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1 Error analysis

1.1 Errors in numerical computations

In practice, computations consist of finite steps and decimals; the results are
therefore approximations.

Let a denote an exact value and ã an approximated value of a. The difference

ε = ã− a

is called the (absolute) error in the approximation ã. In other words,

ã = a+ ε,

i.e. the approximation is the sum of exact value and error.

Example.
ã = 10.5, a = 10.2 ⇒ ε = 0.3
ã = 1.60, a = 1.82 ⇒ ε = −0.22

The relative error εr in approximation ã is

εr =
ε

a
=
ã− a
a

=
error

exact value
(a 6= 0)

Clearly
εr ≈

ε

ã

if |ε| is much smaller than |ã|. The number γ = a − ã = −ε is called
correction, so that

a = ã+ γ.

The upper bound of the error is a number β such that

|ã− a| ≤ β, i.e. |ε| ≤ β.

Sources of error

1. Idealisations in mathematical models

2. Errors in the input data
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3. Truncation errors (arise when an infinite process is replaced by a finite
one)

4. Rounding errors

In addition, also errors caused by carelessness are to be considered.

1.2 Floating point numbers

In the decimal representation of a real number infinite numbers are usually
needed. Calculators and computers, however, can only handle finite number
sequences. Therefore in computations real numbers are replaced with float-
ing point numbers, in which the number of significant digits is a constant
depending on the machine. For this purpose each real number must first be
rounded using the following rules:

A decimal number is rounded to n decimals by

- removing all decimals on the right side of the n:th decimal

- if the removed number is > 1
2
· 10−n, the n:th decimal is raised by 1

- if the removed number is = 1
2
· 10−n, the n:th decimal is raised only if

it is odd

Example. Rounding to 3 decimals:

0.4711 ≈ 0.471
0.4716 ≈ 0.472
0.4715 ≈ 0.472
0.4705 ≈ 0.470

The last rule is an attempt to eliminate the systematic rounding error. Rais-
ing decimal occurs "as often" as leaving it unchanged.

The rounding error occurring in rounding a number to n decimals has an
absolute value at most 1

2
· 10−n.

The numbers rounded in the example above have 3 significant digits. We say
that the approximated value of a real number has n significant digits, if n is
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the largest positive integer such that the absolute value of the absolute er-
ror is at most the product of the unit of the first non-zero number and 5·10−n.

If e.g. the exact value a = 1.1996 has an approximation ã = 1.200, the
approximated value ã has 4 significant digits.

Similarly, the approximation is said to have n correct decimals, if the abso-
lute error is at most 1

2
· 10−n.

The number of significant digits describes the relative accuracy and the num-
ber of correct decimals describes absolute accuracy.

Example.

(a) ã = 47.11, |ε| ≤ 0.5 · 10−2 2 corr. dec., 4 sig. digits
(b) ã = 0.0047110, |ε| ≤ 0.5 · 10−7 7 corr. dec., 5 sig. digits
(c) ã = 4710 · 102, |ε| ≤ 0.5 · 102 0 corr. dec., 4 sig. digits
(d) ã = 47100, |ε| ≤ 0.5 · 102 0 corr. dec., 3 sig. digits

The number of significant digits:

(a) 0.5 · 10−2 = 10 · 5 · 10−n ⇔ n = 4
(b) 0.5 · 10−7 = 10−3 · 5 · 10−n ⇔ n = 5
(c) 0.5 · 102 = 105 · 5 · 10−n ⇔ n = 4

The decimal number system is a position system with base 10. Most com-
puters use a position system with another base β ≥ 2, e.g. β = 2 or β = 16.
In such position systen any real number can be written as

(±dndn−1 . . . d2d1d0.d−1d−2 . . .)β

where dn, dn−1, . . . are integers between 0 and β − 1. The value of such a
number is

dnβ
n + dn−1β

n−1 + · · ·+ d2β
2 + d1β

1 + d0β
0 + d−1β

−1 + d−2β
−2 + · · · .

For example π = 3.1415 . . . = 3 · 100 + 1 · 10−1 + 4 · 10−2 + 1 · 10−3 + · · · .
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Example.

(760)8 = 7 · 82 + 6 · 81 + 0 · 80 = (496)10

(101.101)2 = 1 · 22 + 0 · 21 + 1 · 20 + 1 · 2−1 + 0 · 2−2 + 1 · 2−3

= (5.625)10

(0.333)10 = 3 · 10−1 + 3 · 10−2 + 3 · 10−3 + · · · = 1

3
1

5
= (0.2)10 = (0.00110011 . . .)2

1

5
= 2q + r

In computer numbers are replaced with floating point numbers so that each
number takes a fixed amount of memory. If the number system has base β,
each nonzero real number can be expressed in the form

X = M · βe

where e is an integer and

M = ±D0.D1D2D3 . . .

0 ≤ Di ≤ β − 1

D0 6= 0.

In floating point system M is replaced with a finite number sequence

m = ±d0.d1d2 . . . dt,

m has a finite number (t+1) of elements. The number (floating point number)
stored to the computer is then

x = m · βe or x = βe+1

The latter is gained when e.g. D0 = D1 = D2 = . . . = β−1. Here m is called
mantissa and e exponent. Since 0 ≤ di ≤ β − 1 and d0 6= 0, every non-zero
floating point number is normalized so that 1 ≤ |m| < β.

The amount of storage that is reserved for the exponent e determines the
range of numbers that can be represented. The limits of e can be written

L ≤ e ≤ U
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where L and U are negative and positive integers, respectively. If the result
of a computation is a floating point number with e > U , a so called overflow
occurs and the computer issues an error signal. The corresponding error with
e < L is called underflow an it does not usually terminate the process.

1.3 Numerical stability

An algorithm associated to a numerical problem is complete description of
those finitely many operations needed to replace the solution of the problem
from the initial values.

An algorithm is stable if the associated truncation and rounding errors have
only a small effect to the output. Otherwise the algorithm is called unstable.
Such numerical instability can often be avoided by choosing a better algo-
rithm.

Mathematical instability is a property of the mathematical model and cannot
be improved by choosing a different numerical algorithm; the problem is then
called ill-conditioned (häiriöaltis tai pahanlaatuinen).

Example. Find the roots of equations

(a) x2 − 4x+ 2 = 0 and (b) x2 − 40x+ 2 = 0 (1)

by using 4 significant digits in the computations.

The roots of a second degree equation ax2 + bx+ c = 0 can be obtained from
the formulas

x1 =
1

2a

(
−b+

√
b2 − 4ac

)
, x2 =

1

2a

(
−b−

√
b2 − 4ac

)
. (2)

Since x1x2 = c
a
, alternative formulas are

x1 as before, x2 =
c

ax1
. (3)

Applying (2) to equation (1a) yields

x = 2±
√

2 = 2.000± 1.414 ⇒
{
x1 = 3.414
x2 = 0.586
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Formula (3):

x1 = 3.414, x2 =
2.000

3.414
= 0.5858.

Error in the last expression is ≤ 10−4.

Applying (2) to equation (1b) yields

x = 20±
√

398 = 20.00± 19.95 ⇒
{
x1 = 39.95
x2 = 0.05

Formula (3):

x1 = 39.95, x2 =
2.000

39.95
= 0.05006.

Error in the last expression is ≤ 10−5.

1.4 Differential calculus in error analysis

Let’s compute the value of the function f(x) = 1
x2

at x = 0.015 but first we
round this value to 2 decimals. The error will be then

f(0.02)− f(0.015) =
1

(0.02)2
− 1

(0.015)2
= −1944.

A small perturbation (0.005) in the value of x causes a large error in the
output. The problem is ill-conditioned.

A measure for ill-condition could be∣∣∣∣error in the output
error in the input

∣∣∣∣
If f is a continously differentiable function, according to the mean value
theorem

f(x+ ε)− f(x) = f ′(ξ)ε,

where ξ is between x and x+ ε.

|f(x+ ε)− f(x)|
|ε|

≤ max |f ′(ξ)|

|f(x+ ε)− f(x)| ≤ |ε|max |f ′(ξ)| (1)
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For functions of several variables the corresponding result is as follows: De-
note f = f(x1, x2, . . . , xn) the exact value at (x1, x2, . . . , xn) and let f̃ =
f(x1 + ε1, x2 + ε2, . . . , xn + εn) be the approximate value. Then

f̃ − f =
n∑
k=1

∂f

∂xk
(x+ θε)εk,

where 0 < θ < 1, x = (x1, . . . , xn) and ε = (ε1, . . . , εn).

⇒ |f̃ − f | ≤
n∑
k=1

|εk|max

∣∣∣∣ ∂f∂xk
∣∣∣∣ (2)

where the maxima are computed on the segment joining x and x+ ε.

Example 1. Estimate the error on computing

f(x1, x2, x3) =
x1

x22 + x23

at (1.0,1.0,1.0) where the coordinates are given with 2 significant digits.

The error εk in the value of the coordinate xk has an absolute value ≤ 0.05.
(1 ≤ k ≤ 3).

∂f

∂x1
=

1

x22 + x23
,

∂f

∂x2
=
−2x2x1

(x22 + x23)
2
,

∂f

∂x3
=
−2x3x1

(x22 + x23)
2

max

∣∣∣∣ ∂f∂x1
∣∣∣∣ ≤ 1

0.952 + 0.952
= 0.56

max

∣∣∣∣ ∂f∂x2
∣∣∣∣ ≤ 2 · 1.05 · 1.05

(0.952 + 0.952)2
= 0.68

max

∣∣∣∣ ∂f∂x3
∣∣∣∣ ≤ 2 · 1.05 · 1.05

(0.952 + 0.952)2
= 0.68

(2) ⇒ |f̃ − f | = |f(1 + ε1, 1 + ε2, 1 + ε3)− f(1, 1, 1)|
≤ 0.05 · 0.56 + 0.05 · 0.68 + 0.05 · 0.68 = 0.096.
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Example 2. f = x1 + x2 + . . .+ xn

∂f

∂xk
= 1

(2)⇒ |f̃ − f | ≤
n∑
k=1

|εk|

In addition absolute errors are added.

Suppose that n = 1000 and |εk| ≤ 0.5 · 10−5

(2)⇒ |f̃ − f | ≤ 1000 · 0.5 · 10−5 = 0.5 · 10−2.

The actual error is probably much smaller. The upper bound 0.5 · 10−2 is
attained only if all εk are either positive or negative and have absolute value
= 0.5 · 10−5.

Example 3. f = x1 − x2 ∣∣∣∣ ∂f∂x1
∣∣∣∣ =

∣∣∣∣ ∂f∂x1
∣∣∣∣ = 1

Absolute error:
|f̃ − f | ≤ |ε1|+ |ε2|

Relative error:
|f̃ − f |
|f |

≤ |ε1|+ |ε2|
|x1 − x2|

If x1 = 0.5763± 0.5 · 10−4 and x2 = 0.5765± 0.5 · 10−4, we get

|f̃ − f |
|f |

≤ 10−4

10−4
= 1 = 100%.

The loss of accuracy occurring in the substraction of two almost equal num-
bers is called cancellation. Such loss of accuracy can often be avoided by
reformulation into a mathematically equivalent expression.

Example 4.

f = xm1
1 · xm2

2 · · ·xmn
n =

(
f

xmk
k

)
xmk
k
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∣∣∣∣ ∂f∂xk
∣∣∣∣ =

(
f

xmk
k

)
mkx

mk−1

k =
mk

xk
f

The upper bound of the absolute error:

(2)⇒ |f̃ − f | ≤
n∑
k=1

|εk|max

∣∣∣∣mk

xk
f

∣∣∣∣
The upper bound of the relative error:

|f̃ − f |
|f |

≤
n∑
k=1

|εk||mk|
max f/xk
|f |

≈
n∑
k=1

|mk|
∣∣∣∣ εkxk
∣∣∣∣

In multiplication and division upper bounds of relative errors are added.

Example 5. Suppose that x and y are numbers satisfying 5 ≤ x ≤ 10 and
1 ≤ y ≤ 2. Suppose that x has 3 and y has 4 correct decimals. Estimate the
absolute error in esin(xy).

f(x, y) = esin(xy)

(2)⇒ |f̃ − f | ≤ |εx|max

∣∣∣∣∂f∂x
∣∣∣∣+ |εy|max

∣∣∣∣∂f∂y
∣∣∣∣

Here |εx| ≤ 1
2
· 10−3 and |εy| ≤ 1

2
· 10−4.

∂f

∂x
= y cos(xy)esin(xy);

∂f

∂y
= x cos(xy)esin(xy)

When 5 ≤ x ≤ 10 and 1 ≤ y ≤ 2, we get∣∣∣∣∂f∂x
∣∣∣∣ ≤ 2 · 1 · e1 = 2e and

∣∣∣∣∂f∂y
∣∣∣∣ ≤ 10 · 1 · e1 = 10e,

and therefore

|f̃ − f | ≤ 1

2
· 10−3 · 2e+

1

2
· 10−4 · 10e = 1.5 · e · 10−3 < 0.005.

Example 6. In the sum
N∑
k=1

1√
1 + cosxk
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each xk is given with 3 correct decimals and 0 ≤ xk ≤ 1 ∀ k. How large can
N be if we require that the absolute error in the sum does not exceed 10−2?

The error in one individual term is at most

|ε|max |f ′(ξ)|

where
f(x) =

1√
1 + cosxk

, 0 ≤ ξ ≤ 1, |ε| ≤ 1

2
· 10−3

The total error is obtained by multilying this with N . Thus N can be at
most so large that the inequality

N · 1

2
· 10−3 max

0≤ξ≤1
|f ′(ξ)| ≤ 10−2

holds. Solving N from the inequality yields

N ≤ 10
1
2

max0≤ξ≤1 |f ′(ξ)|
≤ 10

1
2
· 0.2201

= 90.9,

where

max
0≤x≤1

|f ′(x)| = max
0≤x≤1

∣∣∣∣∣ sinx

2(1 + cos x)
3
2

∣∣∣∣∣ ≤ sin 1

2(1 + cos 1)
3
2

=
0.8415

2(1.5403)
3
2

= 0.2201.

The largest integer less than 90.9 is 90 and thus the answer is N = 90.

1.5 Statistical error analysis

In the case of a very large number of similar operations as in Examples 2
and 6 the value error bounds can be very pessimistic. Sometimes one could
get a more realistic error bound by using statistical analysis.

For example, if we multiply 1000 numbers each of which has 3 significant
digits, then in each individual number the relative error is at most 0.5 %�,
but he relative error of the product is ≤ 50 %. A statistical analysis shows
however that within 68 % probability the total error is < 3.2%.
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2 Numerical integration

2.1 Trapezoidal rule and Simpson’s formula

We wish to compute (numerically)

b∫
a

f(x)dx.

