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1 Recollection about topology and analysis in Rn

In This section we will briefly discus about the topology and analysis in Rn. So the first
section will probably be rather boring rehearse of previous knowledge. I will systematically
go through some of the facts that in theory should be known from previous courses. I will
not state many examples but you will have to do some exercises about this subject.

1.1 Rn as a vector and inner product space

Definition 1.1 (Vector space Rn). Rn is the set of n-tuples

Rn = {(x1, . . . , xn) | xi ∈ R, 1 ≤ i ≤ n}. (1)

Equipped with standard scalar multiplication and vector addition makes Rn a vector
space.

Let us the define a linear combination of vectors in Rn

Definition 1.2 (Linear combination). A linear combination of k number of vectors
{x1, . . . , xk} is a vector

x = a1x1 + . . .+ anxk, xi ∈ Rn, ai ∈ R (2)

Usually the elements or vectors in Rn is represented by basis of Rn

Definition 1.3 (Basis of Rn). Any subset of vectors {y1, . . . , ys} = A ⊂ Rn is a basis of
Rn if any vector y ∈ Rn can be represented by linear combination of vectors of A

y = b1y1 + . . .+ bsys, bi ∈ R yi ∈ Rn (3)

Let us then define the linear independence of vectors in Rn.

Definition 1.4 (Linear independence). A set of vectors S = {y1, . . . , ys} is set to be
linearly independent if the following implication holds

y = a1y1 + . . .+ asys = 0 ⇒ a1 = . . . = as = 0. (4)

If the implication does not hold at least one of the vectors can be then represented as
linear combination from others and then the set is linearly dependent.

Let us then represent an extremely familiar theorem which I might left as an exercise

Definition 1.5. If a set of n number of vectors S = {x1, . . . , xn} are linearly independent
it is a basis of Rn

Rn = span{S} = {x ∈ Rn | x = a1x1 + . . .+ anxn}. (5)

Usually a vector x ∈ Rn is represented by basis vectors and almost always we will use
the standard basis of Rn.
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Definition 1.6 (Standard basis). A set of vectors

e1 = (1, 0, . . . , 0)

e2 = (0, 1, . . . , 0)

...

en = (0, . . . , 0, 1) (6)

is a standard basis of Rn. Now any vector x ∈ Rn can be presented as linear combination
of vectors ei. That is for every x ∈ Rn there are numbers ai ∈ R s.t

x = a1e1 + . . .+ anen. (7)

The numbers ai are called the coordinates of the vectors in this (or any) basis of Rn and
usually one denotes

x = (a1, . . . , an) ∈ Rn (8)

when we know in which basis we operate.

Let us then define Rn as an Euclidean space by introducing the inner product1 of
vectors in Rn.

Definition 1.7. Let x = (a1, . . . , an) ∈ Rn and y = (b1, . . . , bn) ∈ Rn. An inner product
of vectors is a function ⟨·, ·⟩ : Rn × Rn 7→ Rn

⟨x, y⟩ =
n∑

i=1

aibi. (9)

This makes Rn a inner product space

The inner product in 1.7 defines the standard Euclidean norm (length) of vectors
x ∈ Rn.

Theorem 1.1 (Euclidean norm). Euclidean norm in Rn is a function ∥·∥ : Rn 7→ R+∪{0}.
A an Euclidean norm of a vector x ∈ Rn is

∥x∥ =
√
⟨x, x⟩. (10)

This makes Rn a normed space

Next we can define the Euclidean distance or metric of vectors x, y ∈ Rn.

Theorem 1.2. An Euclidean metric in Rn is a function d : Rn × Rn 7→ R ∪ {0}

d(x, y) = ∥x− y∥. (11)

This makes Rn a metric space

1To be completely exact you should justify that this satisfies the conditions of an inner product.
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1.2 Short recollection of standard topology in Rn

Definition 1.8 (Open set). A set U ⊂ Rn is open if for every x ∈ U there exists an ε > 0
s.t

B(x, ε) = {y ∈ Rn | d(x, y) < ε} ⊂ U. (12)

The set B(x, ε) is called a ball center in x and radius ε. We also define a punctured ball
B′(x, ε) ⊂ Rn center in x and radius ε in by

B′(x, ε) = B(x, ε)− {x}. (13)

Theorem 1.3 (Euclidean topology). The Euclidean metric defines the Euclidean topology
on Rn. That is

1. Rn and ∅ are open.

2. Finite intersection A = ∩n
i=1Ui ⊂ Rn of open sets Ui ⊂ Rn is open.

3. Arbitrary unions of open sets Ui is open.

Let us then define closed sets as usual

Definition 1.9. A set U ⊂ Rn is closed if its complement {U is open

{U = Rn − U. (14)

Let us the define the accumulation point of a set U ⊂ Rn.

Definition 1.10 (Accumulation point). A point x ∈ Rn is an accumulation point2 of
U ⊂ Rn if for every ε > 0 the intersection

B′(x, ε) ∩ A ̸= ∅. (15)

Let us the define closed set by use of its accumulation points

Theorem 1.4. A set U ⊂ Rn is closed if it contains all of its accumulation points.

Using the definition of accumulation points we define the closure of U

Definition 1.11 (Closure of U ⊂ Rn). Let U ⊂ Rn be a set. The closure of U is

U = {x ∈ Rn | x ∈ U or x is an accumulation point of U}. (16)

Note that the closure U of U is the smallest closed set containing U , U ⊂ U .

Next we define the boundary ∂U of a set U ⊂ Rn.

Definition 1.12 (Boundary of a set). Let U ⊂ Rn be a set. The boundary of U is the set

∂U = {U ∩ U.

Let us then define the closure of U using its boundary

2Equivalently x is accumulation point of U if every open set containing x contains infinitely many
points from U
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Theorem 1.5. Let U ⊂ Rn be a set the closure U of U ⊂ Rn is

U = U ∪ ∂U. (17)

Next we define an interior of U ⊂ Rn

Definition 1.13 (Interior of A). The interior of A ⊂ Rn is the set

int(A) = A− ∂A (18)

Let us then define a bounded and compact set in Rn.

Definition 1.14 (Bounded set, Compact set). A set U ⊂ Rn is set to be bounded if there
exists r > 0 s.t

A ⊂ B(0, r) ⊂ Rn.

A set is said to be compact if it is closed and bounded.

Next we define connected set in U ⊂ Rn

Definition 1.15 (Connected set). A set is U ⊂ Rn is said to be connected if there are no
open subsets A,B ⊂ Rn, U = A ∪B, A ̸= ∅ ̸= B such that

A ∩B ̸= ∅ ̸= B ∩ A. (19)

If such sets exists the set is called disconnected.

Let us then give an other equivalent condition for connectedness in Rn.

Definition 1.16 (Connected set). A set U ⊂ Rn is connected if it can not be presented
as an union of disjoint open sets Ui

U ̸=
∪
i∈I

Ui, Ui ∩ Uj = ∅,

where the I is the index set.

1.3 Short recollection of analysis in Rn

Let us then recollect the ε, δε definition of limit points of functions.
Definition 1.17 (Limit point of a function). Let f : Rn 7→ Rm be a function and let f
be defined in an set B′(x0, r) ⊂ Rn. Function f has limit a ∈ Rm if for every ε < r there
exists a δε < 0 such that implication

x ∈ B′(x0, δε) ⇒ f(x) ∈ B(a, ε) ⊂ Rm (20)

holds for all εδ>0. Then we denote

lim
x→x0

f(x) = a (21)

Next we define a continuous function.
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Definition 1.18 (Continuous function). Let f : Rn 7→ Rm be a function. Function f is
said to be continuous at x0 ∈ U ⊂ Rn if

lim
x→x0

f(x) = f(x0) (22)

Moreover if f is continuous for all x ∈ U then x is continuous in U .

Let us then define a path in Rn

Definition 1.19 (A path in Rn). A path is a continuous function

f : [a, b] 7→ Rn [a, b] ⊂ R. (23)

Let us then define a path connected set

Definition 1.20 (Path connected set). A set U ⊂ Rn is said to be path connected if
∀x, y ∈ U there exists a path s.t f(a) = x and f(b) = y and

Im(f [a, b]) = {y ∈ Rn | y = f(x), x ∈ [a, b]} ⊂ U ⊂ Rn. (24)

Let us then recollect a theorem from topology

Theorem 1.6. Let U ⊂ Rn be an open set. Then U is connected if and only if U is path
connected.

The path connectedness is stronger argument than connectedness. That is: We have
a theorem

Theorem 1.7. If a set U ⊂ Rn is path connected it is connected. But the other implica-
tion does not hold.

Let us then define a concept of domain Ω ⊂ Rn.

Definition 1.21 (A domain). A subset Ω ⊂ Rn is a domain if it is open and connected
set. From now on we will usually assume that Ω ⊂ Rn is a domain.

Let us then recollect the definition of a partial derivative

Definition 1.22 (Partial derivative). Let us use from now on quite systematically the
standard basis K = {e1, . . . , en} of Rn and denote the coordinates of vectors also just
by subscripts. Let a function f : Rn 7→ Rm be defined in a neighborhood of a point
x = (x1, . . . , xn). Then its partial derivative with respect to variable xi at point x is the
limit

∂f

∂xi

(x) = lim
h→0

f(x+ hei)− f(x)

h
. (25)

Let us then introduce an important class of functions to which our further analysis
will be strongly based upon.

Theorem 1.8 (C1(Ω)-functions/ differentiable functions). Let f : Rn 7→ Rm be a function
and Ω a domain. The following two conditions are equivalent
1.
All functions

∂fi
∂xi

: Ω 7→ R 1 ≤ j ≤ m 1 ≤ i ≤ n (26)
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are continuous in Ω. The matrix formed from the partial derivatives

df =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn


is called The Jacobian/ first differential or derivetive of f .
2.
The function f : Rn 7→ Rm has a differential expansion

f(y) = f(x+ h) = f(x) + df(x)h+ ∥h∥ε(h) (27)

where ε(h) → 0, when h → 0 for all x ∈ Ω. Remember here that h is a vector h =
(h1, . . . , hn) ∈ Rn and ε(h) = (ε1(h), . . . , εm(h)) !

Let us then define the directional derivative of a function f : Rn 7→ R, which will lead
us to define extremal values of function.

Definition 1.23 (Directional derivative). Let f : Rn 7→ R be a C1(Ω) function. Then its
directional derivative at point x ∈ Ω to direction a ∈ Rn is the limit

∂af(x) = lim
h→0

f(x+ ha)− f(x)

h
. (28)

Remark 1.1. Let f : Rn 7→ R be a class C1(Ω) function. Then usually the Jacobian/first-
differential df of f is noted as

df = grad(f) = ∇f =
( ∂f

∂x1

, . . . ,
∂f

∂xn

)
. (29)

In fact the properties of Jacobian and gradient at point x ∈ Ω will reveal more impor-
tant properties of the function so let us make a short remark

Remark 1.2 (Jacobian matrix as linear map). Notice that if f : Rn 7→ Rm is a C1(Ω)
function its Jacobian is of course well defined for all x ∈ Ω. Now the Jacobian matrix at
point x can be viewed as linear map

df(x) : Rn 7→ Rm. (30)

The jacobian matrix at fixed point operates to the ”small”change-vector h = (h1, . . . , hn) ∈
Rn

df(x)(h) = df(x)(dx), where dx = (dx1, . . . , dxn) = (h1, . . . , hn). (31)

or in the scalar case

⟨df(x), h⟩ = ⟨∇f(x), dx⟩ =
n∑

i=1

∂f

∂xi

dxi. (32)

Let us then state a theorem which will ”easy up” the computation of directional deriva-
tive.

Theorem 1.9. Let f : Rn 7→ R be a C1(Ω)-function. Then directional derivative of f at
point x ∈ Ω to the direction a ∈ Rn is

∂af(x) = ⟨∇f(x), a⟩ (33)
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Proof. Let us take a vector 0 ̸= a ∈ Rn. By thm. 1.8 the function f has the differential
expansion

f(x+ ha) = f(x) + ⟨∇f(x), ha⟩+ ∥ha∥ε(ha) = f(x) + h⟨∇f(x), a⟩+ |h|∥a∥ε(ha). (34)

Dividing by h and rearranging the equation we get (a ∈ Rn, ∥a∥ ≤ K <∞)

f(x+ ha)− f(x)

h
= ⟨∇f(x), a⟩+ sgn(h)∥a∥ε(ha), sgn(h) =

|h|
h

= ±1, lim
h→0

ε(ha) = 0.

(35)

Taking the limits from both sides completes the proof

lim
h→0

f(x+ ha)− f(x)

h
= ⟨∇f(x), a⟩. (36)

Usually in practice one is interested of the local or global minimum or maximum values
of a function. The definitions are obvious

Definition 1.24. Let f : Rn 7→ R be function defined in Ω then it has

1. Local minimum at x if there exists B(x, ε) such that f(x) ≤ f(y) ∀y ∈ B(x, ε)

2. Local maximum at x if there exists B(x, ε) such that f(x) ≥ f(y) ∀y ∈ B(x, ε)

If the inequalities holds for all y ∈ Ω we speak of global minimum/maximum.

Let us then define an extremal values and critical points of C1(Ω)-functions

Definition 1.25. Let f : Rn 7→ R be a C1(Ω)-function. Then x ∈ Ω is a critical point
and f(x) is an extremal value of function f if its directional derivative at x vanishes to all
directions a ∈ Rn

∂af(x) = lim
h→0

f(x+ ha)− f(x)

h
= 0 ∀ a ∈ Rn \ {0}. (37)

Although the previous definition is perhaps more intuitive3 is not so well used and one
usually uses the theorem.

Theorem 1.10. Let Ω ⊂ Rn be a domain and f : Rn 7→ R a let f be a C1(Ω)-function.
Then f has a critical point at x ∈ Ω if and only if

∇f(x) = 0.

Proof. By theorem Thm 1.9 we have

∂af(x) = lim
h→0

f(x+ ha)− f(x)

h
= ⟨∇f(x), a⟩.

Let us proof ⇐: If ∇f(x) = 0 the claim is obvious and ∂af(x) = ⟨0, a⟩ = 0 ∀ a ∈ Rn.
Let us proof⇒: If ∂af(x) is 0 for all a ∈ Rn let us make use of the basis K = {e1, . . . , en}.
We choose separately a = aiei, a

i ̸= 0 for all 1 ≤ i ≤ n and we have

⟨∇f(x), ai⟩ = ∂f

∂xi

(x)ai = 0 ⇒ ∂f

∂xi

(x) = 0 ∀ 1 ≤ i ≤ n (38)

so that ∇f(x) = 0, which completes the proof.

3Note that the definition is independent of basis of Rn !
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Next we present a well known theorem for minimum and maximum values.

Theorem 1.11. Let f : Rn 7→ R be a C1(Ω) function. If f(x) is a local minimum or
maximum of f in Ω then

∇f(x) = 0. (39)

Moreover if Ω is bounded then Ω is compact set and if the function f is continuous on Ω
and f(x) is a global minimum or maximum of f in Ω then either

1. ∇f(x) = 0, x ∈ Ω or

2. x ∈ ∂Ω.

Proof. This will be proof by contradiction. Let us proof the theorem from the local part.
Let us assume that

∂f

∂xi

(x) ̸= 0

for some 1 ≤ i ≤ n, x = (x1, . . . , xn). Let us then look at function c : [xi− a, xi + a] 7→ R,
B(x, ε) ∩ [xi − a, xi + a] ⊂ B(x, ε)

c(t) = f(x1, . . . , xi−1, t, xi+1, . . . , xn). (40)

Know we have

c′(xi) =
d

dt
f(x1, . . . , xi−1, t, xi+1, . . . , xn)(xi) =

∂f

∂xi

(x) ̸= 0 (41)

which means that for all ε > 0 there exists values y1, y2 such that f(y1) < f(x) < f(y2)
and y1, y2 ∈ B(x, ε) which a contradiction to the original claim. From the global part the
theorem follows from perhaps one of the most known theorems in analysis. In a compact
set a continuous function attains its minimum and maximum values.

Let us then give a definition of Ck(Ω)-functions f : Rn 7→ Rm.

Definition 1.26 (Ck(Ω)-functions and C∞(Ω)-functions). Let f : Rn 7→ Rm be function
and let Ω be a domain. The function f is said to be of class Ck(Ω) if all the functions

∂kf

∂xk1
1 ∂xk2

2 . . . ∂xkn
n

: Ω 7→ R, for all combinations |k1 + . . .+ kn| ≤ k (42)

are continuous. In fact we could only require |k1 + . . . + kn| = k, since Ck-functions are
obviously Ck−i, 0 ≤ i ≤ k-functions. This also implies the existence of k:th order Taylor
expansion with remainder of f for all x ∈ Ω which we called differential expansion in case
of C1(Ω)-functions. Moreover if f : Rn 7→ Rm is Ck(Ω)-function for all k ∈ N we say that
the function f is a C∞(Ω)-function.

Next we will give an important theorem which is called the regular value theorem and
which is one of great importance in differential geometry.
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Theorem 1.12 (Regular value theorem in Rn). Let f : Rn 7→ Rm, n ≥ m be a function
and let us assume that f ∈ C∞(Ω). Let x be a point x ∈ Ω and let f(x) = a ⊂ Rm. If
the Jacobian df of at x

dfx ∈ Rm×n

has a maximal rank rank(dfx) = m x is a regular point of f and f(x) = a is a regular
value of f . Let then x ∈ f−1(a) = S ⊂ Ω be the set where dfx has maximal rank for all
x ∈ S ⊂ Ω then the set

S = {x ∈ Ω | f(x) = a, dfx has maximal rank, rank(dfx) = m} ⊂ Rn (43)

is a smooth n −m-dimensional ”surface” dim(S) = n −m in Rn, S ⊂ Rn. This kind of
sets defined by an equation f(x) = a are also commonly called as level sets of a function
f . The regular value theorem is closely related to perhaps more known implicit-function
theorem which we will probably state at some point.

Let us finally give some examples for your relief.

Example 1.1. Let us look at the function f : R3 7→ R, f(x, y, z) = x2 + y2 + z2 − 1 = 0.
Now the Jacobian of f is the gradient

df = (2x, 2y, 2z)

Now the set f−1(0) = S2 is the sphere

f−1{0} = S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.

Now obviously the gradient can not vanish on S2, since x2 + y2 + z2 = 1 implies that
(0, 0, 0) /∈ S2 so the gradient has a maximal rank for all (x, y, z) ∈ S2.

Let us then take an other example where some difficulties may arise.

Example 1.2. Let us look at the function f : R3 7→ R, f(x, y, z) = x2 + y2 − z2 and let us
then look at the cone

f−1{0} = {(x, y, z) ∈ R3 | x2 + y2 − z2 = 0}.

Now the jacobian of f is the gradient

df = (2x, 2y,−2z)

Now it happens that the solution set of the equations

x2 + y2 − z2 = 0

2x = 0

2y = 0

−2z = 0

is not empty and the point p = (0, 0, 0) ∈ R3 belongs to the cone and in that point the
gradient vanishes at 0 so that df0 = (0, 0, 0) and rank(df0) = 0 < 1 so that rank is not
maximal and the point p is not regular neither is the value f(0, 0, 0) = 0. So you might
expect some strange properties from the surface at that point.

Let then introduce an other extremely important concept in differential geometry.
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Definition 1.27 (Tangent space and tangent vectors in a special case of smooth ”sur-
faces”). Let us assume that f : Rn 7→ Rm, m ≤ n is f ∈ C∞(Ω)-function and let us assume
that the rank of its Jacobian is maximal in S ⊂ Ω. Then the tangent space at point p ∈ S
is the set

TpS = {p, ker(dfp)} ⊂ R2n, (44)

where the set ker(dfp) is the kernel of the linear map dfp : Rn 7→ Rm

ker(dfp) = {x ∈ Rn | dfpx = 0}. (45)

Notice that we define the tangent space as an object of R2n not Rn, but in Rn you can
conveniently think tangent vectors as vectors in Rn with the base point at p ∈ Rn and
direction to dfpx. Notice that tangent spaces are now vector subspaces of R2n if we put
the origin to p. Also we later want tangent spaces to be separate so that they do not
intersect. The elements of tangent spaces are of course called tangent vectors.

Remark 1.3. Notice that the definition is just a generalization what you have been taught
about tangent vectors of curves and surfaces. Let for example S ⊂ R3 be a smooth surface
defined by a function f : R3 7→ R for example like the sphere S2 then its tangent space at
point p can be thought as the ”affine plane” which is orthogonal to its gradient at point
p. In other words the tangent space can be thought as the orthogonal complement of the
kernel of the Jacobian. Or in this case as a affine plane that passes through the point p
and which has the normal vector dfp = ∇f(p). That is a plane

TpS ≃ {r ∈ R3 | ⟨∇f(p), r − p⟩ = 0} ⊂ R3, r = (x, y, z), p = (p1, p2, p3) ∈ R3 (46)

Remark 1.4. Notice also why we want to think tangent spaces as a subsets of R2n not Rn.
For example an affine plane is not a vector space if p ̸= 0. We need later to be able to
handle tangent spaces as vector spaces.

Let us then shortly introduce perhaps a little more stranger object which is in fact a
dual of tangent space TpS.

Definition 1.28 (Cotangent space and cotangent vectors in a special case of smooth
”surfaces”). Let us assume that f : Rn 7→ Rm, m ≤ n is f ∈ C∞(Ω)-function and let us
assume that the rank of its Jacobian is maximal in S ⊂ Ω. The cotangent space at point
p ∈ S is a set of all linear maps in tangent space TpS. That is

T ∗
pS = {L : TpS 7→ R | L is a linear map on tangents space TpS} ⊂ (R2n)∗ (47)

(R2n)∗ = {L : R2n 7→ R | L is a linear map , L(ax+ by) = aL(x) + bL(y)}. (48)

Notice again that in Rn we can think the cotangent vectors L as a linear maps which
operate to vectors of tangent space(in particular basis)

T ∗
pS ≃ {L : ker(dfp) 7→ R| L is a linear map.} ⊂ (Rn)∗. (49)

But again we define them to be linear maps L : Rn × ker(dfp) 7→ R so we want the
cotangent spaces to be the subsets of (R2n)∗, where (R2n)∗ is the set of all the linear maps
in L : R2n 7→ R.

10



2 Curves in Rn

In this section we will mostly be looking at the curves in R2 and R3, but let us in beginning
state couple of theorems about curves in Rn.

Definition 2.1 (Curve). A curve in Rn smooth function c : I 7→ Rn, where I ⊂ R is an
interval, c ∈ C∞(I).

Remark 2.1. We will repeatedly say that curve is smooth if it is of class C∞(I).

Definition 2.2 (regular and closed curve). A curve c : I 7→ Rn is regular if c′(t) ̸= 0 ∀ t ∈
I, moreover the curve is closed if I = [a, b] and c(a) = c(b).

Example 2.1. Let us give two classical example from smooth and regular curves

1. The line l : [0, 1] 7→ R2 connecting points p, q ∈ Rn is smooth curve c1(t) = pt +
(1− t)q.

2. The circle c2 : [0, 2π] 7→ R2 center in p = (p1, p2) ∈ R2 and radius a > 0 is smooth
and closed curve c2(t) = (p1 + a cos(t), p2 + a sin(t)).

Let us then define how we integrate smooth functions along smooth curves.

Definition 2.3 (Curve integral). Let c : [a, b] 7→ Rn be a smooth curve, C ⊂ Rn its image
and let u := (u1, . . . un) : Rn 7→ Rn a smooth function. Let us then divide the interval
[a, b] to n+1 number of points [a, b] = {t0, t1, . . . , tn}, t0 = a, tn = b, ti < ti+1 and denote
∆ck = c(tk) − c(tk−1). Let then zk be arbitrary point between c(tk−1) and c(tk) on the
curve and let us look at the sum

σD =
n∑

k=1

⟨u(zk),∆ck⟩ (50)

where ∆ck = c(tk)− c(tk−1). Let us then denote the norm of division by

|D| = max
k
{∥∆ck∥}. (51)

If the sum has a limit when the division |D| → 0 and the limit is independent of points
zk and of the choice of division D we denote∫

C

u · dc =
∫
C

⟨u(c), dc⟩ = lim
D→0

n∑
k=1

⟨u(zk),∆ck⟩ (52)

The limit on the right side of the equation is called the curve integral along C.

Theorem 2.1. Let C ⊂ Rn be an image of a smooth curve c : [a, b] 7→ Rn be of class
c∞([a, b]) and let u : Rn 7→ Rn be a smooth function/vector field. Then∫

C

⟨u, dc⟩ =
∫ b

a

⟨u(c(t)), c′(t)⟩dt (53)

We will not prove the theorem rigorously but give an intuitive idea how it is done.
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Proof. Notice that we can divide the function u := (u1 . . . , un) : Rn 7→ Rn

u := (u1, 0, . . . , 0) + (0, u2, . . . , 0) + . . .+ (0, . . . , 0, un) = u1 + . . .+ un.

