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BACKGROUND

This material of Complex Analysis II assumes that the reader is familiar with
basic facts of complex analysis as presented in Complex Analysis Ia + Ib. In par-
ticular, the reader should be able to understand (and work with) complex numbers
including their polar representation, and elementary complex functions such as the
exponential function as well as basic trigonometric functions. Of course, the reader
should also know the notion of analytic functions as well as Cauchy—Riemann equa-
tions, Mobius transformations, power series and complex integration. In particular,
we shall apply Cauchy integral theorem, Cauchy integral formula, power series rep-
resentation of analytic function, Gauss’ mean value theorem, Cauchy inequalities,
elementary uniqueness theorem of analytic functions, maximum principle and the
Schwarz lemma, whenever needed.

1. SINGULARITIES FOR ANALYTIC FUNCTIONS

Unless otherwise specified, we are considering analytic functions in domains in
question.

Definition. Given f, z = a is an isolated singularity of f, if there exists R > 0 such
that f is analytic in 0 < |z — a| < R. The point z = a is a removable singularity,
if there exists an analytic g: B(a, R) — C such that g(z) = f(z) for all z such that
0<|z—al <R.

Theorem 1.2. A singularity at z = a is removable if and only if

lim (= — a) f() = 0.

zF#a

Proof. (1) As an analytic function, g is continuous, hence bounded around a. There-
fore,

lim (2 — ) (2) = lim (= — a)g(z) = 0

z#a z#a
trivially.
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(2) Let us define h: B(a, R) — C by
oy = { GO 240
, Z = a.

Clearly, h is continuous. We first prove that h is analytic. By the Cauchy integral
theorem,

/7 B(C) d¢ =0,

provided + is a piecewise continuously differentiable closed path in B(a, R). This
implies the existence of H: B(a,r) — C such that H' = h. Clearly, H is analytic.
Therefore, H is infinitely differentiable, and so h = H' also is differentiable and
therefore analytic in B(a, R). This implies that h can be represented as

h(z) = Z a;(z —a)’.
§=0
Since h(a) =0,
h(z) = Zaj(z —a) = (2 —a) Zajﬂ(z —a).
J=1 j=0

As a convergent power series, Y aj11(z — a)’ =: g(z) determines an analytic
function in B(a, R). If z # a, then

(2 = a)f(2) = h(z) = (z = a)g(2),
and so f(z) =g(z). O

Definition 1.3. Anisolated singularity z = a is a pole, if im, .4 .24 | f(2)| = c0. If
an isolated singularity is neither removable nor a pole, then it is called an essential
singularity.
Theorem 1.4. For a pole z = a of f, there exists m € N and an analytic function
g: B(a,R) — C such that

f(z) = (z=a)""g(z)
for any 0 < |z —a| < R.

Proof. Since lim,_,, »2q4 |f(1z)‘ = 0, we have

1
lim(z —a)—— = 0.
z;g(z 2 f(z)

By Theorem 1.2, z = a is a removable singularity for ﬁ Therefore, there exists

an analytic h: B(a, R) — C such that

for all 0 < |z —a| < R.
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By the power series representation, for some m € N,

) =S ap(z—af = (: = )™ (= — a)
j=m j=0

= (z—a)"hi(2),
where h; is analytic in B(a, R) and h(a) # 0. Since

1

%:(z—a)mhl(z), 0<|z—al <R,
we get
m —1
(2 —a)" f(2) = (h(2)) (1.1)
Since 0 < |hq(a)| < oo, it follows that hll(z) is bounded around z = a and so
lim(z — a) L 0
e

Therefore, % has a removable singularity at z = a and so there exists an analytic

g: B(a,R) — C so that g(z) = ﬁ(z) for 0 < |z —a|] < R. By (1.1),

f(z)=(z—a)""g(z2), 0<l|z—al|<R. O

Definition 1.5. Assume f has a pole at z = a. The smallest integer m € N such
that (z — a)™f(z) has a removable singularity at z = a, is the multiplicity of the
pole.

Exercise 1.1. Consider the following functions around z = 0:

1) f(z) =1

(2) f(z) = fnz
(3) f(z) = cou
(4) f() = 2
(5) f(z) = eV/2
(6) f(z) = zsin L

Determine whether z = 0 is removable, a pole or an essential singularity. In case
of a pole, determine also the multiplicity.
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Theorem 1.6. (Laurent series). A function f analytic in an annulus 0 < Ry <
|z — a] < Re < oo admits a unique representation

oo

f2)= ) a;(z—a).

j=—o00

The series on the right hand side converges absolutely and uniformly in every annu-
lus 1 < |z —al < re such that Ry < r; <9< Ra. The coefficients a; are determined

by
L[ IO 5
T 2mi o ((—a)itl d (~)

where v, :={|z—a|=1r}, Ry <r < Rs.
Proof. Omitted, see Saff-Snider, Theorem 5.5.14.
Theorem 1.7. Let z = a be an isolated singularity of f and

oo

f)= ) aj(z—a)

j=—o0

be its Laurent series expansion in 0 < |z —a| < R. Then

(1) z = a is removable if and only if a; =0 for j < —1,

(2) z =a is a pole of multiplicity m € N if and only if a_,, # 0 and a; =0 for
j < _(m + 1)7
(3) z = a is essential if and only if a; # 0 for infinitely many negative integers j.

Exercise 1.2. Prove Theorem 1.7.

Theorem 1.8. (Casorati-Weierstrafl). If f has an essential singularity at z = a,
then for every § > 0,

f(B(a,0)\{a}) = C.

Proof. We have to prove: Given ¢ € C and € > 0, there exists for each 6 > 0 a
point z # a such that |z — a| < § and |f(2) — ¢| < e. If this is not the case, then
there exists ¢ € C and € > 0 such that |f(z) —¢| > ¢ for all z € B(a,J), z # a. But

then
a2z —a

This means that % has a pole at z = a. Let m be the multiplicity. Then m > 1
and £(2)
. mflz)—c
9(2) = (z —a)" ———

has a removable singularity. Therefore

0= lim(z — a)g(z) = lim(= )" (£(z) ~<).

4



Then
lim(z — a)™ f(2) = lim [(z — @)™ (f(2) —¢) + c(z —a)™] =0

zZ—a zZ—a

and so

lim (2 — a)(f(2)(z —a)™ ") = 0.

z—a

Hence,
)z —a)m!

has a removable singularity at z = a. By Definition 1.1, there exists an analytic
g: B(a,d) — C such that

f(z):%, 0<|z—a| <é.

If m > 1, then lim,_, | f(2)| = oo, hence f has a pole at z = a, and if m = 1, then
f(2) has a removable singularity at z = a. Both cases contradict the assumption
of an essential singularity at z = a. U



2. THE RESIDUE THEOREM
Let z = a be an isolated singularity of f and let

oo

fz)= Y aj(z—ay

j=—00

be its Laurent expansion around z = a. Define now the residue of f at z = a by
Res(f,a) :==a_;.

Theorem 2.1. (Residue theorem). Assume that f: G — C is analytic in a conver
region G except for finitely many poles a1, ...,a, and let v be a piecewise continu-
ously differentiable closed path in G such that a; ¢ v(I), j =1,...,n. Then

2m/f )d¢ = Z n(vy,a;) Res(f,a;),

where n(7, a;) denotes the winding number of v around z = a; counterclockwise.

Remarks. (1) Intuitively, the winding number tells how many times one goes
around z = a; as one follows the path v from v(0) to v(1). We omit the exact
definition.

(2) The residue theorem holds good even in a number of more general situations.
We omit these considerations.

Proof of Theorem 2.1. Let

oo

f(z) = Z ajr(z —ar) = Sk(z +Za]kz—ak
J=—Hk
be the Laurent expansions of f(z) around z = a, k = 1,...,n. Clearly, g(z) =

f(z) =X p_; Sk(z) is analytic in G. By the Cauchy theorem,

0=/7g<<>d¢=/f<c>d<—i/s

/f ¢ — sz/ (€~ ax) dC.

k=1j=—px
Therefore, it suffices to compute

L(g )™ dC
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for 1 < k <n and for any m € N. This integral is independent of the path and so
we may assume 7y to be a circle centered at ai. Since (¢ — ar)~™ has a primitive
for m > 2, then fv(g —ag)” ™ =0for m>2. If m=1, then

/(C —ag)"td¢ = 2min(y, ag)
v

by the Cauchy integral formula. Therefore,
0= [ Q)¢ = Y acv 2min(yan)
R k=1

:/f(C)dC—ZWiZn(%aj)Res(faaj)~ O

k=

Theorem 2.2. If f(z) has a pole of multiplicity m at z = a and

9(2) := (2 = a)" f(2),

then 1
_ = (m-1)
Res(foa) = zd (@)
Proof. Clearly,
f(z) = Z CLj(Z — a)j
j=—m
and so
g2)=a_m+a_mii(z—a)+ Fa_i(z—a)" .-,
hence

g™ V)= (m—-1Dla_,. O
Corollary 2.3. If f(z) has a simple pole at z = a and g(z) := (z — a) f(z), then

Res(f,a) = g(a) = lim(z — a) f(z2).

zZ—a

Example 2.4. To compute
too dx
/_oo 1+ a2’

consider




f(2) is analytic in C\ {i, —i}, with simple poles at z = +i. By Corollary 2.3,

Res(f,i) = lim(z —0) f(2) = —.

z—1 21

Assume R > 1, and compute fv f(¢) d¢, where « is as in the figure. By the residue

theorem ac
—— = 2miRes(f,i) = .
L 1+4¢2

/ d¢ _/R dx +/ d¢
142 gl Jg 14 ¢

where Kp is the half-circle part of v. But ¢ = Re'¥ on v and so d( = iRe'¥ d,

hence
™ iRe'¥ T dp R
= _dp| <R < 0 R ,
‘/KRHC /01+c2 9”‘— /0\1+<2!—R2—1* T

since |1+ (%[ > ||¢|* — 1| = R* — 1 on K. Therefore

: ¢ > drx _ d¢
m = lim — = 5 + lim —,
R—co ,yl—{—C oo L+ R—oo [, 1+C
/ dx =7. U
oo L+ 22

/OO x2 dx o
N N

On the other hand,

giving

Example 2.5. Prove that

Now )
z
f(Z) - 1 + Z4
is analytic in C\ {a1,...,as}, where a;:s are the fourth roots of —1. Making use

of the same path v as in Example 2.4, we need a1, as only;

1 1
a; = E(l‘f’l) a2 = E(l_l)
Now,
Res(f,a1) = lim (z —a1)f(2) = lim (2 —a1) z—a1)(z— a;(z —az)(z — ay)

a? 1—1

(a1 —az)(a1 — az)(ar — ag) B 42




Similarly,

By the residue theorem,

1 / f(¢)d¢ = Res(f,a1) + Res(f,az2) =

2
On the other hand,

1 1T P de 1 C2de
lf(C)dC / +

l

575

27 T omi Jop et 2mi Jg, 1+ CE

2d ™ R2 24 ) ™ Sicpd

¢ i:/ L - -Rie“"dgpz/ i -
Kn 1+¢ o 1+ Rietw 0 14 Rer®
Since |1 + R*e*¥| > R* — 1, we get

C2d¢ R3 /” 7R3
< dp=———0 R
'KR1+C4 —R4_1 0 @ R4—1—> as — O

7 1 /Oo x2dx /°° x2 dx T
SR T L BN == O
202 2mi ) 1+t o1ttt P

Example 2.6. Compute

Now,

and so

/07r CH‘CZ%SS@ for a > 1.
On the unit circle [2| =1, z=¢? andso z=¢"¥ = - = L and
ZZ%ZZH =a+i(z+i)=a+iz+2)=0a+ %(ew—I—e_w) = a + cos .
Let v be the unit circle. Observing that cos(—p) = cos p, we get
T dyp LT dy . dz
| et +—ﬁ—/+z—+1 (21)

Now, 22 +2az + 1 = (z — a)(z — 3), where

a=—a+vVa?-—1, B =—a—+a%—1.

Since a > 1, it is easy to see that || < 1, || > 1. Therefore, by the residue
theorem,

dz 1
_ ez, _orili _
/722+2az+1 mi Res(f, ) mzliré(z «) IR

1 ™
a—0F VaZ-1

Combining with (2.1), one obtains
Tod
/ Y . O
o a-+cosp a2 —1
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Example 2.7. To evaluate

we consider

The integral = 0, since (1) f(z) = €'*/z is analytic inside of v, (2) €** = cosz +
isinz, (3) cosx/x is an odd function and sinx/x is even.
To evaluate the integral over 7,2, we need the Jordan inequality

/ e Bsine g < Z(l—e*R) (R>0).
0 R

To this end, consider g(p) := sinp — @ cosp. Since g(0) = 0 and ¢'(p) = cosp —
cos p + @sing > 0, g(¢) > 0 for 0 < ¢ < 7/2. Therefore,

D(Slngp>:<pcoscp—8m90§0, 0<p<n/2

© @2

since (sin¢/¢),—r/2 = 2, we have sing/¢ > 2 for 0 < ¢ < 7/2. Then e~ f5in¢ <

_R2e
e % and so

- . w/2 ) ™/2 20 T
/ 6—Rs1n<p dSO _ 2/ e—Rsm<p ng < 2/ B_R.T dso — _(1 _ €_R),
0 0 0 R

Therefore,

™ ™
/ ez’R(cosap—l—isin«p) . ZdQO‘ < / |eiRcosg0|6—Rsin<pd<p
0 0
:/ e_RSin“Ddcpgg(l—e_R)HO as R — oo.
0

By the Taylor expansion of €%,

So,



and now

d T
/—Z:i/ dp = mi,
m o# 0
/g(Z)dZ
Y1

SK/ |pe'?|dp = Knp — 0 as p — 0.
0

Therefore,

Hence,

R _: iz iz
0:2@/ Slmdm—/ e—dz+/ ¢ dz
p X o~ ya ~a z

0o
—>2i/ ST g — i as R — oo and p — 0.
0 x

This results in

Example 2.8. Prove that

Consider .
14 2iz — 2%
-2

f(2)

The only possible pole is z = 0. Since the power series of e2?* converges for all z

(€2# is entire!), ¢(z) below is bounded around z = 0:

1+2iz—e* 1 20 [\’ 1 20 (1 | 2
— + ;+@—§z+---

z z z z z z
1212
e A

Therefore, lim, .0 zf(2) = lim,_,0 2¢(2) = 0, and so f(z) has a removable singu-
larity at z = 0. Since f(z) is analytic in C, by the Cauchy theorem,

(hilﬂomc3éfxmc+/R1+%x_&mdx

R .I‘Q
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For the last integral, we get

R . 2ix R ix R
1+ 2t — l1—e d
/ + sz c dx:/ dx+2z/ ax
—R e -R ,'I/' —R X
R R _: R
1-— 2 2 d
/ = xd:c—z’/ SmQxd:chQi/ er
R X R X -R X

R Sln X
=2 / 5— dz + a purely imaginary term
R X

sin? x
=14 / dx + a purely imaginary term.
0

For the integral on /’;,

T 1492 Rel — 2iRe‘? .
ﬁ F(¢) d¢ = / T2RET — T iRei dy
vy 0

RZ 621@

:/ ie_wds@_z/ dSO—/ — e o = [ 4+ I + I,
0 R 0 0

Now,

1 ™
|Il|§}_€/0 d@z%ﬁO as R — oo,
]2:—27'('

and

I3 =

_—
/ %e—wezmcos Ppp—2Rsing dgp)
0

1 T
S .

R

/2
/ €—2Rsingo dQO
0
2 71'/2 4R<p

S}—% ; dgo—;?(l—e_2R)—>0 as R — oo.

