hat. Der Zusammenhang wird klar, wenn wir bemerken, dass der in no 16 bewiesene fundamentale Satz vollständig umgekehrt werden kann. Dies geht aus den Resultaten Nörlund's ohne Mühe hervor, wenn man von unserem in no 15 bewiesen Satz Gebrauch macht; indessen würde das nähere Eingehen hierauf uns viel zu weit führen. Die Funktionen, welche in einer Halbebene \( \Re (x) > \gamma > 0 \) asymptotische Potenzreihenentwicklungen der durch die Ungleichung (76) charakterisierten Art besitzen, sind also genau dieselben, welche durch absolut konvergente Faktorenreihen der Form (77) definiert sind. Hierauf erheilt aber, dass das "Théorème IX" der Nörlund'schen Abhandlung einerseits und der von uns S. 71 formulierter Satz anderseits vollständig äquivalent sind, und dieselbe Tatsache sozusagen nur in verschiedenen Sprachen, je der in der Sprache der Faktorenreihen, dieser in der Sprache der Potenzreihen, ausdrücken.

Der genannte Nörlund'sche Satz lautet in unwesentlich modifizierter Form folgendermassen:

Sei \( f(x) \) eine analytische Funktion, welche für jedes positive \( \varepsilon \) in der Halbebene \( \Re (x) \geq \Delta + \varepsilon \) regulär und begrenzt ist, und es
lasse sich ferner diese Funktion in der Halbebene \( \Re(x) > \gamma > \Delta \) in eine Faktorenreihen der Form

\[
f(x) = \sum_{0}^{\infty} \frac{a_{\nu} \nu!}{\frac{\nu}{\omega_{0}} \left( \frac{\nu}{\omega_{0}} + 1 \right) \cdots \left( \frac{\nu}{\omega_{0}} + \nu \right)}
\]

darstellen, wo \( \omega_{0} \) eine positive Zahl bezeichnet; dann kann die Funktion \( f(x) \) für jedes \( \omega > \omega_{0} \) durch eine Faktorenreihe der Form

\[
f(x) = \sum_{0}^{\infty} \frac{a_{\nu} (\omega) \nu!}{\frac{\nu}{\omega} \left( \frac{\nu}{\omega} + 1 \right) \cdots \left( \frac{\nu}{\omega} + \nu \right)}
\]

dargestellt werden, deren Konvergenzabzisse \( \lambda (\omega) \) der Ungleichung

\[
\lambda (\omega) \leq \Delta + (\gamma - \Delta) \frac{\omega_{0}}{\omega}
\]

genügt.

Bei Nörlund hat die positive Konstante \( \omega_{0} \) den speziellen Wert 1. Die obigen Faktorenreihen sind zwar nicht von genau derselben Form, wie die von uns benutzten, indem jedes Glied mit einem Faktor \( \frac{1}{x} \) behaftet ist, welcher bei uns fehlt; auch ist bei der von Nörlund angewandten Form die absolute Konvergenz der Reihen nur in der Halbebene \( \Re(x) > \gamma + \omega_{0} \) bzw. \( \Re(x) > \lambda (\omega) + \omega \) sichergestellt. Indessen finden diese scheinbaren Abweichungen in der von Nörlund (loc. cit. S. 344) angegebenen Transformationsformel

\[
\sum_{0}^{\infty} \frac{a_{\nu} \nu!}{x \left( x + 1 \right) \cdots \left( x + \nu \right)} = \sum_{0}^{\infty} \frac{(a_{0} + a_{1} + \cdots + a_{\nu}) \nu!}{(x + 1) \left( x + 2 \right) \cdots \left( x + \nu + 1 \right)}
\]

ihre Erklärung 1); zugleich zeigt er dass, wenn die links stehende Reihe für \( \Re(x) > \lambda (\geq 0) \) konvergiert, woraus bekanntlich die absolute Konvergenz nur für die Werte \( \Re(x) > \lambda + 1 \) sich er-

1) In der Tat enthält diese Transformationsformel, wie Nörlund bemerkt, nichts anderes als eine Anwendung des Cesàro’schen Summierungsverfahrens.
schließen lässt) die rechte stehende Reihe für \( R(x) > \lambda \) nicht nur konvergent sondern sogar absolut konvergent ist. Dass wir direkte zu der absolut konvergenten Form der Fakultätenreihe gelangen finden darin seine Erklärung, dass wir am Anfange des zweiten Kapitels die Cauchy'sche Integralformel nicht auf die Funktion \( f(x) \) selbst, sondern, um bedingt konvergente Integrale und Reihen zu vermeiden, auf die Funktion \( \frac{f(x)}{x} \) angewandt haben.