Let us first proof that theorem for ui∫
C

uidxi =

∫ b

a

ui(c(t))c
′
i(t)dt.

The left hand side of the last equation is by definition a limit

σi = lim
Dt→0

n∑
k=1

ui(c(zk))(ci(tk−i)− ci(tk)).

On the other hand by mean value theorem when Dt → 0 we have

σi = lim
Dt→0

n∑
k=1

ui(c(zk))(c
′
i(ξk))∆tk, ξk ∈ (tk−1, tk)

which approaches the Riemann sum when Dt → 0 so that∫
C

uidxi =

∫ b

a

ui(c(t))c
′
i(t)dt.

Since we did this for arbitrary ui the theorem holds for all ui 1 ≤ i ≤ n which completes
the proof.

Remark 2.2. Notice that if we denote

dc =
(dc1
dt

dt
)
e1 +

(dc2
dt

dt
)
e2 + . . .+

(dcn
dt

dt
)
en,

in (53) we get the desired result.

Remark 2.3. The norm of the tangent vector v = ∥c′(t)∥ is sometimes called the speed
and a = ∥v′(t)∥ the acceleration of of the curve c.

Curves can be parametrized in many ways so let us define a positive and negative
reparametrization of the curve

Definition 2.4. Let c1 : [a, b] 7→ Rn and c2 : [c, d] 7→ Rn be smooth curves.

1. c2 is said to be positive reparametrization of c1 if there is a smooth function h :
[c, d] 7→ [a, b] such that h′(t) > 0 ∀ ∈ [c, d] and c2 = c1 ◦ h

2. c2 is said to be negative reparametrization of c1 if there is a smooth function h :
[c, d] 7→ [a, b] such that h′(t) < 0 ∀ t ∈ [c, d] and c2 = c1 ◦ h

Let us then recall the chain rule and see how the tangent vector is related to the
reparametrization of c1

Lemma 2.1. If c2 is a reparametrization of c1 so that c2 = c1 ◦ h, where h : [c, d] 7→ [a, b]
is smooth function. Then

c′2(t) = h′(t)c′1(h(t)). (54)

Proof is easy by ordinary chain rule of differentiation of component functions.
12



Let us then define a length function and length of a curve

Definition 2.5 (Length of a curve). Let c1 : [a, b] 7→ Rn be a smooth curve the length of
the curve is defined by

L(c1) =

∫ b

a

∥c′1(t)∥dt

Similarly we can define a length function of a curve let t ∈ [a, b] the length function
gc : [a, b] 7→ [0, L(c)] is defined as

gc(t) =

∫ t

a

∥c′(s)∥ds.

Notice that the function gc is smooth and strictly increasing function so that it has an
inverse function g−1

c .

It is clear that some properties of the curve are independent of the parametrization
and intuitively we know that length has to be one of them. Let us prove part of that.

Theorem 2.2. Let c2 be reparametrization of c1 then L(c1) = L(c2).

Proof. Let us prove this for the positive reparmetrization. Now we have c2 = c1 ◦h, where
h′(t) > 0. By the last lemma

∥c′2(t)∥ = ∥c′1(h(t))h′(t)∥ = ∥c′1(h(t))∥h′(t) (55)

Let us then use the simple change of variable rule for integrals

L(c1) =

∫ b

a

∥c′1(t)∥dt =
∫ d

c

∥c′1((h(u))∥h′(u)du (56)

=

∫ d

c

∥c′1(h(u))h′(u)∥du =

∫ d

c

∥c′2(u)∥du = L(c2) (57)

The proof in the case of negative reparametrization is almost similar.

Some parametrizations of the curves are much better than other depending of course
from the context, but particularly we will be using curves parametrized by arc length.

Definition 2.6 (Arc length parametrization). A curve c : I 7→ Rn is said to be parametrized
by arc length if ∥c′(s)∥ = 1 ∀ s ∈ I.

Let us then prove that a regular and smooth curves can be parametrized by arc length

Theorem 2.3. Let c : I 7→ Rn be smooth and regular curve. Then it has a parametriza-
tion by arc length.

Proof. Let c : [a, b] 7→ Rn be a regular and smooth curve. Let us use the arc length
function g : [a, b] 7→ [0, L] where

g(t) =

∫ t

a

∥c′(u)∥du (58)

Now g′(t) = ∥c′(t)∥ > 0 so g is strictly increasing so that it has (smooth) inverse function
g−1 : [0, L] 7→ [a, b]. Next we define the curve d : [0, L] 7→ Rn, d(s) = (c ◦ g−1)(s) Clearly

13



now g−1[0, L] = [a, b] so that Im(d[0, L]) = Im(c[a, b]). Differentiating d with respect to
s we get

d′(s) = c′(g−1(s))
d

ds
g−1(s)

=
c′(g−1(s))

g′(g−1(s))

=
c′(t)

∥c′(t)∥
(g−1(s) = t).

Now of course

∥d′(s)∥ =
∥∥∥ c′(t)

∥c′(t)∥

∥∥∥ = 1. (59)

From now on we will usually use the s as an arc length parameter.

2.1 Curves in R2

In this section we will present some classical results from curve theory in R2. We begin
by defining the normal and tangent vectors for a curve.

As in first section let us define a tangent space to a curve

Definition 2.7 (Tangent space to a regular and smooth curve). Let c : I 7→ R2 be a
regular and smooth curve. The tangent space of c at point p = c(t0) is defined as

TpC = {c(t0) + c′(t0)a | a ∈ R}. (60)

Notice at this case the tangent space is an affine linear subspace of R2.

Previously we have been discussing about level sets of functions and in case of curves
identifying them in R2 let us give a justification for this.

Definition 2.8 (Implicit function theorem). Suppose that f : R2 7→ R is a smooth
function end let us examine the set M defined by equation f(x, y) = 0

Mf = {(x, y) ∈ Rn | f(x, y) = 0}. (61)

If ∇f ̸= 0 at p = (x0, y0) then at least one of the conditions are valid

1. ∃ function g1 : B(x0, ε1) : 7→ R such that f(x, g1(x)) = 0 ∀ x ∈ B(x0, ε1).

2. ∃ function g2 : B(y0, ε2) : 7→ R such that f(g2(y), y) = 0 ∀ y ∈ B(y0, ε2).

That is the equation locally defines a function. Now we can think these as curves defined
by

c1 = (x, g1(x)) (62)

c2 = (g2(y), y). (63)

Let us then define tangent and normal vectors to a curve by the use of arc length
parameter.

14



Definition 2.9. (Normal and tangent vectors) The tangent vector of a regular curve
c : I 7→ R2 is denoted by t(s) = c′(s) = (c′1(s), c

′
2(s)) and its normal vector at point s is

n(s) = (−c′2(s), c′1(s)).

Remark 2.4. Denote that if s is arc length parameter then ∥t(s)∥ = ∥n(s)∥ = 1.

We chose the normal vector in such way that it will form an positively oriented coor-
dinate system with the tangent vector

det

(
t1(s) t2(s)
n1(s) n2(s)

)
= c′1(s)

2 + c′2(s)
2 = ∥c′(s)∥2 = 1

Notice also that you can think that the set K = {t, n} form an orthonormal basis of R2.
Let us then define a fundamental concept of curves in R2

Definition 2.10 (Curvature). Let us look at the regular curve and suppose that s is an
arc length parameter. Let us remember that t′(s) = c′′(s). Because

∥c′(s)∥2 = ⟨c′(s), c′(s)⟩ = 1 (64)

by differentiating the last equation we get

d

ds
(⟨c′(s), c′(s)⟩) = d

ds
((c′1)

2 + (c′2)
2)

= 2(c′1c
′′
1 + c′2c

′′
2) = 2⟨c′, c′′⟩ = d

ds
(1) = 0.

So that we have

⟨c′(s), c′′(s)⟩ = 0 ∀ s ∈ [0, L]

this means that the vectors are always orthogonal so there must be function of s, κ :
[0, L] 7→ R such that

c′′(s) = κ(s)n(s) = t′(s)

Usually |κ| is called a curvature and κ a signed curvature4. Since s was the arc length
parameter we get

|κ| = |t′| = |c′′| (65)

Notice now that we have a differential equation t′(s) = κ(s)n(s). We ask now is there
similar equation for n so that we would actually have an system of differential equations
for t′ and n′. The answer is yes and the equations are called Frenet-Serret-equations. We
give them as a theorem and then prove it.

Theorem 2.4 (Frenet-Serret equations in R2). Let s be the curve length parameter and
t′ and n′ the unit normal and tangent vectors defined previously. The tangent and normal
vectors satisfy

t′ = κn

n′ = −κt (66)

4Different kind of notations exists and sometimes κ is called curvature.
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Proof. Proof last time we already got t′ = κn so it remains to prove the later equation.
Since curve c is regular vectors t(s) and n(s) form an orthonormal basis of R2. From this
follows that vector n′(s) can be represented as a linear combination of these vectors.

n′(s) = a(s)t(s) + b(s)n(s)

Remember that we have orthonormal basis so if we take inner product with vector t we
get

⟨n′, t⟩ = a⟨t, t⟩+ b⟨n, t⟩ = a,

Since ⟨n, n′⟩ = ⟨c′, c′′⟩ = 0 we can then represent n′(s) as

n′(s) = ⟨n′, t⟩t(s).

On the other hand ⟨t, n⟩ = 0 so that

⟨n′, t⟩ = −⟨t′, n⟩
= −κ⟨n, n⟩
= −κ,

and we get

n′(s) = −κ(s)t(s).

Let us then give a lemma how to compute the curvature when the curve is given by
arbitrary parameter

Lemma 2.2. If s is thec arclength parameter of curve c, then

κ(s) = c′1(s)c
′′
2(s)− c′2(s)c

′′
1(s). (67)

If t is any curve parameter, then

κ(t) =
c′1(t)c

′′
2(t)− c′2(t)c

′′
1(t)

|c′(t)|3
. (68)

Proof. Let us proof the first equation. Since c′′ = κn taking inner products from both
sides we get ⟨c′′, n⟩ = ⟨κn, n⟩ = κ, which proofs the claim. The proof of the second
equation is not difficult but requires little bit more calculus.

Example 2.2. Let c be a parabola parametrized as c(t) = (t, t2). Then

κ(t) =
2

(1 + 4t2)3/2
.

Let f : R 7→ R be a function. Then f defines a curve c : R 7→ R2, c(t) = (t, f(t)), and the
curvature of c is

κ(t) =
f ′′(t)

(1 + f ′(t)2)3/2
.
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2.2 Evolutes, Envelopes and involutes

In this section we present some classical plane curve constructions in Rn. We begin by
given more intuitive definition of curvature and define an osculating circle

Definition 2.11 (Osculating circle). Let c : I 7→ R2 be a smooth and regular curve.
Then the circle that is tangent to c at point p = c(t) is called an osculating circle. The
curvature of c at point p is |κ| = 1/R, where R is the radius of the osculating circle.

Definition 2.12 (Evolute). An evolute of a smooth and regular curve c : I 7→ R2 is the
curve e : R 7→ R2 of which is defined by the centers of osculating circles.

e(s) = c(s) +
1

κ(s)
n(s). (69)

Notice that here s is an arclength parameter for c but not necesserily for e. At each point
you can think the point c(s) as the base point and the vector n(s) the vector which points
to direction of center of osculating circle and the number |κ| gives the vector n the right
magnitude and sign of κ the right directon so that its tip is at the center of the osculating
circle.

Notice that the definition using the arc length parameter is easy to transform to any
parameter

Remark 2.5. If t is any curve parameter and c smooth and regular curve c : I 7→ R2 then
its evolute is

e(t) = c(t) +
1

κ(t)

n(t)

∥n(t)∥
. (70)

Only thing we have to do is to normalize the normal vector so that the tip of the vector
is actually at the center of osculating circle.

Example 2.3. Let c be parabola c(t) = (t, t2), then

κ(t) =
2

(1 + 4t2)(3/2)

n(t) =
1√

1 + 4t2
(−2t, 1).

n(t) is normalized so that ∥n(t)∥ = 1. From these we get

e(t) = (t, t2) +
1 + 4t2

2
(−2t, 1) = (−4t3, 3t2 + 1/2) = (x, y).

This is equal to

x = −4t3

y − 1

2
= 3t2.
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From this we can get implicit representation of the evolute

(y − 1

2
)3 =

27

16
x2.

0

1

2

3

4

y

–4 –2 2 4

x

Figure 1: Evolute of the parabola and the osculating circle at p = (0, 0). The curvature
of c at p is 2 and the radius of osculating circle is R = 1/2.

Let us then give another classical construction.

Definition 2.13 (Envelope). Let Ca be be a family of regular and smooth curves. Then
α is an envelope of Ca, if at every point α is tangent to some Ca. Moreover: If curve e is
the evolute of curve c, then c is the envelope of the normals of e.

Let us then give a theorem how to compute the envelope.

Theorem 2.5. If the family of curves Ca is given implicitely by equation fa(x, y) =
f(x, y, a) = 0, then the envelope of Ca can be obtained by eliminating a from equations

f(x, y, a) = 0

∂

∂a
f(x, y, a) = 0. (71)

If the family of curves Ca is given parametrically ca(t) = (ca1(t), c
a
2(t) = (c1(a, t), c2(a, t)),

then the envelope of Ca can be obtained by solving a from equation

∂c1
∂a

∂c2
∂t
− ∂c1

∂t

∂c2
∂a

= 0. (72)

Let us proof the first equation. The proof of the second is somewhat similar.
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Proof. Suppose that the parametrization of the envelope c : I 7→ R2 is c = (c1(t), c2(t)).
First we notice that on the envelope

a′(t) =
da

dt
̸= 0,

because otherwise a = const and envelope would be part of the family since it satisfies
f(x, y, a) = 0. Let us then differentiate the function f on the envelope with respect to t.
From this we get

d

dt
f(x(t), y(t), a(t)) = fxx

′ + fyy
′ + faa

′ = 0.

Here the subscripts mean differentiation with respect to subscript. But since c is the
envelope it has the same tangent as the member from the family of curves so that

fxx
′ + fyy

′ = ⟨∇f, c′⟩ = 0.

And since a′ ̸= 0 from this follows

fa =
∂

∂a
f(x, y, a) = 0.

Example 2.4. Let 0 < a < 1, and let Ca be a family of ellipses c(a, t) = (a cos(t), (1 −
a) sin(t)). Member of Ca can be represented implicitely bt equation

x2

a2
+

y2

(1− a)2
− 1 = 0

The envelope satisfyes

cos(t)(1− a) cos(t)− a sin(t) sin(t) = 0.

From this we get a = cos(t)2. Substituting this to c(a, t) we get the envelope of Ca

e(Ca)(t) = (cos(t)3, sin(t)3).

The part of the envelope is given by implicit representation

x2/3 + y2/3 − 1 = 0.
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Figure 2: Envelope of the family of ellipses.

The curve is called an astroid.

Let us then proof a formula for a curvature by implicitly defined curve.

Theorem 2.6 (Curvature for implicitly defined curves). Suppose that we have smooth
function f : R2 7→ R which implicitly defines a smooth and regular curve c by equation
f(x, y) = 0. Then the curvature of |κ| of c is given by

|κ| =
∣∣∣⟨∇, ∇f∥∇f∥⟩∣∣∣. (73)

Proof. We know that any smooth and regular curve can be parametrized by arc length.
Let us then make vector notations ex = (1, 0) and ey = (0, 1). Now the curve can be
presented as c(s) = x(s)ex + y(s)ey. On the curve f(x(s), y(s)) = 0 so that

d

ds
(f) = ⟨∇f, c′⟩ = 0.

Which proofs the usual c′⊥∇f . Notice also that the unit normal n can be presented then
as

n =
∇f
∥∇f∥

.

On the other hand we have

n = −y′ex + x′ey =
∇f
∥∇f∥

, ∇f = fxex + fyey

From this we get the representation for x′ and y′ which enables us to compute the curvature

x′ =
fy
∥∇f∥

y′ = − fx
∥∇f∥

.
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Now we have

c′ = x′ex + y′ey

=
1

∥∇f∥

(
fyex − fxey

)
= t, T = fyex − fxey

Then with ”little” calculus using the formulas for x′, y′ and κ = ⟨n, c′′⟩ we get

c′′ =
d

ds

( 1

∥∇f∥

)
T +

1

∥∇f∥
d

ds
(T )

= −fxx
′ + fyy

′

f 2
x + f 2

y

(fyex − fxey) +
1√

f 2
x + f 2

y

((fyxx
′ + fyyy

′)ex − (fxxx
′ − fxyy

′)ey)

=
fyxfy − fyyfx

f 2
x + f 2

y

ex +
fxyfx − fxxfy

f 2
x + f 2

y

ey

=
1

∥∇f∥2
[(fyxfy − fxxfy)ex + (fxyfx − fyyfy)ey].

From this we derive

|κ| =
∣∣∣ 1

(f 2
x + f 2

y )
3/2

(fx(fyxfy − fyyfx) + fy(fxyfx − fxxfy))
∣∣∣

=
∣∣∣− f 2

xfyy + f 2
y fxx − 2fxyfxfy

(f 2
x + f 2

y )
3/2

∣∣∣
=
∣∣∣ 1

∥∇f∥3
(f 2

xfyy + f 2
y fxx − 2fxyfxfy)

∣∣∣
=
∣∣∣⟨∇, ∇f∥∇f∥⟩∣∣∣.

An other classical curve construction is an involute of a given curve.

Definition 2.14 (Involute). Let c be a smooth and regular curve. Then the involute i
of curve c is a curve which at every point of p = c(t) of the curve is orthogonal to some
tangent of a given curve c.

Let us then again give a theore using arc length parameter to compute the involute

Theorem 2.7. i If i is an involute of a given curve c and c is parametrized by arc length
then

i(s) = c(s) + (b− s)t(s). (74)

Proof. Differentiating i with respect to s we get

i′(s) = c′(s) + (b− s)t′(s)− t(s)

= (b− s)t′(s)

Using Frenet-Serret formulas we get

i′(s) = (b− s)κ(s)n(s)

From this follows

⟨i′(s), t(s)⟩ = 0,

which proofs the claim.
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Let us then take a classical example from geometrical optics.

Example 2.5 (Caustic). Geometric optics: Light is a family of rays/straight lines.

Figure 3: Light rays reflecting from the surface of the mirror shaped like a semicircle.

Now p = aex − bey and a2 + b2 − 1 = 0. Caustic is the envelope of family of re-
flected/refracted rays. Becuse surface is shaped like a circle all the normals n pass through
the origin. From figure 3. we get now

tan(α) =
a

b
=

a√
1− a2

.

Because the reflective surface is in the area where y < 0 we get the following equation for
the reflacted rays

y + b = k(x− a) = − tan(β)(x− a).

Using trigonometeric formulas we get

tan(β) = tan(π/2− 2α) =
1

tan(2α)

=
1− tan2(α)

2 tan(α)

=
b2 − a2

2ab
.
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From this we get the equation of the reflected rays

y + b =
a2 − b2

2ab
(x− a).

The equations for the caustic is then

f(x, y, a) = y + b+
b2 − a2

2ab
(x− a) = 0

∂

∂a
f(x, y, a) = −4ax+

1− 2a2√
1− a2

y + 1 = 0.

Solving y from the second equation and substituting it to first yields x = a3. We can now
represent the caustic in parameter form

x = a3

y =
a2(2a2 − 1)− 1√

1− a2
.

Now we can get implicit representation of the caustic

y = −(1/2 + x2/3)
√

1− x2/3.

–1

–0.8

–0.6

–0.4

–0.2

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

Figure 4: The form of the caustic when reflecting surface is round.

When x ≈ 0 we get from example from the Taylor expansion

(y + 1/2)3 ≈ −x2,

which has again cusp-type singularity at the point p = (0,−1/2).
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Let us then prove a result which was in fact computed on last exercises and which is
probably intuitively very clear.

Theorem 2.8. If the curvature |κ| of the curve c is constant, then the curve is

1. straigth line (κ = 0), or

2. circle (κ ̸= 0).

Proof. 1.) Let’s examine the case κ = 0. From Frenet-Serret equations

t′(s) = c′′(s) = κn(s) = 0.

From this equation we get two differential equations

c′′1(s) = 0

c′′2(s) = 0.

These have the solutions

c1(s) = u1 + v1s

c2(s) = u2 + v2s,

so that

c(s) = u+ vs.

Additional condition |c′| = 1 yields |v| = 1. So that if κ = 0 c is a starigth line.
2.) Let’s then examine the case κ ̸= 0. We know that the evolute of the curve c can be
represented as

e(s) = c(s) +
n(s)

κ
.

Differentiating and using Frenet-Serret equations we get

e′(s) = c′(s) +
n′(s)

κ
= t(s) + (−t(s))
= 0

From this follows e(s) = a = (a1, a2), so

c(s) = a− n(s)

κ
,

where a is the center of the circle and 1/|κ| is the radius of the circle.

For further use let us then define the following groups in all dimensions.

Definition 2.15. Let’s define groups O(n), SO(n), E(n) and SE(n):

O(n) = {A ∈ Rn×n| ATA = I} (75)

SO(n) = {A ∈ O(n)| det(A) = 1} (76)

E(n) = {f : Rn 7→ Rn| f(x) = Ax+ v, A ∈ O(n), v ∈ Rn} (77)

SE(n) = {f ∈ E(n)| A ∈ SO(n)}. (78)
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Group O(n) is called an orthogonal group and it represents reflections and rotations in
Rn. Group SO(n) is called the special orthogonal group and it represents rotations in Rn.
SO(n) is a proper subgroup of O(n). Group E(n) is called an euclidean group it represents
rotations/translations combined with translations in Rn. Group SE(n) is called the special
euclidean group and it represents rotations combined with translations in Rn.

Now we are prepared to proof the important theorem that in fact every curve differs
from other if they have a different curvature. If two curves have the same curvature their
images can be placed on top of each other by simple translation and rotation.

Theorem 2.9. Suppose that two curves c1 : I 7→ R2, and c2 : I 7→ R2 have the same
curvature κ, then curve c1 can be obtained from c2 with function from SE(2), that is

c1 = f ◦ c2, f ∈ SE(2). (79)

We can say that the curvature defines uniquely the curve up to SE(2).

Proof. Suppose we have an arbitrary curve c : [a, b] 7→ R2 parametrized by arclength.
From Frenet-Serret equations we know

t′(s) = κ(s)n(s)

n′(s) = −κ(s)t(s).

Since t and s are always of unit length we can represent them as

t(s) = (cos(α(s)), sin(α(s)))

n(s) = −(sin(α(s)), cos(α(s))).

Let then c(s) = (x(s), y(s)). Now

t′(s) = κn = α′(s)n.

From this follows that

κ = α′,

so that

α(s) =

∫ s

0

κ(b)db+ α0

Also

t(s) = c′(s) = (x′(s), y′(s)) = (cos(α(s)), sin(α(s))).

The direct integration of these gives

x(s) = x0 +

∫ s

0

cos
(
α0 +

∫ a

0

κ(b)db
)
da

y(s) = y0 +

∫ s

0

sin
(
α0 +

∫ a

0

κ(b)db
)
da.
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Using product to sum rules of sin(s) and cos(s) to previous equations gives after little bit
of computation(

x(s)
y(s)

)
=

(
x0

y0

)
+

∫ s

0

A(α0)v(a)da =

(
x0

y0

)
+ A(α0)

∫ s

0

v(a)da,

where A(α0) ∈ SO(2) and

v(a) =

(
cos(

∫ a

0
κ(b)db

sin(
∫ a

0
κ(b)db

)
.

This is because the fact that

SO(2) =
{( cos(β) − sin(β)

sin(β) cos(β)

) ∣∣∣ β ∈ R
}
.

Since we took an arbitrary curve we can se that if two curves have the same curvature
they of course have these representations and the vector depending from curvature will
be same so that they only differ by translation by (x0, y0) and rotation A(α0).

2.3 Curves in R3

Let us then look space curves in three dimensional Euclidean space R3. We can define the
curvature of a regular and smooth curve in similar way as in R2, but to derive similar type
of equations as the Frenet equations in R2 we need to define an orthonormal coordinate
system in R3, which can not be done just by tangent and normal vectors. Let us first
define the tangent, normal and binormal vectors.

Definition 2.16 (Tangent, Normal, Binormal vectors and curvature). Let c : I 7→ R3 be
a smooth regular curve which is parametrized by arc length so that ∥c′∥ = 1. The tangent
vector of c is defined as

t = c′. (80)

Since ∥t∥ = ⟨c′, c′⟩ = 1, we have again by differentiation ⟨c′, c′′⟩ = 0. We define the normal
vector as

n(s) =
c′′(s)

∥c′′(s)∥
=

t′(s)

∥t′(s)∥
. (81)

Then to form a vector which is of unit length and orthogonal to n and t we use the cross
product and define the binormal vector

b = t× n. (82)

The curvature κ of c is then defined in similar fashion as in R2

κ(s) = ∥c′′(s)∥ = ∥t′(s)∥. (83)

Now the vectors t, n, b can again be thought as a an orthonormal basis vectors for R3

and the vectors span three planes in R3.