If the integrand f(x) is derivative of a known function F so that f(x) = F ′(x)
we get the analytic solution

F (b)− F (a) =

b∫
a

F ′(x)dx =

b∫
a

f(x)dx. (1)

Geometrically, we should compute the area of the domain appearing in the
figure. Let’s divide the domain into vertical stripes using the division of
[a, b] of the points x1, x2, . . . , xn−1. Approximating the area of each strip
separately and adding approximations we get an approximate value for the
total area and the integral

∫ b
a
f(x)dx. Clearly

b∫
a

f(x)dx =

x1∫
a

f(x)dx+

x2∫
x1

f(x)dx+ · · ·+
b∫

xn−1

f(x)dx. (2)

If we denote x0 = a and xn = b, (2) can be written

b∫
a

f(x)dx =
n−1∑
k=0

xk+1∫
xk

f(x)dx. (3)

We suppose that the subintervals [xk, xk+1] have equal length h. We approx-
imate the area of the strip corresponding to [xk, xk+1] by the area of the
trapezoid in the figure. Then we get an approximation

xk+1∫
xk

f(x)dx ≈ h
f(xk) + f(xk+1)

2
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Substituting this to (3) we get

b∫
a

f(x)dx ≈
n−1∑
k=0

h
f(xk) + f(xk+1)

2
. (4)

The graph of function f has been approximated with straight lines. In (4)
each function value (except f(x0) and f(xn)) appears twice. Therefore (4)
can be written

b∫
a

f(x)dx ≈ h

[
f(x0)

2
+ f(x1) + f(x2) + · · ·+ f(xn−1) +

f(xn)

2

]
(5)

This is the so called trapezoidal rule.

If f is twice continuously differentiable in [a, b], one can show that the error
in the approximation (5) is

−(b− a)

12
h2f ′′(ξ),

where ξ lies between a and b.

Trapezoidal rule
b∫

a

f(x)dx = h

[
f(x0)

2
+ f(x1) + f(x2) + · · ·+ f(xn−1) +

f(xn)

2

]
+R, (6)

where
R = −(b− a)

12
h2f ′′(ξ), a = x0 ≤ ξ ≤ xn = b.

For R we get an upper bound

|R| ≤ (b− a)

12
h2 max

a≤x≤b
|f ′′(ξ)| (7)

This upper bound will be arbitrarily small if h is taken small enough, because
R→ 0, when h→ 0.
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Example 1. We apply (6) to f(x) = x2 on the interval [0, 1]. Choose

h =
1

n
, x0 = 0, xn = 1, xk = kh =

k

n
.

Now f ′(x) = 2x and f ′′(x) = 2, and thus

R = −1− 0

12

(
1

n

)2

· 2 = − 1

6n2

1

3
=

1∫
0

x2dx = h

[
x20
2

+ x21 + x22 + · · ·+ x2n−1 +
x2n
2

]
+R

= h

[
0

2
+

(
1

n

)2

+

(
2

n

)2

+ · · ·+
(
n− 1

n

)2

+
1

2

]
− 1

6n2

=
h

n2

[
12 + 22 + · · ·+ (n− 1)2

]
+
h

2
− 1

6n2

⇒ 12 + 22 + · · ·+ (n− 1)2 =
n2

h

[
1

3
− h

2
+

1

6n2

]
=
n3

3
− n2

2
+
n

6

=
2n3 − 3n2 + n

6

12 + 22 + · · ·+ (n− 1)2 + n2 =
2n3 − 3n2 + n

6
+ n2

=
2n3 + 3n2 + n

6

If f ′′ is approximately constant, then the error in (6) can be estimated by
using Richardsson’s extrapolation as follows:

First we use the trapezoidal rule with n subintervals (h = b−a
n

):

b∫
a

f(x)dx = T1 +R1 where R1 = −(b− a)

12

(
b− a
n

)2

f ′′(ξ1). (8)
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Then we use the rule with 2n subintervals (h = b−a
2n

):

b∫
a

f(x)dx = T2 +R2 where R2 = −(b− a)

12

(
b− a
2n

)2

f ′′(ξ2). (9)

Since f ′′ is approximately constant on [a, b], we have f(ξ1) ≈ f(ξ2). Then
R1 ≈ 4R2, and (8) and (9) imply

b∫
a

f(x)dx ≈ T1 + 4R2

b∫
a

f(x)dx = T2 +R2

Substraction yields the 1
3
-rule

R2 =
T2 − T1

3
. (10)

This is an approximation for the error term in the trapezoidal rule with 2n
subintervals.

Since
∫ b
a
f(x)dx = T2 + R2, we can improve the approximation T2 to the

integral
∫ b
a
f(x)dx by using (10). We obtain

b∫
a

f(x)dx = T2 +
T2 − T1

3
. (11)

Remark. (11) is actually Simpson’s rule in a non-standard form. Usually
Simpson’s rule is derived by dividing [a, b] to an even number (2n) of subin-
tervals and writing

b∫
a

f(x)dx =
n−1∑
k=0

x2k+2∫
x2k

f(x)dx. (12)

Here each integral
∫ x2k+2

x2k
f(x)dx is approximated by integrating a quadratic

polynomial having same values as f at x2k, x2k+1 and x2k+2.
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Simpson’s rule
b∫

a

f(x)dx =
h

3
[f(x0) + 4U + 2J + f(x2n)] +R, (13)

where
U = f(x1) + f(x3) + · · ·+ f(x2n−1)

J = f(x2) + f(x4) + · · ·+ f(x2n−2)

R = −(b− a)

180
h4f (4)(ξ) a ≤ ξ ≤ b

We show next that (11) and (13) agree so that

T2 +
T2 − T1

3
=
h

3
[f(x0) + 4U + 2J + f(x2n)] ,

where T1 and T2 are as before trapezoidal rule approximations with n and
2n subintervals, respectively.

T1 = 2h

[
f(x0)

2
+ + f(x2) + + f(x4) + · · ·

+ f(x2n−2) + +
f(x2n)

2

]
4T2 = 4h

[
f(x0)

2
+ f(x1) + f(x2) + f(x3) + f(x4) + · · ·

+f(x2n−2) + f(x2n−1) +
f(x2n)

2

]
4T2 − T1 = h [f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·

+2f(x2n−2) + 4f(x2n−1) + f(x2n)]

= h [f(x0) + 4U + 2J + f(x2n)]

Remark 1. For n = 2 we have J = 0 and Simpson’s rule reads

b∫
a

f(x)dx ≈ h

3

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
.
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Remark 2. If f is a polynomial of degree ≤ 3, then the approximation
given by Simpson’s rule yields the exact value of integral (f (4)(x) ≡ 0 for
such polynomial).

Example 2. Apply Simpson’s rule (h = 0.1) to the integral

1∫
0

(x3 + sin (p
√

3x))dx.

For which values of p the approximation given by Simpson’s rule has error
≤ 1

2
· 10−3 ?

f(x) = x3 + sin (p
√

3x)

f ′(x) = 3x2 + p
√

3 cos (p
√

3x)

f ′′(x) = 6x− 3p2 sin (p
√

3x)

f ′′′(x) = 6− 3
√

3p3 cos (p
√

3x)

f (4)(x) = 9p4 sin (p
√

3x)

|f (4)(ξ)| = |9p4 sin (p
√

3x)| ≤ 9p4

⇒ |R| ≤ b− a
180

h4 max
a≤x≤b

|f (4)(x)| = 1− 0

180

(
1

10

)4

9p4 =
1

20
· 10−4p4.

This upper bound is ≤ 1
2
· 10−3 if

1

20
· 10−4p4 ≤ 1

2
· 10−3

⇒ p4 ≤ 100

⇒ p2 ≤ 10

⇒ |p| ≤
√

10.

The error is at most 1
2
· 10−3 if |p| ≤

√
10 provided that errors in computing

function values are neglected.

The error term R can be estimated by using Richardsson’s extrapolation just
as in the case of the trapezoidal rule, if f (4)(x) is approximately constant.
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b∫
a

f(x)dx = S1 +R1; R1 = −(b− a)

180
h4f (4)(ξ1)

Halving each subinterval we apply Simpson’s rule with h
2
:

b∫
a

f(x)dx = S2 +R2; R2 = −(b− a)

180
·
(
h

2

)4

f (4)(ξ2). (14)

If f (4)(ξ1) ≈ f (4)(ξ2), then R1 ≈ 16R2 and

b∫
a

f(x)dx ≈ S1 + 16R2

b∫
a

f(x)dx = S2 +R2

Substraction yields the 1
15
-rule

R2 ≈
S2 − S1

15
. (15)

In order to reach a desired accuracy one can in practice apply Simpson’s
rule with 2, 4, 8, 16, etc. subintervals and stop the computation when the
absolute value on the difference of two consecutive results divided by 15 is
less than the desired error bound. Finally the correction

S2 − S1

15

should be added to the last approximation S2 (see (14)).

2.2 Example

We shall apply the trapezoidal rule and Simpson’s rule to the integral

1∫
0

x4dx =

1/
0

x5

5
=

1

5
= 0.2

17



Trapezoidal rule with one subinterval (length h = 1):

T1 = 1 ·
[

04

2
+

14

2

]
= 0.5

With two subintervals (length h = 1
2
), we get

T2 =
1

2

[
04

2
+

(
1

2

)4

+
14

2

]
= 0.28125

Here the correct error is 0.08125. The 1
3
-rule gives the error estimate

T2 −
1∫

0

x4dx ≈ −T2 − T1
3

= −0.28125− 0.50000

3
= 0.07292

Formula (7) gives the error bound

|R| ≤ b− a
12

h2 max
a≤x≤b

|f ′′(x)| = 1− 0

12

(
1

2

)2

max
0≤x≤1

|12x2| = 0.25000

The error estimate given by the 1
3
-rule (0.07292) is pretty good while the

error bound given by formula (7) (0.25000) is too pessimistic. The 1
15
-rule as

well as the formula
R = −b− a

180
h4f (4)(ξ)

both give an error estimate with 5 correct decimals. The second estimate is
actually exact, because f (4)(ξ) = 4 · 3 · 2 · 1 does not depend on ξ.

2.3 Evaluation error

The total error arising from the inaccuracy of the values f(xi) of the integrand
is called the evaluation error.

Theorem. Let f(xi) and f̃(xi) be the exact and computed function values at
xi, respectively, and let εi be the error so that

f̃(xi) = f(xi) + εi.

Suppose that |εi| < ε for each i. Then the absolute value of the evaluation
error in the trapezoidal rule and Simpson’s rule is at most

ε(b− a).

18



Proof. (for the trapezoidal rule)
Denote fk = f(xk), f̃k = f̃(xk). Evaluation error for the trapezoidal rule:

L = h

(
f̃0
2

+ f̃1 + · · ·+ f̃n−1 +
f̃n
2

)
− h

(
f0
2

+ f1 + · · ·+ fn−1 +
fn
2

)

= h

(
f̃0 − f0

2
+ (f̃1 − f1) + · · ·+ (f̃n−1 − fn−1) +

f̃n − fn
2

)
= h

(ε0
2

+ ε1 + · · ·+ εn−1 +
εn
2

)

|L| ≤ h

(
|ε0|
2

+ |ε1|+ · · ·+ |εn−1|+
|εn|
2

)
≤ h

(ε
2

+ ε+ · · ·+ ε+
ε

2

)
(16)

≤ hε

(
1

2
+ 1 + · · ·+ 1 +

1

2

)
Here the expression h

{
1
2

+ 1 + · · ·+ 1 + 1
2

}
also results from the trapezoidal

rule applied to the integral
∫ b
a

1dx. For this integral the trapezoidal rule gives
an exact value, because the second derivative appearing in the error formula
(for the constant function ≡ 1) is zero. Therefore

b∫
a

1dx = b− a = h

(
1

2
+ 1 + · · ·+ 1 +

1

2

)
.

From (16) we thus get
|L| ≤ ε(b− a).

The proof for Simpson’s rule is analogous.

2.4 Difficulties in numerical integration

The above formulas for numerical integration can only be applied when the
next two conditions are satisfied:

1. The interval a ≤ x ≤ b is finite
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2. The integrand f(x) is bounded

Problem 1. In applications we often find integrals with an interval of infinite
length, e.g.

∞∫
a

f(x)dx.

By definition,
∞∫
a

f(x)dx = lim
A→∞

A∫
a

f(x)dx;

if this limit exists, then the "tail integral"
∫∞
A
f(x)dx approaches zero as

A→∞.

Problem 1 is solved by performing a numerical integration on the finite subin-
terval [a,A] and by estimating the tail integral from A to ∞.

For example, if we wish to compute
∫∞
a
f(x)dx with an error ≤ ε, we could

write
∞∫
a

f(x)dx =

A∫
a

f(x)dx+

∞∫
A

f(x)dx

and choose A so that the tail integral
∫∞
A
f(x)dx has absolute value ≤ ε

2
.

Then we could apply e.g. Simpson’s rule to
∫ A
a
f(x)dx and double the num-

ber of subintervals as many times until the error is ε
2
. Then the best estimate

for
∫ A
a
f(x)dx should differ from

∫∞
a
f(x)dx by at most ε.

Similarly we could handle integrals such as

a∫
−∞

f(x)dx or
∞∫

−∞

f(x)dx

Example of a tail estimate.

∞∫
0

(sinx)2

x5 + 1
dx =

A∫
0

(sinx)2

x5 + 1
dx+

∞∫
A

(sinx)2

x5 + 1
dx

20



We wish to choose A so that the tail integral

∞∫
A

(sinx)2

x5 + 1
dx ≤ 0.001

We replace the integrand with a majorant which is easily integrable. Since

(sinx)2 ≤ 1 and
1

x5 + 1
≤ 1

x5

we have
∞∫
A

(sinx)2

x5 + 1
dx ≤

∞∫
A

1

x5
dx =

∞/
A

− 1

4x4
=

1

4A4
.

If A = 4, then
1

4A4
=

1

45
=

1

1024
≤ 0.001,

so that
∞∫
A

(sinx)2

x5 + 1
dx ≤ 0.001.

Remark. In tail estimates usually quite crude estimates of the integrand
suffice.

Problem 2. If the integrand is unbounded, we could try to reduce the
integral by using a change of variable to another integral with a bounded
integrand. Then the interval of integration usually becomes infinite, so that
we should use the strategy described in the solution of Problem 1.