6—2Rsmcp ng _

o o

Therefore, by taking real parts,

0o _:..2
/O stJde: lim (__/ f(¢ dC> :—+ hm (I1—|—IS) ;T O

x R—oo
/OO dx
o (z2+1)%

Example 2.9. To compute,

denote




Clearly, f(z) has double poles in z = 44, and no other poles. Therefore, by Theo-

rem 2.2,
1
Res(f,z') = Fgl(l)7

where g(z) = (z — )% f(2) = m Hence,

0= ()@

Res(f,i) = 412

and so

By the residue theorem,
d¢ . , s
/ym = 2mi Res(f, Z) = 5

On the other hand,
a (" ds d¢
A @+ /_R (@ + 177 +/KR E+7

G
Kp (2 +1)3

. 1 . .
Since @@ T2 Is an even function,

/°° dx . /°° dx | /R dx s
—— =z ———— =< lim — = —.
o (@24+1)2 2 ) _(22+1)2 2R p(@2+1)2 4
Exercises. Evaluate the following integrals by making use of the residue theorem:
> xdr
1 il
/2 d
(2) / —g02 for a > 0,
0 a +sin” ¢
*  cosx
3 —d
® [ v

@ [

2 x.

TR

g<R2_1)2—>0 as R — oo.

Additional reading:

D. Mitrinovié: Calculus of Residues
E. Saff — A. Snider: Fundamentals of Complex Analysis
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3. THE ARGUMENT PRINCIPLE

3.1. The logarithm in the complex plane. The exponential function is locally
injective in C. In fact, assume

Denote z —t =z + iy, z,y € R. Then

1 =e"T = ¢e%e = e%(cosy + isiny) =1

{ e“cosy =1
e’siny = 0.
Since

1= e =",

we see that © = 0. Then cosy = 1, siny = 0 implies y = n - 2n. Therefore, the
nearest possible points z,t with e* = e’ have a distance 27, and given any zg, €* is
injective in B(zp, 27).

So, we can locally define the inverse function log z for the exponential. Since

log 2 log z4+n-27¢
)

Z =€ =€

log z has infinitely many branches. Denoting u + iv = log z, we get
z=e"TW = ¢ = |z| =" = u=log|?|
and ' _ '
re'¥ =z = |z]e'¥ = e“e"
and so we may take v = ¢ = arg z. Hence
log z = log |z| + targ z + n - 2mi

If v is now a closed path in C, and we consider logz on 7, we easily see that
return to the original branch appears, if the winding number around z = 0 is zero;
otherwise we move to another branch. So, if we have a domain G C C\ {0}, then
log z is uniquely determined and analytic in G. This will be applied in the proof of
Theorem 3.3.

3.2. The argument principle. Assume f(z) is analytic around z = a and has a
zero of multiplicity m at z = a. Then f(z) = (z — a)"g(2), g(a) # 0. Therefore,

+ 2 (3.1)

Since g(a) # 0, ¢’(z)/g(z) is analytic around z = a. Similarly, if f(z) has a pole of
order m at z = a, and f(z) = (z —a)""g(2), g(a) # 0, then

=— + : (3.2)



Definition 3.1. Assume that f: G — C is analytic in an open set G C C except
for poles. Then f is said to be meromorphic in G.

Theorem 3.2. Assume that f: G — C is meromorphic in a convex region G except
for finitely many zeros ay,...,a, and poles by, ..., b, each repeated according to
multiplicity. If v is a piecewise continuously differentiable closed path in G such
that a; ¢ v(I), j=1,...,n, and b; Q_fy(I) j=1,...,m, then

27m/ a;) Zn(’y b
j=1
Proof. By the same idea as in (3.1) and (3.2),
f'z) N~ 1 —~ 1 J(
= — + ,
f(2) ;z—aj ; z—b;  g()

where ¢(z) is analytic and non-zero in G. Since ¢'/g is analytic in G, elementary
integration and the Cauchy theorem result in

n

1o 1 b
2m'/7f(C) dC_Qﬂi;LC—aJ 46 QWZZ/C

Theorem 3.3. (Rouché). Let f, g be meromorphic in a convex region G and let
B(a,R) C G be a closed disc. Suppose f, g have no zeros and no poles on the circle
v=0B(a,R)={z€G||z—a| =R} and that |f(z) — g(2)| < |g(2)| for all z € ~.
Then

Hf —Vf=Hg = Vg,
where Ly, g, TESp. Vi, Vg, are the number zeros, resp. poles, of f and g in {z €
G ||z —a| < R}, counted according to multiplicity.

Proof. By the assumption,

’%—1‘<1 (3.3)

for all z € v. By the Theorem 3.2,

1 UQeQ) 1 1) /¢@>
i J, (7©OJ9(0) " 2w ), 7O © T 2w ), 0l
= pp — vy = (ny —vy),

since the winding number of 7 for all zeros and polesin { z € G | |[z—a| < R} equals
to one. On the other hand, by (3.3), f/g maps « into B(1,1), and so a fixed branch
of log(f/g) is a primitive of (f/g)"/(f/g). Integrating over =y, the logarithm doesn’t
change the branch, hence log(f/g) takes the same value at v(0) and (1) = ~(0)
resulting in

dg

1 Q)

2mi ), (£(€)/9(C))

The assertion now follows. [
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4. INFINITE PRODUCTS

The basic idea behind of this section is the need to separate the zeros (and poles)
of a meromorphic function f(z) as a product component of f(z). In principle, this
results in an infinite product. To this end, we first prove

Theorem 4.1. If f(2) is an entire function with no zeros, then there exists another
entire function g(z) such that

fa) = 1),
Proof. Since f(z) # 0 for all z € C, then % is entire. Therefore,
/ o0
z .
() :Zajzj =ag+a1z+az® + -+

is a power series representation converging in the whole C. Consider

h(z) = apz + %a122 + %agz?’ 4+ =2(ap + a1z + %agz2 + ). (4.1)

1 i .
lim sup i/ |aj| = lim sup — /la;| = limsup {/|a;| =0,
j—o00 ] + Jj—o0 j—o0

the power series (4.1) has radius of convergence = co. Therefore, (4.1) determines
an entire function. Differentiating term by term, as we may do for a converging
power series, we get

f'(z)

f(z)

Since

n(z) =

Define now
p(z) = f(z)e” "),

hence

¢'(2) = f'(2)e ") = f)l (2)e ") = e MO (f1(2) = f(2)I(2)) = 0.

Therefore, (z) is constant, say ¢(z) = e?, a € C. Note that ¢(z) # 0 for all z € C.
So,
FlR)e™) = et = f(z) = e+,

Defining ¢g(z) := a + h(z), we have the assertion. [

Definition 4.2. The infinite product H;‘;l b; of complex numbers b; converges, if
there exists

JE%OHb #0
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Remark. Define P, := [[;_, b;. Clearly, [[;Z, b; converges if and only if (P,)

converges and lim,,_, P, # 0. Then b,, = P,,/P,_1 and there exists
lim P,
lim b, = — "% _—1q, 4.2
nl—{I;o hmn—»oo P, ( )

Therefore, it is customary to use the notation
b =14 an;

then lim,, o a, = 0 by (4.2).

Theorem 4.3. Ifa; >0 for all j € N, then H;;(l + a;) converges if and only if
> i1 a; converges.

Proof. Observe first that P, := H?zl(l + a;) is a non-decreasing sequence, since
a; > 0. Therefore, (P,) either converges to a finite (real) value, or to +o0o. Clearly,

a1+a2+...+an§(1+a1)(1+a2)...(1+an)_
On the other hand,
(1 +CL1) e (1 —|—an) < e eln — ea1+...+an7

since e > 1 + x for every x > 0. So, we have
n n
N a; < [ +ay) <eZime, (4.3)
j=1 j=1

If (2?21 a;)nen converges, then (62?:1 %) en converges by the continuity of the
exponential function. This implies that the increasing sequence (H?Zl( 14 aj))
converges to a non-zero limit by (4.3). If (H;.Izl(l + aj))neN

increasing sequence (Z?Zl a;)nen converges, again by (4.3). O

neN
converges, then the

Theorem 4.4. Ifa; > 0, a; # 1, for all j € N, then H;’il(l — aj) converges if
and only if Zjil aj converges.

Proof. (1) Assume Z;; a; converges. By the Cauchy criterium,

oo
24 <3
j=N
for N sufficiently large; then also a; < 1, j > N. Observe that
(1 — CLN)(l — aN+1> =1- aN — aN+1 + ANAN+1

>1—an —an+1 (: 1—(ay +any1) > %)
17



Assume we have proved

(I1—an)(l—ans1) (1 —ap)>1—an —ant1— " — Gn. (4.4)
Then
(I—an)(I—ant1) - (1 —an)(l — any1)
> (1 —an—ant1 = —an)(l = ant1)
=l—ay—any1— " —ap — py1+ (an + -+ an)any
>1l—any —ant1 — -+ — Anga,

and so (4.4) is true for all n > N. Therefore

N[ —

(I—an)(l—any41) - (I—an)>1—(an+ - +ay) >

This implies that the decreasing sequence H;X; ~(1—a;) converges to a limit P %

>
If N is sufficiently large, then 0 < 1 —a; <1 and so P < 1. Writing, for n > N,

(1-a;)=Py_1- [](1—ay),
1 J=N

n
j:

we get

lim P, =Py_y- lim J[[(1—a;)=Py_1 - P=(1—-a1) - (1—an_1)P #0,
j=N

so [[;2,(1 — a;) converges.

(2) Assume now that Z;il a; diverges. If a; does not converge to zero, then
1 — a; does not converge to one. By the Remark after Definition 4.2, H;‘;l(l —ay)
diverges.

So, we may assume that lim; ., a; = 0. Let N be sufficiently large so that
0<a;j <1lforj>N.Sincel -z <e ”for 0 <z <1, we have

1—CLj§€_aj ]ZN

Y

Therefore,

n n
OSHI—% SH 0 = e 2j=N n > N.

Since Z;’;N a; diverges, lim,_ Z;:N aj = +00, and so lim,,_,o €~ Yi-n % = (),
implying that
n
li (1-—
Jim 116 =a)

By Definition 4.2, H;‘;l(l —aj) diverges. O
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Definition 4.5. The infinite product H;’;l(l + a;) is absolutely convergent, if
[[;=,(1 + |aj]) converges.

Remark. By Theorem 4.3, this is the case if and only if 372, |a;| converges.
Theorem 4.6. An absolutely convergent infinite product is convergent.

Proof. Denote

(14a;) and Qp:= H(1+|a]~|).

n n
=1 j=1

J

Then

Pn—Pn_1:H 1+aj) — ﬁl—l—aj

j=1
n—1 n—1
= (TT0+a)) 0 +an—1) =a, [T +ay)
Jj=1 j=1
and, similarly,
n—1
Qn — Qn-1 = |ay| H(l + ‘aj‘)
j=1

Clearly,
‘Pn - Pn—1| S Qn - Qn—l-

Since [[;Z (1 + |aj|) converges, lim, . @y exists. Therefore, 7% (Q; — Q;-1)
converges, and so by the standard majorant principle, Z 1 (P, — P,_1) converges,
implying that lim,,_,~ P, exists.

It remains to show that this limit is non-zero. Since Zoil la;| converges,

lim,, .o a, = 0, and so lim,,_. (1 + a,) = 1. Therefore, ZJ 1 1+

the majorant principle, since |1+ a;| > % for j large enough and so ’1+aj | < 2|a;].

o0
(-7)
j=1 1+CLJ‘

is absolutely convergent. By the preceding part of the proof, a finite limit

Therefore

exists. But




and so lim,, ., P, #0. 0O

Consider finally a sequence ( fj(z))j oy of analytic functions in a domain G C C.
Similarly as to Definition 4.2, we say that

(1+ f;(2))
j=1
converges in G, if

nli_)ngoﬁ 1+f3 #0

exists for each z € G.

Theorem 4.7. An infinite product Hjoil (14 f(2)) is (locally) uniformly conver-
gent in G, if the series 377~ | fj(2)| converges (locally) uniformly in G.

Proof. Assume the uniform convergence in D C GG. Then

Z|fj )| < M(< o)

for all z € D. Then by (4.3),

(L4 [£1(2)]) -+ (1 + | fu(2)]) < @ HIE < M

Denote

=1+ 1£(2)

Jj=1

Then

Pp(2) = Paci(2) = [fa()I (1 + 1A(2)]) - (L + [ famr(2)]) < M fu(2)].

Since

(Pu(2) = Pn MZ|fJ ’<€MZ|JCJ

I

Il
%)

J

Z;O:z (Pn(z) — P

1
| (1+ f;(2)) is absolutely (uniformly) convergent, hence (uniformly) convergent
by Theorem 4.6. [J

(z)) converges uniformly, and so (P,) as well. This means that
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Exercises.

(1) Show that H (1— (n+1)(n+2)) = 3.

n=1
o n?—4 1
(2) Show that H pCaREiat
n=3
oo 3 1
(3) Show that H n3 T converges.
n
n=2

(4) Determine whether or not H (1 —27") is convergent, for kK = 0 and
for k = 1. n=~k
(5) Prove that H <1 + E) defines an entire function.
k=0 '

- 1
(6) Prove that H(l + sz) =1 for all z in the unit disc |z| < 1.
—z
k=0
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5. WEIERSTRASS FACTORIZATION THEOREM

Consider a polynomial P(z) with (all) zeros 21, ..., 2z,. Then

P(z)=C(z1 —2) - (2n — 2) (C constant)

Oy (1_1)...<1_i)
Z1 Zn

Let now f(z) be an entire function with zeros z1, 2o, ..., 2z, ... arranged by increas-
ing moduli, i.e.,
0<|z1] <o <o Sz <oev

By the uniqueness theorem of analytic functions, lim, o |zm| = 00. Assume z; #
0. Then a factorization similar to the polynomial case above is not immediate, since

i)

may diverge. Therefore, we must somehow modify the situation to ensure the
convergence. This may be done by the following

Theorem 5.1. (Weierstral). Let (zm)nen be an arbitrary sequence of complex
numbers different from zero, arranged by increasing moduli and lim,, o |2, | =

Let m € NU{0}. Then there exist v € NU{0}, v = v(j), such that Z _ 11717 (”+1)
converges in C and that for the polynomial

Qu(z) i =z+ 31224+ +

R =

ZV? v > 17 QO(Z) =

and for an arbitrary entire function g(z),

G(z) = e9(2) mH ( ) V() (5.1)

s an entire function with a zero of multiplicity m at z = 0 and with the other zeros
exactly at (zp).

Remark. The sequence (z,) is not necessarily formed by distinct points. A re-
peated z, represents a multiple zero of G(z).

Before proceeding to prove Theorem 5.1, we consider the function (entire)
E,(2) = (1 —2)e? ), v>1; Ey(z):=1-z,

usually called as the Weierstraf3 factor.
22



We first prove three basic properties for F,(z):
(1) E' () = —2¥e@) for v > 1:

E,U(Z) = _eQu(Z) + (1 _ Z)(l + z + . + ZV—l)er(z)

:eQV(Z)(_]_+]_+...+ZV_1_2_22_...—ZV) :—ZVeQV(Z).