Definition 2.17 (Osculating, Rectifying and Normal plane). Let c : I 7→ R3 be a smooth
and regular curve and p = c(t0)
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1. The plane spanned by n and t and orthogonal to b is called an osculating plane
O = {r ∈ R3 | ⟨r − p, b⟩ = 0}.

2. The plane spanned by t and b and orthogonal to n is called an rectifying plane
R = {r ∈ R3 | ⟨r − p, n⟩ = 0}.

3. The plane spanned by n and b and orthogonal to t is called an normal plane
N = {r ∈ R3 | ⟨r − p, t⟩ = 0}.

Figure 5: Frenet frame at c(t0) = p and the planes defined by t, n and b.

Like in the case of R2 let us then try to find representation for t′ n′ and b′ in basis
K = {t, n, b}. We already have by definition

t′(s) = κ(s)n(s).

On the other hand we now that K is an orthonormal basis so n′ (or any vector) can be
represented with basis K as

n′ = ⟨n′, t⟩t+ ⟨n′, n⟩n+ ⟨n′, b⟩b.

Since ⟨n, n⟩ = 1 we have by differentation ⟨n, n′⟩ = 0. Also because ⟨t, n⟩ = 0 we can
differentiate and get

⟨n′, t⟩ = −⟨n, t′⟩ = −⟨n, κn⟩ = −κ.
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We have computed the coefficients ⟨n′, t⟩ and ⟨n′, n⟩ so we have the representation for n

n′(s) = −κt+ ⟨n′, b⟩b.

The coefficient ⟨n′, b⟩ of the vector b in the representation of n′ is called a torsion of c.

Definition 2.18 (Torsion). Let c : I 7→ R3 be a smooth and regular curve and s the arc
length parameter. The torsion of c is the quantity

τ(s) = ⟨n′(s), b(s)⟩. (84)

With the previous definition we have the representation for n′

n′ = −κt+ τb.

Now we have representations for t′ and n′ so we need to derive the equation for b′. Again
in orthonormal Frenet-Serret frame we have

b = ⟨b′, t⟩t+ ⟨b′, n⟩n+ ⟨b′, b⟩b. (85)

Since ⟨b, t⟩ = 0 and ⟨b, n⟩ = 0 by differentiation we get

⟨b′, t⟩ = −⟨b, t′⟩ = −κ⟨b, n⟩ = 0

⟨b′, n⟩ = −⟨b, n′⟩
= −⟨b,−κt+ τb⟩ = −τ⟨b, b⟩ = −τ.

Moreover since ∥b∥2 = ⟨b, b⟩ = 1 we have ⟨b, b′⟩ = 0. So we have the representation for b′

b′ = −τn,

so that we have a theorem

Theorem 2.10 (Frenet-Serret equations in R3). Let c : I 7→ R3 be a smooth and regular
curve and s the arc length parameter. The tangent, normal and binormal vector of c
satisfy the differential equation

t′ = κn

n′ = −κt+ τb

b′ = −τn. (86)

We can represent the equation again in matrix form as

T ′ =

 t′

n′

b′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 t
n
b

 = A(τ, κ)T. (87)

Remark 2.6. Notice that the system is linear differential equation and in R2 the coefficient
matrix A of equation T ′ = AT is of full rank (if κ ̸= 0). However in R3 the matrix A is
clearly not of full rank since the rows are clearly linearly dependent so that det(A) = 0.
Also notice that if τ = 0 then b′ = 0 so that b = constant and the structure of the equation
with κ is same as in R2. The same thing happens also if κ = 0. In these special cases the
curve can be thought as plane curve with b or n constant.

Let us then present a formula for computing the torsion with derivatives of c.
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Theorem 2.11. Let c : I 7→ R3 be a smooth and regular curve and s the arc length
parameter. The torsion of c can be computed as

τ =
1

κ
⟨c′ × c′′′, c′′⟩. (88)

Proof.

τ = ⟨n′, b⟩ = ⟨n′, t× n⟩

= −⟨n, d

ds
(t× n)⟩

= −⟨n, t× n′⟩ − ⟨n, t′ × n︸ ︷︷ ︸
=0

⟩

= −⟨c
′′

κ
, c′ × d

ds

(c′′
κ

)
⟩

= −⟨c
′′

κ
, c′ ×

(κc′′′ − κ′c′′

κ2

)
⟩

= −1

κ
⟨c′′, c′ × c′′′⟩.

The last row is a multiple of the scalar triple product of c′, c′′ and c′′′ so changing rows in
the determinant results τ = 1

κ
⟨c′ × c′′, c′′′⟩.

Using this equation it is possible to derive the equation for torsion with general curve
parameter, using the representation of κ with general curve parameter. I will give these
as a theorem, but I will not prove it. The prove is generally an application of chain rule
since we have the connection of the general and arc length parameter from Thm 2.3.

Theorem 2.12 (Curvature and Torsion with general parameter). Let c : I 7→ R3 be
a regular and smooth curve. Moreover let t be arbitrary curve parameter. Then the
curvature and torsion can be computed as

κ(t) =
∥c′ × c′′∥
∥c′∥3

(89)

τ(t) =
⟨c′ × c′′, c′′′⟩
∥c′ × c′′∥2

. (90)

We will then give an example from a known space curve called a helix.

Example 2.6 (Helix). Let’s inspect a smooth and regular curve c : [0, 4π] 7→ R3

c(u) = (a cos(u), a sin(u), bu). (91)

To compute the curvature and torsion we have to form the 1st 2nd and 3d derivative of c.

c′(u) = (−a sin(u), a cos(u), b)
c′′(u) = (−a cos(u),−a sin(u), 0)
c′′′(u) = (a sin(u),−a cos(u), 0))

From here we can compute

∥c′(u)∥ =
√
a2 + b2 = α.
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The curvature is then

κ(u) =
∥c′ × c′′∥
∥c′∥3

=
aα

α3
=

a

α2
.

For the torsion we compute

⟨c′ × c′′, c′′′⟩ = a2b

so that

τ =
a2b

a2α2
=

b

α2
.
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Figure 6: Cylinderical helix when a = b = 1 and u ∈ [0, 4π]. The projection of c into
(x, y)-plane is the unit circle.

Additionally we notice

κ = (a/b)τ.

Generally if κ/τ = const the curve is called a generalized helix.

3 Surfaces

In this section we will discuss mainly about smooth surfaces in R3, but let us first define
a more general definition for surface which in fact makes a surface S ⊂ R3 a topological
manifold. We will first define a concept of topological equivalence and homeomorphism.
We define the homeomorphism between subsets of Euclidean spaces but the definition
generalizes to any topological spaces.
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Definition 3.1 (Homeomorphism and topological equivalence). Let A ⊂ Rm and B ⊂ Rn.
If there exists a continuous bijection f : A 7→ B so that f−1 : B 7→ A is also continuous
then f is said to be a homeomorphism. If such function exists between sets A and B
the sets A and B are said to be homeomorphic/topologically equivalent. If the sets are
topologically equivalent one sometimes denotes A ≈ B.

If the set A is compact we have a theorem

Theorem 3.1. Let f : A 7→ B be a continuous bijection and A a compact set. Then the
inverse function f−1 is continuous.

Definition 3.2 (Surface). Let S ⊂ R3. The set S is a surface if S is connected, for every
p ∈ S there exists a set/neigborhood5 Bp such that p ∈ Bp = S ∩ U , where U ⊂ R3 is
open and Bp ≈ A ⊂ R2 and A is open.

The definition of surface then means that for every point p ∈ S in the surface S there
is a neighborhood Bp of p such that the neighborhood is locally Euclidean.

Definition 3.3 (Chart, Atlas and surface patch). In the definition of surface the topo-
logical equivalence means that there exists a homeomorphism ϕ : A 7→ B ⊂ R3, A ⊂ R2.
We say that ϕ is the parametric representation/chart map of the surface patch B and the
pair (ϕ,A) is a chart of B. Additionally the collection of charts

J = {(ϕi, Ai) | i ∈ I} (92)

for which

S =
∪
i∈I

ϕi(Ai) (93)

is called an atlas of S.

The previous definition for atlas means that we can cover the whole surface with charts.

5The topology in R3 induces a relative topology in S defined by equation Bp = S ∩ U .
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Let us then give an example of surface

Example 3.1 (Surface). Let us look at the set

S = {(x, y, z) ⊂ R3 | x2 + y2 + (z − 1)2 − 1 = 0}.

To prove that S is a surface we need open sets from R2 to cover the whole sphere home-
omorphically. Let us give the charts intuitively.

Figure 7: Two charts for S.

1.) Let us look at the stereographic projection ϕ1 : R2 7→ S \ {N} which is formed in
such way that we take a line which passes through point N = (0, 0, 2) and the (x, y)-plane
z = 0. The line intersects S \ {N} at exactly one point p = (p1, p2, p3) and forming the
representation for p with (x, y) we have constructed a homeomorphism ϕ1 : R2 7→ S\{N}.
Now we have covered whole S except a point N , so we need a chart for a neighborhood
of N .

2.) We just take the natural projection from upper hemisphere minus the equator of
S to B(0, 1) ϕ2 : B(0, 1) 7→ BN where BN = {(x, y, z) ∈ S | z > 1} and

ϕ2(x, y, z) = (x, y, 1 +
√
1− x2 − y2).

Now we have covered the set S with two charts (ϕ1,R2) and (ϕ2, B(0, 1)) so that S is a
surface.

3.1 smooth surfaces

In general surfaces can still be complicated and in order to do more analysis on surfaces
we will define a smooth surface.
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Definition 3.4 (Smooth surface). Let Ω ⊂ R2 be a connected set which is usually also
open and bounded. Let then f := (f 1, f 2, f 3) : Ω 7→ R3 be a smooth function and denote

Mf = f(Ω) = {y ∈ R3 | y = f(x), x ∈ Ω}. (94)

We denote the Jacobian of f as

df =

 f 1
u1

f 1
u2

f 2
u1

f 2
u2

f 3
u1

f 3
u2

 =

 f 1
1 f 1

2

f 2
1 f 2

2

f 3
1 f 3

2

 = (f1|f2) (95)

where we have noted

∂f i

∂ui

= f i
j .

The set Mf is called a smooth surface if

1. Rank(df) = 2 ∀ u ∈ Ω

2. Function f : Ω 7→ R3 is an injection.

Remark 3.1. If f : Ω 7→ R3 is injective then f : Ω 7→ Mf is bijection. Moreover since
function f is smooth it is continuous and since the rank of the Jacobian is maximal for all
u ∈ Ω the inverse mapping is also smooth. This follows for example from smooth inverse
theorem or implicit function theorem. In this sense the pair (f,Ω) forms an Atlas for Mf

so that it is also of course a surface.

The condition 1. also means that the vectors f1 and f2 are linearly independent. This can
also be expressed equivalently by

f1 × f2 ̸= 0 ∀ u ∈ Ω.

Example 3.2 (Graph). Let us examine a smooth function g : Ω 7→ R, Ω ⊂ R2. Now
the surface defined by g is called a graph and it is defined by the function f : Ω 7→ R3,
f := (x, y, g(x, y)). Now

f1 =

 1
0
gx

 f2 =

 0
1
gy

 .

Clearly f1 × f2 ̸= 0 ∀ (x, y) ∈ Ω so that the function f satisfies conditions 1 and 2 and so
Mf is a smooth surface (with obvious restrictions to set Ω).

Next we proceed to define the tangent space for smooth surface. Although the con-
struction as a plane spanned by vectors f1 and f2 is quite obvious let us first define a
curve c1 : I1 7→Mf by fixing u2 = b,

c1 := f(u1, b) : I1 7→Mf , I1 = {u1 ∈ R | u2 = b, u1 ∈ Ω},
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and a curve c2 : I2 7→Mf by fixing u1 = a

c2 := f(a, u2) : I2 7→Mf , I2 = {u2 ∈ R | u1 = a, u2 ∈ Ω}.

Figure 8: Curves in Mf defined by the coordinate curves in Ω.

Now the tangent vectors of these smooth curves are

c′1(u1) =
∂

∂u1

f(u1, b) = f1(u1, b)

c′2(u2) =
∂

∂u2

f(a, u2) = f2(a, u2).

Now the tangent vectors of the coordinate curves are linearly independent for all (a, u2) ∈
Ω and (u1, b) ∈ Ω. So we can span a ”tangent plane”defined by tangent vector of coordinate
curves u1 = a and u2 = b. This interputation of tangent space defined by coordinate curves
is also used in higher dimensions.

Definition 3.5 (Tangent space, Normal vector). Let f : Ω 7→ R3 be a smooth function and
Mf the corresponding smooth surface. The tangent space of Mf at f(q) = p (q = (a, b))
is

TpMf = span{f1(q), f2(q)} = {r ∈ R3 | r = a1f1(q) + a2f2(q), a1, a2 ∈ R}. (96)

Notice that we define the tangent space as linear subspace of R3, but in case of surfaces
we can always make the identification with affine subspace

TpMf ≃ {r ∈ R3 | ⟨r − p, f1(q)× f2(q)⟩ = 0} ⊂ R3. (97)
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where the crossproduct f1 × f2 defines the normal vector to a surface. Usually we define
the normal vector as the unit outward normal vector defined by

n =
f1 × f2
∥f1 × f2∥

. (98)

Let us then give couple of example from smooth surfaces and their tangent spaces.

Example 3.3. Suppose that we have a smooth function g : Ω 7→ R2, Ω ⊂ R2. The function
defines the graph surface by function f := (f 1, f 2, f 3) : Ω 7→ R3, f(u) = (u1, u2, g(u1, u2))
where g(u1, u2) = u2

1 + 2u2
2. The normal vector n and vectors f1, f2 are then

f1(u1, u2) = (1, 0, 2u1)

f2(u1, u2) = (0, 1, 4u2)

n(u1, u2) =
1√

1 + 4u2
1 + 16u2

2

(−2u1,−4u2, 1).

The tangent space TpM of Mf at p = f(u) is

TpMf = {r ∈ R3 | ⟨n, r⟩ = 0}
= span{f1, f2} = {r ∈ R3 | r = a1f1 + a2f2}.

Remember also that we can make the identification

TpMf ≃ {r ∈ R3 | ⟨n, r − p⟩ = 0}.

Theorem 3.2 (A version from implicit function theorem). Let g : R3 7→ R be a smooth
function and denote M = g−1(0) ⊂ R3. The set M is a surface if M is connected and

∇g(p) = dg(p) ̸= 0 ∀ u ∈M. (99)

Let us give a sketch of the proof

Proof. Since ∇g(p) ̸= 0 the normal vector n is well defined and

n =
∇g(p)
∥∇g(p)∥

.

The tangent space is then

TpM = {x ∈ R3 | ⟨x, n⟩ = 0}.

Moreover since dim(TpM) = 2 ∀ p ∈M we know that the tangent space has two linearly
independent basis vectors from which we can deduce the condition 1. The second condition
follows from the fact that in the neighborhood of p the function g implicitly defines a
function h : B(qi, εi) : Ω 7→ R so that at least one of the conditions (p = f(qi))

1. ∃ hz : B(q1, ε1) : 7→Mf such that g(u1, u2, h
x(u1, u2)) = 0 ( at least gz ̸= 0)

2. ∃ hy : B(q2, ε2) : 7→Mf such that g(u1, h
y(u1, u2), u2) = 0 ( at least gy ̸= 0)

3. ∃ hx : B(q3, ε3) : 7→Mf such that g(hz(u1, u2), u1, u2) = 0 ( at least gx ̸= 0)

is valid and one of the functions defines the graph map and the required injection.

Next we look how to measure distances of curves and areas of subsets in Mf . Suppose
we have a curve

α : [a, b] 7→ Ω ⊂ R2.
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Now the composition c := f ◦α defines a curve inMf . The length of c is given naturally
by

L(c) =

∫ b

a

∥c′∥dt.

Figure 9: Mappings α and f and their composition c = f ◦ α.

The derivative c′ can be evaluated by the chain rule

d

dt
c(t) =

d

dt
(f ◦ α)(t)

= dfα′(t)

= α′
1(t)f1 + α′

2(t)f2.

Now we have

∥c′∥2 = ⟨c′, c′⟩
= ⟨dfα′, dfα′⟩
= ⟨α′, (df)Tdfα′⟩,

where

(df)Tdf =

(
⟨f1, f1⟩ ⟨f1, f2⟩
⟨f1, f2⟩ ⟨f2, f2⟩

)
=

(
E F
F G

)
= T.

Moreover remember that the are m(M) of M is given by

m(M) =

∫
M

dM =

∫
Ω

∥N∥du1du2,

where N is the normal vector ∥N∥ = ∥f1 × f2∥ =
√

det(T ). By computation we get

m(M) =

∫
Ω

∥N∥du1du2 =

∫
Ω

√
EG− F 2du1du2.
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We can see that the quadratic form defined by T appears naturally in measure of length
of curves and areas in M . The quadratic form T defines in fact an inner product between
vectors in Tangent spaces of M . In higher dimensions the function defined by T is called
a Riemannian metric/Metric tensor, but in case of surfaces it is historically called the
first fundamental form of a surface.

Definition 3.6 (1st Fundamental form of a surface). Let v, w ∈ TpM be vectors in tangent
space of M

v = a1f1 + a2f2

w = b1f1 + b2f2 ai, bi ∈ R.

The function I : TpM × TpM 7→ R defined by

I(v, w) = ⟨a, T b⟩, a = (a1, a2), b = (b1, b2)

is called the 1st fundamental form of M .

Now we have a lemma

Lemma 3.1. Let I be the 1st fundamental form of M .

1. If det(T ) ̸= 0 the matrix T is positive definite

2. ∥f1 × f2∥2 = det(T ) = EG− F .

Proof. The prove is left as an exercise. The claim 2. is just computation and for the first
remember that it suffices to prove that eigenvalues λi of T are positive.

Let us then again look at the graph surface.

Example 3.4. Let h : Ω 7→ R be a smooth function and f := (u1, u2, h(u1, u2)). Now we
get

f1 = (1, 0, h1)

f2 = (0, 1, h2)

Straight computation gives

T =

(
E F
F G

)
=

(
1 + h2

1 h1h2

h1h2 1 + h2
2

)
,

so that det(T ) = 1 + ∥∇h∥2. The area of M in this special case is then∫
M

dM =

∫
Ω

√
1 + ∥∇h∥2du1du2.
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Next we proceed to measure curvatures of a surface. Before that let us make a historical
note: The idea of Gauss was to see how the areas change when the subsets of M are
mapped to unit sphere by attaching the unit normal vector µ(p) = n(u), p = f(u) to
point p

Figure 10: Gauss map µ relates to every p ∈M a unit vector µ(p) which is normal to the
surface at a point p

In general we could imagine a smooth Jordan curve around p which would correspond to
smooth Jordan curve in Ω around the preimage u of p. Then we could take a smooth
homotopy and shrink the area of A inside J to point p and define the limit of ratio
r = m(µ(A))/m(A)

κ = lim
m(A)→0

m(µ(A))

m(A)
.

The general treatment of this ratio can however leed to some technical difficulties. More-
over in time of Gauss it was not known if one number could express the curvature of
a surface and Euler had already defined principal curvatures of a given surface so this
number should naturally correspond to principal curvatures. It was quickly realized that
the determinant of the differential of map which Gauss described corresponds to product
of the principal curvatures.

Example 3.5 (Plane, Sphere and Cylinder). Let us then look at the curvatures of the
standard objects plane and sphere. In order that the definition would make sense we
would think that the plane in R3 should have zero constant curvature. Indeed if we have

f(u1, u2) = a+ u1b+ u2c, a, b, c ∈ R3.
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the normal vector n is just the constant vector

n =
b× c

∥b× c∥
= {point}.

This means that any area A ⊂Mf is shrinked to a point n in S2 so

r =
m(µ(A))

m(A)
= 0.

In case of sphere the points p map to point p/R where R is the radius of the sphere. This
means that the shape of the set A ⊂ Mf remains the same but is shrinked/expanded by
coefficient 1/R2,

r =
m(µ(A))

m(A)
= 1/R2.

This gives the result that sphere radius R has the constant curvature κ = 1/R2. This
result also correspond to our intuition of the curvature; Sphere should have constant
curvature and the smaller the sphere the bigger the curvature. However if we look for
example at the cylinder M whose surface is at the distance R2 = x2+ y2 from the vertical
z-axis we notice that all vertical lines on M map to the same point n ∈ S2 under µ. This
means that

µ(A) = {curve} ⊂ S2.

Since the area measure m(µ(A)) of µ(A) is then zero we get r = m(µ(A))/m(A) = 0. This
means that the curvature κ described gives zero curvature for cylinder. In this sense this
definition of curvature does not discriminate between plane and cylinder. However the
map µ holds all the information we need. The plane has higher order of deceneracy than
than the cylinder and moreover we see later that other principal curvature of cylinder has
the same magnitude as the circle of radius R has as a curve.

Motivated by this example we define the map of Gauss

Definition 3.7 (Gauss map). Let Mf be a smooth surface. The gauss map µ : Mf 7→
S2 ⊂ R3

µ(p) =
f1(u)× f2(u)

∥f1(u)× f2(u)∥
= n(u), p = f(u) (100)

relates to point p a point µ(p) from unit sphere.

Holding on from our previous idea we see how areas transform under µ. Remember
that near point p the linearization dµp of µ should approximate the function µ. Moreover
remember that under linear transformations dµp the area of set A changes as

m(dµp(A)) = | det(dµp)|m(A).
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Geometrically we can also think that near point p the natural projection of A onto the
the tangent plane should approximate the set A and in the limit we could take f−1(A) ⊂
B(u, ε) ⊂ Ω ⊂ R2 and in the limit we should have

lim
ε→0

m(µ(A))

m(A)
= | det(dµp)|.

Figure 11: Gauss map µ and Weingarten map/Shape operator dµp.

Notice that we can naturally now think the Gauss map also as n : Ω 7→ S2

n(u) =
f1(u)× f2(u)

∥f1(u)× f2(u)∥
.

Moreover since the tangent planes TpM and Tµ(p)S
2 = Tn(u)S

2 are parallel we can identify
TpM ≃ Tn(u)S

2. Let us then define the Weingarten map which is the Jacobian of the
Gauss map

Definition 3.8 (Weingarten map/Shape operator). The map defined by the differen-
tial/Jacobian dµ : TpM 7→ TpM of the Gauss map µ

dµ(a1f1 + a2f2) = dµ

(
a1
a2

)
= a1n1 + a2n2 (101)

is called the map of Weingarten/Shape operator.
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Also since the planes Tn(u)S
2 and TpM are parallel we have

span(f1, f2) = span(n1, n2).

This means that there is a change of basis matrix W such that

a1n1 + a2n2 = b1f1 + b2f2 ⇔ b = Wa

Only thing we then would have to do is to compute the determinant of W . We will do
this later. Let us first give a theorem about 1st fundamental form

Theorem 3.3. The first fundamental form I : TpM × TpM 7→ R defines an innerproduct
on tangent spaces of smooth surface M .

Proof. The map defined by matrix T is symmetric and positive definite. It remains to
proof the axioms of innerproduct. This is left as an exercise.

Let us then proof a result about the Weingarten map on tangent spaces

Theorem 3.4. The Weingarten map dµ : TpM 7→ TpM is symmetric.

Proof. Remember that the linear map L : X 7→ X is symmetric if ⟨x, Ly⟩ = ⟨Lx, y⟩ ∀ x, y ∈
X. Now it suffices to proof the theorem for basis vectors f1, f2. Clearly if i = j the equality

⟨dµfi, fj⟩ = ⟨fi, dµfj⟩

holds. So we need only to look at the the equation for f1 and f2. Now for f1 and f2 we
have by definition

dµf1 = n1

dµf2 = n2.

Since ⟨fi, n⟩ = 0 we get by differentiation

∂

∂uj

⟨fi, n⟩ = ⟨fij, n⟩+ ⟨fi, nj⟩ = 0.

From this we get ⟨fij, n⟩ = −⟨fi, nj⟩ so that

⟨f1, dµf2⟩ = ⟨f1, n2⟩ = −⟨f12, n⟩
= −⟨f21, n⟩ = ⟨f2, n1⟩ = ⟨f2, dµf1⟩,

which proofs the claim.

Next we define the Gaussian curvature as we previously said

Definition 3.9 (Gaussian curvature). Let Mf ⊂ R3 be a smooth surface. The curvature
κ of Mf is defined as the determinant of the Weingarten map/Shape operator

κ = det(dµp). (102)
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To compute the curvature we will first define the second fundamental form of a surface.
Before this let us make notations

e = ⟨f11, n⟩ = −⟨f1, dµf1⟩
f = ⟨f12, n⟩ = −⟨f1, dµf2⟩
g = ⟨f22, n⟩ = −⟨f2, dµf2⟩.

The quantities e, f, g define the matrix

T̃ =

(
e f
f g

)
.

