
Differential geometry
Spring 2012
Exercise 7.

In these exercises there will be 9 tasks, The first five will test your skills
in classical vector analysis which in theory you should already master fluently
by now. The classical vector analysis is one area which has laid the foundations
for modern differential geometry.

1. Suppose that u : R3 7→ R and v : R3 7→ R are smooth vector fields such that ∇u×
∇v = 0, and let us look at their restriction to levelset/surface S = {(x, y, z) | u(x, y, z) =
c = constant}. Prove that on surface either v(x, y, z) = constant or there exists a
smooth function F : R2 7→ R such that F (u, v) = 0.

2. Suppose that u, v, w : R3 7→ R are smooth functions

u := u(x, y, z)

v := v(x, y, z)

w := w(x, yz)

and additionally assume ∇u · ∇v × ∇v = 0. Moreover suppose then that there
is a smooth function s.t f(u, v, w) = 0 so we can look at the composite function
f̃ = f(u(x, y, z), v(x, y, z), w(x, y, z)) = 0. Additionally suppose that (fx, fy, fz) ̸=
(0, 0, 0). Show that then ∣∣∣∣∣∣

ux vx wx

uy vy wy

uz vz wz

∣∣∣∣∣∣ = 0. (1)

Additionally show if the that the converse is also true if the eq.(1) is valid and if
there are smooth functions a, b : R 7→ R such that if b ̸= 0 and fv and vw satisfy the
partial differential equation/compatability condition (2)

fv − (a/b)fw = 0. (2)

3. Solve the partial differential equation ∆V = ∇2V = 0 in spherical coordinates
assuming that V depends only on the distance from origin V := V (r).



4. Suppose that A : R3 7→ R3 is a smooth vector field defined by A := ∇ × (ψr) and
assume that ∆ψ = ∇2ψ = 0. Compute A · ∇ × A in sperical coordinates and show
that if ψ is of the product form ψ = R(r)Θ(θ)Φ(ψ) then A · ∇ × A = 0.

Hint: Remember that in spehrical coordinates the position vector r is

r = rer = r(sin(θ) cos(φ)e1 + sin(θ) sin(φ)e2 + cos(θ)e3).

where r represents the length of the vector. Then use the divergence and cross
products in spherical coordinates.

5. Let f := f 1e1+f
2e2+f

3e3 be a smooth vector field and let A ⊂ SO(3) be a rotation
matrix. Let us then rotate the coordinate axis by A. Show that the divergence has
the exactly similar expression in new basis´/coordinates. In other words show that
the divergence of a vector field is invariant under rotations.

6. Let us look at the torus f : [0, 2π] × [0, 2π] 7→ T ⊂ R3 parametrized as f :=
(x(θ, ψ), y(θ), ψ), z(θ))

x = (a+ b cos(θ) cos(ψ))

y = (a+ b cos(θ)) sin(ψ)

z = b sin(θ), a > b, ψ ∈ [0, 2π], θ ∈ [0, 2π].

Choose for example a = 3 and b = 1 and formulate the geodesic equations for torus.
See how the equations changes when θ = constant and ψ = constant. Can you solve
this explicitly. Compute the curvature on the inner ”equator” of the torus θ = π
and on the outer equator of the torus θ = 0. In inner equator the curvature should
be negative and in the outer equator it should be positive.

Figure 1: Toruksen hajoituskuva.
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7. In theory of classical mechanics in the absence of external force field the particle is
either in rest or moves at constant speed in geodesics(straight lines) of R3. However
the law also states that if there are now external force fields present the particle still
moves at constant velocity ∥v∥2 = ∥(c′(t))∥2 = C2. Differentiating this with respect
to time parameter we get

d

dt
∥c′(t)∥2 = d

dt
⟨c′, c′′⟩+ ⟨c′′, c′⟩ = 2⟨c′, c′′⟩ = 0,

which implies c′′⊥c′ on the surface. Now remember the Newton’s second law F (c(t)) =
ma(t) = mc′′(t). We defined the work done by the particle

W =

∫ t1

t0

⟨W (c(t)), c′(t)⟩ =
∫ t1

t0

⟨c′′(t), c′(t)′︸ ︷︷ ︸
=0

⟩ = 0.

the velocity c′(t) = v is then always perpendicular to the tangent plane TpM of the
surface so we can conclude that the particle moves along geodesics of the surface.
There will be no external forces but there will be a constraint force F = ma = mc′′(t)
keeping the particle in the surface. By Newton’s 3hd law the net force will be zero.

(a) What you would call the force which is opposite to the direction of the con-
strained force ?

(b) Compute the forces explicitly if the particle is restricted to move on the surface
of the torus in previous exercise.(You can assume that the massm of the particle
is m = 1.)

8. In theory of classical mechanics there is also an equivalent formulation for the equa-
tions motion for objects. The equations can be obtained by computing the Gâteaux
derivative of the Lagrange function L which in absence of external forces reduces
just to L = T where T is the kinetic energy of let’s say one particle. The Gâteaux
derivative can be computed perhaps most conviniently by solving the Euler-Lagrange
equations for particular system. The kinetic energy and the Lagrange function for
one particle of mass m = 1 is now just

∥c′(t)∥2 = ∥v∥2 = x′2 + y′2 + z′2 = T,

and the Euler-Lagranges equations of motion are

d

dt

∂T

∂θ
− ∂T

∂θ′
= 0

d

dt

∂T

∂ψ
− ∂T

∂ψ′ = 0.

Suppose then that the particle is restricted to move on the surface of the torus on
exercise 6 and verify that that you get the same equations for the motion of the
particle as you get for the geodesics of the torus.

9. Report all the possible mistakes in lecture notes on demonstrations.
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