(2) Ev(z) =142, ajz? with > jsulajl =1for v >0.
For v = 0, this is trivial. Since F,(z) is entire, we may consider its Taylor
expansion around z = 0:

E, (z) = Z a2
j=0

Differentiating, we get

o0

S dagei=! = BL(s) = 52
j=1

Expanding the right hand around z = 0, we get —z" Z;io B;27 with 3; > 0 for
all j. Therefore a1 =az =---=a, =0 and a; <0 for j > v, hence |a;| = —a; for
j > v. Moreover, ag = E,(0) = 1 and

0=E,1) =1+ aj

Jj>v

doaj == lajl =1,

j>v i>v

thus

resulting in the assertion.

(3) If |2] < 1, then |E,(2) — 1] < |2|*TL, v > 0. By (2),

Bu(z) =1 =| Y a2 < Y lajlleP

j=v+1 j=v+1
o)
= 2T > lagllzf D < 2 ag| = Ja T
j=v+1 Jj>v

Proof of Theorem 5.1. We consider EV(%) for j € N. The idea is to determine v so
that H;’;l EV(%) converges absolutely and uniformly for |z| < R, R large enough.
To this end, fix R > 1 and 0 < o < 1. Since lim,,_, |2;m| = 00, we find g such
that |z,] < &, while |z41| > £. Then -, E,,(%) is an entire function as a finite

product of entire functions. Consider now the remainder term

Il »()
Jj=q+1 Zi
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in the disc |2| < R. Since j > ¢, |z;| > £ and so

1z/2zj] < a < 1.

<j Zj

we proceed to estimate U;(z). Since j > ¢, and |z/z;| < 1, (3) above implies

Writing

1
2|7t

j

(5.2)

i) = B (2) -1] <

Zj
We now divide our consideration in two cases:

Case I: There exists p € N such that Z;’;l |2j|7P < oco. In this case, we define
v:=p—1. From (5.2), we obtain

U;(2)] < BP|z] 77,
since |z| < R. Therefore,
D U ()| < BPY |z 7P < o0
j=1 j=1

for |z| < R. By Theorem 4.3, Definition 4.5 and Theorem 4.7,

jﬁlu +U(2) = jﬁlEu (i)

converges absolutely and uniformly.

Case IT: For all p € N, 377 [2;|7? = oo. In this case, we take v = j — 1, so v
depends on j. Then, by (5.2) again

Z]

U, <
U5 < |

provided j > ¢ (which means |%| < a < 1) and |2| < R. Since |z/z;| < a <1, we
J

have
_ J
lim sup { <a<l,

Jj—oo

Zj

and therefore, by the root test, which carries over from the (real) analysis word by
word, Z;‘;qﬂ |U;(2)| converges. As above, we get that H;’;qﬂ El,(%) converges
absolutely and uniformly for |z| < R. If we now have proved that H‘;’;l El,(%) is
analytic in C, then G(z) is entire and has exactly the desired zeros. Therefore, it
remains to prove
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Theorem 5.2. If (fn(z)) 1s a sequence of analytic functions in a domain G and
if there exists

lim f,(z) = f(z) (5.3)

n—oo

uniformly in closed subdomains of G, then f(z) is analytic and f'(z) = lim f](2).

Proof. This is a consequence of the Cauchy integral formula. In fact, fix z € G
arbitrarily and let B(zp,7) be a disc s.th. B(zg,7) C G. By the Cauchy integral
formula, and the fact that z € B(zg, ),

1 Q)

271 6BC—Z

fo(2) = d¢, n € N. (5.4)

Since the convergence is uniform on 0B,

[fn(C) = f(Ol <e

for n > n. and for all { € dB. Therefore, since |( — z| > [r for all ( € IB,
0 < B <1, (6 depends on z).

1 fn(C) 1
2mi 8BC—Zd 2i aBC—ZdC‘
< L[ Q= SO o2 e
2 Jop ¢ — 2| 2rBr B
and s A (S U N (9
”12202_7” aBCn——ng_ 27”/83 C—ng
By (5.3) and (5.4),
_ 1 f(©)
16 =5 | Hac

Now, f/(z) exists, since

| 1 O 5

Hr ) = e = o [ (- M
L s L ©
5 oy T T S B T

provided z, z + h € B(zg,r). Therefore, f(z) is analytic. Since the limit (5.3) is
uniform in 0B, we get

ron L f(<) _ L im de
Fz) = 2mi /aB (¢ —2)? 4 2mi /88 (”1_’00 () (¢ —2)

n—o0 2mi Jop (¢ — 2)?
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Theorem 5.3. (Weierstral product theorem). Let f(z) be entire with a zero of
multiplicity m € NU {0} at z = 0 and the zeros z; # 0 s.th. 0 < |z1] < |zg| < -+ -,
possibly including repeated points. Let H(z) denote the Weierstraf$ product (5.1)
with g(2) = 0. Then there exists an entire function h(z) s.th.

f(z) = H(z)eM?), (5.5)

Proof. Since f(z) and H(z) have exactly the same zeros, it is clear that f(z)/H(z)
is entire with no zeros. Applying Theorem 4.1 results in (5.5).

Remark. A possible zero at z = 0, i.e. m > 0, corresponding to z” in Theorem 5.1,
is contained in H(z).

Observe that Theorem 5.1 may be expressed as

Theorem 5.4. Let (2,)nen be a sequence the distinct complex numbers having no
finite accumulation points, and let a sequence (k,)nen of natural numbers be given.
Then there exists an entire function having roots of multiplicity k, at z, for all
n € N, and nowhere else.

Example. As an example, we construct the classical product representation sin 7z
=: f(2). Clearly, f(z) has simple zeros exactly at z = n, n € Z. Since 72 n™P
converges for p = 2 and diverges for p = 1, we may take v = 1 in Theorem 5.1, see
Case I of the proof. By Theorem 5.3,

F(2) = 2t I (1 - j—) ,
j=1

which we may write as

o0 2
f(z) = sinmz = mze9®) H (1 - j—2) ,
j=1

where ¢ is entire. By logarithmic differentiation,

f'(2) wcosmz 1 = 22
— t = - = = —_.
f(z) TERTE T ine z+g(z)+;zz—j2

The problem now is to determine g(z). To this end, we consider

n

. 1 J R, P
M) =lm DL =t e

j=-n Jj=1

The function h(z) is a meromorphic function, with simple pole at z = n, n € Z, with
residue = 1 at each pole that means, exactly the same poles (and same residues)
as mcot mz, see Exercises. Also, we leave as an exercise to show that

27 cot 2mz = weot w2 4 meot (w(z + 3)). (xx)
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Lemma 5.5. Let g(z) be analytic in C\ Z, with simple poles with residue = 1 at
z=mn,n € Z. Moreover, suppose that g(z) is odd, i.e. g(—z) = —g(z), and satisfies

29(22) = g() + g( + ).
Then g(z) = mcot mz.
Proof. Clearly, H(z) := g(z) — wcot wz is entire, odd, H(0) = 0 and
2H(2z) = H(z) + H(z + 1). (%)
Suppose H(z) does not vanish identically. Consider the (closed) disc B(0,2) ) By

the maximum principle, we find ¢ € 0B(0,2) such that |H(z)| < |H(c)| for all
z € B(0,2). Now, ¢/2 and (¢+ 1)/2 are both in B(0,2), and therefore

[H(5)+ H(5 + 3)| < [H($)| + [H(5H)| < 2[H(c)],
contradicting (x). Hence, H(z) = 0, and we are done. [J

Now, it is immediate to see that h(z) is an odd function.
It remains to prove that

2h(22) = h(z) + h(z + 3).
We temporarily use the notation

$n(2) :=£+;<Zij+ ! )

2=

and proceed to prove
250n(22) = 55,(2) + sp(2 + 1)
for all n € N. Indeed,

2n n
2 2 1 1
2 (29) - n() - sale+ D =2 (0 + 525 ) -3 (5 + o)
J=

Jj=1

2 2 N 2
2241 = 2241425 2z2+1-25

2 U " 2
:_2z+1+;2z—|—j_;22+1+2j

2n n n n
TR Pt D
:12z+1—2j j:1z+j jzlz—j

j=1

n n

2 2 2 2 2
__22—|—1+22+1 22+2n+1+22z+23+;22—2j

n

z —_—
J=1 J

2

224 om 1
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Therefore, letting n — oo, we get
2h(22) = 2560(22) = 500(2) + Soo(2 + 5) = h(2) + h(z + 3).
By Lemma 5.5, we get the identity
h(z) = wcot mz.
Equating the expansions of these two functions, we obtain
oo
é—f-;%_——f-g +ZZQ

Thus, ¢’ = 0 and so g is a constant. But then

sinmz
e9(0) — =1
Tz

as z — 0, and hence ¢g(0) = 0 meaning that g(z) = 0. This implies now the product
representation
00 2
sinmz = WZH (1 — Z—z) .
i=1 J
This further implies, as an application, that

1 i? sin 77 1 o o e —e
” 14+ — _” 1— — | = — __(pmit _ mmity 2 7
< j2> ( j2) g 27T(e € ) 27

Jj=1 Jj=1

Exercises:

(1) Prove that mcot w2z has simple poles exactly at z = n € Z, with residue = 1
at each pole.
(2) Prove the identity ().

(3) Compute loj[l (1 _ ﬁ)

28



6. COMPLEX INTERPOLATION

This section is entirely devoted to proving the following interpolation theorem
for analytic functions:

Theorem 6.1. Let (z,)nen be a sequence of distinct points in C having no finite
accumulation points and ((p)nen @ Sequence of compler numbers, not necessarily
distinct. Then there exists an entire function f(z) such that f(z,) = (, for all
n € N.

To prove this result, we first need to prove the following Mittag-Leffler theorem.
To this end, recall that Definition 3.1 for a meromorphic function f. By this
definition, the Laurent expansion of f around a € C must be of the form

oo

fz)= ) aj(z—a),

j=—m
where m = m(a) € Z. If m > 0, the finite part
Z a;(z —a)’

j=—m

is called the singular part of f at z = a.

Theorem 6.2. (Mittag-Leffler). Let (z,)nen be a sequence of distinct points in C
having no finite accumulation points, and let (P"(Z))neN be a sequence of polyno-
mials such that P,(0) = 0. Then there exists a meromorphic function f(z) having

the singular part
1
P (=3)
Z— Zn

at z = zp, and no other poles in C.

Proof. We may assume that |z1]| < |22] < ---. Moreover, we assume, temporarily,
that z; # 0. Next, let > | ¢, be a convergent series of strictly positive real num-
bers. As P,(z) is a polynomial, P”(i) must be analytic in B(0, |z,|); therefore
we may take its Taylor expansion

1 ()
P, (z—zn) = Z%aj 2’ (6.1)
j:

in B(0, |z,|). By elementary facts of (complex) power series, (6.1) converges abso-
lutely and uniformly in B(0, p), where |z,|/2 < p < |z,|. Denote now

kr

Qu(z) =Y a4, (6.2)



where k,, has been chosen large enough to satisfy

(=o)- e

We now proceed to consider the series

i (Pn (z _1%) - Qn(z)) : (6.4)

n=1

sup
zeB(0,521)

< Cp. (6.3)

Take an arbitrary R > 0. Clearly, only those singular parts Pn(l /(z — zn)) with
zn € B(0, R) contribute poles to the sum (6.4). We now break the sum (6.4) in two
parts:

= () o) 5 () ac) e

|2 |<2R Zn|>2R

The second (infinite) part has no poles in B(0, R). Moreover, in this part, R <

|zn|/2, and so, by (6.3),
1
P(2) -

By the standard majorant principle, the infinite part of (6.5) converges absolutely
and uniformly in B(0, R), and therefore it defines an analytic function in B(0, R) by
Theorem 5.2. The first part in (6.5) is a rational function with prescribed behavior
of poles exactly at z = z,, € B(0, R).

Now, since R is arbitrary, the series (6.4) converges locally uniformly in C \
U.—,{#n}, having prescribed behavior of poles in C except perhaps at z = 0.
Adding one singular part, say Py(1/z), for z = 0, we obtain a function with the

asserted properties.

sup
z€B(0,R)

< Cp.

Proof of Theorem 6.1. By Theorem 5.4 (or Theorem 5.1), construct an entire func-
tion g(z) with simple zeros only, exactly at each z,. Then ¢'(z,) # 0 for all n € N.
By the Mittag-Leffler theorem, there exists a meromorphic function h(z) with sim-
ple poles only exactly at each z,, with residue (,/¢'(z,) at each z,. Consider
f(2) :== h(2)g(z), analytic except perhaps at the points z,. But near z = z,,

9(2) = ¢'(zn)(2 = 2n) + -+ = (2 = 20)gn(2), 9n(2n) = 9'(20)
— Cn . 1 . — hn(’z) 2 ) = Cn
ilz) = 9 (2n) z—2n " 2=z i (zn) g (zn)’

where g,(z), h,(z) are analytic at z = z,. Therefore, f(z) = gn(2)h,(2) near
z = zp, and so analytic. Moreover,

= g, (2 2n) = ¢ (2,) - Cn =
f(zn) = gn(2n)hn(2n) = g'(21) 7 (zn Cn

~—

for each z,. O
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7. GROWTH OF ENTIRE FUNCTIONS

Definition 7.1. For an entire function f(z),

M(r, f) = max |[f(2)|

|z|<r
is the maximum modulus of f.

Remark. By the maximum principle,

M(r. f) = mas |£(2).

Lemma 7.2. Let P(z) = a,z" + -+ + ag, an # 0, be a polynomial. Given € > 0,
there exists r. > 0 s.th.

(1 —g)lan|r™ < |P(2)] < (1 +¢)lan|r"

whenever r = |z| > 7.

Proof. Clearly, |P(2)| = |an||2|™

1+“Z_:l+...+ﬂi.Denote

z an 2™

QAp—1 1 ap 1
ro(z) = S ——
Ay 2 Ay 2"

Obviously, |r,(z)] < ¢, if |z| > r. for some € > 0. This means that
(1 =e)lanlr™ < (1 = [ra(2)]) |anlr"
= [P(2)| < (1 + [ra(2)])anlr™ < (1 + €)|an|r™. O
Definition 7.3. For an entire function f(z), the order, resp. lower order, is defined
by

o(f) = limsup PEEMS) o () s timing 108108 ),
r—00 logr r—00 log r

Remark. By the Liouville theorem, p(f) > 0 and u(f) > 0.

Examples. (1) Show that p(e*) =1 = pu(e?).
(2) For a polynomial P(z), show that p(P) = u(P) = 0.
(3) Determine p(cos z).
(4) Consider

2 3

f(z):l—%+%_%+... (= cosv/2).

Show that f is entire and determine p(f).