Definition 3.10 (2nd Fundamental form). Let Mf ⊂ R3 be a smooth surface. The
function II : TpM × TpM 7→ R defined by

II(v, w) = ⟨a, T̃ b⟩, a = (a1, a2), b = (b1, b2) (103)

is called the second fundamental form of the surface Mf .

Now we can present a theorem for the Weingarten map

Theorem 3.5. Let Mf be a smooth surface and dµp : TpM 7→ TpM the Weingarten map.
The matrix of dµ in basis {f1, f2} of TpM is

W = −T−1T̃ . (104)

Proof. We know that

dµ(a1f1 + a2f2) = a1n1 + a2n2 = b1f1 + b2f2.

Taking innerproducts with respect to f1 and f2 from previous equations results to

− ea1 − fa2 = a1⟨n1, f1⟩+ a2⟨n2, f1⟩
= b1⟨f1, f1⟩+ b2⟨f2, f1⟩ = Eb1 + Fb2,

and

− fa1 − ga2 = a1⟨n1, f2⟩+ a2⟨n2, f2⟩
= b1⟨f1, f2⟩+ b2⟨f2, f2⟩ = Fb1 +Gb2.

From these we get

−T̃ a = Tb,

so

b = −T−1T̃ a = Wa.

Let us then give a convenient way to compute the curvature

Theorem 3.6. Let Mf ⊂ R3 be a smooth surface. The curvature κ of Mf is given by

κ =
eg − f 2

EG− F 2
. (105)
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Proof. We have the matrix of the Weingarten map so let us compute

κ = det(dµ)

= det(W )

= det(−T−1T̃ )

= (−1)2 det(T−1) det(T̃ )

=
det(T̃ )

det(T )

=
eg − f 2

EG− F 2
.

Let us then again consider the surface given as a graph

Example 3.6. Let surface Mf be given by f : Ω 7→ R3,

f(u) = (u1, u2, h(u1, u2)).

Now we get

()E = 1 + h2
1, F = h1h2, G = 1 + h2

2,

and fij = (0, 0, hij). Unit Normal vector n is

n =
1√

1 + ∥∇h∥2

 −h1

−h2

1

 .

The components of T̃ are

e = ⟨f11, n⟩ =
h11√

1 + ∥∇h∥2

f = ⟨f12, n⟩ =
h12√

1 + ∥∇h∥2

g = ⟨f22, n⟩ =
h22√

1 + ∥∇h∥2
.

Curvature is then

κ =
h11h22 − h2

12

1 + ∥∇h∥2
.

If we introduce the second derivative d2h or hessian of h : Ω 7→ R,

d2h =

(
h11 h12

h12 h22

)
we get

κ =
det(d2h)

1 + ∥∇h∥2
.
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Let us then present a theorem which can be considered as a generalization for sufficient
condition for sufficient conditions for local minimum and maximum points of a function
h : R2 7→ R.

Theorem 3.7. Every smooth surface Mf can locally be represented by graph fk : Ωk 7→
R3, Ωk ⊂ R2 where Ωk ⊂ R2 is a domain and, k ∈ {x, y, z} so that the graph has at least
one of the three representations

1. f z(u) = (u1, u2, h
z(u1, u1))

2. f y(u) = (u1, h
y(u1, u2), u2)

3. fx(u) = (hx(u1, u2), u1, u2).

This theorem means that we can always think that the surface is always locally (in
small neighborhood of point q, f(q) = p) think that the surface is represented by a graph.

Theorem 3.8. Let Mf be a smooth surface. If the curvature κ(p) at point p ∈Mf is

1. κ(p) > 0 then the surface M is locally (in a neighborhood of p) at one side of TpM

2. κ(p) < 0 then the surface M is locally (in a neighborhood of p) at both sides of TpM

Figure 12: The tangent plane TpM of Mf at point p is locally at one side of Mf .
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Proof. Without lose of generality we can just treat the case for hz since the other cases
just follows from this by permuting the coordinate axis for example x→ y, y → z z → x.
So we need only to compute from previous example.

Let us first assume that κ(p) > 0. From this follows

κ(p) =
det(d2h(q))

1 + ∥∇(q)∥2
=

λ1λ2

1 + ∥∇h∥2
> 0.

This means that either λ1, λ2 > 0 or λ1, λ2 < 0 so that d2h(q) is either positive or negative
definite. We now that the function f has a Taylor expansion

f(q + v) = f(q) + df(q)v + o(∥v∥) = p+ df(q)v + o(∥v∥).

Let us denote the linear part of f(q + v) as fL
q

fL
q (v) = p+ df(q)v, p = (p1, p2, p3.)

The difference of f(q + v) and fL
q is

f(q + v)− fL
q (v) = (0, 0, h(q + v)− p− ⟨∇h, v⟩).

Let us then expand h to its second order Taylor expansion

h(q + v) = h(q) + ⟨∇h(q), v⟩+ 1

2

⟨v, d2h(q)v⟩
2

+ o(∥v∥2),

where h(q) = p3. Now for the difference of f(q + v) and fL
q we get

f(q + v)− fL
q (v) = (0, 0, (1/2)⟨v, d2h(q)v⟩+ o(∥v∥2))

= (0, 0,∆z).

Since d2h(q) is positive definite we have either

1. ∆z = ⟨v, d2h(q)v⟩+ o(∥v∥2) ≥ 0 or

2. ∆z = ⟨v, d2h(q)v⟩+ o(∥v∥2) ≤ 0

where equality holds if v = 0 for ∥v∥ small enough6. Geometrically this means that TpM
is locally in one side of M .

Then if κ(p) < 0 we have

κ(p) =
det(d2h(q))

1 + ∥∇(q)∥2
=

λ1λ2

1 + ∥∇h∥2
< 0.

This means that we have to have λ1 < 0 < λ2 so that the Hessian d2h(q) is indefinite
matrix.

6Notice that proof is exactly similar when you prove sufficient conditions for local minimum or maxi-
mum for functions of several variables.
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This means that for ∥v∥ small enough we can always find v1, v2 such that q1 = q+v1 ∈
B(q, ∥v∥) and q2 = q + v2 ∈ B(q, ∥v∥) and

1. ∆z = ⟨v1, d2h(q)v1⟩+ o(∥v∥2) > 0 and

2. ∆z = ⟨v2, d2h(q)v2⟩+ o(∥v∥2) < 0.

Geometrically this means that TpM is locally in both sides of M .

Motivated by this example/theorem let us classify points on smooth surface M by its
curvature at each p ∈ M . Like usual as in many theories we compare the surfaces to
known 3 dimensional generalizations of conic sections.

Definition 3.11. Let M ⊂ R3 be a smooth surface. A point p ∈M is

1. Elliptic, if κ(p) > 0

2. Hyperbolic, if κ(p) < 0

3. Parabolic, if κ(p) = 0, and T̃ ̸= 0

4. Planar point, if κ(p) = 0, and T̃ = 0

5. Umbilic/Spherical, if dµ = λI, which is equivalent to T̃ = λT

Example 3.7. In this example let f be f(x1, x2, x3) = (x1, x2, h(x1, x2)). Then we have

1. If h = x2
1 + 2x2

2 then all points are elliptic.

2. If h = x2
1 − x2

2 then all points are hyperbolic

3. If h = x2
1 then

T̃ =

(
2√
1+x2

1

0

0 0

)
,

and all points are parabolic.

4. If M is a sphere all points are umbilics. Typically umbilics are isoleted points. For
example origin in 1.

5. If M is plane all points are of course planar points. If h = x4
1 + x4

2 so that

f(x) = (x1, x2, h),

then origin is a planar point.

Let us then see how to compute the curvature and first fundamental form for surface
which is given implicitly by level set.

Example 3.8. Let φ : R3 7→ R be a smooth function, M = φ−1(0) ⊂ R3 and assume that

∇φ ̸= 0 ∀ p ∈M.

Additionally suppose for example that

∂φ

∂x3

(p) ̸= 0 ∀ p ∈M.
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If this equation is satisfied then by implicit function theorem there exists V ⊂ M and a
smooth function h : π(V ) 7→ R such that

φ ◦ f = 0 ∀ u ∈ π(V ),

where π(V ) ⊂ R2 is a projection from V ⊂M to R2 and f(u) = (u1, u2, h(u1, u2)). Now

E = ⟨f1, f1⟩ = 1 + h2
1

F = ⟨f1, f2⟩ = h1h2

G = ⟨f2, f2⟩ = 1 + h2
2.

On the other hand

∂

∂ui

(φ ◦ f) = ⟨∇φ, fi⟩

= φ1f
1
i + φ2f

2
i + φ3f

3
i = 0.

From this we get

φ1 + φ3h1 = 0

φ2 + φ3h2 = 0

so that

h1 = −
φ1

φ3

h2 = −
φ2

φ3

.

Substituting these to components of T we get

E = 1 +
φ2
1

φ2
3

F =
φ1φ2

φ2
3

G = 1 +
φ2
2

φ2
3

,

so that

det(T ) =
∥∇φ∥2

φ2
3

.
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Let’s then consider a curve c = f ◦ α : I 7→ M ⊂ R3 and suppose that the tangent
vector t is parametrized by arclength |t(s)| = 1 where c′(s) = t(s) ∈ TpM and p = c(s).
The unit normal vector n is defined in usual way

n =
f1 × f2
|f1 × f2|

.

In order to simplify some of the computations we will introduce a special orthonormal
basis attached to a point p in a surface M .

Definition 3.12 (Darboux frame, Normal space). Let’s then consider a curve c = f ◦
α : I 7→ M ⊂ R3 and suppose that the tangent vector t is parametrized by arclength
∥t(s)∥ = 1 where c′(s) = t(s) ∈ TpM and p = c(s). The unit normal vector n is defined
in usual way

n =
f1 × f2
|f1 × f2|

.

In order to simplify some of the computations we will introduce a special orthonormal
basis attached to a point p in a surface M . First we define the vector d such that

t× d = n, d ∈ TpM, ∥d∥ = 1. (106)

The basis K = {t, d, n} is called the Darboux frame. Now of course we have ⟨t, d⟩ = 0,
⟨t, n⟩ = 0 and d = n× t. As usual for the curvature of c we have κ(s) = ∥c′′(s)∥ = ∥t′(s)∥.
The normal space of M at point p is defined naturally as the orthogonal complement of
the tangent space TpM .

NpM = span{np} = {r ∈ R3 | r = snp, s ∈ R} = (TpM)⊥.

Let us then look at the surface in Frenet frame. We proceed to define the orthogonal
projections of vectors to normal and tangent spaces.

Definition 3.13 (Projections to NpM and TpM). Let M be a smooth surface. The maps
πt and πn defined by

πt : R3 7→ TpM

πn : R3 7→ NpM,

and πt(x) = y1 ∈ TpM , πn(x) = y2 ∈ NpM are called the orthogonal/normal projections.
The orthogonal projection πt projects a vector into tangent space TpM and the orthogonal
projection πn projects the vector into normal space NpM .
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Now we are ready to take preliminary steps in order to define the geodesics for a
smooth surface M .

Figure 13: The second derivative c′′ in the Frenet-Frame. In this picture the vector c′′ has
also a tangential component πtd.

Because c is parametrized by arc length we know that ⟨c′, c′⟩ = 1 and by differentiation
we get

⟨c′′, c′⟩ = ⟨c′′, t⟩ = 0.

If we then represent c′′ in the Darboux frame we get

c′′ = ⟨c′′, t⟩t+ ⟨c′′, d⟩d+ ⟨c′′, n⟩n
= ⟨c′′, n⟩d+ ⟨c′′, n⟩n
= πt(c

′′)d+ πn(c
′′)n

In orthonormal frame K = {t, n, d} the orthogonal projections πt and πn to TpM and TpN
are

πt(c
′′) = ⟨c′′, d⟩d

πn(c
′′) = ⟨c′′, n⟩n.

We then define the geodesic and normal curvature which distributes the curvature to
normal vectors n and d.
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Definition 3.14 (Geodesic- and Normal curvature). Let M be a smooth surface. We
define the geodesic- and normal curvature as

1. Kg = ⟨c′′, d⟩ is the geodesic curcature

2. Kn = ⟨c′′, n⟩ is the normal curvature.

Let c = f ◦ α be a curve which is parametrized by arclength. By earlier computation
we now that

Theorem 3.9. Let M be a smooth surface. Now we have a theorem.

Kn = II(t, t) = ⟨c′, T̃ c′⟩. (107)

Proof. Because c′(s) ∈ TpM then we have ⟨n, c′(s)⟩ = 0 so that

d

ds
⟨n, c′(s)⟩ = ⟨c′′, n⟩+ ⟨c′, d

ds
n(α(s))⟩

= ⟨c′′, n⟩+ ⟨c′, dnα′⟩
= ⟨c′′, n⟩+ ⟨c′, dµ dfα′︸︷︷︸

=c′

⟩

= ⟨c′′, n⟩+ ⟨c′, dµc′⟩ = 0.

From this we get

Kn = ⟨c′′, n⟩ = −⟨c′, dµc′⟩ = II(c′, c′). (108)

Theorem 3.10. Moreover by chain rule we have for any parametrization

Kn =
II(c′, c′)

∥c′∥2
=

II(c′, c′)

I(c′, c′)

Example 3.9. Suppose that the surface M is parametrized by

f(u) = a(cos(u1), sin(u1), 0) + au2(− sin(u1), cos(u1), b),

and inspect the curve c : I 7→ M , c(t) = f(t, u2), where u2 is fixed. Now c′(t) = f1(t, u2)
so

II(c′, c′) = II(f1, f1) = ⟨(1, 0), T̃ (1, 0)⟩ = Ẽ.

Moreover

∥c′(t)∥ = I(f1, f2) = ⟨(1, 0), T (1, 0)⟩ = E.

With little elementary but tedious calculus we get

Kn =
Ẽ

E
= − b

|a|
√

b2 + u2
2(a

2 + b2)
.
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Because the map dµ : TpM 7→ TpM is symmetric its eigenvalues are real and eigenvec-
tors orthogonal (with inner product defined by T )

−dµvi = λiv
i, i = 1, 2.

On the other we can represent vi as

vi = ai1f1 + ai2f2,

so that

⟨v1, v2⟩ = I(v1, v2) = ⟨a1, Ta2⟩ = 0.

Remember that The Gaussian curvature was defined by

κ = λ1λ2.

Let us then define an other distribution of curvature.

Definition 3.15. Let Mf be a smooth surface and dµ : M 7→ S2 the Weingarten map
the eigenvalues and eigenvectors of dµ are called

1. Eigenvalues λi are called principal curvatures and

2. Eigenvectors vi are called principal directions.

Theorem 3.11. The normal curvature Kn has its minimum (maximum) in direction v1

(v2).

Proof. From linear algebra we know that if A ∈ Rn×n is symmetric and if λ1 ≤ . . . ≤ λn

are its eigenvalues then

λ1 = min
∥v∥=1
⟨v, Av⟩

λn = max
∥v∥=1
⟨v, Av⟩.

Let then λ1 ≤ λ2 be eigenvalues of −dµ. Then if ∥v∥ = 1 we have

λ1 ≤ −⟨v, dµv⟩ =
II(v, v)

I(v, v)
=
⟨c′, T̃ c′⟩
⟨c′, T c′⟩

⟩ ≤ λ2.

Example 3.10. suppose that

−dµv = λv.

On the other hand v = a1f1 + a2f2, a = (a1, a2).We know that W is the matrix of dµ in

the basis {f1, f2}, W = −T−1T̃ , so

−Wa = T−1T̃ a = λa.

Let’s look then the surface of revolution which can be parametrized as

f(s, θ) = (c1(s) cos(θ), c1(s) sin(θ), c2(s)),
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where c(s) = (c1(s), c2(s)) is a curve parametrized by arclength so that ∥c′(s)∥ = 1. From
this we get

E = 1, , F = 0, G = c21.

For f12 we get

f12 = (−c′1 sin(θ), c′1 cos(θ), 0),

and for the normal vector n

n =
f1 × f2
∥f1 × f2∥

= (−c′2 cos(θ),−c′2 sin(θ), c′1).

From these follows

F̃ = ⟨f12, n⟩ = 0.

The matrices of the first and second fundamental forms are then

T =

(
E 0
0 G

)
, T̃ =

(
Ẽ 0

0 G̃

)
,

so that the matrix −W is

−W = T−1T̃ =

(
Ẽ/E 0

0 G̃/G

)
.

From this we get

λ1 = Ẽ/E = c′1c
′′
2 − c′′1c

′
2 = κ

λ2 = G̃/G = c′2/c1.

So the eigenvalue λ1 is the curvature of c as a plane curve. Since the matrix −W is
diagonal its orthonormal eigenvectors are obviously v1 = (1, 0) and v2 = (0, 1).

Let then {t, d, n} be again the Darboux frame of M and c = f ◦α a curve on M . The
geodesic curvature was defined as Kg = ⟨c′′, d⟩.
Now we need to compute n and the second derivative c′′.

c′ = dfα′ = α′
1f1 + α′

2f2,

so that

c′′(s) = α′′
1f1 + α′′

2f2 + α′
1

d

ds
(f1 ◦ α) + α′

2

d

ds
(f2 ◦ α)

= α′′
1f1 + α′′

2f2 + α′
1(f11α

′
1 + f12α

′
2) + α′

2(f12α
′
1 + f22α

′
2)

= dfα′′ + (α′
1)

2f11 + 2α′
1α

′
2f12 + (α′

2)
2f22.

Since the set A = {f1, f2, n} is linearly independent it is a basis of R3 so that the set A is
a frame (not necesserelely orthogonal). From this we know that there has to be coefficient
functions Γk

ij and aij such that the vector fij can be represented in basis

fij = Γ1
ijf1 + Γ2

ijf2 + aijn.
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Because n is orthogonal to f1 and f2 we get < fij, n >= aij so that

a11 = e, a12 = f, a22 = g.

Let’s make the notation:

[ij, k] = ⟨fij, fk⟩.

For Γk
ij we get the equations

[ij, 1] = EΓ1
ij + FΓ2

ij

[ij, 2] = FΓ1
ij +GΓ2

ij.

Because [ij, k] = [ji, k] we have Γk
ij = Γk

ji.

Definition 3.16. Let Mf ⊂ R3 be a smooth surface. The coefficient appearing in repre-
sentation of vector fij in basis A = {f1, f2, n} are called Christoffel symbols and

1. The functions [ij, k] are the Christoffel symbols of the first kind

2. The functions Γk
ij are the Christoffel symbols of the second kind

Theorem 3.12. The geodesic curvature represented with Christoffel symbols is

Kg = [Γ2
11(α

′
1)

3 + (2Γ2
12 − Γ1

11)(α
′
1)

2α′
2 + (Γ2

22 − 2Γ1
12)α

′
1(α

′
2)

2

−Γ1
22(α

′
2)

3 + α′
1α

′′
2 − α′′

1α
′
2]
√
EG− F 2.

Example 3.11. Let M be a plane parametrized as

f(u) = b+ Au, ATA = I.

Now

∂2f

∂ui∂uj

= 0.

From this follows

[ij, k] = Γk
ij = 0.

The first fundamental form is

T = (Jf)TJf = ATA = I.

From this follows that the geodesic curvature Kg of c = f ◦ α is just the curvature α as a
plane curve

Kg = α′
1α

′′
2 − α′′

1α
′
2.

Definition 3.17. The following two conditions are equivalent. A curve c := (f ◦ α) 7→
Mf ⊂ R3 is a Geodesic if

1. The geodesic curvature of the curve c is zero, Kg = 0.
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2. At each point c(t) = p the vector c′′(t) is orthogonal to the tangent space TpM ,
c′′(t) ⊥ TpM ∀ t ∈ I.

The second derivative of the curve c was

c′′ = dfα′′ + (α′
1)

2f11 + 2α′
1α

′
2f12 + (α′

2)
2f22,

and the geodesic curvature is

Kg = ⟨c′′, d⟩ = ⟨c′′, n× c′⟩.

This means that if c is a geodesic then

πt(c
′′) = 0.

From this observation we get

Theorem 3.13. A curve is a geodesic if and only if

c′′(t) ∈ NpM, p = c(t) ∀ t ∈ [a, b]. (109)

Moreover because

TpM = span{f1(q), f2(q)}, p = f(q)

c is a geodesic if and only if

⟨c′′, f1⟩ = 0

⟨c′′, f2⟩ = 0. (110)

These equations are equivalent to

Eα′′
1 + Fα′′

2 + [11, 1](α′
1)

2 + 2[12, 1]α′
1α

′
2 + [22, 1](α′

1)
2 = 0

Fα′′
1 +Gα′′

2 + [11, 2](α′
1)

2 + 2[12, 2]α′
1α

′
2 + [22, 2](α′

1)
2 = 0.

Representing these with help of Christoffel symbols of the second kind we get the equations

α′′
1 + Γ1

11(α
′
1)

2 + 2Γ1
12α

′
1α

′
2 + Γ1

22(α
′
2)

2 = 0

α′′
2 + Γ2

11(α
′
1)

2 + 2Γ2
12α

′
1α

′
2 + Γ2

22(α
′
2)

2 = 0, (111)

so that the curve c = f ◦α is a geodesic if and only if α is solution of previous differential
equations (111).

Proof. The first equation 109 is just the statement 2. in the definition of geodesic. The
equations 110 follows from the fact that each point c′′ is orthogonal to the plane spanned
by f1 and f2. The equation 111 is direct computation. We substitute the presentation of
c′′ and n to equations 110 and use the definitions of Christoffel symbols.

Let us then present the Christoffel symbols of second kind with Christoffel symbols of
first kind and the elements of the first fundamental form T

Theorem 3.14. Let Mf be a smooth surface and [ij, k] the Christoffel symbols of the
first kind and let T be the first fundamental form of the surface M . Then

Γ1
ij =

[ij, 1]G− [ij, 2]F

det(T )

Γ2
ij =

[ij, 2]E − [ij, 1]F

det(T )
.
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Definition 3.18. Some times it is customary to write the for the first fundamental
form/the metric tensor as

gij =

(
g11 g12
g21 g22

)
=

(
E F
F G

)
and for the inverse of g

(gij)
−1 = gij =

(
g11 g12

g21 g22

)
=

1

EG− F 2

(
G −F
−F E

)
The Christoffel symbols of the second kind can now be written with components of the
gij and gij

Γk
ij =

1

2
gkl
(∂glj
∂ui

+
∂gil
∂uj

− ∂gij
∂ul

)
=

2∑
l=1

1

2
gkl
(∂glj
∂ui

+
∂gil
∂uj

− ∂gij
∂ul

)
(112)

(113)

With these notations the geodesic equations can be also written in parameters u1 and u2

as

d2uk

ds2
+

2∑
i,j=1

Γk
ij

dui

ds

duj

ds
= 0, k = 1, 2.

Example 3.12. (Particle restricted to move on a surface, under assumptions of classical
mechanics) Suppose that we have a particle which movement is restricted to smooth sur-
face. By Newtons 1st law if there are no external force field the particle p is at rest or
moves at the constant velocity.

This suggests that if c : I 7→ M is an arbitrary constant velocity curve ∥c′∥2 = ⟨c′, c⟩ =
∥v∥ = const. Differentiating this with respect to t we have ⟨c′, c′′⟩ = 0. Which means that
c′′⊥TpM , p = c(t) for all t ∈ I so that the c is geodesic.

The force Fc = mc′′(t) keeping the particle on the surface is called a constraint force.
By Newton’s 3rd law the there is an opposite force to Fg = −mc′′(t) = −ma called
centrifugal force. Now the work done by the particle is zero since we have naturally
Ftotal = Fc + Fg = 0.

Let us then take some examples about geodesics of a surface.

Example 3.13. Let M be a plane parametrized as

f(u) = b+ Au, ATA = I.

Now

∂2f

∂ui∂uj

= 0.
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From this follows

[ij, k] = Γk
ij = 0.

The first fundamental form is

T = (Jf)TJf = ATA = I.

From this follows that the geodesic curvature Kg of c = f ◦ α is just the curvature α as a
plane curve

Kg = α′
1α

′′
2 − α′′

1α
′
2.

Lemma 3.2. A curve is a geodesic if and only if

c′′(t) ∈ NpM, p = c(s) ∀s ∈ I.

Proof. If c′′(t)⊥TpM then c′′(t) ∈ NpM ∀ t ∈ I.

Moreover because

TpM = span{f1|p, f2|p}

c is a geodesic, if

< c′′, f1 > = 0

< c′′, f2 > = 0.

These equations are equivalent to

Eα′′
1 + Fα′′

2 + [11, 1](α′
1)

2 + 2[12, 1]α′
1α

′
2 + [22, 1](α′

1)
2 = 0

Fα′′
1 +Gα′′

2 + [11, 2](α′
1)

2 + 2[12, 2]α′
1α

′
2 + [22, 2](α′

1)
2 = 0.