Example.
1∫

0

1 + sin x√
x

dx

Substitute x = 1
y
, dx = − 1

y2
dy to get

1∫
∞

1 + sin 1
y√

1
y

(
−dy
y2

)
=

∞∫
1

1 + sin 1
y

y
3
2

dy
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Here the integral
∞∫
1

1 + sin 1
y

y
3
2

dy

is bounded for 1 ≤ y <∞. Another way to compute the integral is to divide
the integral

1∫
0

1 + sin x√
x

dx =

1∫
0

dx√
x
dx+

1∫
0

sinx√
x
dx

and then substitute sinx for it’s Taylor series

sinx = x− x3

3!
+
x5

5!
− · · · .

2.5 Example

The primitive of f(x) = e−x
2 cannot be expressed in closed form. However

∞∫
0

e−x
2

dx =

√
π

2
= 0.88623

Let’s compute this numerically with four correct decimals. Write

∞∫
0

e−x
2

dx =

A∫
0

e−x
2

dx+

∞∫
A

e−x
2

dx

and determine A so that
∞∫
A

e−x
2

dx ≤ 1

4
· 10−4 =

1

2
· 1

2
· 10−4.

For example, we could use the fact that x2e−x2 is decreasing for 1 ≤ x <∞
so that

e−x
2

=
(
x2e−x

2
)
· 1

x2
≤ A2e−A

2 1

x2
if A ≥ 1.
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Now we get a tail estimate

∞∫
A

e−x
2

dx =

∞∫
A

(
x2e−x

2
) dx
x2
≤ A2e−A

2

∞∫
A

dx

x2

= A2e−A
2 · 1

A
= Ae−A

2

(A ≥ 1)

By choosing A = 4 we get

∞∫
4

e−x
2

dx ≤ 4 · e−16 ≈ 4 · 10−7 ≤ 1

4
· 10−4.

We estimate
4∫
0

e−x
2
dx by using the trapezoidal formula.

2.6 Choice of step length h

If the integrand varies heavily in a subinterval of the interval of integration,
it may be a good idea to write

b∫
a

f(x)dx =

c∫
a

f(x)dx+

b∫
c

f(x)dx

and compute separately the integral over the interval ([a, c] in figure) where
f has large oscillation. Then we can substantially reduce the computations
because in computing the integral

∫ b
c
f(x)dx the required step length is much

larger than in [a, c].

2.7 Remark

Even when
∫ b
a
f(x)dx can be computed analytically by using a known primi-

tive function F such that F ′ = f , the computations can be so awkward that
a numerical solution is to be referred.
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3 Nonlinear equations
In this chapter we try to determine approximate values of real roots of a
nonlinear equation

f(x) = 0 (1)

and estimate the error in these approximations.

3.1 Graphical analysis

A sketch of the graph of y = f(x) can give a preliminary idea of the location
of the roots of (1) on the x-axis. The intersection points of the graph with
the x-axis then give approximations of these roots.

Sometimes (1) could be replaced with f1(x) = f2(x) (if e.g. f = f1 − f2).
Then the x-coordinates of the intersection points of the graphs of y = f1(x)
and y = f2(x) provide approximations for the roots.

Example 1. If f(x) = x2 − cosx, then (1) can be written x2 = cosx. The
positive root is then seen to be approximately x0 = 0.8.

3.2 Taylor’s formula

Let us recall Taylor’s formula in the simplest cases.

The mean value theorem.
If f is differentiable on [a, b], then ∃ ξ ∈ (a, b) such that

f(b)− f(a) = (b− a)f ′(ξ). (2)

Graphically this means that a tangent of the graph of y = f(x) is parallel to
the line segment L joining the points

(
a, f(a)

)
and

(
b, f(b)

)
. The slope of L

is
f(b)− f(a)

b− a
and therefore it agrees with the slope of the tangent at

(
ξ, f(ξ)

)
.

Another example of Taylor’s formula is

f(b)− f(a) = (b− a)f ′(a) +
(b− a)2

2
f ′′(ξ), (3)
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where a < ξ < b. If h = b− a, then (3) can be written

f(a+ h)− f(a) = hf ′(a) +
h2

2
f ′′(ξ). (4)

3.3 General error estimate

Suppose that a is an approximate value of a root x of f(x) = 0. If a is a
good approximation, then |f(a)| should in general be small.

Conversely we have the following estimate.

Theorem 1. If x and a are as above, then

|x− a| ≤ |f(a)|
minx∈I |f ′(x)|

where I is the interval with end points a and x.

Proof. Mean value theorem (2) yields

− f(a) = f(x)− f(a) = f ′(ξ)(x− a)

⇒ |f(a)| = |f ′(ξ)||x− a| ≥ min
x∈I
|f ′(x)||x− a|

⇒ |x− a| ≤ |f(a)|
minx∈I |f ′(x)|

3.4 Fixed point iteration

Let us write f(x) = 0 in an equivalent form x = F (x) (two equations are
called equivalent if they have exactly the same roots). F can be chosen in
different ways, for example

x = x− f(x) = F1(x)

x = x− cf(x) = F2(x) (c 6= 0 constant)

x = x− g(x)f(x) = F3(x) (0 < |g(x)| <∞)
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The equation f(x) = 0 has the same roots with x = Fi(x) (i = 1, 2, 3).

In iteration methods we start with an initial value x0 and define x1, x2, . . .
by the iteration formula

xn+1 = F (xn) (n = 0, 1, 2, . . .). (5)

Problem. When does the sequence {xn} converge to the desired root x of
x = F (x)?

We shall see that the method works under some assumptions on the slope of
F (Theorem 3).

Theorem 2. Suppose that {xn} converges to a limit α and that F is contin-
uous. Then α is the root of the equation x = F (x).

Proof. Let n→∞ in xn+1 = F (xn).

Left-hand side: xn+1 → α

Right-hand side: Since F is continuous, then F (xn)→ F (α).

Then
α = lim

n→∞
xn+1 = lim

n→∞
F (xn) = F (α).

The main theorem concerning the convergence of the iteration is:

Theorem 3. Suppose that the inequality

|F ′(x)| ≤ m < 1

holds on an interval containing the root x and each xn. Then

lim
n→∞

xn = x.

Proof.
x1 = F (x0)
x = F (x)

}
⇒ x1 − x = F (x0)− F (x)

Mean value theorem (2)

⇒ F (x0)− F (x) = F ′(ξ)(x0 − x)
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Since |F ′(ξ)| ≤ m, we get

|x1 − x| = |F (x0)− F (x)| = |F ′(ξ)||x0 − x| ≤ m|x0 − x|.

Hence |x1 − x| ≤ m|x0 − x|. Similarly

|x2 − x| = |F (x1)− F (x)| = |F ′(ξ1)||x1 − x| ≤ m|x1 − x|.

Since |x1 − x| ≤ m|x0 − x|, it follows that

|x2 − x| ≤ m|x1 − x| ≤ m2|x0 − x|.

Repeating the argument we find that

|xn − x| ≤ m|xn−1 − x| ≤ m2|xn−2 − x| ≤ · · · ≤ mn|x0 − x|.

Here mn → 0 as n → ∞ (because m < 1). Therefore the right-hand side
→ 0. Hence

|xn − x| → 0

and the theorem is proved.

Example 3. Determine the real root of the equation

x3 − x− 1 = 0.

From the graph we see that the only real root x ≈ 1.3. We write the equation
in an equivalent form

x = x3 − 1 = F (x).

⇒ F ′(x) = 3x2

Therefore F ′(x) > 1 close to x = 1.3. Thus we cannot expect that the
sequence xn = F (xn−1) converges. For example, if x0 = 1.3, then x1 = 1.197
and x2 ≈ 0.71506, so that the distance from the root x is increasing.

Example 4. We write the equation of Example 3 in the form

x = F (x) =
1

x2 − 1
.

Then
F ′(x) = − 2x

(x2 − 1)2
,

so that |F ′(x)| > 1 close to x = 1.3. If x0 = 1.3, then x1 = 1.4493 and
x2 = 0.9087. The iteration diverges.
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Example 5. Write the above equation in the form

x = F (x) = (x+ 1)
1
3 .

Then
F ′(x) =

1

3
(x+ 1)−

2
3

and
F ′(1.3) =

1

3
(2.3)−

2
3 < 1.

Actually

|F ′(x)| ≤ 1

3
when x > 0.

By induction one can show that xn > 0 if x0 > 0. Thus by Theorem 3
the iteration converges whenever x0 > 0. If x0 = 1.3, we get x1 = 1.3200,
x2 = 1.3238.

In the proof of Theorem 3 we derived the inequality

|xn − x| ≤ mn|x0 − x|. (6)

This can be used to estimate the accuracy of xn if we know an upper bound
for m and |x0 − x|.

Problem. How can we decide in general whether the iteration converges for
some given initial values x0?

In Theorem 3 we assumed that |F ′(x)| ≤ m < 1 on an interval I which
contains x and each xn. How can we find such an I in practice?

Answer:

- First we find an interval a ≤ x ≤ b containing the root x and the initial
point x0

- I shall be the interval which has the same midpoint as a ≤ x ≤ b but
is three times as long as a ≤ x ≤ b

- m is chosen so that |F ′(x)| ≤ m on I
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- if then m < 1, then the hypotheses of Theorem 3 hold on I, inequality
(6) holds and the iteration converges

- if m ≥ 1, start again with a different interval a ≤ x ≤ b.

Example 6. How many iterations should be performed by using the formula

xn+1 =
−1

x2n + 2

and the initial point x0 = −0.5 to determine the real root of

x3 + 2x+ 1 = 0

with four correct decimals?

Since the polynomial x3 + 2x + 1 changes signs on the interval −0.5 ≤ x ≤
−0.4, then |x0 − x| ≤ 0.1 and I will be the interval −0.6 ≤ x ≤ −0.3.

F (x) =
−1

x2 + 2
; F ′(x) =

2x

(x2 + 2)2

For each x ∈ I we have

|F ′(x)| ≤ 2 · 0.6
((−0.3)2 + 2)2

=
2 · 0.6
2.092

≤ 0.3

We can choose m = 0.3. From (6) we get

|xn − x| ≤ 0.3n · 0.1

For n = 7 the right-hand side is ≤ 1
2
· 10−4. Thus 7 iterations will suffice.

In error estimates we should not forget the evaluation error.

Theorem 4. Let x be a root of x = F (x) and let εn be the evaluation error
in F (xn) so that

xn+1 = F (xn) + εn. (7)

Suppose that |εn| ≤ ε and that

|F ′(x)| ≤ m < 1 (8)

holds for each x between x and x. Then

|xn+1 − x| ≤
m

1−m
|xn+1 − xn|+

ε

1−m
. (9)
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Proof.
xn+1 − x

(7)
= F (xn) + εn − x = F (xn) + εn − F (x)

⇒ |xn+1 − x| ≤ |F (xn)− F (x)|+ |εn|

Mean value theorem & (8)

⇒ |F (xn)− F (x)| ≤ m|xn − x|.

Hence

|xn+1 − x| ≤ m|xn − x|+ |εn|
= m|xn − xn+1 + xn+1 − x|+ |εn|
≤ m|xn − xn+1|+m|xn+1 − x|+ ε

⇒ (1−m)|xn+1 − x| ≤ m|xn − xn+1|+ ε

Since m < 1, (9) follows.

Example 7. We apply Theorem 4 to Example 5.

f(x) = x3 − x− 1; x = F (x) = (x+ 1)
1
3

x0 = 1.3, x1 = 1.3200, x2 = 1.3238 n = 1

Now f(1.3) = −0.103 < 0 and f(1.4) = 0.344 > 0 so 1.3 ≤ x ≤ 1.4.

|F ′(x)| = 1

3(x+ 1)
2
3

≤ 1

3 · 2.3 2
3

≤ 0.2 = m

Since x1 = 1.3200 lies between 1.3 and 1.4, we can apply Theorem 4 with
n = 1. If we assume that the evaluation error in x2 is ≤ 1

2
· 10−3, we obtain

|x2 − x| ≤
0.2

0.8
|1.3238− 1.3200|+ 1

0.8
· 1

2
· 10−3

≤ 1

4
· 4 · 10−3 + 0.625 · 10−3 ≤ 2 · 10−3

Thus the error in x2 is at most 0.002.
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Example 8. Suppose that ε = 10−12 and m = 1
2
in Theorem 4. If x should

be determined with an error ≤ 10−10, we continue the iteration until

1
2

1− 1
2

|xn+1 − xn|+
10−12

1− 1
2

≤ 10−10,

that is, until

|xn+1 − xn| ≤ 10−10 − 2 · 10−12 = 0.98 · 10−10.

Remark. The first term on the right-hand side of (9) reflects the truncation
error and the second term reflects the evaluation error.

We usually apply Theorem 4 by choosing an interval I containing x such
that (8) holds for some m < 1 and each x ∈ I. If xn ∈ I, we compute xn+1

and estimate the error |xn+1 − x| by using (9). If xn+1 ∈ I, we can repeat
the procedure. The iteration is stopped when the error is small enough.

The error bound for xn+1 given by (9) is always at least equal to the evaluation
error in F (xn). The actual error in xn+1 can of course be smaller.

3.5 Newton’s method

We write f(x) = 0 in the form

x = x− f(x)

f ′(x)
= F (x).

Iteration formula 
x0 = initial value

xn+1 = xn −
f(xn)

f ′(xn)
; n = 0, 1, 2, . . .

The iteration can be performed graphically by drawing a tangent to y = f(x)
at
(
xn, f(xn)

)
and determine the intersection point of this tangent and x-axis.

The equation of this tangent is

y − f(xn) = f ′(xn)(x− xn)
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and the intersection point has x-coordinate satisfying

0− f(xn) = f ′(xn)(x− xn),

so that
x = xn −

f(xn)

f ′(xn)
,

that is, x = xn+1.

Example 9. f(x) = x3 − x− 1
x0 = 1.3

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x3n − xn − 1

3x2n − 1
=

2x3n + 1

3x2n − 1

The computations are easier than in Example 5. If x0 = 1.3, we get

x1 = 1.3253 and x2 = 1.32472.

Example 10. Computing of square roots.

√
a is a root of the equation

f(x) = x2 − a = 0.

Here f ′(x) = 2x, and the initial point can be guessed. Then

xn+1 = xn −
x2n − a

2xn
=

1

2

(
xn +

a

xn

)
.

This algorithm is very practical; each step requires just one division and
computation of one arithmetic mean.
If a = 5 and x0 = 2, we get

x1 = 2.25, x2 = 2.235, x3 = 2.2361.

Compare with the exact value
√

5 = 2.23607.
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Example 11. Reciprocals.

1
a
is the root of

f(x) =
1

x
− a = 0.

Now f ′(x) = − 1
x2

and thus

xn+1 = xn +
1
xn
− a
1
x2n

= xn(2− axn).