18. Im Vorhergehenden wurde der Fall, wo die in der S. 13 aufgestellten Definition eingeführte Zahl \( k \) den Wert 1 hat, behandelt. Wir wollen jetzt noch kurz den Fall, wo \( k \) eine ganze positive Zahl \( > 1 \) ist, behandeln, wobei wir überdies folgende Annahmen machen:

Es existieren \( k \) Funktionen

\[
f_0(x) = f(x), f_1(x), \ldots, f_{k-1}(x)
\]
derart, dass die Funktion \( f_h(x) (h = 0, 1, \ldots, k - 1) \) in dem Gebiet \( R(x^k) > \rho^k, |\varphi - h \frac{2\pi}{k}| < \frac{\pi}{2k} (x = re^{i\varphi}) \) regulär ist, und dass ferner die genannten Funktionen in ihren respectiven Regularitätsbereichen durch dieselbe Potenzreihe \( \sum_{\nu=0}^{\infty} \frac{x^\nu}{\nu!} \) asymptotisch dargestellt werden, in der Weise, dass für genügend grosse Werte von \( n \)

\[
|x^n\left(f_h(x) - \sum_{\nu=1}^{n-1} \frac{x^\nu}{\nu!}\right)| < \Gamma\left(\frac{n}{k} + 1\right)\rho^n.
\]

(85)

Unter diesen Voraussetzungen lässt sich zeigen, dass die Funktion \( f_h(x) \) in dem oben genannten Gebiet in eine absolut konvergente Gammaquotientenreihe der Form

\[
f_h(x) = \sum_{\nu=0}^{\infty} \frac{x^\nu}{\nu!} e^{-x/\lambda} \frac{\Gamma\left(\frac{x^k}{\lambda}\right)}{\Gamma\left(\frac{x^k}{\lambda} + \nu + 1\right)},
\]

(\( h = 0, 1, \ldots, k - 1 \))

Genugt.

Die Probleme sind von S. 13 aufgestellt und gelöst. Die Theorie der Integralquotienten sei daher nicht weiter betrachtet, solange die Funktionen \( f(x) \) in den hier gesetzmässigen Bereichen die Bedingungen \( (87) \) genügt.

Dass die Funktionen \( f_h(x) \) in dem Bereich \( R(x^k) > \rho^k \) der Integrale von \( \frac{f(x)}{x} \) existieren und in die Integralquotientenreihe von \( f(x) \) übergehen, ist keine besondere Schwierigkeit. Aus den (87) wird

innerhalb des Bereiches

positiv

in der Nähe des genügsamen Punktes Zweig jeder analytisch

Zweig

Fig. 4

Und Fig. 4

Ungle

(88) genügt.

D
entwickelt werden kann, wobei \( \omega \) eine positive Konstante ist, welche der Bedingung

\[
\omega > \frac{\pi \theta^k}{2}
\]

genügt.

Dieser Satz, welche als eine Verallgemeinerung des in \( no \) 16 bewiesenen aufgefasst werden kann, findet Anwendung z. B. in der Theorie der linearen Differentialgleichungen bei Untersuchung der Integrale in der Umgebung eines irregulären singulären Punktes von höheren Rang als 1, und dürfte somit nicht ohne ein gewisses Interesse sein.

Aus dem in \( no \) 11 formulierten fundamentalen Resultat schliessen wir auf Grund der gemachten Voraussetzungen, dass die Funktion

\[
F(z) = \sum_{l}^{n} a_{l} \left( \frac{\varphi}{k+1} \right)^{l}
\]

innerhalb des Kreises \( |z| < \frac{1}{\theta} \) regulär ist und nicht nur längs der positiven reellen Achse, sondern auch längs der Strahlen \( \varphi = \frac{2\pi}{k} \) in der an der genannten Stelle erklärten Weise analytisch fortgesetzt werden kann. Für die Funktion \( F(z^k) \) ist der Nullpunkt eine algebraische singuläre Stelle, wo die \( k \) verschiedenen Zweige bei Umkreisung des Nullpunktes in einander übergehen; jeder dieser Zweige lässt sich längs der positiven reellen Achse analytisch fortsetzen, so dass sie sich in dem von den Kreisen \( |z| < \frac{1}{\theta^k} \) und \( |z - z_0| < \frac{1}{\theta^k}, z_0 \geq \frac{1}{\theta^k} \), überdeckten Gebiet \( \Omega_k(q) \) (Fig. 4 a S. 44), mit Ausnahme des Nullpunktes, regulär verhalten, und für jedes \( \theta' > \theta \) und jedes positive \( \varepsilon \) in dem Gebiet \( \Omega_k(q') \) der Ungleichung

\[
\frac{1}{k} |F(z^k)| < C(\varepsilon, q') \varepsilon^{\psi + \psi k} \Re(\varepsilon)
\]

genügen, wo \( C(\varepsilon, q') \) eine nur von \( \varepsilon, q' \) abhängige Konstante ist.

