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Abstract

Lower bounds for the growth of solutions of a higher order linear
differential equation, with coefficients analytic in the unit disc of
the complex plane, can be obtained by localizing the equation
via a locally univalent function from the unit disc into itself and
applying known results for the unit disc.

As an example, we study equations in which the coefficients have
certain explicit exponential growth in one point on the boundary
of the unit disc and consider the iteratedM -order of the solutions.
Earlier results in [S. Hamouda, Properties of solutions to linear

differential equations with analytic coefficients in the unit disc.
Electron. J. Differential Equations 2012, No. 177, 8 pp.] are
generalized and improved.

The theorems obtained are not new, since Theorem 2 in
[S. Hamouda, Iterated order of solutions of linear differential equa-
tions in the unit disc, Comput. Methods Funct. Theory. 13,
(2013), no. 4, 545-555] directly implies them. Therefore the sig-
nificance of this paper lies not in the results but in the elementary
method.

Introduction

We study the growth of solutions of the linear differential equation

f (k) + ak−1(z)f
(k−1) + · · · + a1(z)f

′ + a0(z)f = 0, (1)

where a0(z), a1(z), . . . , ak−1(z) are analytic in the unit discD = {z ∈ C :
|z| < 1} of the complex plane C, denoted by a0, a1, . . . , ak−1 ∈ H(D)
for short. Since all solutions are analytic, one natural measure of their
growth is the n-order defined by

σM,n(f ) = lim sup
r→1−

log+n+1M (r, f )

− log(1− r)
, f ∈ H(D), n ∈ N.

Here log+ x = max{log x, 0}, log+1 x = log+ x, log+n+1 = log+ log+n x
and M (r, f ) is the maximum modulus of f on the circle of radius r
centered at the origin.

It is known that the growth of the coefficients restricts the growth of the
solutions and vice versa, since all solutions f satisfy σM,n+1(f ) ≤ α
if and only if σM,n(aj) ≤ α for all j = 0, 1, . . . , k − 1 [11, Theo-
rem 1.1]. On the other hand, all nontrivial solutions are of maximal
growth at least when a0 dominates the other coefficients in the whole
disc in some suitable way. One sufficient condition is that σM,n(aj) <
σM,n(a0) for all j = 1, 2, . . . , k − 1 [11, Theorem 1.2]. A refined
condition is that (σM,n(aj), τM,n(aj)) ≺ (σM,n(a0), τM,n(a0)) for all
j = 1, 2, . . . , k − 1 [9, Theorem 3]. Here τM,n is the n-type defined by

τM,n(f ) = lim sup
r→1−

(1− r)σM,n(f) log+n M (r, f ), f ∈ H(D), n ∈ N,

and we write (a, b) ≺ (c, d) if either a < c or a = c and b < d, for
a, b, c, d ∈ R ∪ {∞}.

Localization is a standard technique found in the literature. If f ∈ H(D),
Ω ⊂ D is a simply connected domain and φ : D → Ω is analytic and
locally univalent, then we can study f in Ω by studying the function f ◦φ
in D. The most simple localization mapping is an affine map, in which
the image of D is a horocycle. For example, all solutions of

f ′′ + e
1

1+zf ′ + e
1

1−zf = 0

satisfy σM,2(f ) = 1. The inequality σM,2(f ) ≤ 1 follows from [11,
Theorem 1.1] and the converse inequality is seen by studying g = f ◦ φ,
where φ : D → D, φ(z) = 1+z

2 , and applying [11, Theorem 1.2]. For a
more general result, see Theorem 3.

One example of localization is [5, Proof of Theorem 4], where the authors
use a localization map ψ : D → D,

ψ(z) = eiθ
ϕ(ζ)− 1

ϕ(ζ) + 1
, where ϕ(z) = e−iπδ/2

(

1 + z

1− z

)1−δ

− iα,

θ ∈ [0, 2π], α ∈ (0,∞) and δ ∈ (0, 2/5).

The explicit expression of the localization map may not be needed, since
the existence of the mapping can be deduced from the Riemann mapping
theorem and the analytical properties of the mapping can be estimated
by the geometrical properties of the boundary curve of the image, see [8,
Proof of Theorem 3].

In this paper, we wish to provide an example of the local study of (1),
when the growth of the solutions is measured by the n-order. In particular,
we consider the equation

f (k) +

k−1
∑

j=0

Aj(z) expnj

(

bj
(1− z)qj

)

f (j) = 0, (2)

where Aj ∈ H(D∪ {1}), bj, qj ∈ C and nj ∈ N for j = 0, 1, . . . , k− 1.
The point 1 ∈ ∂D plays no special role as can be seen by a change of
variables.

The results of this paper improve the results in [10] concerning the growth
of solutions of (2) and give proofs simpler than the original ones. Our
method is elementary and therefore of interest, even though our results
can be deduced from [9, Theorem 2].