Representing these with help of Christoffel symbols of the second kind we get the equations

α′′
1 + Γ1

11(α
′
1)

2 + 2Γ1
12α

′
1α

′
2 + Γ1

22(α
′
2)

2 = 0

α′′
2 + Γ2

11(α
′
1)

2 + 2Γ2
12α

′
1α

′
2 + Γ2

22(α
′
2)

2 = 0,

so that the curve c = f ◦α is a geodesic if and only if α is solution of previous differential
equations.

Theorem 3.15. Let p ∈M , v ∈ TpM and c = f ◦ α, where

f : Ω 7→M ⊂ R3.

Then there exists ε > 0 such that the equation for geodesic has a unique solution α :
]− ε, ε[7→ Ω with initial conditions c(0) = p and c′(0) = dfα′(0) = v.

Proof. Proof is standard application of existence and uniqueness theorem for differential
equations since we are dealing with smooth functions the requirements of existence and
uniqueness theorem are valid.
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Example 3.14 (Cylinder).

f(s, θ) = (cos(θ), sin(θ), s).

Now f1 = (0, 0, 1), f11 = f12 = 0, and [11, i] = [12, i] = 0.

f22 = (− cos(θ),− sin(θ), 0) = n.

From this we get

[22, i] =< f22, fi >= 0,

so that the equations for geodesics are

α′′
1 = 0

α′′
2 = 0

If we write these as

s′′(t) = 0

θ′′(t) = 0,

we get

s(t) = a1t+ a0

θ(t) = b1t+ b0.

The geodesic curves are then

(cos(b1t+ b0), sin(b1t+ b0), a1t+ a0).

If a1 = 0 geodesic is a circle around M . If a1 ̸= 0 geodesic is a helix.

Between any two points on M there is an infinite number of geodesics.

Example 3.15 (Unit sphere). The parametrization f : Omega 7→ S2 ⊂ R3 of the unitsphere
is

f(θ, φ) = (cos(θ) cos(φ), sin(θ) cos(φ), sin(φ)).

The firs fundamental form is

T =

(
cos2(θ) 0

0 1

)
.

The nonzero christoffel symbols of the first kind are

[11, 2] = 1/2 sin(2φ)

[12, 1] = [21, 1] = −1/2 sin(2φ).

The nonzero christoffel symbols of the second kind are

Γ1
12 = − tan(φ)

Γ2
11 = 1/2 sin(2φ).
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The equations for geodesic are then

θ′′ − 2 tanφθ′φ′ = 0

φ′′ + 1/2 sin(2θ)(θ′)2 = 0.

From these we can see some solutions for example

θ = constant

φ = a+ bs,

and

θ = a+ bs

φ = 0

are geodesics. On the other hand from previous theorem we know that c : R 7→ S2 ⊂ R3

is a geodesic, if c′′(s) ∈ NpS
2, p = c(s). Now n = c, so if c is a geodesic there exists a

scalar function a(s) such that

c′′(s) + a(s)c(s) = 0.

On the other hand because we are on the unit sphere |c(s)| = 1 so < c, c′ >= 0 and

< c, c′′ > + < c′, c′ >= 0

Because curve is parametrized by arclength |c′| = 1 so

< c, c′′ > +1 = 0.

On the other hand

< c′′, c > + < ac, c >= 0,

so

< c′′, c > +a = 0.

From this we get a = 1. The equation for geodesics are then

c′′(s) + c(s) = 0,

so that

c(s) = cos(s)v + sin(s)w, v, w ∈ R2.

Further because |c(s)| = |c′(s)| = 1 we get

< v,w >= 0

|v| = |w| = 1.
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Example 3.16 (Poincaré half plane). Let M be the set

M = {(x, y) ∈ R2| y > 0}.

Let the curvature be given by

T =

( 1
y2

0

0 1
y2

)
.

Let c : [a, b] 7→M be a curve c = (c1(s), c2(s)) = (x(s), y(s)). The length of the curve is

L =

∫ b

a

√
< c′, T c′ > =

∫ b

a

1

y
|c′|ds.

The nonzero Christoffel symbols of the second kind are

Γ2
11 = −Γ2

22 = −Γ1
12 =

1

y
.

The equations for geodesics are

c′′1 −
2c′1c

′
2

c2
= 0

c′′2 +
1

c2
(c′21 − c′22 ) = 0.

Denoting

x = c1(s)

y = c2(s)

we get

y(x) = (c2 ◦ c−1
1 )(x)

We will try to reduce the two differential equations into one by supposing the geodesic
can be represented as y = y(x). Calculating the derivative of y(x) we get

dy

dx
= c′2(c

−1
1 (x))

d

dx
c−1
1 (x)

=
c′2(c

−1
1 (x))

c′1(c
−1
1 (x))

=
c′2(s)

c′1(s)
.

Calculating the second derivative of y(x)

d2y

dx2
=

d

dx

(c′2(c−1
1 (x))

c′1(c
−1
1 (x))

)
=

1

c′1(c
−1(x))

d

dx
c′2(c

−1
1 (x)) + c′2(c

−1
1 (x))

d

dx

1

c′1(c
−1
1 (x))

=
c′′2
c′21
− c′2c

′′
1

c′31

=
c′1c

′′
2 − c′′1c

′
2

c′31
.
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Using the equations for geodesic we get

c′1c
′′
2 − c′′1c

′
2 = −

1

c2
(c′31 + c′1c

′2
2 ),

so that

d2y

dx2
=

c′1c
′′
2 − c′′1c

′
2

c′31

= − 1

c2
− 1

c2

(c′2
c′1

)2
= −1

y
− 1

y

(dy
dx

)2
.

From this we get the differential equation for y

yy′′ + y′2 + 1 = 0.

Representing this as

d

dx
[yy′] + 1 = 0

we get

yy′ = −x+ a1.

Further this can be represented as

d

dx
(y)2 = −2x− 2a1

so that

y2 = −x2 + 2a1x+ a2.

Modifying this equation yields

(x− a1)
2 + y2 = a21 + a2 = constant.

The geodesic which can be represented as y = y(x) are then circles which center is (a1, 0)
and radius a21+a2. Poincaré half plane is a model for (hyperbolic) non Euclidean geometry.

Theorem 3.16 (Theorema egregium). The curvature K depends only on E,F,G and
their derivatives. That is: The first fundamental form defines the curvature completely.
Also we do not need to know the function f . What we actually need for the computation
of the curvature is just the first fundamental form/metric tensor of the surface !

Proof. We need to proof that e can represent the elements of T̃ , e, f, g. Let f : Ω 7→M ⊂
R3 be a parametrization of the surface. The normalized unit vector is

n =
f1 × f2
|f1 × f2|

=
f1 × f2√
EG− F 2

.

The determinant of the second fundamental form is

eg − f 2 =
1

EG− F 2
[< f11, f1 × f2 >< f22, f1 × f2 > − < f12, f1 × f2 >

2].
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On the other hand

< f11, f1 × f2 >= det

 f11
f1
f2

 = det(A1),

and

< f22, f1 × f2 >= det(f22|f1|f2) = det(A2).

From this we get

< f11, f1 × f2 >< f22, f1 × f2 >= det(A1) det(A2) = det(A1A2).

The matrix A1A2 is

A1A2 =

 < f11, f22 > (11, 1) (11, 2)
(22, 1) E F
(22, 2) F G

 .

So the innerproduct < f11, f22 > still needs to be represented with the help of the com-
ponents of the first fundamental form. Denoting

C =

 f12
f1
f2

 ,

we get

< f12, f1 × f2 >
2= det(C) det(CT ) = det(CCT ).

The matrix CCT is

CCT =

 < f12, f21 > (12, 1) (12, 2)
(12, 1) E F
(12, 2) F G

 .

Denoting δ

δ = det(A1A2)− det(CCT ) = det(B1)− det(B2),

where

B1 =

 < f11, f22 > − < f12, f12 > (11, 1) (11, 2)
(22, 1) E F
(22, 2) F G

 ,

and

B2 =

 0 (12, 1) (12, 2)
(12, 1) E F
(12, 2) F G

 .

The Christoffel symbols of the firs kind (12, 2) and (11, 2) appearing on the matrices are

[12, 2] =< f12, f2 >=
1

2
G1

[11, 2] =< f11, f2 >= F1 −
1

2
E2.
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Denoting a =< f11, f22 > − < f12, f12 > we get

∂

∂u1

< f12, f2 > =< f112, f2 > + < f12, f12 >=
1

2
G11

∂

∂u2

< f11, f2 > =< f112, f2 > + < f11, f22 >= F12 −
1

2
E22.

Solving < f12, f12 > and < f11, f22 > from above and substracting we get

a = −1

2
E22 + F12 −

1

2
G11.

The curvature K is the completely represented with help of components of the first fun-
damental form

K =
det(B1)− det(B2)

(EG− F )2
.

Example 3.17 (Poincaré half plane continued). Now

E = G =
1

y2
, F = 0,

and

a = −1

2
E22 = −

1

2

∂2

∂y2
1

y2
= − 3

y4
.

The matrices B1 and B2 are then

B1 =

 − 3
y4

0 1
y3

0 1
y2

0

− 1
y3

0 1
y2

 .

and

B2 =

 0 − 1
y3

0

− 1
y3

1
y2

0

0 0 1
y2

 .

From this

K =
det(B1)− det(B2)

(EG− F 2)
=
−2/y8 + 1/y8

1/y8
= −1.

Example 3.18. Let’s look at the plane parametrized with polar coordinates

x = r cos(θ)

y = r sin(θ).

Now f(r, θ) = (r cos(θ), r sin(θ), 0) and

E =< fr, fr >= 1

F =< fr, fθ >= 0

G =< fθ, fθ >= r2,
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so the matrix of the first fundamental form in these coordinates is

T =

(
1 0
0 r2

)
.

we can think f as a mapping f :]0,∞[×]0, 2π[7→ R2. The nonzero christoffel symbols of
the second kind are

Γ1
22 = −r, Γ2

12 = 1/r.

The geodesic equations are now

r′′ − rθ′2 = 0

θ′′ + 2
r′θ′

r
= 0.

We see that if θ = constant then r = as + b so these geodesics are straight lines passing
through origin. The family of all straight lines in R2 can be represented implicitely
ax+ by + c = 0. Plugging the polar coordinates into this equation we get

ar cos(θ) + br sin(θ) + c = 0,

so that

r = − r

a cos(θ) + b sin(θ)
.

If we assume that the geodesics can be represented as a function r = r(θ) we get the
differential equation

r
d2r

dθ2
− 2
(dr
dθ

)2
− r2 = 0,

and we can indeed verify that the straight lines are geodesics. Now we have of course

n =
fr × fθ
∥fr × fθ∥

= (0, 0, 1).

From this equation follows directly

e = ⟨frr, n⟩ = 0

f = ⟨frθ, n⟩ = 0

g = ⟨fθθ, n⟩ = 0,

so that eg − f 2 = 0 and K = 0 as it should be since we are looking at the (x, y)-plane.
Notice however that the first fundamental form is not constant and the equations for the
geodesic are much more complicated in this parametrization. Although it quite obvious
that straight lines are the geodesics for the plane we see that in different parametrization
of a surface also the representation of the geodesic can be very complicated.

Now we can consider the following natural question: Given E,F,G, e, f, g does there
exist f : Ω 7→ M ⊂ R3 s.t E =< f1, f2 >, etc? That is given the proper 1st fundamental
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form/metric tensor does it define a surface ?(Of course T has to be symmetric and pos-

itive definite and T̃ has to be symmetric.) We know that the second derivatives can be
represented as

f11 = Γ1
11f1 + Γ2

11f2 + e =
∂

∂u1

f1 (114)

f12 = Γ1
12f1 + Γ2

12f2 + f =
∂

∂u2

f1 (115)

f22 = Γ1
22f1 + Γ2

22f2 + g =
∂

∂u2

, (116)

and the first derivatives of normal vector as

∂

∂u1

n = n1 = a11f1 + a12f2 (117)

∂

∂u2

n = n2 = a21f1 + a22f2, (118)

Theorem 3.17. The last five equations 114− 118 have solution if and only if

e2 − f1 = Γ1
12e+ (Γ2

12 − Γ1
11)f − Γ2

11g (119)

f2 − g1 = Γ1
22e+ (Γ2

22 − Γ1
12)f − Γ2

12g. (120)

The equations are called Codazzi-Mainardi equations.
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4 Modern differential geometry

4.1 Manifolds

Definition 4.1 (Homeomorfism). Let (M,d) be a metric space and let U ⊂ M . Then
f : U 7→ V ⊂ Rn is a homeomorfism, if f is bijective and f : U 7→ V and f−1 : V 7→ U
are continuous.

Definition 4.2 (Chart). Let (M,d) be a metric space, let U be a neighborhood of a point
p ∈ M and let x : U 7→ V ⊂ Rn be a homeomorfism. Then the pair (x, U) is a chart (or
local coordinates) of M at p. Moreover a = x(p) are the coordinates of p (with respect to
chart (x, U)).

It’s important to notice that since (M,d) is a metric space it is not necesserily a vector
space so that if p, q ∈M and c ∈ R the operations p+q and cq are not necesserily defined.

Definition 4.3 (Change of coordinates map). Let p ∈ M and suppose that there is two
charts (x, U1) and (y, U2) corresponding to this point. Then the intersection U1 ∩ U2 is
also a neighborhood of p, and the map

(y ◦ x−1) : x(U1 ∩ U2) 7→ y(U1 ∩ U2)

is called the change of coordinates map from (x, U1) to (y, U2). Moreover from now we
will always suppose that the change of coordinates maps are diffeomorphisms.

Figure 14: Change of coordinates map from (x, U1) to (y, U2)

Lemma 4.1. Let U ⊂ Rn, V ⊂ Rk be open sets and let f : U 7→ V be a diffeomorphism,
then n = k.

Proof. Since f−1 ◦ f = id : U 7→ U then

d(f−1 ◦ f) = d(f−1)︸ ︷︷ ︸
∈Rn×K

df︸︷︷︸
∈Rk×n

= d(id) = I.

From this follows d(f−1) = (df)−1 which is possible only for square matrices so that
n = k.
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The result hold also if f is only a homeomorphism but the proof is then much more
difficult.

Theorem 4.1 (Invariance of domain). Let U ⊂ Rn, V ⊂ Rk be open sets and let f : U 7→
V be a homeomorphism, then n = k. This result is also known as invariance of domain.

Definition 4.4 (Smooth atlas). A collection of charts {(xα, Uα)} is a smooth atlas of M ,
if

1. Every p ∈M belogns to some chart.

2. Change of coordinates maps xα ◦ x−1
β are diffeomorphisms.

Lemma 4.2 (Existence of maximal atlas). Given an atlas A, there is a unique maximal
atlas which contains A.

Definition 4.5 (Smooth structure on M). A smooth structure on M is a maximal atlas.

Definition 4.6 (Smooth manifold). A smooth manifold is the pair (M,D), where

1. M is a metric space

2. D is a smooth structure on M

Remark 4.1. Notice that in the definition of manifold the condition 2 is automatically
fulfilled if we find any smooth atlas for M since we know that it belongs to some Maximal
atlas of M which defines the smooth structure on M !

Example 4.1. Any open set M ⊂ Rn is a manifold and (id,M) is its chart and atlas.

Let S2 ⊂ R3 and let U1 = S2/{(0, 0, 1)} and U2 = S2/{(0, 0,−1)}. The stereographic
projection x : U1 7→ R2,

x(p) =
1

1− p3

(
p1
p2

)
=

(
a1
a2

)
= a

is a chart on M covering every point in S2 but (0, 0, 1). The stereographic projection
y : U2 7→ R2

y(p) =
1

1 + p3

(
p1
p2

)
=

(
b1
b2

)
= b

is a chart on S2 covering every point of S2 but (0, 0,−1). From this follows that A =
{(x, U1), (y, U2)} is an atlas of M and we know that it belongs to some maximal atlas.
In order to show that S2 is a smooth manifold we have to show that the change of
coordinates map y ◦ x−1 is a diffeomorphism. Now the change of coordinates map is a
function (y ◦ x−1) : R2/(0, 0) 7→ R2/{(0, 0)}. The inverse x−1 : R2 7→ U1 is

x−1(a) =
1

1 + |a|2

 2a1
2a2
|a|2 − 1

 .

Now b = y(x−1(a)) = a/|a| and a = x(y−1(b)) = b/|b|. If h = y ◦ x−1, we see that h = h−1

so h ◦ h = id. Clearly h is differentiable so also h−1 is differentialble. Because h = h−1 h
is also bijective so that h is diffeomorphism and S2 is a smooth manifold.
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Definition 4.7. Let f : M 7→ R be a function. Then f is smooth at p ∈M , if there is a
chart (x, U) such that p ∈ U and f ◦ x−1 is smooth at x(p). In other words f is smooth
at p if the derivatives

∂

∂ai
(f ◦ x−1)(x(p)), 1 ≤ i ≤ k.

exist. Moreover f is smooth on M , if its smooth at every p ∈ M and the derivatives are
continious.

We will make a notation

C∞(M) = {f : M 7→ R| f is smooth on M}.

Let then (x, U) and (y, V ) be charts and p ∈ U ∩ V . Let a = x(p) and b = y(p) suppose
that

∂

∂ai
(f ◦ x−1)

is well defined. How about

∂

∂bi
(f ◦ y−1)?

Now we can compute as

∂

∂bi
(f ◦ y−1)(b) =

∂

∂bi
((f ◦ x−1) ◦ (x ◦ y−1))

=
n∑

j=1

∂

∂aj
(f ◦ x−1)

∣∣∣
a

∂

∂bi
(xj ◦ y−1)

∣∣∣
b

Now (f ◦ x−1) is well defined by hypothesis and xj ◦ y−1 is well defined because M is
smooth manifold.

Let then M be smooth manifold, (x, U) a chart, f ∈ C∞(M) and p ∈ U ⊂M then

∂f

∂xi

=
∂

∂ai
(f ◦ x−1)(x(p)).

Example 4.2. Let (x, U) be a chart in M . Then xk : U 7→ R and xk ∈ C∞(U). On the
other hand

(xk ◦ x−1)(x(p)) = xk(x
−1(x(p))) = xk(p) = ak

Let then hi be a vector

hi = (0, . . . , 0, h, 0, . . . , 0) = hei.

Now

(xk ◦ x−1)(x(p) + hi) =

{
xk(p) + h, i = k
xk(p), i ̸= k
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We can then calculate

∂

∂xi

xk =
∂

∂ai
(xk ◦ x−1)(x(p))

= lim
h→0

(xk ◦ x−1)(x(p) + hi)− (xk ◦ x−1)(x(p))

h

=

{
ak+h−ak

h
, i = k

ak−ak
h

, i ̸= k

=

{
1, i = k
0, i ̸= k

= δki,

where δkj denotes the Kroneckers delta function.

Let’s then consider mappings between manifolds

Definition 4.8. Let M be a l dimensional smooth manifold and let N be a k dimensional
smooth manifold. The function f : M 7→ N is smooth, if the function y◦f ◦x−1 is smooth.
In other words the derivatives

∂

∂ai
(yj ◦ f ◦ x−1), 1 ≤ i ≤ l, 1 ≤ j ≤ k

exists and are continious. If f : M 7→ N is smooth we will use the notation f ∈ C∞(M,N).

Definition 4.9. Let f ∈ C∞(M,N). By the rank of f at p we mean the rank of the
Jacobian matrix d(y ◦ f ◦ x−1)(x(p))

rank(fp) = rank(d(y ◦ f ◦ x−1)(x(p))).

In the future we will assume that dim(M) = l and dim(N) = k and that k ≤ l, so the
Jacobian matrix will be k × l matrix so that the dimension of M will equal the number
of columns and dimension of N will equal the number of rows in the Jacobian.

Definition 4.10. Let f : M 7→ N be a smooth function. The point p ∈M will be called
regular, if

rank(fp) = k.

In other words p ∈ M is regular, if the rank of the Jacobian is maximal at p. The point
p ∈M is critical if its not regular.

q ∈ N is a critical value of f if there exists p ∈ M s.t q = f(p) and p is a critical
point. q ∈ N is a regular value, if its not critical value.

Remark 4.2. By convention, q ∈ N is a regular value, if q /∈ im(f).

Example 4.3. Let f : Rn 7→ R be a function

f(x) =
|x|2

2
.

Now

df = ∇f = (x1, . . . , xn),
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so that 0 ∈ R is critical value and 0 ∈ Rn is a critical point.

Let then f : R3 7→ R2 be a function f = (f1, f2),

f 1 =
x2
1

a21
+

x2
2

a22
+

x2
3

a23
f 2 = b1x1 + b2x2 + b3x3.

The jacobian matrix is now

df =

(
2x1/a

2
1 2x2/a

2
2 2x3/a

2
3

b1 b2 b3

)
.

From this we can see that for example 0 ∈ R3 is a critical point and 0 ∈ R2 is a critical
value. The jacobian also fails to be of maximal rank if its rows are linearly independent
so that

∇f 1 = λ∇f 2.

This means the normals of the surfaces are proportional at these points.

Example 4.4. Let M ⊂ Rn and

Br(p) = {x ∈ Rn| |x− p| < r}.

Open sets in Rn are arbitrary unions of open balls. Denote

C = {S ⊂M |S = M ∩Br(p), r > 0, p ∈ Rn}.

A set is open in M , if it is a union of sets in C.

Definition 4.11 (Submanifold). Let M be n dimensional manifold and S ⊂M . Then S
is k dimensional submanifold of M , if

∀ p ∈ S ∃ a chart (x, U) s.t x(U ∩ S) = Rk ∩ x(U),

where Rk is been identified as

Rk ≃ {(x, 0) ∈ Rn| x ∈ Rk, 0 ∈ Rn−k} = Rk × 0.

The difference n− k = codim(S) is called a codimension of S.

Definition 4.12 (Regular value theorem). Let f : M 7→ N be a smooth function, S =
f−1(q) ⊂ M and q a regular value of f . Then S is a smooth submanifold of M . If S is
not empty then

codim(S) = dim(N).

Example 4.5. Define the projection mapping π : R3 7→ R2,

π : R3 7→ R2.

Consider then unit sphere S2 ⊂ R3. Now we can look at the restriction of π on S
π : S2 7→ R2. What is the rank(π)?. One chart of S2 is given by (x, U), U = S2{(0, 0, 1)},

x(p) =
1

1− p3

(
p1
p2

)
= a.
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Now (π ◦ x−1) : R2 7→ R2, and

rank(πp) = rank(d(π ◦ x−1)x(p)).

We know that

x−1(a) =
1

1 + |a|2

 2a1
2a2
|a|2 − 1

 ,

so

(π ◦ x−1)(a) =
2

1 + |a|2

(
a1
a2

)
.

The jacobian of π ◦ x−1 is

d(π ◦ x−1)(a1, a2) =
2

(1 + |a|2)2

(
1− a21 + a22 −2a1a2
−2a1a2 1 + a21 − a22

)
.

The determinant of the jacobian is

det(d(π ◦ x−1)) =
4(1− |a|2)
(1 + |a|2)3

.

We see that the rank(πp) = 1, if |a| = 1. This is the set S1 ⊂ S2 where we have made the
identification

S1 = {(a1, a2) ∈ R2| |a| = 1} ≃ {(a1, a2, 0) ∈ R3| |a| = 1}.

Let’s look then at the matrices M(n) = Rn×n ≃ Rn2
. Define

O(n) = {A ∈ Rn×n| ATA = I}
sym(n) = {A ∈ Rn×n|AT = A} ≃ R(n/2)(n+1).

Lemma 4.3.

1. O(n) is a smooth submanifold of Rn×n

2. dim(O(n)) = 1
2
n(n− 1).

Proof. We will proof the lemma using regular value theorem and by showing that the
identity matrix I is a regular value of f : Rn×n 7→ sym(n)

f(A) = ATA.

Now we have

O(n) = f−1(I).

If I is regular value of f then

dim(O(n)) = n2 − codim(O(n))

= n2 − dim(sym(n))

= n2 − 1

2
n(n+ 1)

=
1

2
n(n− 1).

70



The jacobian of f is of dimensions df ∈ R(n/2)(n+1)×n2
. In order to show that I is regular

value of f we have to show that rank(df) = n/2(n+1). This is equivalent to showing that
the mapping df : Rn×n 7→ Rn/2(n+1) ≃ sym(n) is surjective. This means that we do not
actually need to compute the Jacobian of f to show that it is of full rank. We compute
the directional derivative of f to direction B

dfAB =
d

dλ
f(A+ λB)

∣∣∣
λ=0

= lim
λ→0

f(A+ λB)− f(A)

λ
.

Now we have

f(A+ λB)− f(A) = (AT + λBT )(A+ λB)

ATA+ λ(ATB +BTA) + λ2BTB − ATA, where A ∈ O(n).

From this we get

dfAB = ATB +BTA ∈ sym(n).

dfA is surjective, if for any C ∈ sym(n) there is a matrix B s.t dfAB = C

ATB +BTA = C.

Choose

B =
1

2
AC.

Because A ∈ O(n) we see by substitution that ATB + BTA = C. The space O(n) can
still be represented as an union of two separated spaces

O+ = SO(n) = {A ∈ O(n)| det(A) = 1} = {rotations}
O− = {a ∈ O(n)| det(A) = −1} = {reflections},

which are also smooth submanifolds of Rn×n.