Das Laplace'sche Integral
(89) \[ f_k(x) = x^k \int_0^x F(z^2) e^{-z^2} \, dz \]

stellt jetzt für arg \( z^k = -\frac{2\pi}{k} \) die Funktion \( f_k(x) \) wenigstens in dem Gebiet \( (x^k) > x^k, |q - x^k| < \frac{\pi}{2k} \) dar. In dieses Integral führen wir nun, wie bei der Herleitung des speziellen Satzes in n. o. 16, die Integrationsvariable \( t \) mittels der Transformation (64) ein. Es ergibt sich

(90) \[ f_k(x) = \frac{x^k}{\omega} \int_0^1 (1 - t)^{\frac{1}{k}} \, dt, \]

wo

\[ \Phi(t) = F\left(\frac{1}{\omega} \log \frac{1}{t}\right) , \]

und die positive Konstante \( \omega \) gemäß der Bedingung

(91) \[ \omega > \frac{\pi \theta^k}{2} \]

angenommen werden soll. Wird jetzt \( \theta' \) derart angenommen, dass
\[ \frac{2\omega}{\pi} > \theta'^k > \theta^k, \]
so liegt das dem Kreis \(|t - 1| \leq 1\) entsprechende Gebiet \( T_\omega \) (Fig. 6 b S. 65) gänzlich innerhalb des Gebietes \( \tilde{G}_k(\theta') \) und wir können somit schliessen, dass die Funktion \( \Phi(t) \) sich aus \( k \) verschiedenen Zweigen zusammensetzt, deren jeder innerhalb und auf dem Rande des Kreises \(|t - 1| \leq 1\) mit Ausnahme der Punkte \( t = 0 \) und \( t = 1 \) regulär ist und welche bei Umkreisung des letztgenannten Punktes, welcher ja dem Nullpunkte der \( z \)-Ebene entspricht, in einander übergehen. Diese Zweige können somit in dem genannten Kreis durch eine Reihe der Form

(92) \[ \Phi(t) = \sum_{r=1}^{\infty} c_r(\omega) (1 - t)^r \]

dargestellt werden. Angenommen Wird
\[ t = 0 \]
noch s.

Hieraus
\[ S. 67 \]
cr der

(93) \[ \quad \]

genügt

Grundausdruck
Einführung
Integrale

unser
dargestellt werden. In dem Integral (90) muss $\arg (1-t)^{1/k} = -\frac{2\pi}{k}$ angenommen werden.

Was das Verhalten der Funktion $\Phi(t)$ in der Nähe des Punktes $t = 0$ betrifft, so folgt aus der Ungleichung (88), dass für jedes noch so kleine positive $\varepsilon$

$$\lim_{t \to 0} t^{\nu + \varepsilon} \Phi(t) = 0,$$

und zwar gilt dies für jeden der $k$ Zweige der Funktion $\Phi(t)$ gleichmäßig innerhalb und auf dem Rande des Kreises $|t - 1| \leq 1$. Hieraus ergibt sich aber durch Überlegungen, welche denen der S. 67-68 durchgeführten völlig analog sind, dass die Koeffizienten $c_r$ der Reihe (92) einer Ungleichung der Form

$$(93): \quad |c_r| < K(\varepsilon) \frac{I\left(\frac{\nu}{k} + 2\varepsilon + \frac{\nu}{k}\right)}{I\left(\frac{\nu}{k} + 1\right)}$$

genügen, wo die positive Konstante $K(\varepsilon)$ nur von $\varepsilon$ abhängt. Auf Grund dieser Ungleichung erhält man nun schliesslich, durch Einführen der Reihe (92) in das Integral (90) und hierauf folgende Integration, für die Funktion $f_\nu(z)$ die in dem Gebiet $\Re(x^k) > \gamma^k$, $|\phi - \frac{h}{k}2\pi| < \frac{\pi}{2k}$ absolut konvergente Reihenentwicklung (86), womit unser Satz bewiesen ist.