Now, let f(z) be an entire function of finite order p < 4+00. By the definition of
the order, this means that for some r,

log log M (r, f)
logr

<p-+e, for all r > r.,

hence
loglog M (r, f) < (p +¢)logr = logr?*e
and so

Tp+8

lf()| <M(r,f)<e for all |z]| <. (7.1)
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Lemma 7.4. Defining
=inf{A > 0| M(r,f) < e for all v suff. large },

the order of f satisfies p(f) =

Proof. By (7.1), a < p(f) + ¢ for all e > 0, so @ < p(f). On the other hand, given
any A > 0 such that the condition is satisfied, we get

log log M loglog €™
p(f) = limsup og log M(r, ) < limsup 08 08€
00 log 7 r—oo  logr

=

and so p(f) <a. O

Theorem 7.5. Let f1(z), f2(z) be two entire functions. Then

(1) p(f1 + f2) < max(p(f1),p(f2)),
(2) p(fifz) < max(p(f1),p(f2))-
Moreover, if p(f1) < p(f2), then

(3) p(fi+ f2) = p(f2),

Proof. (1) Assume therefore that p(f1)p1, p(f2) = p2. By Lemma 7.4, for r suffi-

ciently large,
rP1te

M(r, f1) <e , M(r, fo) <e

By elementary estimates, for r sufficiently large,

M(r, f1 + f2) = male(Z1) + f(22)] < lr?'aXIf(znl +fﬂ|§X|f(zz)|

< 2e”

rP2te

rP1te rp2te max(p1,p2)+e

= M(r, f1) + M(r, f2) <e

max(py,p2)+2¢e

+e
<e'
By Lemma 7.4 again, p(f1+ f2) < max(pi1, p2)+2¢ and so p(f1+ f2) < max(p1, p2).
(2) Similarly, for p1 = p(f1), p2 = p(f2),
M(r, f1f2) = ‘Ijgﬂfl(z)fz(z)’ < (glli>7§|f1(2)|)(|mﬁx|f2( z)])
= M(r, f1)M(r, f2) < e

S e27°
and we obtain p(f1 f2) < max(p(f1),p(f2)) by taking logarithms twice.

rP1te rP2te max(p1,p2)+e rmax(p1,02)+2e
e <e

(3) We now assume p(f1) < p(f2) = p. The inequality in (1) is immediate:

rp+2s

M(r, fi + fo) < M(r, f1) + M(r, f2) < eV 4e

Therefore, it remains to prove that for any € > 0,

p(fi+ fa) > p—e.
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rP(f1)+e

Now, we again have M(r, fi1) < e for all r sufficiently large and, by the

definition of lim sup,

e

M(r, f2) > e (7.2)

for a sequence (r,) such that r, — 0o as n — oo. Now, given r,, since fo is
continuous and |z| = r, is compact, we find z, such that |z,| = r, and that
|f(zn)| = M(ry, f2) > exp(rf=¢) by (7.2). Therefore

€Tfl<f1)+5,

(4 )l = [fa(zn) + fa(2n)] = [fa(z0)] = [frza)] 2 €™ " =
To estimate further, take ¢ > 0 so that p —e > p(f1) + & > 0. Then

ppUFe _pp=e — pp=e(pp(f)=pt2e _ 1) , oo

as n — o0, since p(f1) — p < 0. Therefore,

f)+
S _ e

Mty f1+ f2) = [(f1 + f2)(20)] = €77

rP—¢ rﬁ(f1)+8—rﬁ_8)

p—e
=e™ (1—e e'n

1
> 5

pP(f1)+e _pp—c

for n sufficiently large, since e n —Q0Qasn—oo. U

Remark. If p(f1) < p(f2), then p(f1f2) = p(f2) also holds. This can be proved
with some more knowledge on meromorphic functions. In fact, since 1/ f; is mero-
morphic and non-entire in general, we cannot directly apply the above reasoning.

Definition 7.6. Given an entire function f(z), define

A(r, f) == max Re f(2).

|z|=r

Theorem 7.7. For an entire function f(z) = Z;’;O a;z7,
|a;|r! < max[0,4A(r, f)] — 2Re £(0), (7.3)

for all j € N.

Proof. For r = 0, the assertion is trivial. So, assume r > 0, and denote z = re’¥,
an = ap + 16,. Then

Re f(re'?) = Re Z(aj +i3;)r? (cos p + i sin @)

J=0

= Re Z(aj +i3;)(cos jo + isin jp)r?
§=0

= Z(aj cos jp — B;sin je)r.
§=0
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Multiply now by cosney, resp. by sinnep, and integrate term by term. This results
in

1 27 .
a,r" = —/ (Re f(re'?)) cos ng de, n >0,
0

™

1 27 )
—B,r" = _/ (Re f(rew)) sin ny dy, n >0,
0

s
1 27

Qg = (Re f(rew)) dep, Bo = 0.

2r Jo
Subtracting for n > 0, we obtain
anpr" = (o, +i6,)r"
1 27 )
== / (Re f(re'?))(cos ng — isinne) dp
0

™

2w
= l/0 (Re f(re'?))e "¢ de,

™

and so

1 27 ]
anlr < & / IRe f(re'?)| dep,
0

™

27
lan|r™ + 200 < l/ (| Re f(re"?)| + Re f(rei‘p)) de. (7.4)
™ Jo

If A(r,f) < 0, then |Re f(re*?)| + Re f(re*¥) = 0, and (7.3) is an immediate
consequence of (7.4). If A(r, f) > 0, then

27
™+ 200 < [ 240 ) dp = 440 £
0

the proof is now complete. [

Theorem 7.8. (Hadamard). If f(z) is entire and

L :=liminf A(r, f)r=° < oo

for some s > 0, then f(z) is a polynomial of degree deg f < s.
Proof. By assumption, there is a sequence r, — oo such that A(r,, f) < (L+1)r) <
(|IL] + 1)ry. If now j > s, then
lajlrf, < 4(IL] + 1)r;, = 2Re £(0)
by Theorem 7.7. Therefore
4(JL[+1)  2Re f(0)

—S
h h

‘%"S — 0 as r, — 00.

So, a; =0 forall j >s. [0
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Theorem 7.9. Let f(z) be entire with no zeros and such that its lower order
w(f) < co. Then f(z) = eP®) for a polynomial

P(2) = amz™ 4 - tan,  an#0,
such that m = u(f) = p(f).

Proof. By Theorem 4.1, f(z) = e9(*) for an entire function g(z). Now, given £ > 0,
there is a sequence r,, — oo such that for any z with |z| = 7,

fe9) = |e92)] = | f(2)] < M(ry, f) <" (7.5)
Indeed, from the definition of lower order,

lim inf log log M (r, f)
r—00 logr

= u(f),

it follows that
loglog M (ry, f) < (p(f) + €) log 7,

and so
n(f)+e

M(r,, f) <e"
By (7.5), Reg(z) < T for all |z| = 7y, hence
Alry,g9) < 7ﬁz(f)Jrs_
By Theorem 7.8, since
lirnlgalf/l(r, g)r~ W+ <1 < 0.
Hence, g must be a polynomial of degree < u(f) + ¢, hence < u(f).
We still have to prove that u(f) = p(f) = m for f(z) = eP@), if P(z) =

amz™ + -+ ag, a;, # 0.
To this end, we first observe, by Lemma 7.2, that

1£(2)] = [eP@)] = RePE) < (PRI < 2lamlr™
for every |z| = r, r sufficiently large. Therefore,
log M(r, f) < 2|am|r™,
loglog M (r, f) < mlogr + log(2|am|)

and so

p(f) = limsup oglog M(r, /) < limsupm ogr + log(2|an|) =m
T—00 10g7“ 00 IOgT

So,
p(f) <m =degP < pu(f) < p(f),

and we are done. [

Considering an entire function f with the Taylor expansion

f(z) =) a2,
j=0

it is possible to determine its order by the coefficients a;.
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Theorem 7.10. Defining

O, Zf a; = 0
b] = jloglj ’ 'Lf aj ?é 0’

log TaT

the order p(f) of f is determined by

p(f) = limsupb;.

J—00

Proof. Denote p := limsup;_, ., b;.

1) We first prove that p(f) > p. If © = 0, this inequality is trivial. So, we may
assume u > 0. Recall first Cauchy inequalities:

N fQd¢) _ 12 f(Q)
|aj’_’%/|4|=r G ‘S%/O |C|j+1rd<ﬂ

27
<M/ r_jdgpzM(r.’f), for all j € NU{0}.
0

- 27 rd

Take now o € R such that 0 < o < u, and proceed to prove that p(f) > o. Since
o is arbitrary, this means that p(f) > p. By the definition of o and p, there exist
infinitely many natural numbers j such that

. . 1
jlogj > alogm = —olog|a;|
j

hence

1. )
log |a;| > —;] log j.

By the Cauchy inequalities,
; , , 1. .
log M(r, f) > log(r’|a;|) = jlogr +logl|a;| > jlogr — —jlog j.
o

The above infinitely many j:s will be used to determine a sequence of r-values as
follows:

1
hence j = —r?.
e

1/o0
) J

rj = (ej)

Then
A T U B S
log M(r;j, ) 2 j - —log(ej) — —jlogj = —j = —r],
g g g ge

hence .
loglog M (r;, f) > ologr; + log —
oe
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and finally

loglog M (r, f) loglog M (r;, f)

p(f) = limsup > lim sup
r— o0 log r rj—00 log r;
ologr; + log
> lim sup &7 & 5e = 0.
5 —00 log Tj

2) To prove that p(f) < p, we may now assume that p < +o00. Fix € > 0. Then,
for all sufficiently large j, such that a; # 0,

oe 7
oglj I < pte
8 Ta;T
Therefore,
J , 1
log j < log — = —log |a,|
pte |a;] ’
and so _
J . o _d_
log |a;| < — logj =1lo nte ),
glaj| < Ty loe g~ ")

By monotonicity of the logarithm,

la;| < I/ nte),

Now,

oo o0 o v
M(r, ) = max| 3 a;27] < laol + 3 laslr? < Jao] + 3 571
Z|=T
J=0 j=1 7j=1

=laol+ > AR Y

0#j<(2r)nte Jj>(2r)ute
=51+ 55+ |a0|.

Since (2r)#*¢ < j in the sum Ss, we get
o < jiie.

L1
Hence rj~ wte < %, and so

sa= Y Y Y (=X () <t

j=(2r)rte j=(2r)rte j=1

For Sp, we obtain

S, = Z j—uis rd < Z j—ﬁrsr(%)uﬂ

0#j<(2r)rte 0#£j<(2r)rte
oo .
<SS g K oo
j=1
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In fact, since
e <

J TS 5

;2

for all j sufficiently large, the sum Z;’il 7 —te converges. Therefore,

loglog M (r, f) loglog(S1 + 52 + |ao|)

p(f) = limsup < limsup
r—00 logr 00 logr
i loglogS1 .. log log(Kr(Q’“)wE)
= limsup —————— < limsup
r—oo  logr r—00 log r
<p+2e
and so
p(f) <p O

Example. Consider
e
and recall the Stirling formula

hm( i1/\/2mje ] ) =1

Now,
1 _log(j) jlogj—j+logy2mj
bj  jlogj jlogj

and so p(e*) = limsup,_, ., b; = 1, as already known.

Definition 7.11. For an entire function f(z) of order p such that 0 < p < oo, its
type 7 is defined by

7 =7(f) := limsup —log M{r, f)

7—00 TP

The next lemma is a counterpart to Lemma 7.4:

Lemma 7.12. Define
=inf{ K >0 | M(r, f) < 5™ for all r sufficiently large },

where f is entire and p = p(f), p € (0,+00). Then 7(f) = 5.

Proof. Observe that we understand, as usually, that inf ) = +oco.
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1) If 7(f) = +o0, then for all K > 0, there is a sequence 7, — oo such that
log M (ry, f) > Krf

and so
M (ry,, f) > exp(Krh).

Therefore, there is no K > 0 such that
M(r, f) < K™
for all r sufficiently large, implying that
0 = 4.

Conversely, if 8 = 400, then { K > 0| M(r, f) < X for all r sufficiently large }
= (. So, for all K > 0, we find a sequence r,, — +oo such that M(r,, f) >
exp(KrP). Therefore 7(f) = 4o0.

2) Take now K (> ) such that M(r, f) < eX™” for all r sufficiently large. But

then
log M (r, f) < KrP

rP - rP
for all r sufficiently large. This results in
log M
7(f) = limsup Og—p(hf) < K.
7—00 r

Since K > f3 is arbitrary, we conclude that 7(f) < .
3) To prove that 7(f) > (3, observe, by the definition of 7(f), that given € > 0,

log M (r, f)

o =T(f)+e

for all r sufficiently large. Then
log M(r, f) < (7(f) +¢)r”

and so
This implies

hence



Lemma 7.13. Let f(z) be analytic in a neighborhood of z = 0 with the Taylor
expansion

flz) =) a7, (7.6)
§=0
Suppose there exist A > 0, u > 0 and a natural number N = N(u, \) > 0 such that
jaj| < (epA/j)"'* (7.7)
for all 5 > N. Then the Taylor expansion converges in the whole complex plane,

and therefore f(z) is entire. Moreover, for every € > 0 there exists R = R(e) > 0
such that

M(T, f) < e()\—f—a)ru
for all v > R.
Proof. By (7.7),

, A 1/p
{/a;l < (%) — 0 as j — o0.
J

Therefore, the radius of convergence R for the power series (7.8) is R = +00, since

— = limsup {/|a;| = 0.

Therefore, (7.6) determines an entire function.
To prepare the subsequent estimate for M (r, f), observe first (exercise!) that

the maximum of
(€M)\ ) z/p i
r
T

for x > 0 will be achieved as x = uAr*. Therefore,

z/p
(@) e < e
x

Moreover, if j > N(r) := max(N, 2*euArt), then

, . A\ HH
(/\aj\rﬂ < (e%) r< %,

and so
| ‘
laj|r! < % for j > N(r).
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For the maximum modulus of f, we now obtain, for » > 1,

ZCLJZJ‘ < Z |aj|r7

= max
|z|=r

N(T) o0
= Z lajlrd + > aglri + > aglr?
J=N+1 j=N(r)+1
N ') 1
N ) _ Npd _
<r <J§0 |aj]> + (N(r) N) NHrgz(N(T) la;|r! + J:Zl o
N
STN< |a]|> + (N(r)—N) max(|a;|r!) +1
j=0
N Jilw
N epA ;
<r (Zo|aj]>+(N(r)—N)gnzaﬁjc<(T> rﬂ)—l—l
J:
——

< 14 brN + max(0, 2#eprrt — N)er" < O+,

provided r is sufficiently large. [

Theorem 7.14. Let f(z) = Z] °oa;z’ be an entire function of finite order p > 0
and of type T = 7(f). Then

1 .
T = — limsup(j|a;|*/7).
Jj—oo

v

Proof. Denoting v := limsup,_, . (j |la;|?/7), we have to prove that T = vt

1) We first prove that 7 < v/ep. If v = +o0, this is trivial. Therefore, we may
assume that (0 <)v < +oo. Take any K > v/ep, i.e. epK > v. By the definition
of v,

jlag?? < epK

i/p
epK\’
'“”"<( j ) |

By Lemma 7.13, for each € > 0, there exists R = R(¢) > 0 such that

for j sufficiently large. Hence,

M(T, f) < €(K+s)rp

whenever r > R(e). By Definition 7.11, 7 < K + €. Since € > 0 is arbitrary, 7 < K
and since K > v/ep is arbitrary,

(0 <) <v/ep. (7.8)
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2) To prove the reversed inequality, we first observe that v = 0 implies 7 = 0 by
(7.8), so we may now assume that 0 < v < +oo. Take 3 such that 0 < § < v. By

the definition of v again, there is a sequence of j:s (— 00) such that
ilagl??? =

and so

jaj| > (8/5)7.

Corresponding to these j:s define a sequence r; by

(rj)’ =je/B—o00  asj— o

By the Cauchy inequalities |a;| < M.J) ' we obtain by (7.9)

ri

ile s N\Jilp
M (rj, ) > lajl(r;)? > (?) (‘%) = i/P = er )’

Therefore,

log M log M (r;
7 = lim sup Og—(r,f) > lim sup w > limsup ——
r—00 rf j—o0 Tj j—ooo PE (Tj)p

Since 8 < v is arbitrary, this implies 7 > v/pe. O

42
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8. PHRACMEN-LINDELOF THEOREMS

Theorem 8.1. Suppose f(z) is analytic inside a sectorial domain, centred at the
origin, of opening w/a, where a > 1. Moreover, assume that f(z) is continuous on
the closure of the sectorial domain. If |f(z)| < M on the boundary of the domain

and ,
f(2)| < Kel”

inside of the domain for some constant § < «, then |f(2)| < M inside of the
domain.

