FUNCTIONAL ANALYSIS 2009

V. LATVALA

Date: December 14, 2009.

CONTENTS

1. Normed spaces

Throughout this text $\mathbb F$ is either $\mathbb C$ or $\mathbb R$.

1.1. Definition and main examples.

Definition 1.1.1. Let X be a vector space over F. A norm on X is a function $\|\cdot\|$: $X \to \mathbb{R}$ such that $\forall x, y \in X \ \forall \alpha \in \mathbb{F}$

- (i) $||x|| \ge 0;$
- (ii) $||x|| = 0 \iff x = 0_X;$
- (iii) $\|\alpha x\| = |\alpha| \|x\|;$
- (iv) $||x + y|| \le ||x|| + ||y||;$

Note. If $\|\cdot\|$ is a norm on X, then $d: X \times X \to \mathbb{R}_+$,

$$
d(x, y) := ||x - y||,
$$

defines a metric on X.

Example 1.1.2. Let $n \in \mathbb{N}$ and recall that **F** is **R** or **C**. In both cases, $\|\cdot\|$: **F**ⁿ,

$$
||(x_1,\ldots,x_n)|| = \left(\sum_{j=1}^n |x_j|^2\right)^{\frac{1}{2}} \quad (*)
$$

is a norm on \mathbb{F}^n (the *standard norm* on \mathbb{F}^n).

The previous example is a special case of the following:

Example 1.1.3. Let X be a finite-dimensional vector space over \mathbb{F} with basis $\{e_1, \ldots, e_n\}$. Then any $x \in X$ can be written uniquely as

$$
x = \sum_{j=1}^{n} \lambda_j e_j,
$$

i.e. scalars λ_i are unique.

Claim: The function $\|\cdot\| : X \to \mathbb{R}$,

$$
||x|| = \left(\sum_{j=1}^{n} |\lambda_j|^2\right)^{\frac{1}{2}} \quad (**)
$$

is a norm on X (Exercise).

Remark. If $X = \mathbb{R}^n$ (see Example 1.1.2) and $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, then $\lambda_j = x_j$ (with standard base) so (*) and (**) are equal. If $X = \mathbb{C}^n (= \mathbb{R}^{2n})$ and $x = (z_1, \ldots, z_n) \in \mathbb{C}^n$, then $z_j = x_j + iy_j$. In other words $x = (x_1, y_1, x_2, y_2, \dots, x_n, y_n)$ and $(**)$ is (with standard base e_1, \ldots, e_{2n}

$$
||x|| = \left(\sum_{j=1}^{n} x_j^2 + \sum_{j=1}^{n} y_j^2\right)^{\frac{1}{2}} = \left(\sum_{j=1}^{n} \underbrace{x_j^2 + y_j^2}_{|z_j|^2}\right)^{\frac{1}{2}}
$$

This equals (∗).

Note. Many normed function spaces are *not* finite-dimensional!

Example 1.1.4. Let (M, d) be a compact metric space and let

$$
\mathbb{C}_F(M) := \{ f : M \to F : f \text{ continuous} \}.
$$

Then the function $\|\cdot\|$: $\mathbb{C}_F(M) \to \mathbb{R}$,

$$
||f|| := \sup\{|f(x)| : x \in M\}
$$

is a norm (standard norm on $C_F(M)$) (Exercise).

Remarks: (a) If M is not compact, for example if $M =]0,1[\subset \mathbb{R}, \text{ then } f(x) = \frac{1}{x}$ is continous on M. However

$$
\sup\{|f(x)| : x \in M\} = +\infty.
$$

(b) Here $f + g$ and αf are defined pointwise, that is, $\tilde{\mathbf{z}}$

$$
(f+g)(x) := f(x) + g(x) \quad \forall x \in M, \forall f, g \in C_F(M)
$$

\n
$$
(\alpha f)(x) := \alpha f(x) \quad \forall \alpha \in \mathbb{F}.
$$

(c) $(C_F(M), \|\cdot\|)$ is not finite-dimensional.