If a = 13 and x0 = 0.1 we get

x1 = 0.07, x2 = 0.0763, x3 = 0.076918.

The exact value is 1
13

= 0.076923.

The convergence of Newton’s method can be studied by using Theorem 3.

F (x) = x− f(x)

f ′(x)

F ′(x) = 1− f ′(x)2 − f(x)f ′′(x)

f ′(x)2
=
f(x)f ′′(x)

f ′(x)2
.

If f is two times differentiable, the iteration converges therefore is

|F ′(x)| =
∣∣∣∣f(x)f ′′(x)

f ′(x)2

∣∣∣∣ ≤ m < 1

in a neighborhood of the root x and |x0 − x| is sufficiently close to x.

Theorem 4 can be applied to find error estimates. Then ε is an upperbound
for the evaluation error in

F (xn) = xn −
f(xn)

f ′(xn)
.

Since x is fixed, this evaluation error is equal to the evaluation error in f(xn)
f ′(xn)

.
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Example 12. We apply Theorem 4 to Example 9.

f(x) = x3 − x− 1

1.3 ≤ x ≤ 1.4

f(1.3) = −0.103 < 0

f(1.4) = 0.344 > 0

f ′(x) = 3x2 − 1; f ′′(x) = 6x

As in Example 7 we estimate the derivatives between x = 1.3 and x = 1.4.

|F ′(x)| =
∣∣∣∣f(x)f ′′(x)

f ′(x)2

∣∣∣∣ ≤ ∣∣∣∣0.344 · 6 · 1.4
4.12

∣∣∣∣ ≤ 0.2

If we assume that ε = 1
2
· 10−5, we obtain

|x2 − x| ≤
0.2

1− 0.2
|1.32472− 1.3253|+

1
2
· 10−5

1− 0.2

=
1

4
· 0.00058 +

1

1.6
· 10−5

= 0.000145 + 0.625 · 10−5

≤ 0.000152.

Theorem 5. Suppose that f is two times differentiable, f(x) = 0 and f ′(x) 6=
0. If xn is sufficiently close to x, then there exists a number ξ between xn
and x such that

|xn+1 − x| =
∣∣∣∣ f ′′(ξ)2f ′(xn)

∣∣∣∣ · |xn − x|2 (10)

Proof. Let ∆x = x− xn (correction) so that x = xn + ∆x. Taylor’s formula
⇒

0 = f(x) = f(xn + ∆x) = f(xn) + ∆xf ′(xn) +
∆x2

2
f ′′(ξ). (11)

By hypothesis, f ′ is continuous and f ′(x) 6= 0. If xn is sufficiently close to x,
then also f ′(xn) 6= 0. Then (11) ⇒

0 =
f(xn)

f ′(xn)
+ ∆x+

∆x2

2

f ′′(ξ)

f ′(ξ)

= xn − xn+1 + x− xn +
(x− xn)2

2

f ′′(ξ)

f ′(ξ)

⇒ xn+1 − x =
(x− xn)2f ′′(ξ)

2f ′(xn)
⇒ (10).
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Formula (10) shows that the convergence pf Newton’s method is quadratic:
the error in xn+1 is proportional to the square of the error in xn. If the
proportionality coefficient ∣∣∣∣ f ′′(ξ)2f ′(xn)

∣∣∣∣
is of order 1, then the number of correct decimals will be doubled in each
iteration step.

In general fixed point iteration convergence is linear ; then (10) is replaced
with

|xn+1 − x| = |F ′(ξ)||xn − x|

Order of convergence is defined as the largest value of p such that

lim
n→∞

|xn+1 − x|
|xn − x|p

= c <∞.

Order of linear convergence is 1 and order of quadratic convergence is 2.

Newton introduced his method in 1687 and it was later applied by Keppler
to the equation x− e sinx = a.

3.6 Secant method

If f ′(xn) is replaced by the difference quotient

f(xn)− f(xn−1)

xn − xn−1

in Newton’s method, we get the iteration formula

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
=
xnf(xn−1)− xn−1f(xn)

f(xn−1)− f(xn)
(12)

In contrast to the previous methods the iteration formula of this secant
method is no longer of the form

xn+1 = F (xn),
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and we also need two initial values x0 and x1. The method can be used for
example when the derivative f ′(xn) is difficult to evaluate (f(xn) could e.g.
be defined implicitly etc.).

The converge of the secant method is "superlinear", that is, faster than linear
covergenge but slower than quadratic convergence. The order of convergence
for the secant method is in fact the golden mean γ = 1.618 . . ..

If in (12)
(
xn−1, f(xn−1)

)
is replaced with

(
x0, f(x0)

)
, we obtain "classical

Regula Falsi". Then all secants pass through a single point
(
x0, f(x0)

)
. Con-

vergence is slower than in (12).

In another variation of (12) successive approximations xn and xn−1 always
lie on different sides of the root. If xn and xn−1 are such approximations,
then

f(xn)f(xn−1) < 0.

We compute xn+1 from (12) and find out whether f(xn)f(xn+1) < 0. If this
is the case, we continue iteration. If f(xn)f(xn+1) > 0, then we replace xn
with xn−1 in the next iteration step. The advantage of this method is that
at each step we get an error estimate, because the root always lies between
xn and xn−1 and also between xn+1 and xn.

In the computation of the values of f we must, however, take into account
the evaluation error. If the evaluation error in f(x) is at most ε, then f(xn)
is positive if the computed approximate value f̃(xn) satisfies f̃(xn)− ε > 0.

3.7 Horner’s scheme

Horner’s scheme is a method to compute the value of a polynomial p(x) and
its derivative p′(x) at a given point x0. For example, the polynomial

p(x) = 2x3 + 5x2 − 4x+ 3

can be written in the form

p(x) =
(
(2x+ 5)x− 4

)
x+ 3. (13)
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The value of p at x0 can be computed in three steps:

c1 = 2x0 + 5
c2 = c1x0 − 4
c3 = c2x0 + 3

(13) ⇒ p(x0) = c3

General case: Suppose that

p(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an.

The value p(x0) can be computed recursively:
c0 = a0

ck = ck−1x0 + ak (1 ≤ k ≤ n)

p(x0) = cn

(14)

The computation of p(x0) then requires n additions and n multiplications.

Claim. p(x) = (x− x0)q(x) + cn, where q(x) = c0x
n−1 + c1x

n−2 + · · ·+ cn−1.

Proof.

(x− x0)q(x) + cn = xq(x)− x0q(x) + cn

= c0x
n + c1x

n−1 + · · ·+ cn−1x

− x0(c0xn−1 + c1x
n−2 + · · ·+ cn−1) + cn

= c0x
n + (c1 − c0x0)xn−1 + (c2 − c1x0)xn−2 + · · ·

+ (cn−1 − cn−2x0)x+ (cn − cn−1x0)
= a0x

n + a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an

= p(x).

Differentiation:
p′(x) = q(x) + (x− x0)q′(x)

⇒ p′(x0) = q(x0)

p′(x0) can therefore be computed by Horner’s rule by replacing the coefficients
ak with the numbers c0, c1, . . . , cn−1:
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
d0 = c0

dk = dk−1x0 + ck (1 ≤ k ≤ n− 1)

p′(x0) = dn−1

(15)

Example 13. p(x) = 2x3 + 5x2 − 4x + 3;x0 = 1. To compute p(x0) and
p′(x0) we build Horner’s scheme:

2 5 −4 3
ck−1x0 → x0 = 1 2 7 3

ck → 2 7 3 6 = p(1)

dk−1x0 → x0 = 1 2 9
dk → 2 9 12 = p′(1)

Example 14. Determine all real roots of the equation

p(x) = x3 − 2x− 5 = 0.

By drawing the graph we see that there is only one real root x which lies
between x = 2 and x = 3. Newton’s method with x0 = 2:

x0 = 2

xn+1 = xn −
p(xn)

p′(xn)
= xn −

x3n − 2xn − 5

3x2n − 2

We use Horner’s scheme for the computation of p(2) and p′(2):

1 0 −2 −5
x0 = 2 +1 · 2 +2 · 2 +2 · 2

1 2 2 −1 = p(2)

x0 = 2 +1 · 2 +4 · 2
1 4 10 = p′(2)

Therefore
x1 = x0 −

p(x0)

p′(x0)
= 2− p(2)

p′(2)
= 2− −1

10
= 2.1
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The next step yields the scheme

1 0 −2 −5
x = 2.1 +1 · 2.1 +2.1 · 2.1 +2.41 · 2.1

1 2.1 2.41 0.061 = p(2.1)

x = 2.1 +1 · 2.1 +4.2 · 2.1
1 4.2 11.23 = p′(2.1)

x2 = 2.1− p(2.1)

p′(2.1)
= 2.1− 0.061

11.23
= 2.094568

Each iteration step after this yields tha same result xn = 2.094551.

Remark. The example shows how Horner’s scheme could be used in in con-
nection with Newton’s method. In this example the number of computations
could be reduced, however, by writing the iteration formula in the form

xn+1 = xn −
x3n − 2xn − 5

3x2n − 2
=

2x3 + 5

3x2n − 2
.

3.8 Systems of nonlinear equations

We present an analytic derivation for Newton’s method, which can be gen-
eralized for several variables.

Let x be a root of f(x) = 0. If xn is a good approximation of x, then
∆x = x− xn is small. Taylor’s formula (4) ⇒

0 = f(x) = f(xn + ∆x) = f(xn) + ∆xf ′(xn) +
(∆x)2

2
f ′′(ξ).

If f ′′(ξ) is not very large, then the last term is small, so that

0 = f(x) ≈ f(xn) + ∆xf ′(xn)

⇒ ∆x ≈ − f(xn)

f ′(xn)

Hence
xn + ∆x ≈ xn −

f(xn)

f ′(xn)
= xn+1,
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Thus xn+1 should be a better approximation of x than xn. This was the
analytic derivation of Newton’s method.

The problem for two variables is to look for approximate solutions of a system{
f(x, y) = 0

g(x, y) = 0
(19)

The iteration method will be found as before by using Taylor’s formula.

Let (x, y) be an exact solution of (19) and let (xn, yn) be an approximation
of (x, y). Then ∆x = x − xn and ∆y = y − yn are small and x = xn + ∆x,
y = yn + ∆y. Taylor’s formula (Analysis)

0 = f(x, y) = f(xn + ∆x, yn + ∆y)

= f(xn, yn) + ∆xD1f(xn, yn) + ∆yD2f(xn, yn) + T1

= f(xn, yn) + ∆x
∂f

∂x
(xn, yn) + ∆y

∂f

∂y
(xn, yn) + T1

Similarly

0 = g(x, y) = g(xn, yn) + ∆x
∂q

∂x
(xn, yn) + ∆y

∂q

∂y
(xn, yn) + T2

The remainder T1 has the form

T1 =
1

2

(
∆x2

∂2

∂x2
f(xn + ξ∆x, yn + ξ∆y)

+ 2∆x∆y
∂2

∂x∂y
f(xn + ξ∆x, yn + ξ∆y)

+ ∆y2
∂2

∂y2
f(xn + ξ∆x, yn + ξ∆y)

)
(0 < ξ < 1)

If these second partial derivatives are not very large, then T1 (and similarly
T2) is small, so that approximately

0 = f(xn, yn) + ∆x
∂f

∂x
(xn, yn) + ∆y

∂f

∂y
(xn, yn)

0 = g(xn, yn) + ∆x
∂g

∂x
(xn, yn) + ∆y

∂g

∂y
(xn, yn)

(20)
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We solve ∆x and ∆y from (20) and set

xn+1 = xn + ∆x, yn+1 = yn + ∆y

This is Newton’s method for the solution of (19).

Example 15. {
x2 − y2 = 1

x2 + y2 = 4

f(x, y) = x2 − y2 − 1,
∂f

∂x
= 2x,

∂f

∂y
= −2y

q(x, y) = x2 + y2 − 4,
∂q

∂x
= 2x,

∂q

∂y
= 2y

This system has a solution x =
√

2.5 = 1.5811 and y =
√

1.5 = 1.2247. The
system (20) is now{

0 = x2n − y2n − 1 + ∆x · 2xn + ∆y · (−2yn)

0 = x2n + y2n − 4 + ∆x · 2xn + ∆y · 2yn

Solution:
2x2n − 5 + 4xn ·∆x = 0 ⇒ ∆x =

5− 2x2n
4xn

2y2n − 3 + 4yn ·∆y = 0 ⇒ ∆y =
3− 2y2n

4yn

Iteration formula:
xn+1 = xn + ∆x =

2x2n + 5

4xn
=

1

2
xn +

5

4
· 1

xn

yn+1 = yn + ∆y =
2y2n + 3

4yn
=

1

2
yn +

3

4
· 1

yn

Starting from x0 = y0 = 1.4 we obtain

x1 =
1

2
· 1.4 +

5

4
· 1

1.4
= 1.593

y1 =
1

2
· 1.4 +

3

4
· 1

1.4
= 1.236

x2 = 1.5812

y2 = 1.2248
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3.9 Ill-conditioned problems

Consider an equation p(x) = C, where p is a polynomial. Sometimes a small
perturbation of the coefficients of p can result in a dramatic change in the
roots of p(x) = 0.

For example, if

p(x) = (x− 1)(x− 2) · · · (x− 20) = x20 − 210x19 + · · ·+ 20!,

then the roots of p(x) = 0 are x = 1, x = 2, . . . , x = 20.

We change the coefficient −210 of x19 by replacing it with −210− 2−23. To
find the roots of this kind of equation we need a much higher accuracy in
computations than 2−23.
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4 Approximation

4.1 Introduction

There are a few reasons why approximation is to be referred.

1. Approximation of a given function by a simpler function makes some
tasks easier, e.g. evaluation of the function values, numerical integra-
tion and differentiation

2. If the values of the function are originally known only at finitely many
points (e.g. as measured quantities), then a suitably chosen continu-
ous function could approximate the given function at points where the
values are not known.

The approximating function could be e.g.

- a polynomial

- a rational function P (x)
Q(x)

- an exponential or a trigonometric function

Consider an approximation of a given function f by a rational function R.
In order to get n correct decimals for the approximation on an interval a ≤
x ≤ b, we must have

max
a≤x≤b

|f(x)−R(x)| ≤ 1

2
· 10−n.

We say that this number maxa≤x≤b |f(x)−R(x)| is the distance between f
and R on [a, b] or the norm of f −R on [a, b], denoted ‖f −R‖.

Often in practice the values of f are known only at finitely many points
x1, x2, . . . , xn (e.g. as measured quantities). Then we could use the norm

‖f −R‖ = max
1≤i≤n

|f(xi)−R(xi)|

and try to determine a rational function R whose values at the points xi are
sufficiently close to f(xi).
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Problem. Given f find a rational function R such that degR ≤ m and

‖f −R‖ (∗)

is as small as possible.