Definition 4.13 (Embedding). Let (M1, d1) and (M,d2) be metric spaces. A function
f : M1 7→ f(M1) ⊂M2 is embedding if it is homeomorphism into its image. The definition
naturally generalizes to topological spaces.

The fact that a manifold always has a smooth atlas whose sets are diffeomorphic to
some Rk or equivalently some open subset U ⊂ Rk raises an interesting question. Can we
place homoemorphically an arbitrary smooth manifold M to some Euclidean space ? The
answer is yes but it is not always possible to embed the manifold to the same dimension
which the neighborhoods of its points are homeomorphic to. A classical example of this is
the Klein-Bottle which is a subset of R3 but can can not be be embedded in R3. However
it can be embedded in R4. Moreover we have a theorem

Theorem 4.2 (Whitney embedding theorem). Any n-dimensional manifold can be em-
bedded in R2n+1.
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4.2 Tangent space

Let’s look at the surface defined previously as an image of the map f : Ω ⊂ R2 7→M ⊂ R3,
where f is bijective mapping from Ω → f(Ω) = Mf and rank(df) = 2, from this follows
that f is a diffeomorphism and M is a smooth manifold with chart and Atlas (x,M),
where x−1 = f . The tangent space of M at point p = f(q) was defined to be

TpM = span{ ∂f
∂u1

∣∣∣
q
,
∂f

∂u2

∣∣∣
q
}

Let then f : Ω ⊂ Rk 7→ M ⊂ Rn and suppose that rank(f) = k, n ≥ k. Then the
tangent space can be defined similarly

TpM = span{ ∂f
∂u1

∣∣∣
q
, . . . ,

∂f

∂uk

∣∣∣
q
}.

How to define the tangent space of arbitrary smooth manifold TpM ? Idea: Directional
(or Lie) derivative:

Definition 4.14 (Lie derivative/Directional derivative). Let v ∈ Rn then the Lie deriva-
tive to direction of v is

Lv(f) =< ∇f, v >=
∑

vi
∂f

∂xi

.

Let then p ∈ Rn the Lie derivative at point p is

Lv

∣∣∣
p
f =

n∑
i=1

vi
∂f

∂xi

∣∣∣
p
.

The Lie derivative at p is now a mapping Lv

∣∣∣
p
: C∞(Rn) 7→ R.

Clearly we have

Lemma 4.4. Let Lv

∣∣∣
p
: C∞(Rn) 7→ R be the function from last definition. Now we have

1. Lv

∣∣∣
p
is linear.

2. Lv

∣∣∣
p
(fg) = f(p)Lv

∣∣∣
p
(g) + g(p)Lv

∣∣∣
p
(f).

Proof. Proof is left as an exercise.

Let’s then make a definition

Definition 4.15 (Derivation). Let M be a manifold and X : C∞(M) 7→ R. Then X is a
derivation/Tangent vector at p, if

1. X is linear

2. X(fg) = f(p)X(g) + g(p)X(f).

Lemma 4.5. Let X be a derivation/Tangen vector at p. Then

1. If f is constant then X(f) = 0
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2. If f(p) = g(p) = 0 then X(fg) = 0.

Proof. The second part is direct consequence of the second part of last lemma. Let’s then
proof first part. Let f ≡ 1 then

X(f) = X(f ∗ f)
= f(p)X(f) + f(p) ∗X(f)

= 2X(f).

This can only be true if X(f) = 0. Let then f ≡ c = cf then

X(f) = X(cf) = cX(f) = 0.

Lemma 4.6. All derivations at p ia a vector space equipped with operations

• (Xp + Yp)(f) := Xp(f) + Yp(f)

• (cXp)(f) := cXp(f)

Definition 4.16. Let p ∈M the tangent space of M at p is the set

TpM = {X : C∞(M) 7→ R| X is a derivation at p}.

Lemma 4.7. Let f : U ⊂ Rn 7→ R be differentiable function, 0 ∈ U an U is convex. Then
there exists functions gi : U 7→ R s.t

f(x) = f(0) +
n∑

i=1

xigi(x).

Proof. Set hx(t) = f(tx), x ∈ U, t ∈ [0, 1]. Now hx : [0, 1] 7→ R. Now we get

f(x)− f(0) = hx(1)− hx(0)

=

∫ 1

0

d

dt
hx(t)dt

=
n∑

i=1

xi

∫ 1

0

∂f

∂xi

dt

=
n∑

i=1

xi

∫ 1

0

∂f

∂xi

(tx)dt.

Theorem 4.3. Let M be n-dimensional manifold, let (x, U) be a chart, and p ∈ U then
and educated guess which we will prove is

TpM = span
{ ∂

∂x1

∣∣∣
p

}
, . . . ,

∂

∂xn

∣∣∣
p

}
dimTpM = n.

Proof. To prove the following theorem we need to
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1. Prove that ∂/∂xi|p are tangent vectors/derivations.

2. Prove that the above vectors are linearly independent

3. Prove that TpM ⊂ span{∂/∂xi|p} since other inclusion is obvious because in 1. we
prove that ∂/∂xi|p are derivations. For this we take an arbitrary tangent vector and
show that it belongs to the set.

Let f ∈ C∞(M) and denote f = f ◦ x−1 : x(U) ⊂ Rn 7→ R. We can always suppose that
x(p) = 0 and x(U) is convex and denote also x(q) = a. By previous lemma there exists
functions gi s.t

f(a) = f(0) +
n∑

i=1

aigi(a).

Now obviously f(q) = (f ◦ x)(q) = f(x(q)). So now

f(a) = f(0) +
n∑

i=1

xi(q)gi(x(q))

= f(p) +
n∑

i=1

xi(q)hi(q), hi = gi ◦ x.

The derivatives ∂/∂xk was defined on manifolds as

∂

∂xk

f
∣∣∣
p
=

∂

∂ak
(f ◦ x−1)(x(p)) =

∂f

∂ak
(0) = gk(0) = hk(p).

Let then f, f̃ ∈ C∞(M). Now we get

∂

∂xk

ff̃
∣∣∣
p
=

∂

∂ak
((ff̃) ◦ x−1)(x(p))

=
∂

∂ak
(f(x−1(a))f̃(x−1(a)))(0)

= f(p)g̃k(0) + f̃(p)gk(0)

= f(p)
∂

∂xk

f̃ + f̃(p)
∂

∂xk

f.

From this follows that ∂/∂xk is a derivation so that

∂

∂k
∈ TpM.

Let’s then proof that the set

TpM = { ∂

∂x1

, . . . ,
∂

∂xn

}

is linearly independent so that it spans TpM . Set then

v =
n∑

i=1

ci
∂

∂xi

.
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We have to show that the implication

v(f) = 0 ∀ f ∈ C∞(M) ⇒ ci = 0 ∀ i

holds. We know that in particular xk ∈ C∞(M) so that

v(xk) =
n∑

i=1

ci
∂xk

∂xi

= ck = 0.

choosing all ck, 1 ≤ k ≤ n we get c1 = . . . = cn = 0 so that the vectors ∂/∂xi are linearly
independent and

dim(span{ ∂

∂x1

, . . . ,
∂

∂n
}) = n

From this we can conclude

span{ ∂

∂x1

, . . . ,
∂

∂xn

} ⊂ TpM.

We have to show then that given v ∈ TpM , and f ∈ C∞(M) v is a tangent vec-
tor/derivation. Now

f(q) = f(p) +
n∑

i=1

xi(q)hi(q).

Because of the linearity of derivation and because of the implication x(p) = 0 ⇒ xi(p) = 0

v(f) = v(f(p) +
n∑

i=1

xi(q)hi(q))

= v(f(p))︸ ︷︷ ︸
=0

+
n∑

i=1

v(xihi)

=
n∑

i=1

xi(p)v(hi) + hi(p)v(xi)

=
n∑

i=1

hi(p)v(xi)

=
n∑

i=1

hi(p)v(xi)

=
∑
i=1

v(xi)
∂

∂xi

f

=
( n∑

i=1

v(xi)
∂

∂xi

)
(f),

so that v ∈ span{∂/∂x1, . . . , ∂/∂xn}

Remark 4.3. Notice that if M is a smooth manifold q, p ∈ M , q ̸= p and vp ∈ TpM and
vq ∈ TqM then vp + vq is not defined.
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Example 4.6. Let’s look at the smooth manifolds

(R2/{0}, id)
(R2/{0}, y),

where y−1(r, θ) = (r cos(θ), r sin(θ)). Choose then p ∈ R2 and a derivation at p

vp = c1
∂

∂x1

+ c2
∂

∂x2

Because

TpR2 = span{ ∂

∂x1

,
∂

∂x2

} = span{ ∂
∂r

,
∂

∂θ
}

we get

vp = c1
∂

∂x1

+ c2
∂

∂x2

= b1
∂

∂r
+ b2

∂

∂θ
.

How does the basis vectors and the coordinates of the tangent vectors change in different
basis? Let now f : R2 7→ R and f = f ◦ y−1. Now

∂f

∂xi

is a classical partial derivative because of the identity coordinate system. But

∂f

∂y1
=

∂

∂r
(f ◦ y−1)(y(p))

=
∂

∂r
f(r cos(θ), r sin(θ))

=
∂f

∂x1

cos(θ) +
∂f

∂x2

sin(θ),

and

∂f

∂y2
= − ∂f

∂x1

r sin(θ) +
∂f

∂x2

r cos(θ).

From this one obtains the matrix equation(
∂f
∂r
∂f
∂θ

)
=

(
cos(θ) sin(θ)
−r sin(θ) r cos(θ)

)( ∂f
∂x1
∂f
∂x2

)
,

so that

∂f

∂x1

= cos(θ)
∂f

∂r
− 1

r
sin(θ)

∂f

∂θ
∂f

∂x2

= sin(θ)
∂f

∂r
+

1

r
cos(θ)

∂f

∂θ

The matrix A of this transformation is

A =

(
cos(θ) −1

r
sin(θ)

sin(θ) 1
r
cos(θ)

)
,
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so we have the relation

∂

∂x1

= a11
∂

∂r
+ a12

∂

∂θ
∂

∂x2

= a21
∂

∂r
+ a22

∂

∂θ
.

Let’s then again look the derivation

v = c1
∂

∂x1

+ c2
∂

∂x2

= c1

(
a11

∂

∂r
+ a12

∂

∂θ

)
+ c2

(
a21

∂

∂r
+ a22

∂

∂θ

)
=
(
a11c1 + a21c2

) ∂

∂r
+
(
a12c1 + a22c2

) ∂

∂θ

= b1
∂

∂r
+ b2

∂

∂θ
,

so that the coordinates of the tangent vector changes as

b1 = a11c1 + a21c2

b2 = a12c1 + a22c2,

or in the matrix form

b = AT c

So we have the following diagram for the change of the basis of TpM and for the change
of components of vectors of TpM in different basis{ ∂

∂r
,
∂

∂θ

}
−→A

{ ∂

∂x1

,
∂

∂x2

}
(b1, b2)←−AT

(c1, c2)

Let’s look then an arbitrary manifold and a derivation in two charts

v =
n∑

i=1

ci
∂

∂xi

=
n∑

i=1

bi
∂

∂yi
.

Now we have theorem

Theorem 4.4. Let (x, U) and (y, U) be two different charts for smooth manifold M and
suppose that U ∩ V ̸= ∅ then

∂

∂xi

=
n∑

j=1

∂yj
∂xi

∂

∂yj
.

Proof. Let x and y be charts and a = x(p) and b = y(p). Now

∂f

∂xi

=
∂

∂ai
(f ◦ y−1 ◦ y ◦ x−1)(a)

=
n∑

j=1

∂

∂bj
(f ◦ y−1)

∣∣∣
b

∂

∂ai
(yj ◦ x−1)

∣∣∣
a

=
n∑

j=1

∂f

∂yj

∂yj
∂xi

.
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Denote

A = (aij), aij =
∂yj
∂xi

.

So now

∂

∂xi

=
n∑

i=1

aij
∂

∂yj
.

So for the derivation v we have

v =
n∑

i=1

ci
∂

∂xi

=
n∑

i=1

ci

n∑
j=1

aij
∂

∂yj

=
n∑

j=1

( n∑
i=1

aij

) ∂

∂yj

=
n∑

i=1

bi
∂

∂yi
.

From this we get again the relation between coordinates of tangent vectors in different
basis

b = AT c.

Moreover we have similar diagram for change of basis vectors of TpM and their coordinates
in different coordinate systems{ ∂

∂y1
, . . . ,

∂

∂yn

}
−→A

{ ∂

∂x1

, . . . ,
∂

∂x2

}
(b1, . . . , b2)←−AT

(c1, . . . , c2).

Here the matrix A denotes the jacobian of y ◦ x−1.

Moreover if we denote h = y◦x−1 the change of coordinates map and the the cartesian
coordinates of the domain xU are (u1, . . . , un) then the components of the matrix A are

aij =
∂yj
∂xi

=
∂hi

∂uj

,

so that

∂

∂xi

=
n∑

j=1

aij
∂

∂yj

Now if v is derivation on M then and (x, U ∩V ) and (y, U ∩V ) are charts and U ∩V ̸= ∅
we get

v =
n∑

i=1

ci
∂

∂xi

=
∑
i=1

bi
∂

∂yi
,

and the transformation between these coordinates are

b = dhc, h = y ◦ x−1.

where dh is the jacobian of h
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Remark 4.4 (An other definition for TpM). Let M be a smooth manifold dim(M) = n and
suppose (x, U) is a chart for p ∈ U . Suppose now that we have two curves γ1 : (a, b) 7→M
and γ2 : (a, b) : 7→ M and suppose that γ1(t0) = γ2(t0) = p, t0 ∈ (a, b). Moreover suppose
that curves

α1 = γ1 ◦ x : (a, b) 7→ x(U) ⊂ Rn

α2 = γ2 ◦ x : (a, b) 7→ x(U) ⊂ Rn

are smooth. We say that curves γ1 and γ2 are equivalent γ1 γ2 if

d

dt
(x ◦ α1)(t0) =

d

dt
(x ◦ α2)(t0).

The set of all equivalence classes [γi] is the tangent space of manifold M

TpM = {[αi] | [αi] is an equaivalence class of curves at p}

How do we the try to show that the elements define the tangent space defined earlier. To
do this completely would take some time, but we can think the case of surfaces. Suppose
we have a surface and we take all the smooth curves passing through point p at Mf surely
their tangent vectors would be the tangent space defined earlier. In fact now we could
consider smooth curves

α−1
i : (a, b) : X(U) 7→M.

Next we could show

d

dt
(x ◦ α−1

i )(t0) =
∂

∂ui

(x ◦ x−1
i )(p) :=

∂

∂xi

∣∣∣
p
,

where the curve αi : (a, b) 7→ R is now defined as αi = (a1, . . . , ai−1, t, ai+1, . . . , an), where
p = (a1, . . . , an), ai = t0. Of course we always make the assumption (a, b)∩X(U) = (a, b).
Now this is straightforward computation and all the else is proved in previous definition
of tangent space.

In future we need to consider the the manifold and its tangent spaces as one smooth
object. Like in a smooth surface TpMf its tangents spaces depend continuously from the
the point p. So does the tangent spaces of s smooth manifold. In the case of surfaces
we could look at the normal vector np of a tangent plane as a function of a point p on
a surface Mf . In the case of surfaces we can explicitly define the normal vector and
thus the tangent space and actually verify by elementary computation that ∥f1× f2∥ is a
continuous function of p ∈Mf .

Definition 4.17 (Tangent bundle). Let M be a smooth manifold of dimension dim(M) =
n then its tangent bundle TM is a disjoint union

TM =
∪
p∈M

TpM = {(p, TpM) | p ∈M}.

Theorem 4.5. If M is a smooth manifold and dim(TpM) = n, the tangent bundle is a
smooth manifold of dimension dim(TM) = 2n

79



Example 4.7. Let’s look at the matrix group SO(n) ⊂ Rn×n = Rn2
. What is the tangent

space of TISOn ? Let’s look at the function A : R 7→ SO(n) ⊂ Rn×n, A(0) = I. Let then
AT (s) be arbitrary curve A : (a, b) 7→ SO(n), 0 ∈ (a, b). We know that AT (s)A(s) = I so
that

d

ds
[AT (s)A(s)] = (AT )′(s)A(s) + AT (s)A′(s) = 0

Evaluating at point s = 0 we get

(AT )′(0)I + IA′(0) = (AT )′(0) + A′(0) = 0.

Because A′(0) ∈ TISO(n) we get

TISO(n) ≃ {A ∈ Rn×n| AT = −A}.

Let’s look then at the mapping f : Rn 7→ Rk. Its Jacobian is

df =


∂f1

∂x1
. . . ∂f1

∂xn
...

. . .
...

∂fk

∂x1
. . . ∂fk

∂xn

 ∈ Rk×n.

In euclidean spaces with cartesian coordinates we can make the identification

dfp : TpRn ≃ Rn 7→ Rk ≃ Tf(p)Rk.

Denoting the derivation v in Rn we can identify

v =
n∑

i=1

ci
∂

∂xi

≃ (c1, . . . , cn) = c

The tangent map or (push forward) of f between the euclidean spaces Rn and Rk is now

f∗v =
k∑

i=1

bi
∂

∂yi
≃ (b1, . . . bk) = b,

b = dfpc

Let’s then broaden this concept of push forward to mappings between manifolds say
f : M 7→ N .

Definition 4.18 (Push forward/Differential). Let f : M 7→ N , g ∈ C∞N and v a
derivation on M the mapping f∗ : TpM 7→ Tf(p)N defined by

(f∗v)(g) = v(g ◦ f)

is called the push forvard/differential from M to N . Note that g ◦ f ∈ C∞(M) the push
forward f∗v is a derivation on N .

80



Figure 15: Push forward of f∗ from M to N

Lemma 4.8. Let v be a derivation on M at p

v
∣∣∣
p
=

n∑
i=1

ci
∂

∂xi

,

and its pushforward

f∗

∣∣∣
p
v =

k∑
i=1

bi
∂

∂yi
.

The coefficents bi can then be obtained from the equation

b = dhx(p)c, bj =
∂hj

∂ui

ci.

The push forward is also sometimes noted as f∗ = (df, f).

Proof. Let g ∈ C∞(N). Now

(f∗v)g = v(g ◦ f),

and

v =
n∑

i=1

ci
∂

∂xi

.
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From this we obtain

(f∗v)g =
n∑

i=1

ci(g ◦ f)

=
n∑

i=1

ci
∂

∂ui

(g ◦ f ◦ x−1)

=
n∑

i=1

ci
∂

∂ui

(g ◦ y−1 ◦ y ◦ f ◦ x−1)

=
n∑

i=1

ci
∂

∂ui

(g ◦ y−1 ◦ h)

=
n∑

i=1

ci

n∑
j=1

∂

∂sj
(g ◦ y−1)

∣∣∣
y(f(p))

∂hj

∂ui

∣∣∣
x(p)

=
n∑

i=1

ci

k∑
j=1

∂g

∂yj

∂hj

∂uj

=
[ k∑

j=1

( n∑
i=1

∂hj

∂ui

ci

)
︸ ︷︷ ︸

=bj

∂

∂yj

]
g

Example 4.8. Let’s look then at the surface M ⊂ R3 parametrized by f : Ω 7→ M ⊂ R3,
Ω ⊂ R2. Surface M has one chart (M, y) = (M, f−1). Let then v ∈ TpΩ ≃ R2, and look
at the derivation w,

w = c1
∂

∂u1

+ c2
∂

∂u2

Because v ∈ TpM in the sense what we defined in the surface theory

v = b1
∂f

∂u1

+ b2
∂f

∂u2

.

What is the pushforward f∗w ? In Ω we choose identity coordinate system (Ω, x = id)
and in M we have the system (M, y) = (M, f−1). Now h = y ◦ f ◦x−1 = f−1 ◦ f ◦ id = id.
From this follows dh = I, so that f∗w = b and b = dhc = c so that

v = c1
∂

∂y1
+ c2

∂

∂y2
.

Example 4.9. Let’s look then at the mapping f : Ω 7→ R3 and choose (Ω, x = id) and
(R3, y = id). Now h = id ◦ f ◦ id−1 = f . The pushforward is then

f∗w = b1
∂

∂y1
+ b2

∂

∂y2
+ b3

∂

∂y3
.

From this follows

b = dhc = dfc = c1
∂f

∂u1

+ c2
∂f

∂u2

.
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Example 4.10. Let’s look at the mapping π : S2 7→ R3, π(p) = (p1, p2). What is the
pushforward π∗v, where v is a derivation in S2. We have the chart (x, U), where U =
S2/{(0, 0, 1)}. Now

x(p) =
1

1− p3

(
p1
p2

)
.

Let’s look the R2 as a manifold (R2, y = id). Now h = y ◦ π ◦ x−1 = π ◦ x−1, which is

h =
2

1 + |a|2

(
a1
a2

)
.

The derivation v is

v = c1
∂

∂x1

+ c2
∂

∂x2

Pushforward of the derivation v is then

f∗v = b1
∂

∂y1
+ b2

∂

∂y2
.

The components of the derivations changes as b = dh and now

dh =
2

(1 + |a|2)2

(
1− a21 + a22 −2a1a2
−2a1a2 1 + a21 − a22

)
.

Let’s then interpete x−1 : R2 7→ R3. Now h = π ◦ x−1 and dh = dπd(x−1) = π ◦ d(x−1).

Example 4.11. Let’s look then at the curve c : I 7→ R2, which is solution to Newtons
equations of motion so that it describes the movement of pointmas. The velocity of the
pointmass is then v(t) = c′(t) ∈ Tc(t)R2. Now we can look v also as a derivation

v = v1(t)
∂

∂x1

+ v2(t)
∂

∂x2

= b1
∂

∂r
+ b2

∂

∂θ
.

The kinetic energy of the particle is T = m/2|v|2 = m/2(v21 + v22).

Let’s look then R2 as a manifold with two charts (R2, x = id) and manifold parametrized
with polar coordinates (R2, y), where y−1(r, θ) = f(r, θ) = (r cos(θ), r sin(θ)). Now the
function h is

h = x ◦ id ◦ y−1 = id ◦ id ◦ y−1 = f.

For the change of coordinates we get then v = dfb, where

df =

(
cos(θ) sin(θ)
−r sin(θ) r cos(θ)

)
So for the square of the norm of the velocity we get

|v|2 =< v, v >

=< dfb, dfb >

=< dfTdfb, b >

=<

(
1 0
0 r2

)
b, b > .

This yields

T =
m

2
(b21 + r2b22).

If f : M 7→ N then obivously f∗TpM 7→ Tf(p)N .
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Example 4.12. Let v : Rn 7→ Rn ≃ TpRn be a function

v(x) = (v1(x), . . . , vn(x)) ≃
n∑

i=1

vi(x)
∂

∂xi

.

If f : Rn 7→ R then

v(f) =
n∑

i=1

vi(x)
∂

∂xi

=< v,∇f >,

so that

Lv(f) = v(f)

Now we can look Lv as a mapping

Lv : C
∞(Rn) 7→ C∞(Rn).

Definition 4.19 (A section of a tangent bundle). Let M be a smooth manifold and let
TM be its tangent bundle. Let us the define the natural projection π : TM 7→ M as
π(p, TpM) = p. A section of a tangent bundle is a continuous map s : M 7→ TM which
satisfies π(s(p)) = p.

Definition 4.20 (Vector field). A vector field X on M is a map

X : p ∈M 7→ TpM

More precisely a vector field on M is a section of the tangent bundle. That is: It is a map

X : M 7→ TM,

so that π(X(p)) = p. We will denote as Γ(M) the se of all vector fields on M .

Definition 4.21 (Lie derivative). Let X ∈ Γ(M) and f ∈ C∞(M). The lie derivative of
f with respect to vector field X is

αxf = X(f) =
n∑

i=1

ci
∂f

∂xi

,

where

X =
n∑

i=1

ci
∂

∂xi

Let then X ∈ Γ(M) and f ∈ C∞(M) from this follows that

X(f) ∈ C∞(M).

If Y ∈ Γ(M) is another vector field we can then consider the operation

(Y ◦X)(f) : C∞(M) 7→ C∞(M)

Operation is clearly linear since

Y (X(af + bg)) = Y (aX(f) + bX(g)) = aY (X(f)) + bY (X(g)).
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On the other hand the Leibniz-rule is not necesserily satisfyed since

Y (X(fg)) = Y (fX(g) + gX(f))

= Y (fX(g)) + Y (gX(f))

= fY (X(g)) + Y (f)X(g) + gY (X(f)) + Y (g)X(f).

This would vanish only if Y (f)X(g) + Y (g)X(f) = 0. On the other hand if we subtract
and compute

X(Y (fg))− Y (X(fg)) = f(X(Y (g))− Y (X(g))) + g(X(Y (f))− Y (X(f))),

We see that this operation satisfies the Leibniz-rule.