Example 1.1.5. (a) Let $1 \leq p < \infty$ and let

$$
L^{p}(\mathbb{R}) := \{ f : \mathbb{R} \to \bar{\mathbb{R}} : f \text{ measurable and } \int_{\mathbb{R}} |f|^{p} dx < \infty \}.
$$

Then $\|\cdot\|_p : L^p(\mathbb{R}) \to \mathbb{R},$

$$
||f||_p := \left(\int_{\mathbb{R}} |f|^p dx\right)^{\frac{1}{p}},
$$

is a norm $(L^p - norm \text{ on } \mathbb{R})$. The *triangle-inequality*

$$
||f+g||_p \le ||f||_p + ||g||_p
$$

is called the Minkowski inequality.

If $1 < p < \infty$, then the *Hölder conjugate* of p is $1 < q < \infty$ so that

$$
\frac{1}{p} + \frac{1}{q} = 1.
$$

$$
\frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p}
$$

$$
q = \frac{p}{p-1} = p'
$$

,

i.e.

Hence

(b) Let

$$
L^{\infty}(\mathbb{R}) := \{ f : \mathbb{R} \to \bar{\mathbb{R}} \; : f \text{ measurable and } \operatorname{ess} \sup_{x \in \mathbb{R}} |f(x)| < \infty \}
$$

(Here $\operatorname{ess\,sup}_{x\in\mathbb{R}}|f(x)|<\infty$ means: $\exists M\in\mathbb{R}_+$ so that $|f(x)|\leq M$ for a.e. $x\in\mathbb{R}$.)

Then $\|\cdot\|_{\infty}: L^{\infty}(\mathbb{R}) \to \mathbb{R},$

$$
||f||_{\infty} := \inf\{M > 0 : |f(x)| \le M \text{ for a.e. } x \in \mathbb{R}\},
$$

is a norm on $L^{\infty}(\mathbb{R})$ (L^{∞} -norm on \mathbb{R}).

For $p = 1$, the Hölder conjugate is $q = \infty$. Conversely, for $p = \infty$, the Hölder conjugate is $q = 1$. Hence we write $1' = \infty, \infty' = 1$.

Here in (a) and (b), $f + g$ and αf are defined pairwise.

Lemma 1.1.6. Let $1 \leq p \leq \infty$ and let q be the Hölder conjugate of p. Then for any $f \in L^p(\mathbb{R})$ and $g \in L^q(\mathbb{R})$

$$
\int_{\mathbb{R}} |fg| dx \leq ||f||_p ||g||_q.
$$

Note. Hölder's inequality follows from Young's inequality:

$$
|ab| \le \frac{1}{p}|a|^p + \frac{1}{q}|b|^q \quad (a, b \in \mathbb{R}, \ 1 < p < \infty, \ q = p')
$$

with a trick. The Minkowski inequality follows from the Hölder inequality with a trick (see exercises).

Example 1.1.7. (a) Let $1 \leq p < \infty$ and let l^p be the set of all sequences $(a_n)_{n \in \mathbb{N}}$ in F so that

$$
\sum_{n=1}^{\infty} |(a_n)|^p < \infty.
$$

Then

$$
||(a_n)||_p := \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{\frac{1}{p}}
$$

is a norm on l^p (l^p -norm).

(b) Let l^{∞} be the set of all sequences in F so that

$$
\sup_{n\in\mathbb{N}}|a_n|<\infty\quad(bounded\ sequence).
$$

Then

$$
\|(a_n)\|_{\infty} := \sup\{|a_n| : n \in \mathbb{N}\}\
$$

is a norm on l^{∞} (l^{∞} -norm). Here

$$
(a_n) + (b_n) := (a_n + b_n)
$$
 and $\alpha(a_n) := (\alpha a_n)$.