The solution depends on the definition of ‖f−R‖. For example, if we use the
above maximum norms, then accidental errors in individual measurements
can have a large impact to the approximation R satisfying (∗). Therefore
it is often better to measure the distance between f and R by using the so
called "least squares norm"

‖f −R‖ =

[
n∑
i=1

(
f(xi)−R(xi)

)2] 1
2

(1)

Remark. The expression in (1) contains the square root in order that the
axioms of the inner product space were satisfied. For example the norm (1)
satisfies the triangle inequality

‖f + g‖ ≤ ‖f‖+ ‖g‖,

where ‖f‖ = ‖f − 0‖. Compare with the norm in R2: if (x1, y1) and (x2, y2)
are points in R2, then

‖(x1, y1)− (x2, y2)‖ =
[
(x1 − x2)2 + (y1 − y2)2

] 1
2 .

4.2 Polynomial approximation

Approximation by rational functions is in general a difficult task. In the se-
quel we mainly concentrate on approximation by polynomials. The following
fundamental result states that a continuous function can be approximated
by polynomials on an interval [a, b] with an arbitrary high precision:

Weierstrass approximation theorem. If f is continuous on [a, b] and
ε > 0 then there exists a polynomial p(x) such that

max
a≤x≤b

|f(x)− p(x)| ≤ ε.

We will next consider four ways of approximating a given function:
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- Taylor polynomial

- interpolation

- least squares

- splines

4.3 Taylor’s expansions

If f is n times differentiable in a neighborhood of α, then f has a Taylor’s
expansion

f(x) = f
(
α + (x− α)

)
=

n−1∑
k=0

f (k)(α)

k!
(x− α)k +

f (n)(ξ)

n!
(x− α)n,

where ξ is a point of the interval I whose end points are x and α. Here the
Taylor polynomial

p(x) =
n−1∑
k=0

f (k)(α)

k!
(x− α)k

is a polynomial approximation to f of degree at most n− 1. The error is

p(x)− f(x) = −f
(n)(ξ)

n!
(x− α)n

and it has on an interval a ≤ x ≤ b the upper bound

‖f − p‖ = max
a≤x≤b

|f(x)− p(x)| ≤ max |f (n)(ξ)|
n!

max |x− α|n

In order to minimize this upper bound we should choose α = a+b
2
, so that α

is the midpoint of [a, b].

Example 1. We wish to approximate e−x between 0 ≤ x ≤ 10 to get three
correct decimals.
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Taylor’s expansion at α = 0:

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·

e−x = 1− x+
x2

2!
− x3

3!
+ · · ·

e−x =
n−1∑
k=0

(−1)k

k!
xk + (−1)n

e−ξ

n!
xn

We should choose n so that

max
0≤x≤10

∣∣∣∣∣e−x −
n−1∑
k=0

(−1)k

k!
xk

∣∣∣∣∣ ≤ max
0≤x≤10

∣∣(−1)ne−x
∣∣ max
0≤x≤10

|x|n

n!
=

10n

n!
≤ 0.5·10−3

The smallest n for which the last inequality is satisfied is n = 32.

Taylor’s expansion at α = 5 is

e−x = e−[5+(x−5)] = e−5e−(x−5) =
n−1∑
k=0

(−1)ke−5

k!
(x− 5)k + (−1)n

e−ξ

n!
(x− 5)n

The error has an upper bound

max
0≤x≤10

∣∣∣∣∣e−x −
n−1∑
k=0

(−1)ke−5

k!
(x− 5)k

∣∣∣∣∣ ≤ 5n

n!

Here we should have n ≥ 19 to get 5n

n!
≤ 1

2
· 10−3.

method order of polynomial
Taylor: α = 0 31
Taylor: α = 5 18
other methods 5
rational approximation 5

Remark. Tayrlor’s expansion does not in general yield an adequate poly-
nomial approximation with respect to the maximum norm. This is quite
natural because the Taylor polynomial depends only on local behaviour of f
in a neighborhood of α. On the other hand, in such a small neighborhood of
α the expansion can be a very good approximation to f .
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Example 2. We wish to approximate arctanx on the interval −1 ≤ x ≤ 1
to get 6 correct decimals. Taylor’s expansion at α = 0:

d

dx
arctanx =

1

1 + x2
= 1− x2 + x4 − x6 + · · ·

⇒ arctanx =

x∫
0

d

dx
arctanx = x− x3

3
+
x5

5
− x7

7
+ · · ·

The theorem of Leibnitz guarantees convergence and the remainder term has
the estimate∣∣∣∣∣arctanx−

n−1∑
k=0

(−1)k

2k + 1
x2k+1

∣∣∣∣∣ ≤
∣∣∣∣ (1)n

2n+ 1
x2n+1

∣∣∣∣ ≤ 1

2n+ 1

To get the desired accuracy 1
2n+1

≤ 1
2
· 10−6 we should use a polynomial of

degree 1 999 999.

By other methods it is possible to find a polynomial of degree 15 which gives
the desired accuracy. A rational approximation of the form

R(x) =
a0x+ a1x

3 + a2x
5

1 + a3x2 + a4x4

can also give the desired accuracy, so that

max
|x|≤1
|arctanx−R(x)| ≤ 1

2
· 10−6.

4.4 Interpolation

Assume that function values fi = f(xi) are known for different points x0, x1,
. . . , xn. We want to determine a polynomial pn of degree at most n such that

pn(x0) = f0, pn(x1) = f1, . . . , pn(xn) = fn.

Such a polynomial is called interpolation polynomial and points xj are called
nodes. The numbers fj relating to the nodes can be the values of a known
function f (e.g. lnx, sinx, etc.) such that f(xj) = fj; then pn(x) is the poly-
nomial approximation of f which has the same values as f in the given points.
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The numbers fj can also be measurements or observed values. In order to
get approximate values for f at point x outside the measured points, we use
the polynomial pn(x). If x lies on the interval formed by x0, . . . , xn, this is
called interpolation, otherwise extrapolation. In extrapolation, however, the
approximation does not usually have good accuracy.

We will later see, that there exists such an interpolation polynomial of de-
gree at most n and it is unique. The uniqueness is follows from the fact
that the difference of two possible interpolation polynomials dn = pn − qn is
a polynomial of degree at most n which has at least n + 1 roots [at nodes
x0, x1, . . . , xn we have by assumption pn(x) = qn(x)]; therefore dn vanishes
identically and hence pn(x) ≡ qn(x).

We will next study different methods for finding pn(x). All of these methods
give a unique polynomial but the forms of the polynomial and the number
of required computations vary in different methods.

Special cases: Linear and quadratic interpolation

In linear interpolation we use a straight line passing through (x0, f0) and
(x1, f1) and the assiciated interpolation polynomial is

p1(x) = f0 + (x− x0)f [x0, x1] (1)

where
f [x0, x1] =

f1 − f0
x1 − x0

(2)

is the first divided difference (ensimmäinen jaettu erotus).

From (1) we see that p1(x0) = f0, and by (1) and (2) we see that p1(x1) = f1.

Example 1. Estimate the finnish population in 1978 by using the following
data:

Year 1970 1982
Population (1000) 4598 4842

Solution:

p1(1978) = 4598 + (1978− 1979)
4842− 4598

1982− 1970
= 4761 (correct 4758)
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In quadratic interpolation the approximating polynomial p2(x) is of degree
≤ 2 and its graph passes through the points (x0, f0), (x1, f1) and (x2, f2):

p2(x) = f0 + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2] (3)

where
f [x0, x1, x2] =

f [x1, x2]− f [x0, x1]

x2 − x0
(4)

is the second divided difference.

From (3) we see that p2(x0) = f0 and p2(x1) = f0 + (x1 − x0) f1−f0x1−x0 = f1; in
addition p2(x2) = f2.

Example 2. We know ln 8.0 = 2.0794, ln 9.0 = 2.1972 and ln 9.5 = 2.2513
but what is ln 9.2? We compute divided differences from (2) and (4):

x0 = 8.0, f0 = 2.0794

x1 = 9.0, f1 = 2.1972

x2 = 9.5, f2 = 2.2513

f [x0, x1] = 0.1178

f [x1, x2] = 0.1082
f [x0, x1, x2] = −0.0064

(3)⇒ p2(x) = 2.0794 + (x− 8.0) · 0.1178 + (x− 8.0)(x− 9.0) · (−0.0064)

= 0.6762 + 0.2266x− 0.0064x2

p2(9.2) = 2.2192 has four correct decimals.

Newton’s interpolation and divided differences

Formulas (1) and (3) are special cases of a more general interpolation formula.
Note that p2 is obtained from p1 by adding the last term of (3) to p1. We try
to accomplish a similar situation in the general case:

pn(x) = pn−1(x) + gn(x) (5)

where pn−1(x0) = pn(x0) = f0, . . . , pn−1(xn−1) = pn(xn−1) = fn−1 and
pn(xn) = fn. In order to determine

gn(x) = pn(x)− pn−1(x) (5’)
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note that in view of the above conditions gn vanishes at x0, . . . , xn−1. Since
in addition deg gn ≤ n (because deg pn ≤ n, deg pn−1 ≤ n− 1), gn should be
of the form

gn(x) = an(x− x0)(x− x1) · · · (x− xn−1). (5”)

To determine an we substitute x = xn and solve (5”) with respect to an.
Since by (5’) gn(xn) = pn(xn)− pn−1(xn) = fn − pn−1(xn), the result is

an =
fn − pn−1(xn)

(xn − x0)(xn − x1) · · · (xn − xn−1)
(6)

For n = 1 we have pn−1(x1) = p0(x1) = f0, so that by (6)

a1 =
f1 − p0(x1)
x1 − x0

=
f1 − f0
x1 − x0

= f [x0, x1]

and (5) yields formula (1). Similarly, for n = 2 we obtain (3) because in (6)

f2 − p1(x2)
(1)
= f2 − f0 − (x2 − x0)f [x0, x1]

so that
a2 =

f2 − f0 − (x2 − x0)f [x0, x1]

(x2 − x0)(x2 − x1)
= f [x0, x1, x2]

Thus (3) follows from (5) for n = 2, when we substitute g2(x) according to
(5”). Similarly

a3 = f [x0, x1, x2, x3] =
f [x1, x2, x3]− f [x0, x1, x2]

x3 − x0
and in general

ak = f [x0, . . . , xk] =
f [x1, . . . , xk]− f [x0, . . . , xk−1]

(xk − x0)
(7)

Here f [x0, . . . , xk] is the k:th divided difference.

The sketch of the proof is as follows. Let p1,n be the interpolation polynomial
for the nodes x1, . . . , xn and let p0,n−1 be the interpolation polynomial for the
nodes x0, . . . , xn−1. Then

pn(x) =
(x− x0)p1,n(x)− (x− xn)p0,n−1(x)

xn − x0
.
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For n = k we obtain from formula (5)

pk(x) = pk−1(x) + (x− x0)(x− x1) · · · (x− xk−1)f [x0, . . . , xk] (8)

For k = 1, . . . , n we first obtain (1) and (3) (for k = 1 and k = 2), and finally
for k = n we obtain Newton’s interpolation polynomial

pn(x) = f0 + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2]

+ · · ·+ (x− x0) · · · (x− xn−1)f [x0, . . . , xn]
(9)

In practice one often uses the following divided difference scheme.

Example 3. Approximate ln 9.2 by using the given function values.

xj fj = f(xj) f [xj, xj+1] f [xj, xj+1, xj+2] f [xj, . . . , xj+3]
8.0 2.079442

0.117783
9.0 2.197225 −0.006433

0.108134 0.000411
9.5 2.251292 −0.005200

0.097735
11.0 2.397895

For example

−0.005200 =
0.097735− 0.108134

11− 9
.

Now formula (9) yields

p3(x) = 2.079442 + 0.117783(x− 8.0)− 0.006433(x− 8.0)(x− 9.0)

+ 0.000411(x− 8.0)(x− 9.0)(x− 9.5)

For x = 9.2 we get

f(9.2) = ln 9.2 ≈ 2.079442 + 0.141340− 0.001544− 0.000030 = 2.219208

The exact value ln 9.2 = 2.219203. The accuracy is increasing with k because

p1(9.2) = 2.220782; p2(9.2) = 2.219238; p3(9.2) = 2.219208.
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Newton’s forward difference formula

In (9) the nodes are arbitrary. In many applications the distance between
consecutive nodes is however a constant h, so that

x1 = x0 + h, x2 = x0 + 2h, . . . , xn = x0 + nh (10)

Then (7) and (9) can be written by using forward differences as follows.

The first forward difference of f at xj is defined as

∆fj = fj+1 − fj;

the second forward difference of f at xj is

∆2fj = ∆fj+1 −∆fj;

etc.; in general the k:th forward difference at xj is

∆kfj = ∆k−1fj+1 −∆k−1fj (k = 1, 2, . . .) (11)

If (10) holds, we can prove the following relation between divided differences
and forward differences:

f [x0, . . . , xk] =
1

k!hk
∆kf0. (12)

Proof is by induction. For k = 1 we have

f [x0, x1] =
f1 − f0
x1 − x0

=
1

h
[f1 − f0] =

1

1!h
∆f0

If (12) holds for k, then

f [x1, . . . , xk+1] =
1

k!hk
∆kf1,

f [x0, . . . , xk] =
1

k!hk
∆kf0

For k + 1 we obtain from (7)

f [x0, . . . , xk+1] =
f [x1, . . . , xk+1]− f [x0, . . . , xk]

xk+1 − x0

=
1

xk+1 − x0

[
1

k!hk
∆kf1 −

1

k!hk
∆kf0

]
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Here in view of (10) xk+1 − x0 = (k + 1)h, so that

f [x0, . . . , xk+1] =
1

(k + 1)h
· 1

k!hk
(
∆kf1 −∆kf0

)
=

1

(k + 1)!hk+1

(
∆k+1f0

)
Hence (12) holds even for k + 1. QED.