The study [10] was motivated by certain results concerning the differential
equation

f ′′ + A(z)eazf ′ + B(z)ebzf = 0, (3)

where A(z) and B(z) are entire functions and a, b ∈ C, see [1, 2, 3, 7].
See also [4, 6, 11, 12] about methods based on the dominant of some
coefficient. The techniques of [10] were inherited from the plane case and
are analogous to those used in [2]. For example, if in (3) we have ab 6= 0
and either arg a 6= arg b or a/b ∈ (0, 1), then all nontrivial solutions f
are of infinite order on the plane [2, Theorem 2]. Analogously, if in the
equation

f ′′ + B1(z)e
b1

(z0−z)
qf ′ +B0(z)e

b0
(z0−z)

qf = 0,

where Bj ∈ H(D∪ {z0}), bj ∈ C \ {0}, q ∈ (1,∞), we have in addition
arg b1 6= arg b0 or b1/b0 ∈ (0, 1), then all nontrivial solutions f satisfy
σM,1(f ) = ∞ [10, Theorem 1.11].

To define the localization map employed here, let T : D → D,

T (z) = Tβ,γ(z) = 1− sin(β/2)eiγ
(

1− z

2

)p

, (4)

where β ∈ (0, π/2], γ ∈ (−π/2, π/2) such that |γ| ≤ (π − β)2/2π ∈
(0, π/2), and p = p(β) = β(π − β)/π2 ∈ (0, 1/4]. For the power

z 7→
(

1−z
2

)p
, we choose the principal branch. Here T (D) is a tear

shaped region having a vertex of angle pπ touching ∂D at z = 1. The
domain T (D) has the symmetry axis T ((−1, 1)) which meets the real axis
at angle γ. As β decreases, T (D) becomes thinner, T ((−1, 1)) becomes
shorter and the angle γ can be set larger. If f satisfies (2) and we set
g = f ◦ T , then g has to satisfy a differential equation whose coefficients
correspond to those of (2), see Lemma 1. By applying [11, Theorem 1.2]
or [9, Theorem 3] to this differential equation, we obtain a lower bound
for the n-order of g, which in turn gives a lower bound for the n-order of
f by Lemma 2.

Key Lemmas

Lemma 1 Let f be a solution of

f (k) + ak−1(z)f
(k−1) + · · · + a1(z)f

′ + a0(z)f = ak(z),

where a0, a1, . . . , ak ∈ H(D). Let T : D → D be locally univa-

lent and g = f ◦ T . Then g is a solution of

g(k) + ck−1(z)g
(k−1) + · · · + c1(z)g

′ + c0(z)g = ck(z),

where cj ∈ H(D). Moreover, if T (s) is nonvanishing and

σM,n((T
(s))t) = 0 for n, s ∈ N and t ∈ Z, then

σM,n(cj) ≤ max
m≥j

{σM,n(am ◦ T )},

and

τM,n(cj) ≤ max{τM,n(aN ◦ T ) : σM,n(aN ◦ T ) = maxm≥j{σM,n(am ◦ T )}},

for j = 0, 1, . . . , k − 1, whereas

σM,n(ck) = σM,n(ak ◦ T ) and τM,n(ck) = τM,n(ak ◦ T ).

Lemma 2 Let f ∈ H(D) and g = f ◦ T , where T is defined

by (4). Then σM,n(f ) ≥ σM,n(g)/p for n ∈ N.

Results

The first result in this paper discusses the case when in equation (1) only
the coefficient a0 is unbounded near a boundary point of the unit disc
and generalizes [10, Theorem 1.6]. In the remainder of this paper, the
argument of a complex number z 6= 0 attains values arg(z) ∈ (−π, π].

Theorem 3 Consider the differential equation

f (k) + Ak−1(z)f
(k−1) + · · · +A1(z)f

′ +A0(z) expn

(

b
(1−z)q

)

f = 0,

where k, n ∈ N, Aj ∈ H(D ∪ {1}) for j = 0, 1, . . . , k − 1,
A0 6≡ 0, b, q ∈ C\{0} and Re (q) > 0. Suppose that Im (q) 6= 0
or | arg(b)| < π

2 (Re (q)+1). Then all nontrivial solutions f satisfy

σM,n+1(f ) ≥ Re (q).

Next we consider a second order equation with possibly both coefficients
unbounded near the point z = 1, namely

f ′′ + A1(z)e
b1

(1−z)q1f ′ + A0(z)e
b0

(1−z)q0f = 0, (5)

where Aj ∈ H(D ∪ {1}), A0 6≡ 0, bj, qj ∈ C \ {0} for j = 0, 1, and
Re (q0) > 0. The most interesting case is when q1 = q0. First we consider
q1 = q0 ∈ (0,∞), then q1 = q0 ∈ C \R and after that the case q1 6= q0.

Theorem 4 Let q1 = q0 = q ∈ (2,∞) and arg(b1) 6= arg(b0) in
equation (5). Then all nontrivial solutions f satisfy σM,2(f ) ≥ q.

The case q ∈ (0, 2] in Theorem 4 can be done with stronger assumptions.
For q ∈ (2,∞), Theorem 4 improves [10, Theorem 1.8] which states that
for q ∈ (1,∞) we have σM,1(f ) = ∞.

Theorem 5 Let q1 = q0 = q, Im (q) 6= 0, Re (q) > 0 and

|b1| < |b0| in equation (5). Then all nontrivial solutions f satisfy

σM,2(f ) ≥ Re (q).

Theorem 6 Let q1 6= q0 in equation (5). Assume that either

q0, q1 ∈ (0,∞) and

Re

(

b1
eiγq1

)

< 0 < Re

(

b0
eiγq0

)

for some γ ∈ (−π/2, π/2)

or Im(q0) 6= 0 and Re (q1) < Re (q0). Then all nontrivial solu-

tions f satisfy σM,2(f ) ≥ Re (q0).
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