Proof. By a rotation, we may assume that the domain in question is {z # 0 |
|arg z| < m/2a }. Choose now € > 0 and v such that f < v < «, and consider

F(z) = e f(2),
where 27 = (re!?)Y = r7e%.
Since
Re(z?) = Re(r7e"?) = Re (7“7 (cos(yy) + i sin(’ygp))) = r7 cos(yp),
we observe that
[F(2)] = [F(re'?)| = eRC=2D | f(z)| = e 02| f(2)].

Since |yp| < 4> < § for the closed sectorial domain, cos(yyp) > 0 and so

exp(—er? cos(yp)) < 1, hence

|F'(2)] < [f(2)]

in the closed domain. In particular, |F'(z)| < M on the boundary of the domain.
In the open sector,

B

|F(Tei<p)| — e—ar'y cos(fyap)|f(z)’ < Ke" —er” cos(’ytp)‘

Since v > 3, r® — er¥ cos(yyp) — —oc as r — +o0; therefore
|F(re'?)| < M

for r large enough. Therefore, by the maximum principle, applied for the shaded
domain in the adjacent figure, |F(z)| < M in the whole shaded domain. Since r
may be taken arbitrarily large, the inequality holds |F'(z)| < M in the whole open
sector. Therefore,

|f<Z)| < Meer'y cos(yp) < Mesr'*'

Letting ¢ — 0, we get the assertion. [

43



Theorem 8.2. Change the estimate for f in the open sector to
()] < Kel*" = K (6)e’

for every 6 > 0, and keep the remaining assumptions unchanged. Then the same
conclusion holds.

Proof. Again, we may assume the sector to be |p| < 5-. Given € > 0, define

F(2) :=e " f(2).
If 6 < ¢, then we get on the real axis
f(x)] < Kb

and
|F(z)| < Ke %" e9" = Kel®=9)*" 0 as T — 00.

Since |F'(z)| > 0 is continuous, we get, for a finite M’,
|F(z)] < M":=max{[F(t)] | t =0}

for all x > 0. Consider now F(z) in the upper and lower half-sectors. Defining
M" := max(M, M'), we see that the inequality |F'(z)| < M" holds on the bound-
aries of both half-sectors and |F(z)| < Ke®" inside of the half-sectors. For ¢ such
that || < 5, obviously

e—ero‘ cos(pa) < e—i—aro‘

and so, for some K’ > 0,
’F(Z)’ — |€_Eza‘|f(2>’ < Ke—aro‘ cos(gpa)eéro‘ < Ke(é—i—a)ra < Klerﬁ

for any [ such that o < f < 2a. By Theorem 8.1, |F/(2)| < M" in both half-sectors,
and therefore in the whole sector [p| < 7.

Assume now that M’ > M, hence M"" = M’ > M. Since F(x) — 0 as x — o0
and |F(0)| < M, there must exist a point 2y € (0, +00) such that |F(xg)| = M' =
M". By the maximum principle, F' must be identically equal to the constant M’,
a contradiction. Therefore, we must have M’ < M and so M"” = M. This implies
that |F'(z)| < M in the whole sector. But this means that

()] < Mle="].

Letting now € — 0, the assertion follows. [
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Theorem 8.3. Suppose f(z) — a as z — oo along two half-lines starting from the
origin, and assume that f(z) is analytic and bounded in one of the sectors between
these two half-lines. Then f(z) — a uniformly as r — oo in that sector.

Proof. Considering f(z) — a, if needed, we may assume that a = 0. Moreover, if
needed, we may consider g(¢) = f(¢?) to achieve that the sector to be treated is
< 7. Finally, we may restrict us to considering the case of two half-lines +¢, ¢ < 7,
by an additional rotation.

Take now an arbitrary ¢ > 0. Clearly, we may assume that |f(z)| < M in the
closed sector, while on the boundary half-lines, |f(z)| < ¢ for all r > r; = r1(g).
Denote now A = % > 0 and define

Then
r r

|F(2)| = (r2+2)\ReZ+>\2)1/2|f(2)| < WU(ZN-

Now, for r < rq,

r|f(2)] rM riM
< <
[F(2)] < (r2+A2)1/2 = X~ )

=&

and on the boundary half-lines
[F(2)| < |f(2)] <e,
provided r > ry. Inside of the open sector, uniformly as r — oo,
IF(2)| < |f(2)] < M < Me" < Me™ < Me™

for any «, (8 such that 1 < § < «. Since the opening of the sector is < 7, we may
take some a > 1 such that the opening equals to 7. By Theorem 8.1, [F(2)| < ¢
in the closed sector. Therefore,

|f(2)] = '1 + 2‘ |F(2)] < <1 + %) |F(2)] < 2¢

for all » > A. Since € > 0 is arbitrary, f(z) — 0 uniformly as r — oo inside of the
sector. [

Theorem 8.4. Suppose f(z) — a along a half-line starting from the origin and
f(2) — b along a second half-line, again starting from the origin. Moreover, suppose
that f is analytic and bounded in one of the two sectors between these half-lines.
Then a =b and f(z) — a uniformly in that sector as r — oco.

Proof. Suppose that f(z) — a along ¢ = a and f(z) — b along ¢ = 3, and that
a < (3. Consider now, instead of f, the function

o) = (512 “52)
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It is now immediate to observe that

on ¢ = « and

By Theorem 8.3, g(z) — +(a — b)? uniformly in the sector as r — oco. Therefore,

9(2) = Ha—b)* = (f(z) = 3(@+))" = k(e = 1)* = (f() —a) (f(2) —=b) =0

in the whole sector, uniformly as r — oo. Take now a circular arc, centred at the
origin, such that

[f(2) —allf(2) —b[ <

along this arc, inside of the closed sector. Then, at every point of this arc,

F(z)—al <VE or |f(x)~bl < VE

If one of these inequalities holds on the whole arc, say |f(z)—a| < /¢, and assuming
that this circular arc has a radius large enough, then at the endpoint with ¢ = g3,
we get

o — b < |f(2) —al +[f(2) — b < 2Ve.

If this is not the case, then denote the two non-empty parts of the arc as I'y; = { z |
|If(z) —a| <Ve}and Ty ={z||f(2) —b] < +/e}. These are now closed sets and
their union clearly equals to the whole circular arc. If their intersection would be
empty, then, by elementary topology, one of these sets had to be empty, reducing to
the previous case. Therefore, we may take a point zy from the intersection. Then

la = b < £ (0) — al + |f(20) — b| < 2E.

Letting now € — 0, we get a = b. By Theorem 8.3, we get the assertion. [J

Remark. Several variants of the Phragmén-Lindel6f theorems can be found in the
literature, including also various regions, instead of sectors only.
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9. ZEROS OF ENTIRE FUNCTIONS

Let f(z) be an entire function and consider a disk |z| < r centred at z = 0.
If r is large enough and f(z) is a polynomial of degree n, then f(z) = « has
n roots in |z| < r. Moreover M (r, f) ~ r™ on the boundary of the disk. This
connection between the number of a-points and the maximum modulus carries
over to transcendental entire functions. This is a deep property; moreover, some
exceptional values o may appear.

Definition 9.1. Let (r;) be a sequence of real numbers such that 0 < r; < ry <
---. The convergence exponent X for (r;) will be defined by setting

A= inf{ a>0 ‘ io:(rj)_o‘ converges }
j=1

Remark. If Z]Oil r;“ diverges for all @ > 0, then A = +o00 as the infimum of an
empty set.

Definition 9.2. Let f(z) be entire and let (z,) be the zero-sequence of f(z), delet-
ing the possible zero at z = 0, every zero # 0 repeated according to its multiplicity,
and arranged according to increasing moduli, i.e. 0 < |z1] < |29 < ---. The
convergence exponent A(f) (for the zero-sequence of f) is now

A(f) = inf{ a>0 ‘ f: |2;] ™% converges }
j=1

Definition 9.3. Denote by n(t) = n(t, %) the number of zeros of f(z) in |z| < ¢,

each zero counted according to its multiplicity.

Remark. In what follows, we assume that f(0) # 0. This is no essential restriction,
since we may always replace n(t) by n(t) —n(0) below, if f(0) = 0.

Lemma 9.4. The series ) .-, |z;|™* converges if and only if [ (=D dt
converges.

Proof. Observe that n(t) is a step function: zeros of f(z) are situated on countably
many circles centred at z = 0. Between these radii, n(t) is constant and so dn(t) =0
for these intervals. Passing over these radii dn(t) jumps by an integer equal to the
number of zeros on the circle. Therefore,

T
dn(t
5 |zj\_o‘:/ n(), where T' = |zn/].
0

By partial integration,

T dn(t) T'n(t) T on(t) n(T) T on(t)
/0 ta /0 t_a + a/o tot1 dt = T + a/o ta+1 dt.
47




Assume now that Z;’;l |zj|* converges. Then, for each T,

T T
a/ ;(f)l gt S/ dn(t
0 0

Therefore, [ tna(—f)l dt converges.
Conversely, assume that the integral converges. Then

n(T) | gagl T qt 2T n(t) ®nt)dt -
(1—2-)L = (T)/T </T dtg/o K < +oc.

T o tonrl — ta+1

(e @]
1217 <) g7 < 4o

I
1M

Therefore,
N T
—a (1) n(t)
Z |’ZJ| = Ta + CY/ ta+1 dt
j=1 0

Ka > n(t) Ka
Smﬂ“/o part M= 7 pma Tl < e

for each N. Therefore, Z;’;l 2|7 converges. O
Corollary 9.5. Let f(z) be an entire function, f(O) # 0. Then

i

Af) = 1nf a>0‘/

1
Theorem 9.6. A\(f) = limsup ogn(r).
r—oo lOgr

Proof. Denote

_ logn(r)
o := limsup .
r—oo lOgr

We first prove that A(f) < o assuming, as we may, that 0 < co. Given € > 0, there
exists r. such that

for all » > r.. Then

M r M
t e n(t)dt t)dt
0 0 T

€

. M

< /7" n(t) dt + / ta—a—1—|—5 dt

— ta—i—l :
0 T

€

As M — o0, this converges, if o —a — 1 +¢e < —1, that is, if @« > 0 + ¢. Now, this
is true for all a > 0 such that o > o + . Therefore

1nf a>0‘/

}§a+€.



By Corollary 9.5, A(f) <o +¢ and so A(f) < o.
To prove the converse inequality, we may assume that ¢ > 0. Take € > 0 such
that e < 0. Then there is a sequence r; — 400 such that

log n(r;)

>0 —¢,
log r;

hence
Take now any a > 0 such that 0 < a < 0 — . For each j, select

1
Sj 22 /aT‘j.

Since n(t) is increasing, we get

i n(t)dt i dt 11 1
[Tz [z <———>
T T J J

J

Since a« < 0 — ¢, and so 0 — a — e > 0, we see that

% n(t) ,
/T. ta+1dt—>+oo as j — oo.
J

Therefore, fooo tna(—i)l dt diverges for all o, 0 < o < 0 — €. This means that

inf{a>0‘/0

Therefore A(f) > o — €, hence of course A\(f) > 0. O

n(t)
tot

T dt converges } >0 —¢.

Theorem 9.7. (Jensen). Let f(z) be entire such that f(0) # 0 and denote

w0 - (r 1) = [0

Assume that there are no zeros of f on the circle |z| =r > 0. Then

1 27 ‘
N = 5= [ loglf(re'®) dg —log | (O).
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Remark. The restriction for zeros on |z| = r is unessential, and may be removed
by a rather complicated reasoning.

Proof. Let ay,as,...,a, be the zeros of f in |z| < r. Consider
n
@15 o
e r(z —aj)

Then g(z) # 01in |z| < R for an R > r. Indeed, for |z| < p < R, p # r, this is clear.
If |z = 7, we see that (z = rei?)

2 _ =, 2 _ T ool Tt p—;
T CLJZ T CLJT‘B T a]e T aje ¥

r(z —a;)
and so |g(z)| = |f(z)| # 0. Since g # 0 in |z| < R, it is an elementary computation
(by making use of Cauchy-Riemann equations) that log |g(z)| is harmonic in |z] <

R, i.e. that A(log | g(z)|) = 0. By the mean value property of harmonic functions,
CAI, Theorem 10.5, that

r2et — a;r

=1

q.p—1 P,
r—a;e'¥ r—a;e'¥

1 27 .
oz 9(0)| = 5 [ togla(re’®)| d

Since

we get

1 27 ‘ 1 2 ‘
o [ loglrtre?)ldo= o [ loglgre®)]dg
™ Jo 2T 0

= 10g9(0)| =108 (1S O) T] ) = log (0 |+Zlog
g=1""

Comparing this to the assertion, we observe that

remains to be proved. Denote r; = |a;|. Then

n

Zlog Zlog— log(ﬁr> log r
ot LT,

n—1

=nlogr — Zlogrj = Zj logrjy1 —logr;) + n(logr —logry,)

"zj /+ dt /dt /
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Remark. Given ¢: [rg, +00) — (0, +00), the Landau symbols O (¢ (r)) and o(p(r))
are frequently used. They mean any quantity f(r) such that

For O(¢(r)): 3K > 0 such that |f(r)/¢(r)] < K for r sufficiently large,

for o((r)): lim,— oo % =0.
Theorem 9.8. Let f(z) be entire of order p. Then for each e > 0, n(r) = O(rf*e).

Proof. Recalling that f(0) = 0, we may assume that |f(0)] > 1 by multiplying f
by a constant, if needed. By the Jensen formula

1 27 ) 1 27
N <L / log | (réi®)| dp < — / log M(r, f) d = log M(r f).
27'(' 0 27T 0

By the definition of the order, log M(r, f) < r?*¢ for all r sufficiently large. Since
n(t) is increasing,

2 dt 2T n(t) dt 2T n(t) dt
log 2 = i
n(r)log 2 n(fr')/ < /T < /0
= N(2r) <log M(2r, f) < (2r)PTe = 2°teppte

for r sufficiently large. Therefore

n(r) < (—1 -2p+€) rPte. O
log 2

Theorem 9.9. For any entire function f(z), A(f) < p(f).
Proof. By Theorem 9.8, given € > 0, there exists K > 0 such that

n(r) < Kr*te, p=p(f)

for r sufficiently large, say » > ry. Then

M T M T M
(t) / ° n(t) / n(t) dt / ° n(t) / a1
dt = dt < dt+K [t olat
/O tot+1 0 o+l + "o tot+1l — 0 totl + ro
If now a > p+¢, then p+e¢—a—1 < —1, and therefore the last integral converges

as M — oo, hence
> n(t
/o tO‘(JF)l dt converges.

S

This means that A(f) < p+¢ and so A(f) < p(f). O
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10. THE CARTAN LEMMA

The Cartan lemma is a purely geometric result addressing the geometry of a
finite point set in the complex plane, having a number of applications into the
analysis of canonical products.

Lemma 9.1. Let zq,...,z, be given points in C and H > 0 be given. Then there
exists closed disks Aq,...,A,,, m <n, such that the sum of the radii of the disks
Aq, ..., A is < 2H and that

|z — z1||z — 22| ... |z — zn| > (H/€)",
whenever z ¢ U;nzl Aj.
Remark. The points z; in the assertion above are not necessarily distinct.