Next we put in (9) x = x0 + rh where r is a real number. Then x− x0 = rh,
x − x1 = (r − 1)h (since x1 − x0 = h) etc. By using (12) we then obtain
Newton’s forward formula:

pn(x) = f0 + rh
1

1!h1
∆f0 + rh(r − 1)h

1

2!h2
∆2f0 + · · ·

+ rh(r − 1)h · · · (r − n+ 1)h
1

n!hn
∆nf0

= f0 +

(
r

1

)
∆f0 +

(
r

2

)
∆2f0 + · · ·+

(
r

n

)
∆nf0

where the generalized binomial coefficients are defined(
r

0

)
= 1,

(
r

s

)
=
r(r − 1) · · · (r − s+ 1)

s!
(s > 0 integer) (13)

pn(x) =
n∑
s=0

(
r

s

)
∆sf0

(
x = x0 + rh, r =

x− x0
h

)
= f0 + r∆f0 +

r(r − 1)

2!
∆2f0 + · · ·+ r(r − 1) · · · (r − n+ 1)

n!
∆nf0

(14)
Suppose that f is n + 1 times differentiable. If f is approximated by pn at
x, then one can show that the error in the approximation

ε(x) = pn(x)− f(x) = − 1

(n+ 1)!
(x− x0) · · · (x− xn)f (n+1)(t)

= − hn+1

(n+ 1)!
r(r − 1) · · · (r − n)f (n+1)(t)

(15)

where t is in each interval containing x and each xj.

The idea of the proof relies on Rolle’s theorem. Define an auxiliary function

Qn(x) = f(x)− pn(x)− γ(x− x0) · · · (x− xn)
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so that Qn(x) = 0. Then

Q′n has n+ 1 zeros
Q′′n has n zeros
...
Q

(n+1)
n has 1 zero

Therefore

Q(n+1)
n (t) = f (n+1)(t)− γ(n+ 1)! = 0 ⇒ γ =

f (n+1)(t)

(n+ 1)!

Example 4. Compute cosh 0.56 by using (14) and the following table.

j xj fj = coshxj ∆fj ∆2fj ∆3fj
0 0.5 1.127626

0.057839
1 0.6 1.185465 0.011865

0.069704 0.000697
2 0.7 1.255169 0.012562

0.082266
3 0.8 1.337435

Formula (14) gives

cosh 0.56 ≈ 1.127626 + 0.6 · 0.057839 +
0.6(−0.4)

2
· 0.011865

+
0.6(−0.4)(−1.4)

6
· 0.000697

= 1.127626 + 0.034703− 0.001424 + 0.000039

= 1.160944

Error estimate: Since d4

dt4
cosh t = cosh t, from (15) we obtain

ε3(0.56) = −0.14

4!
· 0.6(−0.4)(−1.4)(−2.4) cosh t = A cosh t,

where A = 0.00000336 and 0.5 ≤ t ≤ 0.8. Since cosh t is increasing on the
interval [0.5, 0.8] it follows that

A cosh 0.5 ≤ ε3(0.56) ≤ A cosh 0.8
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Therefore

p3(0.56)− A cosh 0.8 ≤ f(x) = cosh 0.56 ≤ p3(0.56)− A cosh 0.5

Computing the values of the upper and lower bounds we obtain

1.160939 ≤ cosh 0.56 ≤ 1.160941

The exact value (6 decimals) is cosh 0.56 = 1.160941.

Lagrange’s interpolating polynomial

Consider the general interpolation problem where the nodes xj need not be
equally spaced. Define polynomials l0(x), l1(x), . . . , ln(x) such that

l0(x) = (x− x1)(x− x2) · · · (x− xn)

lk(x) = (x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

ln(x) = (x− x0)(x− x1) · · · (x− xn−1)

Lagrange’s interpolating polynomial is

Ln(x) =
n∑
k=0

lk(x)

lk(xk)
fk (19)

Each term in the sum is a polynomial of degree ≤ n taking at xk the value fk
and vanishing at all other nodes. Therefore Ln(xk) = fk for each k, so that
Ln is the interpolating polynomial associated with the given data (xk, fk).

Example 7. Find ln 9.2 by applying the Lagrange interpolating polynomial
and the values of the following table:

x 9.0 9.5 10.0 11.0
lnx 2.19722 2.25129 2.30259 2.39790

(19)⇒ L3(x) =
l0(x)

l0(x0)
f0 +

l1(x)

l1(x1)
f1 +

l2(x)

l2(x2)
f2 +

l3(x)

l3(x3)
f3,

where
l0(x) = (x− 9.5)(x− 10)(x− 11)

l1(x) = (x− 9)(x− 10)(x− 11) etc.
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Therefore

ln 9.2 ≈ −0.43200

−1.00000
· 2.19722 +

0.28800

0.37500
· 2.25129

+
0.10800

−0.50000
· 2.30259 +

0.04800

3.00000
· 2.39790

= 2.21920 (5 correct decimals)

The use of Lagrange polynomials in numerical work is not recommended,
because the computations are laborious and previous work is wasted in the
transition to a polynomial of higher degree. However, Lagrange polynomials
have considerable theoretical interest.

4.5 Least squares

Example 1. Given 5 points (xi, yi) in the plane listed below.

i xi yi
1 1 1.0
2 1.5 1.7
3 2.0 2.2
4 2.5 2.5
5 3 2.5

We look for a quadratic polynomial p2(x) = a+ bx+ cx2 such that

5∑
i=1

(
yi − p2(xi)

)2
is as small as possible. In other words, we wish to find constants a, b and c
such that

F (a, b, c) =
5∑
i=1

(
yi − a− bxi − cx2i

)2
is as small as possible. Necessary condition for a minimum

∂F

∂a
=
∂F

∂b
=
∂F

∂c
= 0
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leads to the so called normal equations

−2
5∑
i=1

(yi − a− bxi − cx2i ) = 0

−2
5∑
i=1

xi(yi − a− bxi − cx2i ) = 0

−2
5∑
i=1

x2i (yi − a− bxi − cx2i ) = 0

Matrix form: ∑
1

∑
xi

∑
x2i∑

xi
∑

x2i
∑

x3i∑
x2i

∑
x3i

∑
x4i

 a
b
c

 =

 ∑
yi∑
xiyi∑
x2i yi


All indices range from 1 to 5. The coefficient matrix is symmetric and one
can show that the system has a unique solution which minimizes F (a, b, c).

The coefficient matrix and the vector on the right-hand side can be computed
by using the table:

xi yi x2i
1 1.0 1

1.5 1.7 2.25
2.0 2.2 4
2.5 2.5 6.25
3 2.5 9

We first compute the sums

5∑
i=1

xi = 10,
5∑
i=1

yi = 9.9,
5∑
i=1

x2i = 22.5

Then we compute inner products of the columns:

5∑
i=1

x3i = 55,
5∑
i=1

x4i = 142.125,
5∑
i=1

xiyi = 21.7,
5∑
i=1

x2i yi = 51.75
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Since
∑5

i=1 1 = 5, the normal equations are 5 10 22.5
10 22.5 55

22.5 55 142.125

 a
b
c

 =

 9.9
21.7
51.75


The system is solved e.g. by Gauss elimination method. The result is

a = −1.1400, b = 2.5886, c = −0.4571.

Example 2. The same problem as in Example 1 but we write p2(x) in the
form

p2(x) = a′ + b′(x− 2) + c′(x− 2)2.

Then we obtain the system ∑
1 0

∑
(xi − 2)2

0
∑

(xi − 2)2 0∑
(xi − 2)2 0

∑
(xi − 2)4

 a′

b′

c′

 =

 ∑
yi∑

(xi − 2)yi∑
(xi − 2)2yi


Some of these coefficients vanish by symmetry. From the second equation we
get b′ while the first and the third equations form a 2× 2 system for a′ and
c′.

The Examples 1 and 2 deal with least squares approximation. The function
y = f(x) is approximated by a polynomial p2(x) such that the sum of the
squares of the errors −(f(x)− p2(x)) at x1, x2, . . . , x5 is as small as possible.

Instead of F (a, b, c) we could have tried to minimize

F1(a, b, c) =
5∑
i=1

|yi − a− bxi − cx2i |

or the "maximum norm"

F2(a, b, c) = max
1≤i≤5

|yi − a− bxi − cx2i |.

Such approximation problems are far more difficult than least squares ap-
proximation and will not be considered.
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Remark. There is no such a polynomial of degree 2 which attains the values
yi at xi for all i in Example 1 . Hence we are not looking for an interpolation
polynomial but rather an approximation by polynomials.

If we wish to approximate a given function f with a polynomial of degree n,
n 6= 2, the method is analogous to those in Examples 1 and 2. The method
yields n + 1 normal equations since a polynomial of degree n has n + 1 co-
efficients. In the case n = 1 the method is called linear least squares, as the
graph of the approximating polynomial is a straight line.

If the function f is known on the whole interval [a, b] and we wish to perform
a least squares approximation of f with a polynomial of degree n, we can try
to minimize the integral

F (c0, c1, . . . , cn) =

b∫
a

(
f(x)−

n∑
k=0

ckx
k
)2
dx.

Here the "error" is measured with an integral instead of a sum.

Solving the normal equations numerically can be difficult since small per-
turbations in coefficients can greatly change the solutions of the equations.
Therefore it is usually preferred to use other methods for finding an approx-
imation if n is large.

One such method is to replace the polynomial
∑n

k=0 ckx
k with a linear com-

bination

p(x) =
n∑
k=0

akLk(x),

where the polynomials Lk(x) of degree k have been chosen so that the coeffi-
cient matrix in the normal equations in diagonalized. Such polynomials are
called orthogonal polynomials relating to the given approximation task.

We will illustrate the above method with an example. For simplicity, we use
the "integral norm"

‖f − p‖ =
( 1∫
−1

(
f(x)− p(x)

)2
dx
) 1

2
,
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but similarly we could use the "sum norm"

‖f − p‖ =
( m∑
i=1

(
f(xi)− p(xi)

)2) 1
2
.

Example 3. We wish to approximate sinπx by a cubic polynomial on the
interval −1 ≤ x ≤ 1 so that the integral

1∫
−1

(
sin πx−

3∑
k=0

ckx
k

)2

dx

is as small as possible. We write

p(x) =
3∑

k=0

akLk(x),

where

L0(x) = 1, L1(x) = x, L2(x) =
3

2
x2 − 1

2
and L3(x) =

5

2
x3 − 3

2
x.

In order to minimize

F (a0, a1, a2, a3) =

1∫
−1

(
sin πx−

3∑
k=0

akLk(x)

)2

dx

we set
∂F

∂ak
= 0 (k = 0, 1, 2, 3).
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Then we obtain the following normal equations:

2

1∫
−1

L0

(
sin πx−

3∑
k=0

akLk(x)

)
dx = 0

2

1∫
−1

L1

(
sin πx−

3∑
k=0

akLk(x)

)
dx = 0

2

1∫
−1

L2

(
sinπx−

3∑
k=0

akLk(x)

)
dx = 0

2

1∫
−1

L3

(
sinπx−

3∑
k=0

akLk(x)

)
dx = 0

(1)

(1) can also be written as

a0

1∫
−1

L2
0dx+ a1

1∫
−1

L0L1dx+ a2

1∫
−1

L0L2dx+ a3

1∫
−1

L0L3dx =

1∫
−1

L0 sinπxdx

a0

1∫
−1

L1L0dx+ a1

1∫
−1

L2
1dx+ a2

1∫
−1

L1L2dx+ a3

1∫
−1

L1L3dx =

1∫
−1

L1 sinπxdx

a0

1∫
−1

L2L0dx+ a1

1∫
−1

L2L1dx+ a2

1∫
−1

L2
2dx+ a3

1∫
−1

L2L3dx =

1∫
−1

L2 sinπxdx

a0

1∫
−1

L3L0dx+ a1

1∫
−1

L3L1dx+ a2

1∫
−1

L3L2dx+ a3

1∫
−1

L2
3dx =

1∫
−1

L2
3 sinπxdx

(2)
The coefficient matrix of (2) is a diagonal matrix because

1∫
−1

LiLjdx = 0, when i 6= j
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and
1∫

−1

L2
i dx =

1

i+ 1
2

(0 ≤ i ≤ 3).

The solution is then

ak = (k +
1

2
)

1∫
−1

Lk(x) sinπxdx (0 ≤ k ≤ 3)

For example,

a0 =
1

2

1∫
−1

sin πxdx = 0; a1 =
3

2

1∫
−1

x sin πxdx =
3

π
etc.

Remark. The polynomial Lk(x) are Legendre polynomials. They can be
defined by the formula

Lk+1(x) =
2k + 1

k + 1
xLk(x)− k

k + 1
Lk−1(x); L0(x) = 1, L1(x) = x

4.6 Splines

Increasing the degree of an interpolation polynomial does not always increase
accuracy of the interpolation. For example, consider function

f(x) =
1

1 + 25x2

on the interval [−1, 1]. The nodes of the interpolation polynomials of func-
tion f can be chosen such that the maximum error in the interpolation tends
to infinity as the degree of polynomial increases. This kind of instability can
be avoided by using splines.

Splines are piecewise defined polynomials, i.e. continuous functions whose
restriction to interval of two consecutive knots is a polynomial. In addition,
it is required that the function is sufficiently many times differentiable at
knots. Interpolating with such functions is usually numerically stable.
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The simplest example of approximation with piecewise defined polynomials
is to use straight lines on each subinterval (e.g. trapezoidal rule). However,
the graph of such function is not smooth since its first derivative is discontin-
uous at knots between the end points of the interval. By requiring continuous
derivatives, we end up using splines.

In practise, the most important splines are cubic splines which are defined as
follows. Let f be the given function we wish to approximate on the interval
a ≤ x ≤ b. Suppose that the interval is divided into subintervals whose end
points are so called knots

a = x0 < x1 < · · · < xn = b. (1)

The cubic spline relating to knots (1) is a continuously differentiable function
on the interval a ≤ x ≤ b whose restriction to each subinterval with two
consecutive knots as end points is a polynomial of degree at most 3. The
cubic spline interpolating function f is gained by requiring that

g(x0) = f(x0) = f0, g(x1) = f(x1) = f1, . . . , g(xn) = f(xn) = fn. (2)

Next we will show that a cubic spline satisfying these conditions always exists.
It is not unique, however, as the derivatives at the end points of the interval
a ≤ x ≤ b can be defined arbitrarily:

Theorem 1. Let f be a function defined on the interval a ≤ x ≤ b. Suppose
that the knots (1) of the interval are given and let k0 and kn be arbitrary real
numbers. Then there exits a unique cubic spline g relating to knots (1) such
that (2) holds and

g′(x0) = k0, g′(xn) = kn. (3)

Proof. It is easy to see that on each subinterval Ij = [xj, xj+1] there exists a
unique polynomial pj(x) of degree ≤ 3 such that

pj(xj) = f(xj), pj(xj+1) = f(xj+1) (4)

and p′j has prescribed values at the end points:

p′j(xj) = kj, p′j(xj+1) = kj+1 (5)
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The expression of pj has the following form where cj = 1
xj+1−xj

pj(x) = f(xj)c
2
j(x− xj+1)

2[1 + 2cj(x− xj)]
+ f(xj+1)c

2
j(x− xj)2[1− 2cj(x− xj+1)]

+ kjc
2
j(x− xj)(x− xj+1)

2 + kj+1c
2
j(x− xj)2(x− xj+1)

(6)

Uniqueness will be left as an exercise.