Definition 4.22 (Lie-Bracket). Let X, Y ∈ Γ(M) then The Lie-Bracket of these vector
fields is

[X, Y ](f) = (XY − Y X)(f) = X(Y (f))− Y (X(f)).

Lemma 4.9. The Lie-Bracket is a vector field on M , [X, Y ] ∈ Γ(M)

Proof. This follows from the observation of linearity of Lie-Bracket and from the fact that
it satisfies Leibniz rule so that in every point p ∈M its a derivation.

Its important to notice that the Lie-Bracket satisfyes the following properties which
can be shown by direct calculations

Lemma 4.10. Let X,Y, Z ∈ Γ(M) then

1. [X,X] = 0

2. [X, Y ] = −[Y,X]

3. [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0

Proof. Proof is left as an execise

Let then

X =
n∑

i=1

ai
∂

∂xi

Y =
n∑

i=1

bi
∂

∂xi

Because [X, Y ] ∈ Γ(M) it should be possible to represent it in the form

[X,Y ] =
n∑

i=1

ci
∂

∂xi

.

The problem is how to compute the coefficents ci? Let’s look then part of the manifold
M say (U, x) and suppose that the cartesian coordinates of x(U) are u1, . . . , un. We also
know that

ai, bi ∈ C∞(M).
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We then define

hi = ai ◦ x−1 : x(U) 7→ R

h̃i = bi ◦ x−1 : x(U) 7→ R.

We also defined

∂aj
∂xi

=
∂

∂ui

(aj ◦ x−1)(x(p)) =
∂h

∂ui

∣∣∣
x(p)

.

Now

X(Y (f)) =
n∑

i=1

ai
∂

∂xi

[ n∑
j=1

bj
∂f

∂xj

]
=

n∑
i=1

ai

[ n∑
j=1

∂b

∂xi

∂f

∂xj

+ bj
∂2f

∂xi∂xj

]
=

n∑
i=1

n∑
j=1

ai
∂bj
∂xj

∂f

∂xj

+ aibj
∂2f

∂xi∂xj

.

Calculating Y (X(f)) the computation is similar but now when we substract the terms
involving second derivatives cancel and we get

[X,Y ](f) =
n∑

i=1

n∑
j=1

ai
∂bj
∂xi

∂f

∂xj

− bi
∂aj
∂xi

∂f

∂xj

=
[ n∑

j=1

( n∑
i=1

(ai
∂h̃j

∂ui

− bi
∂hj

∂ui

)︸ ︷︷ ︸
=cj

) ∂

∂xj

]
f,

so that the coefficents of [X,Y ] ∈ Γ(M) are

cj =
n∑

i=1

ai
∂h̃j

∂ui

− bi
∂hj

∂ui

.

Denoting

h̃ = (h̃1, . . . , h̃n), h = (h1, . . . , hn)

we have the matrix equation for coefficents ci

c = dh̃a− dhb.

’
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Example 4.13. Let’s compute the bracket[ ∂

∂xm

,
∂

∂xk

]
.

Now

X =
n∑

i=1

ai
∂

∂xi

=
∂

∂xm

.

So the coefficents ai satisfy ai = δim. Further because ai ∈ C∞(M)

hi = ai ◦ x−1 = δim

Likewise

Y =
n∑

i=1

bi
∂

∂xi

=
∂

∂xk

,

so that

h̃i = bi ◦ x−1 = δik

So now we get dh = dh̃ = 0 so that c = 0 and[ ∂

∂xm

,
∂

∂xk

]
= 0.

Definition 4.23 (Lie-algebra). A vector space V is called a Lie-algebra, if there exists
bilinear map b : V × V 7→ V such that

1. b(x, x) = 0 ∀ x ∈ V

2. b(x, b(y, z)) + b(z, b(x, y)) + b(y, b(z, x)) = 0 ∀ x, y, z ∈ V

Example 4.14. Some Lie-algebras are

1. V = R3, b(u, v) = u× v

2. V = Rn×n, b(A,B) = AB −BA
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4.3 Rieamannian metric

Definition 4.24 (Riemannian metric). Let M be a smooth manifold and p ∈M . Let

gp : TpM × TpM 7→ R

be an inner product. Then the function

g : Γ(M)× Γ(M) 7→ C∞(M), g(X, Y )
∣∣∣
p
= g(Xp, Yp)

is a Riemannian metric on M . M with riemannian metric g is a Riemannian manifold
(M, g).

Example 4.15. Let

X =
∑
i=1

ai
∂

∂xi

, Y =
n∑

i=1

bi
∂

∂xi

.

Choose the manifold (Rn, id) and the standard inner product given by the unit matrix.
Then

g(X,Y ) =< a, b >=
n∑

i=1

aibi.

Example 4.16. Consider then c : [a, b] 7→ M , then c′(s) ∈ Tc(s)M . Similarly as one can
define the lenght of the curve α : [a, b] 7→ Rn,

L(α) =

∫ b

a

|α′(s)|ds =
∫ b

a

√
< α′, α′ >ds

One can define the length of the curve c

L(c) =

∫ b

a

√
g(c′, c′)ds.

Let the p, q ∈M now one can define a distance between p and q as

d(p, q) = inf{L(c)| c(a) = p, c(b) = q}.

Let then (M, g) be a Riemannian manifold and (x, U) one of its charts then

X =
n∑

i=1

ai(p)
∂

∂xi

, ai ∈ C∞(U)

belongs to Γ(U). Let then Y ∈ Γ(U),

Y =
n∑

j=1

bj
∂

∂xj

.

Then by the properties of inner product

g(x, y) = g(
n∑

i=1

ai
∂

∂xi

,

n∑
j=1

bj
∂

∂xj

)

=
∑
i=1

aig(
∂

∂xi

,

n∑
j=1

bj
∂

∂xj

)

=
n∑

i=1

n∑
j=1

aibjg
( ∂

∂xi

,
∂

∂xj

)
.

88



If we introduce the notation

gij = g
( ∂

∂xi

,
∂

∂xj

)
we get the matrix

G =

 g11 . . . g1n
...

. . .
...

gn1 . . . gnn

 .

Because innerproduct is symmetric we have G = GT . Now

g(X, Y ) =
n∑

i=1

n∑
j=1

aibj =< a,Gb > .

Since g is positive definite G is positive definite so that

< a,Ga >> 0 if a ̸= 0.

Since G is positive definite all eigenvalues are positive and the determinant of G is also
positive so that G−1 exists. From this follows that the matrix G−1 is also symmetric and
positive definite.

Example 4.17. Let’s look at the manifold (R2, id) and the vector fields

X = x1
∂

∂x1

+ x2
∂

∂x2

Y = x2
2

∂

∂x1

− x2
1

∂

∂x2

.

The components of the vector fields are then

a(x) = (x1, x2)

b(x) = (x2
2,−x2

1).

and the Lie-bracket

[X, Y ] = c1
∂

∂x1

+ c2
∂

∂x2

,

which components are given by the formula

c = dba− dab = (x2
2,−x2

1) = b,

so that

[X, Y ] = Y.

Now the riemannian metric is given by the standard inner product of R2 and it is

g(X, Y ) =< a, b >= x1x2(x2 − x1).
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Example 4.18. Vector fields X and Y are orthogonal with respect to riemannian metric,
if

g(X,Y ) =< a,Gb >= 0.

Example 4.19 (Poincare half plane and poincare disc). Let M be the poincare half plane

M = {(x1, x2) ∈ R2| x2 > 0},

with the riemannian metric induced by the matrix

G =
1

x2
2

I.

Let then X and Y be the vector fields

X = a1
∂

∂x1

+ a2
∂

∂x2

Y = b1
∂

∂x1

+ b2
∂

∂x2

.

Now we get

g(X, Y ) =
1

x2
2

< a, b > .

Consider then a map

y : M 7→ D = {(a1, a2)| a21 + a22 < 1},

y(x1, x2) =
1

x2
1 + (1 + x2)2

(
2x1

x2
1 + x2

2 − 1

)
.

Now it turns out that y is a diffeomorphism and if you identify C ≃ R2 then y is equivalent
to möbius map y : C 7→ D

y(z) =
z − i

1 + iz
, z = x1 + x2i.

The inverse transformation y−1 : D 7→ R2 is

f(a) = y−1(a) =
1

a21 + (a2 − 1)2

(
2a1

1− a21 − a22

)
.

Given then two vector fields in D

v = b1
∂

∂a1
+ b2

∂

∂a2

w = c1
∂

∂a1
+ c2

∂

∂a2
.

We can compute their push-forwards f∗v and f∗w and introduce the Riemannian metric
in D induced by riemannian metric in M

gD2(v, w) = gM(f∗v, f∗w)

=< dfb,GMdfc >

=< b, (df)TGMdf︸ ︷︷ ︸
=GD2

c > .

By the properties of möbius map one knows that the geodesics in D are also lines and
circles. The map which preserves the length of tangent vectors like this is called an
isometry.
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Definition 4.25 (Isometry). Let (M, gM) and (N, gN) be Riemannian manifolds and let
f : M 7→ N . Then we say that f is an isometry, if

1. f is a diffeomorphism

2. gN(f∗v, f∗w) = gM(v, w)

The manifolds M and N are called isometric, if there exists an isometry f : M 7→ N .
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If we then go back to previous example of poincare half plane and compute the Jacobian
of the function f we get

df =
2

(a21 + (1− a2)2)2

(
a21 + (a2 − 1)2 −2a1(a2 − 1)
2a1(a2 − 1) −a21 + (a2 − 1)2

)
and so we have

GD2 = (df)TGMdf =
1

[f2(a)]2
(df)Tdf =

4

|a|2 − 1
I.

Moreover the Christoffel symbols are then

−Γ1
11 = Γ1

22 = −Γ2
12 =

2a1
|a|2 − 1

−Γ1
12 = Γ2

11 = −Γ2
22 =

2a2
|a|2 − 1

.

Example 4.20. Let M be a surface parametrized by f : R2 7→M ⊂ R3,

f(u1, u2) = (u1, u2, u
2
1 + u2

2).

Essentially we have now three manifolds

(R2, u = id)

(M,x = f−1)

(R3, y = id).

We can then in a way identify a vector field X ∈ Γ(M)

X = c1
∂

∂x1

+ c2
∂

∂x2

≃ c1
∂

∂u1

+ c2
∂

∂u2

.

If we then look f as a map f : R2 7→ R3 we can compute the pushforward

f∗X = b1
∂

∂y1
+ b2

∂

∂y2
+ b3

∂

∂y3
,

where the coefficents of vectorfield f∗X ∈ Γ(R3) transorm as b = dfc. If we look at the
vector field

X =
∂

∂u1

we get c = (1, 0) which yields b = dfc = (1, 0, 2y1) so

f∗X =
∂

∂y1
+ 2y1

∂

∂y3
∈ TpM.

If we take then

Y = u2
∂

∂u1

− u1
∂

∂u2

the pushforward f∗Y is

f∗Y = y2
∂

∂y1
− y1

∂

∂y2
∈ TpM
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We know that if X, Y ∈ Γ(M) then [X, Y ] ∈ Γ(M). Computing the Lie-bracket of
pushforwards we get

[f∗X, f∗Y ] =
3∑

i=1

ri
∂

∂yi
= − ∂

∂y2
− 2y2

∂

∂y3
.

Where the coefficents ri are obtained from the equation

r = dea− dae = (0,−1,−2y2).

For the pushforward of ∂/∂u2 with f we get

f∗
∂

∂u2

=
∂

∂y2
+ 2y2

∂

∂y3

From this follows that

[f∗X, f∗Y ] ∈ TpM = span{f∗
∂

∂u1

, f∗
∂

∂u2

}.

We can then ask a question:
Given two linearly independent vector fields X, Y ∈ Γ(R3) is there some M ⊂ R3 s.t
TpM = span{Xp, Yp} ?
There is a theorem of frobenius which answers this question

Theorem 4.6 (Frobenius 1). If we are given two linearly independent vector fields X,Y ∈
Γ(R3) then there exists a manifold M which tangent space TpM is spanned by X and Y
if and only if

[X, Y ]p ∈ span{Xp, Yp}

This theorem is formulated in R3 but there exists also generalization of this theorem

Theorem 4.7 (Frobenius 2). Let X1, . . . , Xk be linearly independent vector fields on
Γ(Rn) and let

Dp = span{X1|p, . . . , Xk|p} ⊂ TpRn ≃ Rn

Then there exists a k-dimensional submanifold M ⊂ Rn s.t TpM = D if and only if

[Xi, Xj]p ∈ Dp ∀ i, j

We will make the following notations

gij = g
( ∂

∂xi

,
∂

∂xj

)
, G = (gij)

g̃ij = g
( ∂

∂yi
,
∂

∂yj

)
, G̃ = (g̃ij).

From lemma 4.3 we have

∂

∂xi

=
n∑

j=1

∂yj
∂xi

∂

∂yj
,
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where

∂yj
∂xi

∣∣∣
p
=

∂

∂ui

(yj ◦ x−1)(x(p))

=
∂hj

∂ui

∣∣∣
x(p)

.

From this we get

gij = g(
∂

∂xi

,
∂

∂xj

) = g
( n∑

k=1

∂yk
∂xi

∂

∂yk
,

n∑
l=1

∂yl
∂xj

∂

∂yl

)
=

n∑
k=1

n∑
l=1

∂yk
∂xi

∂yl
∂xj

g
( ∂

∂yk
,
∂

∂yl

)
=

n∑
k=1

n∑
j=1

g̃kl
∂yk
∂xi

∂yl
∂xj

.

From this we get almost directly the following lemma

Lemma 4.11. Let (M, g) be a Riemannian manifold with one chart (x, U) with matrix
G related to Riemannian metric, and let (y, V ) be another chart, which matrix related

to Riemannian metric is G̃, and suppose that U ∩ V ̸= ∅. Then we have the change of
coordinates map h = (y ◦ x−1) : x(U ∩ V ) 7→ y(U ∩ V ), and the matrices of Riemannian
metric g between these charts then transforms as

G = (dh)T G̃dh.

Proof.

∂yl
∂xj

=
∂hl

∂uj

= (dh)lj,

so that

gij =
n∑

k=1

n∑
l=1

(dh)kig̃kl(lj).

Example 4.21. Let’s look at the unit sphere S2 with two charts. The first is y : S2 7→ R2,

y(p) =
1

1− p3

(
p1
p2

)
= a

And the second is given by inverse of parametrization of the unit sphere with polar coor-
dinates f : R2 7→ S2,

f(θ, φ) = x−1(θ, φ) = (cos(θ) cos(φ), sin(θ) cos(φ), sin(φ)).

The inverse of y, y−1 : R2 7→ S2 is given by

y−1(a) =
1

1 + |a|2

 2a1
2a2
|a|2 − 1

 = f̃

94



Now the matrix G related to f is

G =

(
< f1, f1 > < f1, f2 >
< f1, f2 > < f2, f2 >

)
= (df)Tdf =

(
cos2(φ) 0

0 1

)
The matrix G̃ is then

G̃ = (df̃)Tdf =
4

(1 + |a|2)2
I.

The change of coordinates map h = (y ◦ x−1)(θ, φ) is given by

h(θ, φ) =
1

1− sin(φ)

(
cos(θ) cos(φ)
sin(θ) cos(φ)

)
=

(
a1
a2

)
.

The Jacobian of the map h is now

dh =

(
sin(θ) cos(θ)
sin(φ)−1

cos(θ)(1+sin(φ))
cos2(φ)

cos(θ)(1+sin(φ))
cos(φ)

sin(θ)(1+sin(θ))
cos2(φ)

)
.

For the matrix dhT G̃dh we get

dhT G̃dh =
4

(|a|2 + 1)2
(dh)Tdh

=
4

(|a|2 + 1)2

(
1+sin(φ)
1−sin(φ)

0

0 1
2−2 sin(φ)−cos2(φ)

)
.

Recalling that

|a|2 = a21 + a22 = h1(θ, φ)
2 + h2(θ, φ)

2 =
1 + sin(φ)

1− sin(φ)
,

substituting this to previous matrix we get

(dh)T G̃dh = G =

(
cos2(φ) 0

0 1

)
,

so we indeed get the result that perevious lemma suggests.

Sometimes if a vectorfield operates on a function its convinient to make the notations

LX(f) = X(f) =
n∑

i=1

ci
∂f

∂xi

LXY = [X, Y ].

Example 4.22. Let X, Y ∈ Γ(Rn),

X =
n∑

i=1

ai
∂

∂xi

Y =
n∑

i=1

bi
∂

∂xi

.
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Let’s then define vector field

dY X =
n∑

i=1

ci
∂

∂xi

,

which coordinates are

c = dba.

Let then M = R2, and

Y =
∂

∂r
= cos(θ)

∂

∂x1

+ sin(θ)
∂

∂x2

.

Now we have

b̃ = (1, 0)

b = (
x1

|x|
,
x2

|x|
).

Choosing then

X =
∂

∂x1

= cos(θ)
∂

∂r
− 1

r
sin(θ)

∂

∂θ
,

we get

a = (1, 0)

ã = (cos(θ),−1

r
sin(θ)).

Now we have db̃ = 0 so that c̃ = db̃ã = 0. On the other hand c = dba ̸= 0 but if ci and c̃i
are components of vector field then

c̃ = dhc,

where

dh =

(
cos(θ) sin(θ)

− sin(θ)
r

cos(θ)
r

)
,

so that

c = (dh)−1c̃ ̸= 0.

The goal is now to modify the operation dY X so that it would transform correctly between
coordinate changes (in other words that it would be invarint in coordinate changes). Let
then Γk

ij be some functions on M and let X,Y ∈ Γ(Rn)

X =
n∑

i=1

ai
∂

∂xi

Y =
n∑

i=1

bi
∂

∂xi

.
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We will define an operation

∇XY =
n∑

i=1

ci
∂

∂xi

,

where the cofficents ck are

ck =
n∑

i=1

∂bk
∂xi

ai +
n∑

i=1

n∑
j=1

aibjΓ
k
ij.

We also require Γk
ij = Γk

ji. In Euclidean space we have

Γk
ij = 0.

Let then X and Y be vector fields

Y =
∂

∂r
=

x1

|x|
∂

∂x1

+
x2

|x|
∂

∂x2

X = cos(θ)
∂

∂r
− 1

r
sin(θ)

∂

∂θ
=

∂

∂x1

.

So for the coordinates of vector fields we have

X : ã = (cos(θ),−sin(θ)

r
), a = (1, 0)

Y : b̃ = (1, 0), b = (
x1

|x|
,
x2

|x|
).

With standard cartesian coordinates Γk
ij = 0 so that

db =
1

|x|3

(
x2
2 −x1x2

−x1x2 x2
1

)
,

so that

c = dba =
1

|x|3

(
x2
2

−x1x2

)
.

Passing to polar coordinates (x1, x2) → (r, θ) we have the change of coordinates map
h = y ◦ x−1

h(x1, x2) = (
√

x2
1 + x2

2, arctan
(x2

x1

)
)

The jacobian of h is

dh =

(
cos(θ) sin(θ)
−1

r
sin(θ) 1

r
cos(θ)

)
.

Now we have

∇XY = c1
∂

∂x1

+ c2
∂

∂x2

= c̃1
∂

∂r
+ c̃2

∂

∂θ
.
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Now we have

c̃ = dhc =

(
0

− sin(θ)
r2

)
.

We should compute

∇XY = c̃1
∂

∂r
+ c̃2

∂

∂θ

Because db̃ = 0, for the coefficents ck we have then only

c̃k =
2∑

i=1

2∑
j=1

ãib̃jΓ
k
ij.

From this we get

c̃1 = cos(θ)Γ1
11 −

sin(θ)

r
Γ1
12

c̃2 = cos(θ)Γ2
11 −

sin(θ)

r
Γ2
12.

For polar coordinates we have then

Γ2
12 =

1

r
, Γ1

22 = −r,

and other symbols are zeros, so that c̃1 = 0.

Let X, Y ∈ Γ(Rn) and dY X ∈ Γ(Rn) be again vector fields

X =
n∑

i=1

ai
∂

∂xi

Y =
n∑

i=1

bi
∂

∂xi

dY X =
n∑

i=1

ci
∂

∂xi

, c = dba.

The operation dY X is linear with respect to both Y and X

d(α1Y1 + α2Y2)X = α1dY1X + α2dY2X

dY (α1X1 + α2X2) = α1dY X1 + α2dY X2, α1, α2 ∈ R, X1, X2, Y1, Y2 ∈ Γ(Rn).

Let then f ∈ C∞(Rn). Let’s see what conditions should be valid in order to have the
equality

dY (fX) = fdY X.

The vector field fX is

fX =
n∑

i=1

fai
∂

∂xi
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The coefficents cj are

cj =
n∑

i=1

∂bj
∂xi

ai,

so that

n∑
i=1

∂bj
∂xi

fai = f
n∑

i=1

∂bj
∂xi

ai = fcj

so that automatically we have

dY (fX) = fdY X.

How about then

d(fY )X =
n∑

k=1

ck
∂

∂xk

=?

Computing by definition we have

ck =
n∑

i=1

∂(fbk)

∂xi

ai

=
n∑

i=1

∂f

∂xi

bkai + f
∂bk
∂xi

ai

= bk

n∑
i=1

ai
∂f

∂xj︸ ︷︷ ︸
=X(f)

+f
n∑

i=1

∂bk
∂xi

ai.

So the coefficients satisfy

c = fdba+X(f)b.

Let’s make then a definition

Definition 4.26 (Kozul connection). Let M be a Riemannian manifold. A map ∇ :
Γ(M)× Γ(M) 7→ Γ(M) denoted by

∇(X, Y ) = ∇XY

is a kozul connection, if

1. ∇X1+X2Y = ∇X1Y +∇X2Y

2. ∇fXY = f∇XY

3. ∇X(Y1 + Y2) = ∇XY1 +∇XY2

4. ∇X(fY ) = f∇XY +X(f)Y .
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In the case M = Rn we have by previous calculations

X =
n∑

i=1

ai
∂

∂xi

Y =
n∑

i=1

bi
∂

∂xi

∇XY = dY X =
n∑

i=1

ci
∂

∂xi

,

where

c = dba ⇔ ck =
n∑

i=1

∂bk
∂xi

ai

On the other hand

ck =
n∑

i=1

∂bk
∂xi

ai +
n∑

i=1

n∑
j=1

aibjΓ
k
ij

But in the euclidean space Γk
ij = 0, so that dY X is a kozul-connection in Rn. Let then

X =
∂

∂xi

⇔ a = (0, . . . , 1︸︷︷︸
i:s

, . . . , 0)

Y =
∂

∂xj

⇔ b = (0, . . . , 1︸︷︷︸
j:s

, . . . , 0), X, Y ∈ Γ(M),

and let

∇XY =
n∑

k=1

ck
∂

∂xk

,

where the cofficents ck are given by

ck =
n∑

i=1

∂bk
∂xi

ai +
n∑

i=1

n∑
j=1

aibjΓ
k
ij.

Then

ck = Γk
ij,

so that

∇∂/∂xi

∂

∂xj

=
n∑

k=1

Γk
ij

∂

∂xk

.

So we have the result

Lemma 4.12. Let M be a riemannian manifold with charts (x, U) and (y, V ). Then

∇∂/∂xi

∂

∂xj

=
n∑

k=1

Γk
ij

∂

∂xk

∇∂/∂yi

∂

∂yj
=

n∑
k=1

Γ̃k
ij

∂

∂xk

.
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For the existence of Kozul connection we then have the following theorem

Theorem 4.8. Let M be a Riemannian manifold and ∇ a connection between two vector
fields X, Y ∈ Γ(M)

∇XY =
n∑

k=1

ck
∂

∂xk

,

where

ck =
n∑

i=1

∂bk
∂xi

ai +
n∑

i=1

n∑
j=1

aibjΓ
k
ij.

Then ∇ is a kozul connection, if and only if

Γr
lm =

n∑
i,j,k=1

Γk
ij

∂xi

∂yl

∂xj

∂ym

∂yr
∂xk

+
n∑

s=1

∂2xs

∂ylym

∂yr
∂xs

.

Definition 4.27. Let M be a Riemannian manifold, X, Y ∈ Γ(M) and suppose that ∇
is a connection between X an Y . The connection is symmetric, if ∇XY −∇YX = [X, Y ].

Lemma 4.13. Let M be a Riemannian manifold. The following are equivalent

1. Γk
ij = Γk

ji ∀ i, j, k

2. ∇XY −∇YX = [X,Y ]

Proof. Let’s proof (1) → (2). Set

X =
n∑

i=1

ai
∂

∂xi

, Y =
n∑

j=1

bj
∂

∂xj

,

and

∇XY = ∇∑n
i=1 ai

∂
∂xi

n∑
j=1

bj
∂

∂xj

=
n∑

i=1

ai∇∂/∂xi

n∑
j=1

bj
∂

∂xj

=
n∑

i=1

ai

n∑
j=1

∇∂/∂xi

(
bj

∂

∂xj

)
=

n∑
i=1

ai

[ n∑
j=1

bj∇∂/∂xi

∂

∂xj

+
n∑

j=1

∂bj
∂xi

∂

∂xj

]
=

n∑
i,j=1

ai
∂bj
∂xi

∂

∂xj

+
n∑

i,j,k=1

aibjΓ
k
ij

∂

∂xk

.