Proof. (1) Suppose first that there exists a disk A of radius H such that {z1,...,2,}
C H. Let now A7 denote the disk of radius 2H, with the same centre as A. Consider
now any point z ¢ Ay. Then |z — z;| > H for each z;, j = 1,...,n. Therefore we
obtain

|z — 21|z — 22| -+ |z — zn| > H" > (H/e)".

(2) We now define k; to be the greatest natural number which satisfies the
following condition: There exists a closed disk A} of radius k1 H/n such that at
least ki points z; are contained in this disk. Obviously, we must have 1 < k; < n,
the last inequality following as we don’t have the case of the first part of the proof.
Actually, A contains exactly k; points z;. In fact, if not, then A contains at least
k1 + 1 points z;. Then the disk of radius (k1 + 1)H/n with the same centre as A}
results in a contradiction to the definition of k.

Renumbering now, if needed, we may assume that z1,..., 2, € A} while 2, 11,

., zn & Al. We now start repeating the process. So, let ky be the greatest
natural number such that for a closed disk Al of radius ko H/n at least (actually,
exactly) ko points of zk, 41,..., 2, are contained in A}. Then we have ky < ky; in
fact, otherwise we would have a contradiction to the choice of k;. We now repeat
this process m times, m < n, so that all points 21, ..., 2z, are contained in U;nzl A;.
Clearly, the disk A} has radius k;H/n and ky > ko > --- > k,,. Since each A}
contains exactly k; points of z1,...,2,, we must have ki + ky + -+ 4+ kyp, = n.
Therefore, the sum of their radii is
km H = kit b H = H.

n n

k
_1H_|_..._|_
n

Expand now the disks A;, j =1,...,n, concentrically to A; of radius Q%H. Hence,
the sum of the radii of the disks A; is = 2H.

Consider now an arbitrary point z ¢ U;n:l A;. Keep z fixed in what follows. We
may assume, by renumbering the points z1,..., 2z, again, if needed, that

|z — 21| < |z — 22| <+ < |z — z4].
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Assuming now that we have been able to prove that
j o
|z —zj| > =H, j=1,...,n, (10.1)
n

we obtain

|||z—zj| ”l :—H">e "H™ = (H/e)".
n
j=1 j=1

In fact, this is an immediate consequence of
=1 L
SDIUER
St St

It remains to prove (10.1). We proceed to a contradiction by assuming that there
exists at least one j such that |z — z;| < %H . Let now p be the greatest natural
number such that k, > j. Such a number p exists. In fact, by monotonicity of the
distances |z — z;|, the disk of radius %H , centred at z, contains at least the points
Z1,...,%j, and so k; > j. Consider now the pairs of natural numbers (s,¢q) such
that s <7, ¢ <p.

We first proceed to prove that z; ¢ Al. In fact, suppose for a while that we
have z; € A}, for some (s, ¢) such that s < j, ¢ < p. By the definition of p, we have

kg > j. The radius of A} equals to kn—qH and Af contains k, points of 21, ..., 2.
Let ¢ be the centre of Aj. Then

k kq
2= (| < |z =z + ¢ — 25| < |z — 25| + ¢ — 24| < H+ qH<2 H.

Therefore, we have z € A,, contradicting to z ¢ U;n:1 A
Therefore, we have z, ¢ Af for all pairs (s,q) such that s < j, ¢ < p. In
particular, this means that

{z1,...,2} C(C\AL)N---N(C\ A)).

Since now .
oal<le-al < <li- 5l <,

the disk of radius %H , centred at z, contains the points 21, ..., z;. By the definition
of k,41, which takes into account points of 21, ..., 2z,, which are outside of U§:1 A;-,
this means that k,y; > j, a contradiction to the definition of p as the greatest
number such that k, > j. Therefore, (10.1) holds and we are done.
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11. THE HADAMARD THEOREM

Recall first the definitions of the Weierstrafl factors in Chapter 5:

{ Eo(z) =1z

E,(2) = (1 —2)e@ () = (1 — z)eztas++32" 1 >1

Y

and the notion of the convergence exponent in Chapter 9.

Let f(z) now be an entire function of finite order p, and let (z,)nen be the
sequence of its non-zero zeros, arranged according to increasing moduli. Let A be
the convergence exponent of f(z) and define

[A] = the integer part of A, if A is not a natural number
vi=¢ A—1, if xeNand |z converges
A otherwise.

By Definition 9.2, 3" |z;|~*Y converges, and

Q(z) = ﬁEu (%) (11.1)

is an entire function with zeros exactly at (z,). Therefore, A\(Q)) = A. By Theo-
rem 9.9, A < p(Q).

The infinite product (11.1) is called the canonical product determined by (the
non-zero zeros) of f(z). Adding a suitable power z™ as an extra factor to Q(z), we
may take into account all zeros of f(z).

Theorem 11.1. For a canonical product, A\(Q) = X = p(Q).

Proof. 1t suffices to prove that p(Q) < A. To this end, we have to find a suitable
majorant of M(r,Q). Fix now z, |z] = r, and € > 0. Obviously,

log M(r, Q) = log max Q=) = max log |Q(2)].

=: Sl + SQ.

Clearly,

log [Q(2)] = log | |
j=1

e, 5,

J |2/21>1/2

E, (3) ' + > log

|z/zj|<1/2

=)

Observe that S; is a finite sum by the standard uniqueness theorem of analytic
functions.

To estimate Sy, where ]%| < 1/2, recall the property (3) of Weierstrafl products
from Chapter 5. By this property,

5 (5)- =
2

04

v+1
¥4

“j

Y




hence

v+1
E,,(i)‘gui
Zj Zj
Therefore,
v+1 v+1
z z z
1 Z < - < = .
> el (X)) e ¥ w2 w7
|z/2;]<1/2 J |z/2j]<1/2 J |z)z;|<1/2 77

We now have to analyze all cases in the definition of v above. In the middle case,
the sum (11.2) is majorized by

P>

|z/251<1/2

A

=20 Y Iyl =00,

|z/251<1/2

z

J

since Y |z;|~* converges. In the remaining two cases, v + 1 > X + ¢ for & small
enough and so

v+1
:|Z

v+1—A—e

z _ _
I i g

‘A+s <
Zj

J
Hence, the sum in (11.2) is now

<P Y Iyt = 00 ),
12/241<1/2

since > |z;|~(A*¢) converges by the definition of the exponent of convergence.
To estimate Sp, we first consider the case v = 0; recall that S; is a finite sum.
Then

S1 = Z log

z z
EZ)| = log |1 — =
()= 2 e

J

|z/25121/2 |z/25121/2

z z c
< | — < | = € |—€
DV = EE NP S = EE T VTS
|2/2;1>1/2 J |z/2;1>1/2 "7 |2/2;|>1/2 (11.3)

where A is a suitable constant. If A =0, then ) |2;|™° converges and by (11.3),
S; = O(r) = O(r**).

If A\=1and > |z;|~! converges, we get
e—1

= A —a T E s =k

<24J2] Y |z =0 = O ),
55

1—¢

2 -1
> |2;]




provided € < 1. Since v = 0, we must have A < 1. Thus, assume now A € (0,1)

A

€

and take ¢ < A. Then
z

Si=AY || =AY
J

<2412 Y g |m D = 00 ).

- -2 A
|21 (M-e) < Alz| +€Z -

A
D) |y~ Oe)

Finally, we have to consider the case v > 0. Then, for each term in Sy,

1
log Ey<i)'slog‘1—i T i g
Zj Zj Zj V|Zj
z 1]21" 2 |Y Zj 2 v—1
<2(|—|+-+-]— < 2|— 1+ |=+--4+ |-
Zj VZj Zj z z
<2l (142442 <22
Zj Z]
If now v = X\ — 1, then
z 2t 2 Mz 2
log‘Ey(—>‘§2”+1— =t 2 1T < o2l 2 (11.4)
Zj Zj Zj z Zj

If v # X —1, and ¢ is small enough, then v < A+e<v+land A\+e+1<v+2.

Therefore,
v Ate Ate—v
log |E 2| <ot |E] = vt 2 5
v zi)| Zj Zj z
Ate Ate
< gutlidtev| 2] o gri2| Z (11.5)
B Zj B Zj
From (11.4) and (11.5),
z
log |E, [ = )| < 2v+2pite = (Ate)
> e (g)|<zen 3k

|2/2121/2

|2/2121/2

< 21/+2,’,,>\+6 Z ‘zj‘—(A—FE) _ O(T)\+E).

Zj

So, we see that S; = O(r**¢), Sy = O(r**¢). This means that

log |Q(2)| = O(r*%),

hence

log M (r,Q) = O(r**9),

and so
log log M (1, Q)
log r

p(Q) = limsup

r— 00

o6

<A+e.
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Theorem 11.2. (Hadamard). Let f(z) be a non-constant entire function of finite
order p. Then

f(2) = 2"Q(2)e",
where (1) m > 0 is the multiplicity of the zero of f(z) at z = 0, (2) Q(z) is
the canonical product formed with the non-zero zeros of f(z) and (3) P(z) is a
polynomial of degree < p.

Before we can prove the Hadamard theorem, we need the following

Lemma 11.3. Let Q(z) be a canonical product of order A\ = A\(Q). Given ¢ > 0,
there exists a sequence (r,) — +oo such that for each r,, the minimum modulus
satisfies

plr) = min Q(2)] > e (11.6)
Proof. Let (z;) denote the zeros of Q(z), 0 < |z1| < |z2| < ---. Denote r; = |z;|. By

the definition of the exponent of convergence, > j r;(’\JrE)

that the length of the set

> 1 1
E:: U [rj__r%\_‘r_a,rj—i_?n)‘\_i_{i]

71=1 J J

converges. This means

is finite. We proceed to prove that (11.4) holds outside of E for all r sufficiently
large. From the proof of Theorem 11.1,
e ()
Zj

z

1 =81+ 5, = log |E, | — 1

0glQ() = S+ 8= Y og\ ()]+ s ]
|z/2;1>1/2 |z/2;1<1/2

Moreover, from the same proof, making use of the estimate for Sy, S, < Sy =

O(r**¢). Recall now again that S; is a finite sum. Therefore,

S = Z log

|z/2;121/2

z
1—- =
Zj

+ Z lOg |6Q"(z)| =: 511 + Slg.
|z/2121/2

Assume now that r ¢ E is sufficiently large. Then, as 2r > r;

|25 — 2| [r — 14 —1-X—¢ —1-A—
= > > > (2r) c

|24 T

‘1__

and so
z
1- =
Zj

> —(1+ X +e)(log(2r))n(2r).

S = Z log

|z/2121/2

By Theorem 9.8, n(2r) = O(r**¢). Since ¢ > (1 + X + ¢) log(2r) for r sufficiently
large, we get
Sll > —7’)\+2€.
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For Si2, we may apply the proof of Theorem 11.1 to see that
Sip < S1 = O(r*Te).
Writing this as S1o < Kr *¢ for r large enough, we get
l0g [Q(2)] > |Su1| = [S1a| = [S2] > =28 — KpAte
= A2 KpE) > e > e

By exponentiation, we get

hence (11.6) holds. O

Proof of Theorem 11.2. By the construction of the canonical product, 2™ Q(z) has
exactly the same zeros as f(z), with the same multiplicities as well. Therefore,

f(2)/2"Q(2)
is an entire function with no zeros. By Theorem 4.1, there is an entire function g(z)
such that

f(z) = 2"Q(2)e?),
It remains to prove that g(z) is a polynomial of degree < p. Since f(z) is of order p,
M(r,f)<e

for all r sufficiently large. Now the order of Q(z) = A = A\(f) < p. Take r such that
(11.6) is true. Then

rp+€

maX|z|:T ’f(Z)’ eerrE _ ppte . €r>‘+€

TerE
—rXte - .

max |e9*)| = max eRe9(*) < < e?

j2l=r j2l=r ~ rmming - [Q(2)] T e

Recalling Definition 7.4, we observe that
A(r,g) < 2rPFe,
By Theorem 7.6, g is a polynomial of degree < p + ¢, hence < p. [

Corollary 11.4. Let f(z) be a nonconstant entire function of finite non-integer
order p. Then \(f) = p.

Proof. If p = 0, then by Theorem 9.9, we have 0 < A(f) < p(f) = p = 0. Therefore,
we may assume that p > 0 and that A(f) < p. By Theorem 11.2, deg P(z) = n <
p ¢ N, hence deg P(z) < p. By Lemma 7.2,

M(r,e?) < e?lonlr™
here now P(z) = apz™ + - -+ + ag. Therefore p(e’’) < n. On the other hand,

n
M(’I“, €P) — ) laX|eP| — eMaxX|z|=r ReP _ eA(r,P) > eKr
z|=r

for some K > 0 by Theorem 7.5. Hence p(ef’) > n, and so p(ef’) = n < p. By
Theorem 7.9,

p(f) < max(p(z™), p(Q), p(e”)) < max(A(f),n) < p = p(f),

a contradiction. O
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Corollary 11.5. If f(z) is transcendental entire and p(f) ¢ N, then f(z) has
infinitely many zeros.

Proof. If p > 0, then A(f) > 0, and so f must have infinitely many zeros. If then
p = 0, the Hadamard theorem implies that f(z) = c2™Q(z), ¢ € C, m € NU {0}.
Since f(z) is not a polynomial, Q(z) cannot be a polynomial and p(Q) = 0. By the
construction of a canonical product, Q(z) is the product of terms of type Eo(Z%).
Since it is not a polynomial, the number of zeros z; must be infinite. [ ’

To complete what is contained in the two preceding corollaries, we still consider
the case of f of an integer order.

Theorem 11.6. (Borel) If the order of an entire function f is a natural number
p, then the exponent of convergence A\ a, f) of a-points of f equals to p, with one
possible exceptional value a

Proof. Suppose there are two exceptional values a,b in the sense that A(a, f) < p,
A(b, f) < p. By the Hadamard theorem,

f(z)—a= zmlepl(Z)Ql(z)

and
flz)—b= ZmzePQ(Z)Qg(z),

where P;(z), P>(z) are polynomials of degree p (= p by the assumptions) and
Q1(2),Q2(z) are canonical products determined by the non-zero a-points, resp.
b-points, of f, both being of order p; < p, j = 1,2. Subtracting we get

b—a= zmlepl(z)Ql(z) — zm2eP2(Z)Q2(z),

hence
2MQu(2)e® (B 7 — 22 Qs (2) + (b — a)e ).

Since deg P»(z) = p, the right-hand side in the preceding identity is of order p,
hence so is the left-hand side as well. This means that deg(P;(z) — P2(2)) = p.
Differentiating the preceding identity we obtain

(2™ P]Q +m12™7'Q1 + 2™ Q))e™ = (22 PyQy + maz™2 T Qg + 2™2Qh)e!.

Observe that the differentiated identity is correct also, if one of mq, mso, or both
of them, is zero. Supposing that the differentiation leaves order unchanged, to be
proved in the next Proposition 11.7, the order of Q;- equals to p; < p, 7 = 1,2.
Therefore, the coefficients, in parenthesis, of e/ in the differentiated identity above
are of order < p. Since the coefficients are entire functions, we may write the above
identity, the the Hadamard theorem again, as

PRCTOR (z)ep1 (2)+P3(z) — ,ma Q. (Z)6P2(2)+p4(z) :
59



where P3(z), P4(z) are polynomials of order < p, hence < p—1 and Q3(2), Q4(z) are
the canonical products formed by the non-zero zeros of the respective coefficients.
Since the zeros on both sides of the last identity are the same, we must have
ms = my and Qs3(z) = Q4(z). Therefore, we now see that for some constant
integer n,
Q1(2) — Q2(2) = Q4(2) — Q3(z) + 2min.