The restriction of the cubic spline g(x) to Ij will be of the form (6). Since
g(x) should be twice continuously differentiable even at each node xj, we
must have

p′′j−1(xj) = p′′j (xj) (1 ≤ j ≤ n− 1) (7)

By differentiating we get

p′′j (x) = 2f(xj)c
2
j [1 + 4cj(x− xj+1) + 2cj(x− xj)]

+ 2f(xj+1)c
2
j [1− 4cj(x− xj)− 2cj(x− xj+1)]

+ (4kj + 2kj+1)c
2
j(x− xj+1) + (4kj+1 + 2kj)c

2
j(x− xj)

(8)

From (7) we then obtain

6f(xj−1)c
2
j−1 − 6f(xj)c

2
j−1 + (4kj + 2kj−1)cj−1

= −6f(xj)c
2
j + 6f(xj+1)c

2
j − (4kj + 2kj+1)cj (i ≤ j ≤ n− 1)

(9)

If we denote ∆fj−1 = f(xj)− f(xj−1) and ∆fj = f(xj+1)− f(xj) as in § 4.4,
(9) can be written

cj−1kj−1 + 2(cj−1 + cj)kj + cjkj+1 = 3(c2j−1∆fj−1 + c2j∆fj) (10)

These equations (10) form a system of n−1 linear equations in n−1 unknowns
k1, . . . , kn−1 (1 ≤ j ≤ n− 1). The coefficient matrix of this system is non-
singular (without proof). Therefore (10) has a unique solution k1, . . . , kn−1.
Substitutions of this solution in (6) yields polynomials p0, p1, . . . , pn−1 defin-
ing the unique interpolating cubic spline g(x) satisfying (3) and (7).

The proof of Theorem 1 provides an algorithm for the determination of the
spline. For simplicity we consider the case where the distance of consecutive
nodes is a constant h, so that

x1 = x0 + h, x2 = x0 + 2h, . . . , xn = nh
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Then cj = 1
xj+1−xj = 1

h
, so that multiplying (10) by h and denoting f(xj) = fj

we obtain

kj−1 + 4kj + kj+1 =
3

h
(fj+1 − fj−1) (i ≤ j ≤ n− 1) (11)

Here k0 and kn are given , e.g. k0 = f ′(a), kn = f ′(b). In the first step
of the algorithm we solve k1, . . . , kn−1 from the linear system (11). In the
next step we determine the coefficients of the spline g(x). On each interval
xj ≤ x ≤ xj+1 = xj + h the spline g(x) has a Taylor expansion

pj(x) = aj0 + aj1(x− xj) + aj2(x− xj)2 + aj3(x− xj)3, (12)

where 
aj0 = pj(xj) = fj

aj1 = p′j(xj) = kj by (5)

aj2 =
1

2
p′′j (xj) =

3

h2
(fj+1 − fj)−

1

h
(kj+1 + 2kj)

(13)

(cf. the right-hand side of (9)). In order to determine aj3 we observe that
according to (8)

p′′j (xj+1) =
6

h2
(fj − fj+1) +

2

h
(2kj+1 + kj)

while by (12)
p′′j (xj+1) = 2aj2 + 6aj3h

Equating the right-hand sides we obtain an equation from which aj3 can be
solved:

aj3 =
1

3h

{
3

h2
(fj − fj+1) +

1

h
(kj + 2kj+1)− aj2

}
Substitution of the expression of aj2 from (13) finally yields

aj3 =
2

h3
(fj − fj+1) +

1

h2
(kj+1 + kj). (14)

Example 1. We interpolate f(x) = x4 on the interval −1 ≤ x ≤ 1 by the
cubic spline g(x) corresponding to the partition x0 = −1, x1 = 0, x2 = 1 and
satisfying g′(−1) = f ′(−1), g′(1) = f ′(1).

65



Since n = 2, the system (11) consists of a single equation

k0 + 4k1 + k2 =
3

h
(f2 − f0).

Here k0 = f ′(−1) = −4, k2 = f ′(1) = 4, h = 1, f2 = f(1) = 1 and
f0 = f(−1) = 1, so that the solution is k1 = 0. From (13) and (14) we obtain
for j = 0

a00 = f0 = 1

a01 = k0 = −4

a02 = 3(f1 − f0)− (k1 + 2k0) = 3(0− 1)− (0− 8) = 5

a03 = 2(f0 − f1) + (k1 + k0) = 2(1− 0) + (0− 4) = −2

Therefore

p0(x) = 1− 4(x+ 1) + 5(x+ 1)2 − 2(x+ 1)3 = −x2 − 2x3.

Similarly, for j = 1 we obtain

a10 = f1 = 0

a11 = k1 = 0

a12 = 3(1− 0)− (4 + 2 · 0) = −1

a13 = 2(0− 1) + 4 + 0 = 2

Here
p2(x) = −x2 + 2x3.

The spline g(x) thus satisfies

g(x) =

{
− x2 − 2x3 when − 1 ≤ x ≤ 0

− x2 + 2x3 when 0 ≤ x ≤ 1

Example 2. We interpolate

f0 = f(0) = 1, f1 = f(2) = 9, f2 = f(4) = 41, f3 = f(6) = 41

by the cubic spline satisfying k0 = 0, k3 = −12.
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Since n = 3 and h = 2, the system (11) is

k0 + 4k1 + k2 =
3

2
(f2 − f0) = 60

k1 + 4k2 + k3 =
3

2
(f3 − f1) = 48

With k0 = 0, k3 = −12 the solution is k1 = 12, k2 = 12.

From (13) and (14) we obtain the coefficients of the spline for j = 0:

a00 = f0 = 1

a01 = k0 = 0

a02 =
3

4
(f1 − f0)−

1

2
(k1 + 2k0) =

3

4
(9− 1)− 1

2
(12 + 0) = 0

a03 =
2

8
(f0 − f1) +

1

4
(k1 + k0) =

2

8
(1− 9) +

1

4
(12 + 0) = 1

For 0 ≤ x ≤ 2 we then have

g(x) = p0(x) = 1 + x3.

Similarly, for j = 1 we obtain

g(x) = p1(x) = 9 + 12(x− 2) + 6(x− 2)2 − 2(x− 2)3

= 25− 36x+ 18x2 − 2x3 (2 ≤ x ≤ 4)

Finally, for j = 2

g(x) = p2(x) = 41 + 12(x− 4)− 6(x− 4)2

= −103 + 60x− 6x2 (4 ≤ x ≤ 6)

Splines have the following property:

Theorem 2. Let f be two times continuously differentiable on a ≤ x ≤ b
and let g be the interpolating cubic spline satisfying (2) and

g′(a) = f ′(a) and g′(b) = f ′(b) (15)

Then
b∫

a

f ′′(x)2dx ≥
b∫

a

g′′(x)2dx (16)

and equality holds if and only if f(x) ≡ g(x) for a ≤ x ≤ b.
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Proof. By partial integration

b∫
a

g′′(x) [f ′′(x)− g′′(x)] dx =
n−1∑
j=0

xj+1∫
xj

p′′j (x) [f ′′(x)− g′′(x)] dx

=
n−1∑
j=0


xj+1/
xj

p′′j (x) [f ′(x)− g′(x)]−
xj+1∫
xj

p′′′j (x) [f ′(x)− g′(x)] dx


Here the last term vanishes, because p′′′j (x) is a constant and

xj+1∫
xj

[f ′(x)− g′(x)] dx =

xj+1/
xj

[f(x)− g(x)] = 0.

Also the sum of the first terms is zero because

n−1∑
j=0

xj+1/
xj

p′j(x) [f ′(x)− g′(x)]

= p′0(x1)[f
′(x1)− g(x1)]− p′0(x0)[f ′(x0)− g′(x0)]

+ p′1(x2)[f
′(x2)− g(x2)]− p′1(x1)[f ′(x1)− g′(x1)] + · · · = 0

This yields

b∫
a

[f ′′(x)− g′′(x)]2dx =

b∫
a

f ′′(x)2dx− 2

b∫
a

f ′′(x)g′′(x)dx+

b∫
a

g′′(x)2dx

=

∫
f ′′(x)2dx−

b∫
a

g′′(x)2dx

Left-side ≥ 0 ⇒ right side ≥ 0 ⇒ (16).

4.7 Possible applications of polynomial approximation

1◦ Approximation of functions in a computer

For example the function sinx.
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2◦ Numerical integration

An approximate value for
∫ b
a
f(x)dx can be found by replacing f(x) by a

polynomial approximation p(x) such that the error∣∣∣∣∣∣
b∫

a

(
f(x)− p(x)

)
dx

∣∣∣∣∣∣
is small enough. If we use an interpolating polynomial associated to the
points xk = a + k b−a

n
(0 ≤ k ≤ n), we obtain Newton-Cote’s quadrative

formula of order n. For n = 2 we obtain Simpson’s rule.

Sometimes a truncated Taylor’s formula may be used. For example,
1
2∫

0

sinx

x
dx

can be computed by using the approximation

sinx

x
≈ 1− x2

3!
+
x4

5!

with an accuracy ±10−6.

3◦ Numerical differentiation

If p(x) is a polynomial approximation to f(x), then p′(x) could be used to
approximate the derivative f ′(x) of f(x).

An approximation on an entire interval a ≤ x ≤ b can be obtained by using
e.g. an interpolation cubic spline or a least squares approximation. By using
interpolation polynomials the error |f ′(x)−p′(x)| can approach infinity when
the degree of p(x) approaches infinity.

A local approximation to f ′(x) can be found by differentiation of a suitable
interpolating polynomial. A linear interpolating polynomial using the points(
x− h, f(x− h)

)
and

(
x+ h, f(x+ h)

)
yields the approximation

f ′(x) ≈ f(x+ h)− f(x− h)

2h
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The corresponding error can be computed using Taylor’s formula. Subtract-
ing the equations

f(x+ h) = f(x) + hf ′(x) +
h

2
f ′′(x) +

h3

6
f ′′′(ξ1)

f(x− h) = f(x)− hf ′(x) +
h

2
f ′′(x)− h3

6
f ′′′(ξ2)

yields

f ′(x) =
f(x+ h)− f(x− h)

2h
− h2

6
f ′′′(ξ), (1)

because
f ′′′(ξ1) + f ′′′(ξ2)

2
= f ′′′(ξ)

for some ξ (provided that f ′′′(x) is continuous).

An approximation to f ′′(x) can be found by using a quadratic interpolation
polynomial determined by the points(

x− h, f(x− h)
)
,
(
x, f(x)

)
and

(
x+ h, f(x+ h)

)
.

The formula corresponding to (1) is then

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
− h2

12
f (4)(ξ). (2)

The remainder terms in (1) and (2) approach 0 when h → 0. Therefore
we can find in principle approximations to f ′(x) and f ′′(x) with an arbitrary
accuracy by using function values f(x) and f(x±h) for a sufficiently small h.

If f(x + h) and f(x − h) can be computed with an evaluation error ±ε
and |f ′′′(x)| ≤ M on the interval [x − h, x + h], then the total error in the
approximation

f(x+ h)− f(x− h)

2h

is by (1) at most
ε+ ε

2h
+
h2

6
M =

ε

h
+
h2M

6
.
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The last term is due to the truncation error −h2

6
f ′′′(ξ) and approaches 0 as

h→ 0. However, the first term ε
h
increases as h→ 0. To minimize the error

bound h should be chosen so that

T (h) =
ε

h
+
h2M

6

is as small as possible. If we let T ′(h) = 0 we obtain

h =

(
3ε

M

) 1
3

.

One can also set both error terms equal:

ε

h
=
h2M

6
⇒ h =

(
6ε

M

) 1
3
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5 Differential equations

5.1 Introduction

We present a few methods for the solution of an initial value problem of an
ordinary differential equation of order one{

y′ = f(x, y)

y(a) = η
(1)

A solution y(x) should be differentiable on some given interval a ≤ x ≤ b
and assume the value η at x = a. Here y′(x) = f

(
x, y(x)

)
.

Theorem 1. (Picard’s theorem) Suppose that f is continuous and that∣∣∣∣∂f(x, y)

∂y

∣∣∣∣ ≤ K

for each x ∈ [a, b] and each y. Then the initial value problem (1) has a unique
solution.

Example 1. Show that the initial value problem y′ =
x2 sin y

1 + x2

y(0) = 1

has a unique solution on the interval 0 ≤ x <∞.

The function f(x, y) is everywhere differentiable and hence continuous.∣∣∣∣∂f∂y
∣∣∣∣ =

∣∣∣∣x2 cos y

1 + x2

∣∣∣∣ ≤ x2

1 + x2
≤ 1.

Thus the condition of Theorem 1 is satisfied.

Sometimes the exact solution can be found analytically. However, even then
the computations can be so elaborate that a numerical solution is to be
preferred.
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Example 2. The initial value problem y′ = x+
2y

1− x4
y(0) = 1

has the solution

y(x) =

(
1 + x

1− x

) 1
2

earctanx


x∫

0

u

(
1− u
1 + u

) 1
2

e− arctanudu+ 1

 .

5.2 Single-step methods

The simplest single-step method is Euler’s method. Consider the initial value
problem {

y′ = f(x, y)

y(a) = η
(1)

on the interval a ≤ x ≤ b. We subdivide this interval into N subintervals of
length h = b−a

N
and end points

xk = a+ kh (0 ≤ k ≤ N)

Let yk be an approximate value to the solution y(x) at x = xk. The error
at xk is then yk − y(xk). In Euler’s method we compute approximations
y1, y2, . . . , yN recursively by using the formula

yn+1 = yn + hf(xn, yn). (2)

Then x0 = a and y0 = y(a) = η, so that

y1 = y + hf(a, η)

y2 = y1 + hf(x1, y1)

y3 = y2 + hf(x2, y2)

...
yN = yN−1 + hf(xN−1, yN−1)

(3)
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Example 3. Apply Euler’s method to the initial value problem in Example
2.

f(x, y) = x+
2y

1− x4
; x0 = 0; y0 = y(0) = 1

Using step length h = 0.1 we obtain

y(0) = y0 = 1

y(0.1) ≈ y1 = 1 + 0.1 · 2 = 1.2

y(0.2) ≈ y2 = 1.2 + 0.1

(
0.1 +

2 · 1.2
1− 10−4

)
= 1.45

y(0.3) ≈ y3 = 1.45 + 0.1

(
0.2 +

2 · 1.45

1− 16 · 10−4

)
= 1.76

y(0.4) ≈ y4 = 2.118

y(0.5) ≈ y5 = 2.593

Analytical derivation of Euler’s method: The value y0 = η is obtained from
the initial condition y(a) = η. Suppose that the solution y(x) is twice con-
tinuously differentiable. From Taylor’s formula we get

y(x0 + h) = y(x0) + hy′(x0) +
h2

2
y′′(ξ).