Similarly

∇YX =
n∑

i,j=1

bi
∂aj
∂xi

∂

∂xj

+
n∑

i,j,k=1

biajΓ
k
ij

∂

∂xk

.
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Substracting these we get

∇XY −∇YX =
n∑

j=1

( n∑
i=1

ai
∂bj
∂xi

− bi
∂aj
∂xi

) ∂

∂xj

= [X,Y ].

Let’s proof (2) ⇒ (1). We already know

[
∂

∂xi

,
∂

∂xj

] = 0.

The computation is left as an exercise.

Definition 4.28. Let X, Y, Z ∈ Γ(M) and let g be a Riemannian metric on M . Then
the connection ∇ is comatible with g, if

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ).

Example 4.23. Let’s look (Rn, g =<,>), where g is the standard innerproduct and let
Y, Z ∈ Γ(Rn)

Y =
n∑

i=1

bi
∂

∂xi

≃ (b1, . . . , bn) = b

Z =
n∑

i=1

ci
∂

∂xi

≃ (c1, . . . , cn) = c.

Now ci, bi : Rn 7→ R so that c, b : Rn 7→ Rn. Let then

X =
∂

∂xk

.

The riemannian metric of g(Y, Z) is

g(Y, Z) =< b, c >=
n∑

i=1

bi(x)ci(x) : Rn × Rn 7→ R.

Calculating Xg(Y, Z) we get

Xg(y, z) =
∂

∂xk

n∑
i=1

bici =
n∑

i=1

∂bi
∂xk

ci + bi
∂ci
∂xk

=<
∂b

∂xk

, c >=< b,
∂c

∂xk

>= g(∇XY, Z) + g(Y,∇XZ).

Theorem 4.9 (Fundamental theorem of Riemannian geometry). Let (M, g) be a Rie-
mannian manifold then there is a unique symmetric connection which is compatible with
metric. This connection is called the Levi-Civita connection. Moreover the components
Γk
ij of the connection can be solved from

1. [ij, k] = 1
2

[
∂

∂xj
gik +

∂
∂xi

gjk − ∂
∂xk

gij

]
2. Γk

ij =
∑n

m=1[ij,m]gkm,
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where gkm denote the components the inverse matrix of Riemannian metric in particular
coordinates. The symbols [ij, k] are usually called the Christoffel-symbols of the 1st kind
and the Γk

ij Christoffel-symbols of the 2nd kind.

Proof. We know that Γk
ij = Γk

ji and gij = gji. Let’s then suppose that such connection
exists now we have

∇∂/∂xi

∂

∂xj

=
n∑

k=1

Γk
ij

∂

∂xk

,

and

∂

∂xi

gjk =
∂

∂xi

g
( ∂

∂xj

,
∂

∂xk

)
= g
(
∇∂/∂xi

∂

∂xj

,
∂

∂xk

)
+ g
( ∂

∂xj

,∇∂/∂xi

∂

∂xk

)
= g
( n∑

l=1

Γl
ij

∂

∂xl

,
∂

∂xk

)
+ g
( ∂

∂xj

,

n∑
l=1

Γl
ik

∂

∂xl

)
=
∑
l=1

Γl
ijg
( ∂

∂xl

,
∂

∂xk

)
+

n∑
l=1

Γl
ikg
( ∂

∂xj

,
∂

∂xl

)
=

n∑
l=1

(
Γl
ijglk + Γl

ikgjl

)
.

From this we get

∂

∂xk

gij =
n∑

l=1

Γl
kiglj + Γl

kjgil

∂

∂xj

gik =
n∑

l=1

Γl
jkgli + Γl

jigkl.

Defining [ij, k] we find

[ij, k] =
1

2

[ ∂

∂xj

gik +
∂

∂xi

gjk −
∂

∂xk

gij

]
=

n∑
l=1

Γl
ijglk.

If the matrix given by Riemannian matrix is G and denoting

G = gij, G−1 = gij

we find

n∑
m=1

[ij,m]gkm =
n∑

m=1

n∑
l=1

Γl
ijglmg

km

=
n∑

l=1

Γl
ij

n∑
m=1

glmg
km

= Γk
ij.

So given a metric we can define
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1. [ij, k] = 1
2

[
∂

∂xj
gik +

∂
∂xi

gjk − ∂
∂xk

gij

]
2. Γk

ij =
∑n

m=1[ij,m]gkm

Further we can proof that this defines a connection which is symmetric and independent
of metric.

Let’s then consider the consept of parallel transport. It should preserve the direction
and magnitude (norm) of the tangent vectors.

Let’s start from the euclidean plane and suppose that we have a curve parametrized
by arclength c : [a, b] 7→ R2. The vector field along a curve can be written as

V = a1
∂

∂x1

+ a2
∂

∂x2

≃ v1(s)
∂

∂x1

+ v2(s)
∂

∂x2

.

Now

vk = ak ◦ c

So that

v′(s) = dac′(s) = dV c′(s) = ∇c′(s)V.

If v is parallel along c then v′1(s) = v′2(s) = 0, since the vector v(s) remains the same
along the curve. In other words this means that

∇c′(s)V = 0.

Following the idea of the example we can make a definition

Definition 4.29. Let (M, g) be a Riemannian manifold and c : [a, b] 7→ M a curve. A
vector field V is parallel along c, if

∇c′(s)V = 0.

From the definition we can derive a theorem

Theorem 4.10. Vector field V is parallel along curve c if and only if

v′k(s) +
n∑

i,j=1

c′ivjΓ
k
ij = 0, k = 1, . . . , n.

Proof. Let V be the vector field on a curve c : [a, b] 7→M then

V =
n∑

i=1

ai
∂

∂xi

≃
n∑

i=1

vi(s)
∂

∂xi

, vi = ai ◦ c.

From this we obtain

v′i(s) =
n∑

i=1

∂aj
∂xi

c′i
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The coefficents on a chart are

ck = xk ◦ c : [a, b] 7→ R.

Moreover

c′(s) =
n∑

i=1

c′i(s)
∂

∂xi

.

Computing ∇c′(s)V we find

∇c′(s)V = ∇∑n
i=1 c

′
i(s)

∂
∂xi

n∑
j=1

aj
∂

∂xj

=
n∑

i=1

c′i(s)∇ ∂
∂xi

n∑
j=1

aj
∂

∂xj

=
n∑

i=1

c′i(s)
n∑

j=1

(
aj∇ ∂

∂xi

∂

∂xj

+
∂aj
∂xi

∂

∂xj

)
=

n∑
j=1

[ n∑
i=1

∂aj
∂xi

c′i

] ∂

∂xj

+
n∑

i,j,k=1

c′ivjΓ
k
ij

∂

∂xk

=
n∑

k=1

[
v′k +

n∑
i,j=1

c′ivjΓ
k
ij

] ∂

∂xk

.

Because all the coefficents has to vanish we get the desired result.

Example 4.24 (Poincaré halfplane). The riemannian metric in Poincaré halfplane was
given by the matrix

G =
1

x2
2

I.

The only nonzero components of Christoffel symbols of the second kind were

−Γ1
12 = Γ2

11 = −Γ2
22 =

1

x2

.

So the vector field is parallel along a curve c, if

v′1 −
1

x2

(c′1v2 + c′2v1) = 0

v′2 +
1

x2

(c′1v1 − c′2v2) = 0.

Let’s choose a curve c(s) = (s, b) b > 0 so c′(s) = (1, 0) and we get the equations

v′1 −
v2
b

= 0

v′2 +
v1
b

= 0.

From this we get the second order differential equation for v1

v′′1 =
1

b
v′2 = −

1

b2
v1.
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Apparently this has the general solution

v1(s) = a1 cos
(s
b

)
+ a2 sin

(s
b

)
.

Substituting this back to the system we get

v2(s) = bv′1(s) = −a1 sin
(s
b

)
+ a2 cos

(s
b

)
.

From this we get the initial conditions

v1(0) = a1

v2(0) = a2.

Choosing the curve c(s) = (b, s) we get c′(s) = (0, 1) and differential equations for the
components of vector field to be parallel along c are

v′1 −
1

s
v1 = 0

v′2 −
1

s
v2 = 0.

These have the general solution

v1(s) = a1s

v2(s) = a2s.

Example 4.25 (Unit sphere). For the unit sphere we have the chart (x,R2),

x(p) =
1

1− p3

(
a1
a2

)
.

The inverse of x is x−1 : R2 7→ S2/(0, 0, 1)

x−1(a) =
1

1 + |a|2

 2a1
2a2
|a|2 − 1

 .

The differential equations of parallel transport are

v′1 +
2

1 + |a|2
(
− a1c

′
1v1 − a2(c

′
1v2 + c′2v1) + a1r

′
2v2

)
= 0

v′2 +
2

1 + |a|2
(
a2c

′
1v1 − a1(c

′
1v2 + c′2v1)− a2c

′
2v2

)
= 0.

Choosing c(s) = (a1(s), a2(s)) = (s, s) we get

v′k −
4s

1 + 2s2
vk = 0.

These equations have the solutions

v1 = b1(1 + 2s2)

v2 = b2(1 + 2s2).
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Let’s then consider geodesics on a Riemannian manifold

Definition 4.30. Let (M, g) be a Riemannian manifold. A curve c : [a, b] 7→ M is a
geodesic, if

∇c′(s)c
′(s)
∣∣∣
c(s)

= 0

In light of previous result this is equivalent to the fact that

c′′k(s) +
n∑

i,j=1

c′i(s)c
′
j(s)Γ

k
ij(c(s)) = 0, k = 1, . . . , n.

By standard existense and uniqueness theorem for ordinary differential equations we
have the following lemma

Lemma 4.14. Let p ∈ M and v ∈ TpM . Then there exists ε > 0 and unique geodesic
c :]− ε, ε[ 7→M which satisfyes the initial conditions c(0) = p and c′(0) = v.

Definition 4.31 (Metric on (M, g)). Let (M, g) be a path connected Riemannian manifold
and c : [a, b] 7→M a curve. Then the length of the curve c on M is defined to be

L(c) =

∫ b

a

√
g(c′, c′)ds.

We can now define a metric d on a Riemannian manifold. Let p, q ∈ M then distance of
p and q is

d(p, q) = inf{L(c)| c : [a, b] 7→M, c(a) = p, c(b) = q}.

We can now give a geometric interpetation for geodesics

Definition 4.32 (Geodesics are locally shortests paths). Define the neigborhood of p ∈M
to be Uε ⊂M

Uε = {q ∈M | d(p, q) < ε}

Then there exists ε > 0 s.t if p1, p2 ∈ Uε then there exists a unique geodesic

γ : [a, b] 7→ Uε

such that γ(a) = p1, γ(b) = p2 and

L(γ) ≤ L(c) ∀ c : [a, b] 7→M, c(a) = p1, c(b) = p2.

Let’s the look at the example from classical mechanics

Definition 4.33 (Double pendulum). We can define the configuration space of double
pendulum to be

Q = S1 × S1 ⊂ R4.

One parametrization of this would be f : [0, 2π[×[0, 2π[7→ Q ⊂ R4

f(φ1, φ2) = (cos(φ1), sin(φ2), cos(φ2), sin(φ2))
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The vector of the first masspoint p is

c1(t) = L1(sin(φ1), cos(φ1)),

so that

v′ =
d

dt
c1(t) = L1φ

′
1(t)(cos(φ1),− sin(φ1)).

From this we obtain

|v′|2 = L2
1φ

′2
1 .

The vector of the second maspoint is

c2(t) = L1(sin(φ1), cos(φ1)) + L2(sin(φ2), cos(φ2)),

so that

v2(t) =
d

dt
c2(t) = L1φ

′
1(cos(φ1),− sin(φ1)) + L2φ

′
2(cos(φ2),− sin(φ2)),

and

|v2|2 =< v2, v2 >= L1φ
′2
1 + L2φ

′2
2 + 2L1L2 cos(φ1 − φ2)φ

′
1φ

′
2.

The kinetic energy T is then

T =
1

2
(m1 +m2)L1φ

′2
1 +

1

2
m2L

2
2φ

′2
2 +m2L1L2 cos(φ1 − φ2)φ

′
1φ

′
2.

Suppose then that we have a curve describing the motion of the double pendulum with
some initial conditions. On the parameter space we have a curve φ(t) = (φ1(t), φ2(t)) on
the other hand we have the mapping f from R2 to configuration manifold. The curve
representing yhe motion of the system is then the composition mapping β = f ◦ α. Now
we can identify

φ′(t) = φ′
1(t)

∂

∂φ1

+ φ′
2(t)

∂

∂φ2

≃ φ′
1(t)

∂

∂x1

+ φ′
2(t)

∂

∂x2

≃ (φ′
1(t), φ

′
2(t)).

We can now see that infact the kinetic energy T defines a riemannian metric G with
components

g11 = g
( ∂

∂φ1

,
∂

∂φ2

)
=

1

2
(m1 +m2)L

2
1

g12 = g
( ∂

∂φ1

,
∂

∂φ2

)
=

1

2
m2L1L2 cos(φ1 − φ2) = g21

g22 = g
( ∂

∂φ2

,
∂

∂φ2

)
=

1

2
m2L

2
2,

so that

G =

(
g11 g12
g12 g22

)
, T =< φ′, Gφ′ > .
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Let’s then set

a = m1 +m2(1− cos2(φ1 − φ2))

The nonzero Christoffel symbols of the second kind are then

Γ1
11 = −Γ2

22 =
m2 sin(2(φ1 − φ2))

2a

Γ2
22 =

m2L2 sin(φ1 − φ2)

aL1

Γ2
11 =

(m1 +m2)L1 sin(φ1 − φ2)

aL2

.

The geodesic equations are then

φ′′
1 + Γ1

11φ
′2
1 + Γ1

22φ
′2
2 = 0

φ′′
2 + Γ2

11φ
′2
1 + Γ2

22φ
′2
2 = 0.

The geodesics of the configuration space which Riemannian metric is given by T relate to
very special property of a mechanical systems

Variational principle:
In the abcence of external forces the system moves along the geodesics according to the
Riemannian metric determined by kinetic energy of the system.

4.4 Curvature

Definition 4.34 (Isometry). Let (M1, g2) and (M2, g2) be Riemannian manifolds. Then
a function f : M1 7→M2 is isometry, if

1. f is a diffeomorphism

2. g2(f∗v, f∗w) = g1(v, w)

M1 and M2 are called isometric, if there exists an isometry f : M1 7→M2.

Lemma 4.15. Let c : [a, b] 7→M1, and let f : M1 7→M2 be an isometry. Then c̃ = f ◦ c :
[a, b] 7→M2 is a curve and

L(c) =

∫ b

a

√
g1(c′, c′)ds =

∫ b

a

√
g2(c̃, c̃)ds = L(c̃).

In (Rn, id) we have g(v, w) =< v,w > so that G = I.

Definition 4.35. Riemannian manifold (M, g) is flat, if there are coordinates such that

gij = δij.

In other words G = I in some chart/coordinates.
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From the lemma before we know that the matrix of Riemannian metric transforms by

G = (dh)T G̃dh

This means that

gij =
n∑

k=1

n∑
l=1

∂yk
∂xi

∂yl
∂xk

g̃kl

On the other hand

∂yk
∂xi

∣∣∣
p
=

∂

∂ui

(yk ◦ x−1)(x(p)) =
∂hk

∂ui

∣∣∣
x(p)

.

So we get

gij =
∑
k=1

n∑
l=1

∂hk

∂ui

∂hl

∂uj

g̃kl.

Let’s suppose that G̃ = I so that g̃kl = δkl. Then we get

(dh)Tdh = G,

so that we have the following formula

n∑
k=1

∂hk

∂ui

∂hk

∂uj

= gij, 1 ≤ i, j ≤ n. (∗)

Because h : U ⊂ Rn 7→ Rn is diffemomorphism (∗) is a system of nonlinear PDE:s with n
unknowns (h1, . . . , hn) and n(n+ 1)/2 equations (G is symmetric).
From this one can guess that there should be n(n + 1)/2 − n = n(n − 1)/2 integrabil-
ity/compatability conditions.

If we have a special case n = 2 we have the equations(∂h1

∂u1

)2
+
(∂h2

∂u1

)2
= g11

∂h1

∂u1

∂h1

∂u2

+
∂h2

∂u1

∂h2

∂u1

= g12(∂h1

∂u2

)2
+
(∂h2

∂u2

)2
= g22.

We then have two equations from which the second one comes after some long computa-
tions

n∑
k=1

∂hk

∂ui

∂hk

∂ui

= gij (1)

∂2hl

∂ui∂uj

=
n∑

k=1

Γk
ij

∂hl

∂uk

, 1 ≤ i, j ≤ n, h = (h1, . . . , hn).(2)

If we denote h = (h1, . . . , hn) all the hl satisfy the same equations. Let

v =
( ∂hl

∂u1

, . . . ,
∂hl

∂un

)
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From this we get

∂

∂uj

vi =
n∑

k=1

Γk
ijvk (4),

but

∂

∂ul

∂

∂uj

vi =
∂

∂uj

∂

∂ul

vi.

So we get

∂

∂ul

n∑
k=1

Γk
ijvk =

∂

∂uj

n∑
k=1

Γk
ilvk (4).

Finally we have

Ri
jkl =

∂Γi
jl

∂uk

−
∂Γi

jk

∂uk

+
n∑

m=1

Γm
jlΓ

i
mk − Γm

jkΓ
i
ml = 0.

Definition 4.36. The tensor Ri
jkl

Ri
jkl =

∂Γi
jl

∂uk

−
∂Γi

jk

∂uk

+
n∑

m=1

Γm
jlΓ

i
mk − Γm

jkΓ
i
ml

is called Riemannian curvature tensor. Similarly sometimes in classical texts the tensor
Rijkl

Rijkl =
n∑

m=1

gimR
m
jkl

is also called Riemannian curvature tensor. Geometrically the value of the Rieman-
nian curvature tensor at point p ∈ M can be thought as how much the metric ten-
sor/Riemannian metric deviates from flat Euclidean space.

We can now present a theorem

Theorem 4.11. Riemannian manifold (M, g) is flat if and only if

Ri
jkl = 0 ∀ i, j, k, l,

or equaivalently

Rijkl = 0 ∀ i, j, k, l.

In literature there exists also an other widely used curvature tensor called the Ricci cur-
vature tensor

Definition 4.37 (Ricci curvature tensor). Let (M, g) be a Riemannian manifold and Ri
jkl

the Riemannian curvature tensor. Then the Ricci curvature tensor is defined as

Rkl =
n∑

m=1

Rm
jml.

In sense the Ricci tensor also defines a way to measure how much the geometry of the
manifold might deviate from flat Euclidean space.
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Since I did not define tensors in manifolds earlier just to sake of completeness I will
define them

Definition 4.38 (Tensors/Tensor fields). Let M be a smooth manifold. A n + k-
multilinear function

R : (TpM × . . .× TpM)︸ ︷︷ ︸
n times

× (T ∗
pM × . . .× T ∗

pM)︸ ︷︷ ︸
k times

7→ R.

is called a tensor which is covariant of degree n and contravariant of degree k. In classical
text one then usually denotes

Rh1...hk
l1...ln

, 1 ≤ l1, . . . ln ≤ n, 1 ≤ h1, . . . , hk ≤ k.

For example the Riemannian metric/Metric tensor is a (pure) covariant tensor of degree
2. Usually if the tensor is just covariant or contravariant one speaks of pure tensors and
otherwise mixed tensors. In the definition T ∗

pM = (TpM)∗ denotes the dual space of TpM .

Not all the components of Ri
jkl are independent, but there is lot of symmetry. In fact

we have the following lemma

Lemma 4.16.

1. Rijkl = −Rijlk

2. Rijkl = −Rjikl

3. Rijkl = Rklij

4. Rijkl +Riklj +Riljk = 0 (Bianchi identity).

If we again inspect the special case n = 2 then

R11kl = R22kl = Rij11 = Rij22 = 0

R1212 = −R2112 = −R1221 = R2121.

From this result we get the following lemma

Lemma 4.17. Two dimensional Riemannian manifold is flat if and only if

R1212 = 0

In other words

R1212 = g11R
1
212 + g12R

2
212 = 0,

and

R1
212 =

∂Γ1
22

∂u1

− ∂Γ1
21

∂u2

+
2∑

m=1

Γm
22Γ

1
m1 − Γm

21Γ
1
m2.

We also have the following theorem
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Theorem 4.12. Let (M, g) be a two dimensional Riemannian manifold which can be
represented as a surface. Then its Gaussian curvature K is

K =
R1212

det(G)
.

As a corollary we have the result

Lemma 4.18. Let R2 be the plane equipped with standard metric G = I. There are no
isometric maps f : S2 7→ R2.

Let’s compute little further. We remember that the Levi-Civita connection for basic
vector fields was

∇ ∂
∂xi

∂

∂xj

=
n∑

k=1

Γk
ij

∂

∂xk

.

If we calculate further

∇ ∂
∂xl

(
∇ ∂

∂xi

∂

∂xj

)
= ∇ ∂

∂xl

n∑
k=1

Γk
ij

∂

∂xk

=
n∑

k=1

∇ ∂
∂xl

(
Γk
ij

∂

∂xk

)
=

n∑
k=1

Γk
ij

(
∇ ∂

∂xl

∂

∂xk

)
+

∂Γk
ij

∂xl

∂

∂xk

=
n∑

m=1

(∂Γm
ij

∂xl

+
n∑

k=1

Γk
ijΓ

m
lk

) ∂

∂xk

.

Then we form the difference

∇ ∂
∂xk

(
∇ ∂

∂xl

∂

∂xj

)
−∇ ∂

∂xl

(
∇ ∂

∂xk

∂

∂xj

)
=

n∑
i=1

Ri
jkl

∂

∂xi

.

We then have a lemma

Lemma 4.19. If Ri
jkl ̸= 0 for some j, k, l, i then the Riemannian manifold (M, g) is not

isometric with Rn.

Definition 4.39 (Pseudo-Riemannian manifolds). There is also a little wider class of
manifolds from which Riemannian manifolds are special case. The Pseudo-Riemannian
manifold is a smooth manifold M equipped with a function gp : Tp × TpM 7→ R which
satisfies the following conditions. For all X, Y, Z ∈ Γ(M) and a, b ∈ R we require

1. g(X,Y ) = g(Y,X) (Symmetricity)

2. g(aX + bY, Z) = ag(X, Y ) + bg(Y, Z) (Bilinearilty)

3. g(X,X) ̸= 0 ∀ X ̸= 0 (Nondegeneracy).
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Example 4.26 (Similarities and anomalies). As in the case of Riemannian manifolds func-
tion g is a covariant tensor of degree 2. The innerproduct automatically satisfies (1)− (3)
but in Pseudo-Riemannian manifolds we might have

∥x∥ =
√

g(X,X) < 0,

since g is not necessarily positive definite. However the length of the curves, the connection
of metric and geodesic is defined similarly as in Riemannian manifolds. For example the
”length” of c : [a, b] 7→M is

L(c) =

∫ b

a

√
g(c′, c′)ds.

Example 4.27 (Shape of space). In classical mechanics the underlying assumption is that
the world is flat 3 dimensional Euclidean space R3 and ”time variable” is independent from
”space variables”. But how do we know this for sure ? When we relay on our senses the
world seems flat enough to make this assumption.

Let’s say for example that we have a (extremely fast moving) aeroplane and in ground
we measure that it has taken a trip which by our measurement lasted one hour. Now a
reasonable assumption would be that the people in the plane also measure that their trip
has taken one hour. However it turns out that their clocks will show a time less than one
hour. This would suggest that time itself is not an independent variable, but is relative
to the observer.

The famous Einstein’s field equations connects space and time and ”gravity” is just con-
sequence of the geometry of the world and the objects move along the geodesics of the
space and the shape of space (the metric tensor) can be derived from field equations. The
assumption is that the dimension of the space M is dim(M) = 4. The structure of the
field equations is

Gkl + agklR = bTkl, a, b = const (∗).

In the equation;

Gkl := Rkl − (1/2)gklR (Einstein tensor)

Rkl = The ricci curvature tensor described earlier.

R : =
4∑

k=1

4∑
l=1

Rkl.

Tkl = The energy-momentum tensor.

gkl = The components of a pseudo Riemannian metric/metric tensor.

The tensors G,R, T, g are symmetric covariant tensors of degree 2 and they can be
represented by 4 × 4 matrices in particular chart/coordinates. The equations (∗) are in
general nonlinear PDE:s, but since the tensors are symmetric we so we have at most
4(4 + 1)/2 = 10 independent equations and the symmetry of Ri

jkl reduces the number of
equations to 6 independent equations.
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