But this is a contradiction, since deg(Q1(z) — Q2(z)) = p, while deg(Q4(z) —
@3(z)) <p—1.

As mentioned in the proof of Theorem 11.6, we still have to establish the following
Proposition 11.7. Given an entire function g, it is true that p(g') = p(g).

Proof. Denote the maximum moduli of g and ¢’ as M(r, g) and M (r, g’). Integrat-
ing, say along the line segment from the origin to z, we get

g() = / g (OdC + 9(0).

Therefore,
9(2)| < M(r,g") +19(0)|
and further
M(r,g) < M(r,g") + |g(0)].

This immediately results in p(g) < p(g’). To prove the reversed inequality, take
|z| = r < R, and recall that by the Cauchy integral formula

9'(2) L &d(.

B 2mi |(—z|=R—r (C - Z)Q

Taking moduli and estimating upwards we get

2r(R — ) M(r,g)
! <——-M(R,g) = ’
‘g (Z)’—27T(R_r)2 ( 7g) R_r Y
and so M(R. 9)
9
M N < 22
(T7g ) — R —r
Choosing R = 2r, and supposing that » > 1, as we may, we obtain
M(2
M(r,g") = M@rg) M(2r,g).

By monotonicity of the logarithm, we obtain
loglog M(r,g’) < loglog M (2r,g)  loglog M(2r, g)
log r - log r ~ log2r —log?2
B log 2r log log M (2r, g)
~ log2r —log 2 log 2r

from which the reversed inequality immediately follows.
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Note that Proposition 11.7 may also be proved by use of the Taylor expansions
of g and ¢’ and Theorem 7.10.

Remark. By Corollary 11.5 and Proposition 11.7, we have proved the famous
Picard theorem: Every transcendental entire function f takes all finite complex
values a infinitely often, with one possible exceptional value a.
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12. SPHERICAL METRICS AND NORMAL FAMILIES

We consider the sphere > (Riemann sphere) defined in R3 by

£2+n2+(C—%)2= -
i.e. a sphere of radius %, centered in (0, 0, %) Of course, > is tangent to the (x,y)-
plane (= C) at the origin (0,0,0). We now denote the north pole (0,0,1) of the
sphere by N, meaning that the origin stands for the south pole S.Clearly, we may
set a one-to-one correspondence between the points on > \{N} and the complex
plane C by defining as the image of z € C the point # N where the line from N
to z intersects the sphere > . Setting N as the image of oo, we obtain a one-to-one
correspondence between the Riemann sphere ) and the extended complex plane
CU{o0}.

Take now an arbitrary point z = (z,y,0) € C. To determine the analytic
expression of the image > (z) of z on >, we first observe that the line from N to
z has the following expression (as a vector from 0 to a point on the line):

— — — = — — —
i +yj —k)=ati +ytj +1—1t)k
with a real parameter t. Of course, ¢ = 0 corresponds to the north pole N, while
t = 1 stands for the point z in the complex plane. As the image point > (z) is on
the sphere >, we obtain

hence

2 +9y?2+1 - 1+ |22

Therefore, by setting this value of ¢ into the vectorial representation of the line Nz,

we obtain that )
LA 227 T+ 22 1+ 22 )

The length of >"(2) (as a vector from the origin in R? is

]
2)| = ——.
> EI= =
Indeed,

2 2

S P = g F- ) s
L+]22)2 (1 +]2[?) L2270 T[]
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Definition 12.1. The chordal distance x(z1, z2) of two points 21, 2z € C is defined
as the euclidean distance of » (z1) and > (z2).

Proposition 12.2. For the chordal distance of two points z1,z2 € C, we have

X(21,22) = St
1,<2) — .
V1421214 |22]?

Moreover, if z € C, then
1

XEe) = T

Proof. As for the first claim, denote z; = (z;,y;) for j = 1,2. Then a routine
computation results in

) 2
2 _ T2 . Y2 — 1
X(21,22)" = (1+|22|2 1+|Z1|2) * (1+|22|2 1+|21|2)
2
+( 2 )
14|22 14|22
) 2
:( T2 n ) +( Y2 W )
L+ [P T+ Ltz 14 ]af

+( 1 1 )2
L+ 212 14 |2

3 +y3+1 x%+y%+1_2 T1T2 + y1y2 + 1
(T+1]222)?  (1+][z1]2)? (L +[212) (1 + |22[?)
1 n 1 _ r1T2 +Y1y2 + 1
Lt fa1? 14222 (14 [21?)(1 +[22]?)
2 4+ yi + 23 + Y3 — 22129 — 2012
(T+[212) (1 + |22[?)
_ (@m—w)?+ (n —ye)? |21 — 2|

I+ lzP) A+ [22?) A +[a)(A+|22?)

The second claim is easier:

rocfim B V(o EPY
zZ,X0) = —
A A +122)2 (1 +[22)? 1+ (27

x2 y? 1 1

- + = :
(L1222 - (T+[22)2 - A+ ]2 T+
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Corollary 12.3. For all z1, 29 € @, we have

Proof. The first claim immediately follows from the fact that the diameter of the
Riemann sphere equals to 1. The second claim can be seen by the expressions of
the chordal distances in the claim. As for the last assertion, if |z3] = oo, then
x(0,00) = 1, and the asserted inequality is trivial by the first assertion. If both of

21, 72 € C, then writing x(0, z;) = \/ﬁ, the assertion becomes trivial.
J

Proposition 12.4. y defines a metric on C. Moreover,

xX(21, 22) < |21 — 29

for all z1, z € C.

Proof. The asserted inequality is trivial by the definition of the chordal metric.
That x in fact defines a metric, only needs to show that the triangle inequality
is true. But this is an immediate consequence of the triangle inequality in the
three-dimensional euclidean metric.

We next define the spherical arc length element ds on ) by

|dz|

ds —
TP

and the corresponding spherical area element by

dxdy

dA = 0
(1+]2[?)2

where z = x+1iy. Given now a curve 7 on the Riemann sphere »_, then its spherical
length is naturally defined as
|dz|
L(v):=[| ——.
™ /7 14 |2|?

The spherical length of v may now be used to define what is called the spherical
metric o on ), by
o(z1, z9) := inf L(v),

where the infimum is taken over all differentiable curves on ) from z; to zo. It is

geometrically obvious that o(z1, z2) is just the euclidean length of the shorter arc

of the great circle on ) joining z; to z3. Since this shorter great circle arc is by
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its length < 7/2 (as the diameter of the Riemann sphere is one), it is geometrically
easy to see that

T
X(21,22) < 0(21,22) < §X(21,22)-

In fact, the left inequality is trivial. To prove the right one, suppose that the angle
at the origin in the triangle formed by the center of Y  and the points » (z1) and

. . .0
> (#2) is 6. Then we conclude, by elementary trigonometry, that x(z1,22) = sin 3,
while o(z1, 22) = 0/2. Since sin 3 > %ﬁ, see p. 9, we obtain that

0'(21,22) . 0 < 0
x(z1,22) 2sing - 2%%

™
5 .

The above double inequality means, by elementary topology, that the two metrics
x and o induce the same topology on > . Therefore, concerning topological notions
such as limits, continuity, openness, compactness etc., we may use either the chordal
metric, or the spherical metric equivalently.

Definition 12.5. A sequence (f,) of functions f, : C — C converges spherically

uniformly to a function f: C — C on a set £ C C if for any € > 0, there exists n.
such that n > n, implies that

X(f(2), fn(2)) <e

for all z € E.

Remark. Since x(z1, 22) < |21 — 22|, the usual (euclidean) uniform convergence on
FE implies the spherical uniform convergence. A partial converse of this observation
is contained in the following

Theorem 12.6. If a sequence (f,) of functions f, : C — C converges spherically
uniformly to a bounded function f: C — C on E, then (f,) converges uniformly
(in the euclidean sense) to f on E.

Proof. Assume that |f(z)| < M on E, Then we get

meu»snaMwaﬁ%%ﬁ<L

M__ " and fix n. so that

Takenowa<1—w

X(f(2), fu(2)) <e

for all n > n,. and all z € E. Then

[fn(2)]
L+ fn(2)]

_ = X(0, £4(2)) < X(0, £(2) + X(F(2), fu(2))

M
<—+€=:m<1.
V1+ M2
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This implies that
m
W) < —m =M

for all n > n. and all z € E. Therefore,
11(2) = fa(2)] = VI+[F(2) PV + [fa(2)PX(f(2), fn(2))
< VL4 M2\/14+ MPx(f(2), fu(2))

for all n > n. and all z € E, proving the assertion.

Definition 12.7. A function f: C — C is spherically continuous at zg € C, if for
every ¢ > (0 there exists > 0 such that

x(f(2), f(20)) <&

whenever |z — zg| < 0.

Proposition 12.8. If f: C — C is meromorphic in Q0 C C, then f is spherically
continuous in €.

Proof. 1f f is analytic at zg € C, then spherical continuity immediately follows from

X(f(2), f(zn)) < [f(2) = f(20)]-

On the other hand, if z is a pole of f. then 1/f is analytic, hence continuous at
zo. Therefore,

1 1 1 1
w610 =x (75 76) = 75~ 7

implies spherical continuity.

We next proceed to define the spherical derivative of a function f meromorphic
in a domain Q C C. Supposing first that f(z) is finite, we set

x(f(2), f(#))

FAe) = Jim =
o e g 1
d—z |z =2 1+ f(2)]2 1+ ]f(Z)2
_ )
TGP

If then z is pole of f, we then define

/ /
(2) := lim —'f ()] .
P =T rer
By its definition (and the fact that f is continuous, if finite), the spherical derivative

f* is continuous in C. Moreover, it is immediate to see that f¥(z) = (1/f(2))".
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Definition 12.9. A sequence (f,) of functions f, : @ — C, resp. f, : @ — @,
on a domain 2 C C converges uniformly, resp. spherically uniformly, on compact
subsets of  to a function f : Q — C, resp. f : Q — @, if for any compact set
K C Q and any € > 0 there exists N = N(K,¢) such that n > N implies that

|fn(2) = f(2)| < e, resp. X(fn(2), f(2)) <ceforall z € K.

Definition 12.10. A family § of functions f : 2 — C is locally bounded on a
domain €, if for each zy € € there exists M = M(zp), 0 < M < oo, and a disc
D(zp,r) C Q such that |f(2)| < M for all z € D(zp,7) and all f € §.

Example. Consider the family

S::{fa(z) = 16“ ‘aER}

z —

in the unit disc D. The family § is not uniformly bounded in D, since given
a € R, fo(2) — 00 as z — €“ But § is locally bounded: Given 2o € D, take
D(zp,7) C D(z0,p) C D, r < p. Then for any z € D(zp,r) and any « € R, there is
§ > 0 so that |z — e'®| > 4.

Theorem 12.11. IfF is a locally bounded family of analytic functions on a domain
Q, then the family § :={ f' | f € F} of their derivatives is locally bounded.

Proof. Let zy € § be arbitrary. Then for some M < oo, |f(z)] < M for all f € §
and all z € D(zo,7) in a closed disc D(zo,r) centered at z9. Given z € D(z0, %)
and integrating over the boundary 9D = 0D(z,r), the Cauchy formula results in

L[ Q] 4M
/ <

< —
= o 5 (-2

for all /' € §', so that §F’ is locally bounded.

/(=)

Remark. The converse of Theorem 12.11 is not true. Indeed, consider the family
§:={n|n € N} of constant functions. Clearly, § is not locally bounded. However,
§ = {0} is a (locally) bounded family, as it consists of just one bounded function.
A partial converse can be given, however, as seen by the next

Theorem 12.12. Let § be a family of analytic functions on a domain 2 C C such
that (1) ' ={f' | f € §} is locally bounded and (2) there exists a point zy € 2
such that § is bounded at zg, i.e. that for some finite M, |f(zo)| < M for all f € §.
Then § is locally bounded.

Proof. Let z € Q be arbitrarily chosen and consider a (small) neighborhood D(z, )
of z. Denote p := |z — 2z9|. If now f € F and ¢ € D(z,r), then integrating form z
to ¢ along the path consisting of the line segments [zg, z| and [z, (] results in

z ¢
FQOI<18Gl+ [ £+ [ 17)Ndc] < M+ Mo +7),

where My = max{|f'(z)| : z € [20,2] U [2,(] }. Since [z¢, 2] U [z, (] is compact and
f’ is continuous, M; is finite, and we are done.
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Definition 12.13. A family § of analytic functions on a domain €2 C C is normal
in Q, if every sequence of functions (f,,) C § contains either a subsequence con-
verging to an analytic limit function f uniformly on each compact subset of €2, or
a subsequence converging uniformly to co on each compact subset.

Normality of a family of functions is a property which holds globally if and only
if it is true locally. More precisely, we say that § is normal at zy €  if it is normal
in some (open) neighborhood of zy. Then we obtain the following

Theorem 12.14. A family § of analytic functions is normal in a domain Q if and
only if § is normal at each point of €.

Proof. Obviously, a normal family is normal at each point locally as well.

To prove the converse assertion, suppose that § is normal at each z € (2. Choose
then a countable dense subset {z, } in 2. For example, we may take for z,, = x,,+iy,
all points in © which rational real and imaginary parts. Denote by D(z,,r,) the
largest disc about z,,, contained in €2, in which § is normal. Since {z,} is dense in {2,
we clearly have |J,— | D(zp,7/2) = Q. Take now an arbitrary sequence (f,) C §.
By normality at z1, we can extract a convergent subsequence ( 7(1?) which converges
uniformly in D(z1,7r1/2) either to an analytic function or to co. The subsequence
( ,%)) in turn has a subsequence ( 7%)) which converges uniformly in D(z2,72/2)

and in D(z1,71/2). We now continue in the same way. Picking now the diagonal

sequence, let it be ( ,(1?), it is easy to see that it converges uniformly in D(z,,,r,/2)

forn = 1,2,3,..., in each disc separately either to an analytic function or to oco.
But this divides €2 in two subsets 4,4 and ., which are disjoint, open and their
union is 2. Since () is a domain, hence connected, one of these two subsets is
empty, hence the other one covers the whole 2. Finally, to see that the convergence
is uniform in all compact subsets K of €2, it is sufficient to observe that K will be
covered by finitely many of the discs D(zy,,7,/2).

Example. The preceding theorem is sometimes useful to verify that a family § is
normal, resp. non-normal. As an example, take

§={fu(z) =nz|neN}

Then we have f,,(0) — 0, while f,,(z) — oo for all z # 0. Therefore, § is not
normal in any domain containing the origin, while it is normal in any domain not
containing the origin.

To continue, we have to recall the notion of equicontinuity:

Definition 12.15. A family § of functions defined on a domain €2 C C is equicon-
tinuous, resp. spherically equicontinuous, at a point zy € 2 if, for each € > 0, there
is § = (e, z0) > 0 such that

f(2) = flz0)| <,

resp.

X(f(2), f(z0) <
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for every f € § whenever |z — z9| < 0. Moreover, § is equicontinuous, resp. spher-
ically equicontinuous, on a subset E C € if it is equicontinuous, resp. spherically
equicontinuous, at each point of E.

Remark. In what follows, it is important to recall that continuity on a compact
set is equivalent to being uniformly continuous. The same applies for spherical
continuity as well. Also observe that by Proposition 12.4, equicontinuity implies
spherical equicontinuity.