If we omit the remainder term we obtain an approximate value to y(x0+h) =
y(x1):

y1 = y(x0) + hy′(x0) = η + hf(x0, y0) = η + f(a, η).

This is the first formula in (3). The error in y1 is

y1 − y(x1) = −h
2

2
y′′(ξ)

Since y′′ is continuous, this error → 0 as h→ 0.

The second formula in (3) is derived in an analogous way, and in general
form

y(xn + h) = y(xn) + hy′(xn) +
h2

2
y′′(ξn)

we obtain
yn+1 = yn + hf(xn, yn)
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by deleting the remainder term h2

2
y′′(ξn) and replacing y′(xn) = f

(
xn, y(xn)

)
with the approximation f(xn, yn). The error arising from this replacement
can be estimated by using the mean value theorem if the condition∣∣∣∣∂f(x, y)

∂y

∣∣∣∣ ≤ K

of Theorem 1 is satisfied:∣∣f(xn, y(xn)
)
− f(xn, yn)

∣∣ ≤ K |y(xn)− yn|

If in addition |y′′(x)| ≤ M for each x ∈ [a, b], one can prove that the global
truncation error

|y(xn)− yn| ≤
hM

2

eK(xn−a) − 1

K
.

The error at the end point xN = b is therefore at most

hM

2K

(
eK(b−a) − 1

)
if we forget the evaluation error.

Euler’s method

Problem: {
y′ = f(x, y)

y(a) = η

Algorithm:
yn+1 = yn + hf(xn, yn)

y0 = η

xn = a+ nh, h =
b− a
N

(4)

Error estimate:

|y(xn)− yn| ≤
hM

2

eK(xn−a) − 1

K
.

Geometric derivation of Euler’s method: If the conditions of Theorem 1 are
fulfilled, then each point (x, y) in the plane is contained in a solution curve.
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In Euler’s method we draw a tangent to a solution curve at (xk, yk), then
yk+1 is the y-coordinate of the intersection point of this tangent and the line
x = xk+1:

yk+1 = yk + hf(xn, yn)

Remark. Instead of Euler’s method it is customary to use more accurate
methods where the upper bound of the global truncation error is proportional
hp where p > 1. As a result of better accuracy one can then use a larger step
length h, so that the number N of necessary steps is reduced.

Heun’s method

Let
y
(e)
n+1 = yn + hf(xn, yn)

be the approximate value at xn+1 given by Euler’s method and let

k1 = hf(xn, yn)

be the corresponding increase of the function value. We obtain another
approximation for k1 by approximating the solution curve by a secant through
(xn, yn) with slope f

(
xn, y

(e)
n

)
:

k2 = hf(xn+1, y
(e)
n+1) = hf(xn + h, yn + k1)

Heun’s method:
yn+1 = yn +

1

2
(k1 + k2)

The global truncation error in Heun’s method is O(h2), i.e. the error≤M ·h2.

Classical Runge-Kutta method:

k1 = hf
(
xn, yn

)
k2 = hf

(
xn +

h

2
, yn +

k1
2

)
k3 = hf

(
xn +

h

2
, yn +

k2
2

)
k4 = hf

(
xn + h, yn + k3

)
yn+1 = yn +

1

6

(
k1 + 2k2 + 2k3 + k4

)
One can show that the global truncation error is O(h4).
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Example. Compute one step using the classical Runge-Kutta method for
the initial value problem {

y′ = xy

y(0) = 1

with step length h = 0.4.

Now f(x, y) = xy, so we get

k1 = hx0y0 = 0

k2 = h
(
x0 +

h

2

)(
y0 +

k1
2

)
= h · h

2
· 1 = 0.08

k3 = h
(
x0 +

h

2

)(
y0 +

k2
2

)
= h · h

2
(1 + 0.04) = 0.0832

k4 = h
(
x0 + h

)(
y0 + k3

)
= 0.173312

y(0.4) ≈ y1 = 1 +
1

6

(
0 + 2 · 0.08 + 2 · 0.0832 + 0.173312

)
= 1.083285

Truncation error ≈ 2 · 10−6.

In a multistep method the computation of yn+1 requires the knowledge of
more than one previous approximation, e.g. yn, yn−1, yn−1, . . . , yn−p.

Example. Midpoint method

yn+1 = yn−1 + 2hf(xn, yn) (5)

Derivation: We integrate the equation y′(x) = f
(
x, y(x)

)
over [xn−1, xn+1]

and approximate the integral
xn+1∫
xn−1

f
(
t, y(t)

)
dt

with the product

f
(
xn, y(xn)

)(
xn+1 − xn−1

)
= 2hf

(
xn, y(xn)

)
xn+1∫
xn−1

y′(t)dt =

xn+1/
xn−1

y(t) = y(xn+1)− y(xn−1)

Replacing the exact values y(xk) with the approximation yk we obtain (5).
Global truncation error is O(h2).
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Remark. Multistep methods require a separate starting procedure because
in the beginning we only know one initial condition y0 = η. For example, in
using (5) we need y0 and y1 for the computation of y2, because

y2 = y0 + 2hf(x1, y1).

Such a starting procedure could be some single-step method.

5.3 Implicit methods

We integrate the equation

y′(x) = f
(
x, y(x)

)
over [xn, xn+1].

Left-hand side:
xn+1∫
xn

y′(t)dt = y(xn+1)− y(xn)

Right-hand side becomes
xn+1∫
xn

f
(
x, y(x)

)
dx

Applying the trapezoidal rule we obtain

xn+1∫
xn

f
(
x, y(x)

)
dx ≈ h

2

[
f
(
xn, y(xn)

)
+ f
(
xn+1, y(xn+1)

)]
Replacing on both sides the exact values y(xn) and y(xn+1) with the approx-
imate values yn and yn+1 we obtain:

The trapezoidal method

yn+1 = yn +
h

2

[
f(xn, yn) + f(xn+1, yn+1)

]
(1)

Global truncation error is O(h2).
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The trapezoidal method is an example of implicit methods: yn+1 does not
depend explicitly on a previous yn as in the explicit methods discussed so far,
but yn+1 is obtained as a solution of the equation (1) which may be nonlinear.

Example. Consider again the problem y′ = xy, y(0) = 1. Due to the
linearity of the differential equation the equation (1) is linear with respect to
yn+1:

yn+1 = yn +
h

2

[
xnyn + xn+1yn+1

]
Using the step length h = 0.2 we obtain

y1 = y0 + 0.1
[
xnyn + xn+1yn+1

]
= 1 + 0.1

(
0 + 0.2y1

)
⇔ y1 = 1 + 0.02y1

⇔ y1 ≈ 1.0204

For n = 1 we get

y2 = y1 + 0.1[x1y1 + x2y2] = 1.0204 + 0.1[0.2 · 1.0204 + 0.4 · y2]

⇒ y(0.4) ≈ y2 =
1.0408

1− 0.04
≈ 1.0842

Truncation error ≈ 9 · 10−4.

Example. Consider the problem{
y′ = e−y

y(0) = 1

The differential equation is now nonlinear. For n = 0 the formula (1) is

y1 = y0 +
h

2

[
e−y0 + e−y1

]
= 1 +

h

2

[
e−1 + e−y1

]
.

If e.g. h = 0.2, then y1 should be solved from the equation

y1 = 1 + 0.1[e−1 + e−y1 ]

Define an auxiliary function g(y) such that

g(y1) = y1 − 0.1 · e−y1 − (1 + 0.1e−1) = 0.

79



The solution can be found e.g. by Newton’s method. The starting value
could be the approximation given by Euler’s method

y
(o)
1 = y0 + he−y0 ≈ 1.0736.

By Newton’s method we obtain

y
(1)
1 = 1.071053

y
(2)
1 = 1.071053

Hence y1 = 1.071053, and we can continue with the next step n = 1.

In the trapezoidal method yn+1 is solved from an equation g(y) = 0, where

g(y) = y − h

2
f(xn+1, y)−

[
yn +

h

2
f(xn, yn)

]
.

If the solution is found by Newton’s method as in the previous example, in
each iteration step we must compute the derivative

g′(y) = 1− h

2

∂f

∂y
(xn+1, y).

An alternative approach to solve g(y) = 0 is the fixed point iteration

y
(0)
n+1 = yn + hf(xn, yn)

y
(k+1)
n+1 = yn +

h

2

[
f(xn, yn) + f(xn+1, y

(k)
n+1)

]
(k = 0, 1, 2, . . .)

(2)

The starting value has been computed with Euler’s method which serves
as a predictor. This predicted approximation is corrected using the trape-
zoidal method. The algorithm is an example of a predictor-corrector method.

According to §3.4 a sufficient condition for the convergence of the iteration
in (2) is the inequality ∣∣∣∣h2 ∂f∂y

∣∣∣∣ < 1 (3)

in a sufficiently large neighborhood of (xn+1, yn+1). Thus the step length h
should be small enough.
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Example. Consider the solution of the initial value problem{
y′ = e−y

y(0) = 1

using the predictor-corrector method (2). The iteration will converge towards
the solution of (1), if ∣∣∣∣h2 ∂f∂y

∣∣∣∣ =
h

2
e−y < 1

in a sufficiently large neighborhood of (xn+1, yn+1). Since e−y > 0 for each y,
then all terms in (2) will be nonnegative. Since in addition y(0) = y0 = 1,
we see by induction that y(k+1)

n+1 ≥ 1 for each k and n. Therefore (3) will hold
if e.g. h = 0.1.

If
∣∣∣∂f∂y ∣∣∣ is large, we must use a very small step length to guarantee the con-

vergence of iteration (2). Then Newton’s method could be a better choice.

To mention a few methods, Adams-Bashfort is an explicit predictor method
while Adams-Moulton is an implicit corrector method. For example, the
following predictor-corrector method has a global truncation error O(h4):

yn+4 = yn+3 +
h

24
(55fn+3 − 59fn+2 + 37fn+1 − 9fn)

yn+4 = yn+3 +
h

24
(9fn+4 + 19fn+3 − 5fn+2 + fn+1)

5.4 Boundary value problems

Consider a boundary value problem associated with a second order differential
equation 

y′′ = f(x, y, y′)

y(a) = α

y(b) = β

where f is a given function. We look for a solution of the given equation
defined on the interval [a, b] which has the prescribed values at the end points
a and b. The condition y(a) = α and y(b) = β are called boundary conditions.
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Example. A stationary solution of the one-dimensional heat equation

d

dx

(
k(x)

dy

dx

)
= 0

with boundary conditions y(a) = α, y(b) = β describes the temperature of
a thin rod with variable heat conduction properties. Assume that the rod
is insulated along its length and that the end points are kept at different
temperatures. If the heat conduction coefficient is constant, then the solu-
tion of the boundary value problem is a first degree polynomial. If k(x) is
nonconstant, the problem should be solved numerically.

Shooting method

We consider the boundary value problem
y′′ = f(x, y, y′)

y(a) = α

y(b) = β

(1)

together with the initial value problem
y′′ = f(x, y, y′)

y(a) = α

y′(a) = γ

(2)

We assume that both problems have a unique solution. In the shooting
method we try to find γ so that the solution of the initial value problem (2)
satisfies the boundary condition y(b) = β. Then the boundary value problem
(1) is reduced to the initial value problem (2). When γ has been found, (2)
can be represented as a system

y′ = v

v′ = f(x, y, v)

y(a) = α

v(a) = γ

(3)

This can be solved e.g. using a Runge-Kutta method. γ will be found by
improving a suitable initial guess by iteration.
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Example. The boundary value problem

y′′ = −y, y(0) = 0, y
(π

2

)
= 1

has an analytical solution y(x) = sinx. If the solution is approximated by a
linear interpolation polynomial satisfying the given boundary conditions, we
obtain an initial guess for γ: the slope of the graph of the polynomial

γ0 =
1− 0
π
2
− 0

=
2

π
= 0.637.

The initial value problem (2) is now
y′′ = −y

y(0) = 0

y′(0) = γ0 = 0.637

and the system (3) is 
y′ = v

v′ = −y
y(0) = 0

v(0) = 0.637

Matlab’s ode23tx gives y(π
2
) = 0.637. Shooting to the direction of γ0 we

therefore hit below the goal (y(π
2
) = 1). We change to a steeper shooting

direction and choose y′(0) = γ1 = 1.2. Solving (3) as above we obtain
y(π

2
) = 1.2.

Instead of trial and error we can look for the right value of γ by iteration.
Let y(x, γ) be the solution of the initial value problem (2) as a function of γ
and denote

g(γ) = y(b, γ).

Then obviously y(x, γ) is a solution of (1) exactly when g(γ) = β. To deter-
mine γ we therefore have to solve the equation

g(γ)− β = 0. (4)

Since g does not have an explicit formula, the values of g must be computed
numerically. Also we don’t know how to differentiate g, so that we could try
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to solve (4) by the secant method :

γn+1 = γn −
g(γn)− β

g(γn)− g(γn−1)

γn − γn−1

(5)

Example. In the previous example we computed

g(γ0) = 0.637 and g(γ1) = 1.2,

where γ0 = 0.637 and γ1 = 1.2. The secant method gives (n = 1)

γ2 = 1.2−
1.2− 1

1.2− 0.637

1.2− 0.637

= 1.2− 0.2 = 1

Then g(γ2) = y(π
2
, 1) = 1.0000; hence we hit directly to the goal and the

solution of (4) is γ2 = 1.

One can show that if f depends linearly on y and y′ as in the previous
example, g(γ) is a polynomial of γ of degree one. Therefore the secant
method immediately gives the correct solution. If the differential equation is
nonlinear, we usually have to perform several iterations to solve (4).

Example. We solve the boundary value problem

y′′ = 1 + yy′, y(0) = 1, y(0.6) = 2

by the shooting method using Matlab’s ode23tx in the initial value problems.

By linear interpolation we obtain the initial guess

γ0 =
2− 1

0.6− 0
= 1.67

which yields g(γ0) = 2.8788. Choosing a new shooting direction (γ1 = 0.8)
we obtain g(γ1) = 1.3544. The secant method gives γ2 = 0.8429; then
g(γ2) = 1.9965. Further γ3 = 0.8465 and g(γ3) = 2.0000 is quite close to the
correct boundary value.
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