Proposition 12.16. If (f,) is a sequence of (spherically) continuous functions
converging (spherically) uniformly to a function f on a compact subset E C C,
then f is uniformly (spherically) continuous on E, and the functions {f,} form a
(spherically) equicontinuous family of functions on E.

Proof. We give the proof for the spherical metric only. By the spherically uniform
convergence, given € > 0, we find ng € N so that

€

X(f(), £(2)) < 5

for all z € E whenever n > ng. By the uniform spherical continuity of f,, on E
(compact!), there exists 6 = d(g, ) > 0 such that

€

X(an(Z),fno(Z/)) < g

for all z, 2’ € E such that |z — 2’| < 4. Then we obtain that

X(f(2), F(2) < X(f(2), fno (2)) + X(fno (2), fro (2)) + X(fro (1), f(2)) <€

for |z—2'| < §. Therefore, f is uniformly spherically continuous on E. The spherical
equicontinuity of { f,, } now follows from the spherically uniform convergence of ( f,)
to f and the spherical continuity of f:

X(fn(2), fn(2') < X(fu(2), (2)) + X(£(2), f(2') + X (£ (&), fu(2)) < 3¢
for |z — 2| < 4.

Proposition 12.17. A locally bounded family § of analytic functions on a domain
Q) C C is equicontinuous on compact subsets of €.

Proof. By Theorem 12.11, the family § of derivatives is locally bounded, hence
uniformly bounded on compact subsets of 2. Take now a closed disc K C 2 and
M < oo so that ||f/(z) < M for all z € K and all f' € §. Given £ > 0 and any
two points z, 2z’ in K so that |z — 2’| < /M, and integrating over the line segment
from z to 2/, we obtain

() — F()] < / 1PN < Mz — ) =,

proving equicontinuity on K. Equicontinuity on an arbitrary compact set K follows
by a standard compactness argument.

Remark. Note that the converse assertion to Proposition 12.17 is not true. Indeed,
§:={z+n|n € N} is equicontinuous, say in the unit disc, but is not locally
bounded.
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Theorem 12.18. (Montel). If § is a locally bounded family of analytic functions
on a domain ) C C, then § is a normal family in €.

Proof. The proof is somewhat similar to the proof of Theorem 12.14. In fact, we
again take a countable dense subset {z,} in 2. Take then any sequence (f,) from
§ and consider the sequence of complex numbers {f,(z1)}. By hypothesis there is
a constant M < oo so that |f,(z1)] < M for all n € N. As a bounded sequence,
{fn(z1)} has at least one point of accumulation by the Bolzano-Weierstra$ principle,
hence we can take a convergent subsequence

), fO (1), £V (20), -

converging at z;. Consider now this subsequence at z,. Clearly, the sequence
(fn, )P (22) is a bounded sequence of complex numbers, hence we can again extract
a convergent subsequence

f?gf)(zé)? fr(é) (22)7 féi)(22)7 cee
converging both at z; and zo. Continuing inductively, we get subsequences ( 79,2))
which converge at z1, 22, ... , 2, for each p € N. Similarly as in the proof of Theorem
12.14, we take the diagonal sequence ( 7(1?) and this sequence converges at every
Zn-

We now proceed to show that the diagonal sequence converges uniformly on
compact subsets of 2. For simplicity of notation, call the diagonal sequence as
(g9x), and consider an arbitrary compact set K C Q and an arbitrary € > 0. By
Theorem 12.17, the original family § is equicontinuous on K. Therefore, there
exists § = d(e, K) > 0 such that

€

|gn(z) - gn(zl)| < g
for all n € N, whenever |z — 2’| < ¢ for 2,2’ € K. By compactness of K, we find
finitely many points z,, say 21, ..., 2k, after having renamed them, if needed, so

that K C U’,zole(zk, d). Since the diagonal sequence converges at every point z,,
we find, by the Cauchy criterium, ng € N so that

€
|gn(zk) - gm(zk)| < g
holds good for all k =1, ... | kg whenever n, m > ng. The uniform convergence now
immediately follows. Indeed, given a compact set K C 2, take z € K arbitrarily
and suppose that n,m > ng. Then there is some j, 1 < j < kg so that z € D(z;,0).
By the preceding inequalities,

19n(2) = gm(2)| < |gn(2) = gn(25)] + 9n (25 = gm (2)] + [gm (25) — gm(2)] <e.
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13. UNIVALENT FUNCTIONS IN THE UNIT DISC

In this final section, we consider analytic functions in the unit disc D := B(0, 1)
which univalent, i.e. injective mappings f : D — C. Most of the treatment here is
directed to considering normalized univalent functions in

&:={f:D—C|f(0)=0,f(0)=1}

Hence, such a function has the Taylor expansion
o0
f(Z) :z+a222+a323+... :Z+Zajzja
Jj=2

converging in the open unit disc D.

To start with, recall the Green formula (in R?. Let G C R? be a smooth
H
domain with positively oriented (i.e. counterclockwise) boundary and let F =
— —
Fi(z,y) i +Fs(z,y) j be adifferentiable vector field in G. Then the Green formula

states that
0Fy, O0F
Fi(z,y)dx + F: x,ydy:// (———)dxdy.
/ac: 1(z,y) 2(2,9) N\ 5y

In addition to the family &, we also consider the family > of functions which are
analytic and univalent in C \ D which have a simple pole at infinity. This means
that these functions have an expansion of the form

g(2) =2 +bg+ bz Fboz 24 = Z+ijz_j-
=0

It is not difficult to see that whenever f(z) € &, then h(z) := (f(1/2))"t € >_.
Our first result here is the following

Theorem 13.1. (Area theorem). For each function g € >, we have
o
> il <1
j=1

Proof. Consider the image 0S5, of the circle |z] = p > 1 under the mapping g.
Obviously, 05, is a boundary of a domain S, C C. Writing ¢g(z) = u(z, y)+iv(zx,y),
look at the vector field

— 1 — 1 —
T — 207 1 =
21}2 +2’le

in the image plane. Then it is immediate that

oF, O0F;

=2 Tl

ou ov
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Therefore, by the Green formula,

1/ udv — vdu = // 1dA = A(Sp)7
2 08, Sp

the area of the image domain S, bounded by the image curve of the circle |z| =
p > 1. On the other hand,

1 1 1 1 g
- _ [ 1 —1 d v = — adg = — g—=d@.
5 /8Sp udv — vdu 5 /BSP m((u — i) (du + idv)) 5 /aspg 9=75; aspgae

From the Laurent expansion of g in z > 1, we get

9(pei®) — 0™ £ b+ brptel? + hpp 20 4 ...

and
a( pei® ' ' |
M — ipew _ iblp—le—ze . 2b2p_26_2“9 .
00
Therefore,
1 P | |
A(Sp) = 2_7/ (pe—le + bO + blp—lele + ... ) i (,0610 _ blp—lele . 2b2p—2€—210 .
s,
m .
=m|p- Zj|bj|2p_23 > 0.

Jj=1

Therefore, we have

N oo

> b <Y b P < p?

j=1 j=1

for all p > 1 and all N € N. Letting now p — 14, we first get

N
> il <1
j=1

and then, by letting N — o0,

o0
> ilbP <1
=1
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Theorem 13.2. (Bieberbach). If

f(z) = z+Zajzj €6,

Jj=2

then |as| < 2.

Proof. First observe that we may choose a square root so that g(z)+/f(2?) € &.
Trivially, g(0) = 0. Since f is univalent, f(z) = 0 at the origin only. Therefore, we
may fix the branch of the square root so that

g9(z) = \/f(ZQ):Z(1+6L222+CL324+~")1/2:Z+0323+C5Z5+---

in |z| < 1. Now, g is clearly analytic in D and ¢’(0) = 1. It remains to show that g
is univalent in the unit disc. But g is odd, i.e. g(—z) = —g(2). If now g(z1) = g(22),
then f(27) = f(22)? and further 27 = 23, hence z; = +2z5. If we have z; = —z,
then g(z1) = g(z2) = —g(z1), resulting in z; = 0 and so z; = 2z in this case as well.

Therefore, h(z) = (g(1/2))~' = (f(1/2?))"'/2 € 3_. Starting from the Taylor
expansion of f, a routine computation shows that

a

By the area theorem, Theorem 13.1, we conclude that |as| < 2.

Remark. The famous Bieberbach conjecture from 1916 asserts that |a,| < n for
all n € N, provided f € &. This was finally proved by de Branges in 1984.

Theorem 13.3. (Koebe). For each function f € &, we have f(D) D {w; |w| <

1/41.

Proof. Suppose that f omits a value w € C. Then it is immediate to verify that

—wfle) e
g(z).—w_f(z) +(2+w +

is analytic, univalent and g € &. By the Bieberbach theorem,
1
lag + —| < 2.
w

If |1/w| > 1/4, then 1/|w| — |az| < |az + 1/w| < 2. Therefore, 1/|w| < 2+ |az| < 4,
a contradiction. Hence, |w| > 1/4, and we are done.
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Proposition 13.4. For each f € G,

z2f"(z) 2r?
o 1o

—1—1r2

forall |z| =r < 1.

Proof. Fix ¢ € D arbitrarily, and consider

F(2£) -1

P& =m0

= b Ap(Q)2

z+(

rc. maps D onto D. Moreover,

It is elementary to see that ' € G observing that
a routine computation shows that

120 = 3 (a-1e T8 —ot).

By the Bieberbach theorem, |A5(¢)| < 2. Hence

-2 - o <

Multiplying by || =: r and dividing by 1 — r? we obtain

4r
-1 —r2

Q) &
IS

from which the assertion follows.

Theorem 13.5. (Distortion theorem). For each f € &, we have

1—7r , 1+7r

for all |z| =r < 1.

Proof. Since f'(z) # 0 (by univalence, see remark below) and f'(0) = 1, we may
determine a unique branch of log f’(z) which vanishes at the origin. Then we may

conclude that B 5
Re <z;/(i§)) =T Relog f'(z),

where z = re’?. In fact, we first have

r 2 log /() = r%(l;f 7)) +iare £ (2)).



For the left hand side we see that

oy dlog f'(2)) 0= o f"(2) __f"(2)
TE log f (Z) =T dz 5 = re’ f’(z) - Zf/<z) :

Taking the real parts from this and the right hand side of the previous identity we
obtain the conclusion.

Recalling the elementary observation that —c < Rea < ¢ when |a| < ¢, we may
use the inequality from Proposition 13.4 to obtain

2 _ " 2
2r 47“§Re(zf (z))SQT + 4r

1—1r2 f'(2) 1—r2 "
Therefore,

2r —4 0 , 2r +4

- - < _1 / 0 < .

1—7r2 = Or og|f(re )|_1—r2

Holding now 6 fixed, and integrating relative to r from 0 to R, a routine computation

results in
1+R

<log|f(Re”| < log =R

| 1-R

O —_—
& (1+ R)3
The assertion now follows by exponentiation.

Remark. Suppose f analytic and univalent in D, and also that f'(z9) = 0 at some
point zg € D. For the Taylor expansion of f about zy we have

) (
£~ £lz0) = T2 (o gy
By the uniqueness theorem of analytic functions, we find a circle |z — z9| = r such
that f(z) — f(z0) and f’(z) have no zeros in an open disc 0 < |z — zg| < r contained
in D. Define now
m:= min |[f(z)— f(z0)] >0

|z—zo|=r

and consider
9(z) = f(z) = f(z0) — a,

where we have chosen a to satisfy 0 < |a| < m. We proceed to show that g has
at least two distinct zeros in |z — 29| < r, hence in D. But then there are at
least two distinct points z;, j = 1,2, so that f(z;) = f(z0) + a, contradicting the
assumption that f is univalent. To this end, observe that g(zp) = —a # 0, and that
g (z) = f(2) #01in 0 < |z — 29| < r, meaning that all zeros of g in |z — zo| < r are
simple. Now, on the circle |z — zy| = r, we have

£ (2) = f(20)| = m > lal.

Therefore, by the Rouché theorem, g has the same number of zeros in the disc
|z — 20| <7 as does f(z) — f(z0), that is k > 2 zeros.
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Theorem 13.6. For each f € &, we have

for all |z| =r < 1.
Proof. Since f(0) = 0, we have by the distortion theorem that

' C)dC‘ < /0T|f/(o|dﬂﬁ /OT (llj—,gs = (1_7“74)2.

The left inequality is less immediate. If |f(z)| > 1/4, then it follows from the
fact that F(r) :=r/(1+7r)? < 1/4 for 0 <r < 1. In fact, F(0) =0, F(1) = 1/4
and F’(r) > 0. Hence, we may assume that |f(z)| < 1/4. But then, by the Koebe
theorem, the line segment from 0 to f(z) lies completely in the image of f(D). Let
I' be the preimage of this line segment. Then I is a simple arc from 0 to z, and we
obtain, by the construction of I', and the distortion theorem,

Q)d dp = .
C‘ =

Remark. By Theorem 13.6, the family & is locally bounded. Therefore, by Theo-
rem 12.8, G is a normal family. Moreover, since G is locally bounded, the same is
true for & as well by Theorem 12.11. The, by the Montel theorem, &’ is a normal
family too.

Another distortion type theorem is
Theorem 13.7. For each f € &, we have

1—7r < z2f'(2)
1+7r = | f(2)

147
11—’

whenever |z| =1 < 1.

Proof. Consider the function ' € G defined in the proof of Theorem 13.4. By
Theorem 13.6, we get for ( € D,

<] <]
— < |F(—() < —————.
ariae =TV Ty
But F(—() = %, and the assertion follows by combining this with the

preceding double inequality.
By the growth theorem, integrating over a circle boundary of radius r, we obtain
1 [em

2

(1—=r)*

However, we can obtain a better result as follows:
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Theorem 13.8.. For each f € G,

1 27 6
— N1do <
o [ Irteia <
for all r < 1.
Proof. We again consider g(z) := /f(2?) € &, and its Taylor expansion

9()1? = (D) € — 55,

This means that g maps the disc |z < r| univalently onto a domain D,. contained
in the disc |w| < r/(1 —r?). Therefore, the area of D, satisfies

A(D,) < Wm.

On the other hand, we may compute A(D,) in the same way as in the proof of the
area theorem to obtain

1 [ 9
Ay =5 [ 3 gde—vrzﬂcm 2,

Therefore,
> r
Z 12,201 < _
j:1j|c.7| r — (1 . 7’2)2

Integrating from 0 to r we get

o 2

, 1
12020 — <
SlePr¥ = o [ phirePan <

j=1

Finally, observing that

27 ) 27 ) 1 4 27 )
0\ |2 _ 2 2460 _ 2 za _ 2 ja
| menypan = [ 1seEe o = 5 [ s6elaa = [ r62edo.

So, we have found
1 27 2

_ 219 <
— [ 16 <

and the assertion follows by observing that 72 is an increasing bijection from [0, 1]
to [0, 1].

We are now ready to prove

1—r2’

7



Theorem 13.9. If f(z) =2+ Z;’;Q a;jz’ is in &, then |aj| < ej for all j > 2.

Proof. By the Cauchy integral formula, we first obtain

LI,

Y I+l

|z|="r

for all j > 2 and all 0 < r < 1. Therefore,

laj| <

/% £ (rei®)|do.
0

2mrd

Combining with the preceding theorem, we see that

il <
a;| < ———.
= pi=1(1 —7)

Since this inequality is valid for all 0 < r < 1, and the left hand side is independent
of r, we may proceed to minimize the right hand side in 0 < r» < 1, meaning that

we have to maximize 7" !(1 — r). but this happens at r = "771, resulting in

. j—1
al<—2 i+ 1) <o
oG-t j—1
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