Theorem 1.1.8. Let $1 \leq p \leq \infty$ and let q be the Hölder conjugate of p. Then for any sequences $(a_n) \in l^p$, $(b_n) \in l^q$ we have

$$
\sum_{n=1}^{\infty} ||a_n b_n| \le ||(a_n)||_p ||(b_n)||_q.
$$

Proof. The case $p = 1$ or $q = 1$ is easy (Write the proof!). Assume that $1 < p < \infty$ and $1 < q < \infty$. We may also assume that $||(a_n)||_p > 0$ and $||(b_n)||_q > 0$. Indeed, if $||(a_n)||_p = (\sum_{n=1}^{\infty} ||a_n|^p)^{\frac{1}{p}} = 0$, then $|a_n| = 0$ for all $n \in \mathbb{N}$ and therefore the left-hand side $= 0.$

By Young's inequality with $a = \frac{|a_n|}{\|(a_n)\|}$ $\frac{|a_n|}{\|(a_n)\|_p}$, $b = \frac{|b_n|}{\|(b_n)}$ $\frac{|b_n|}{\|(b_n)\|_q}$,

$$
\frac{|a_n|}{\|(a_n)\|_p} \frac{|b_n|}{\|(b_n)\|_q} \ \leq \ \frac{1}{p} \frac{|a_n|^p}{\|(a_n)\|_p^p} \ + \ \frac{1}{q} \frac{|b_n|^q}{\|(b_n)\|_q^q}.
$$

By summing up and using the product $+$ sum-rules for series:

$$
\frac{1}{\|(a_n)\|_p \|(b_n)\|_q} \sum_{n=1}^{\infty} |a_n b_n| \leq \sum_{n=1}^{\infty} \frac{1}{p} \frac{|a_n|^p}{\|(a_n)\|_p^p} + \sum_{n=1}^{\infty} \frac{1}{q} \frac{|b_n|^q}{\|(b_n)\|_q^q}
$$

$$
= \frac{1}{p} \frac{1}{\|(a_n)\|_p^p} \sum_{n=1}^{\infty} |a_n|^p + \frac{1}{q} \frac{1}{\|(b_n)\|_q^q} \sum_{n=1}^{\infty} |b_n|^q
$$

$$
= 1.
$$

The claim follows.

1.2. Convergence in normed spaces. A normed space $(X, \|\cdot\|)$ is a vector space X Over F which is equipped with a norm $\|\cdot\|$. We assume throughout this subsection that $(X, \|\cdot\|)$ is a normed space and $x_n, x \in X$.

Definition 1.2.1. The sequence (x_n) converges to x in X, denote $\lim_{n\to\infty}x_n = x$, if $\forall \varepsilon > 0 \exists n_{\varepsilon} \in \mathbb{N}$ such that

$$
||x_n - x|| < \varepsilon \quad \text{if } n \ge n_{\varepsilon}.
$$

The sequence (x_n) is a *Cauchy sequence* if $\forall \varepsilon > 0 \ \exists n_{\varepsilon} \in \mathbb{N}$ such that

 $||x_m - x_n|| < \varepsilon$ if $m, n \geq n_{\varepsilon}$.

Lemma 1.2.2. Assume that $\lim_{n\to\infty}x_n=x$. Then

- (i) The limit x is unique;
- (ii) $\lim_{n\to\infty} x_{n_i} = x$ for any subsequence; that is, if $i \to n_i$ is a strictly increasing function $\mathbb{N} \to \mathbb{N}$;
- (iii) (x_n) is a Cauchy sequence.

Proof. The proofs are as in the case $X = \mathbb{R}$ (replace $|\cdot| \leftrightarrow ||\cdot||$). (ii),(iii) Exercise. \square

A set $M \in X$ is *compact* if every sequence (x_n) in M contains a subsequence (x_{n_i}) such that $\lim_{n\to\infty} x_{n_i} = x \in M$.

A set $M \in X$ is *complete* if every Cauchy sequence in M converges to $x \in M$.

Example. $X = \mathbb{R} \to X$ is complete but not compact. For example $x_i = i \in \mathbb{R}$ does not have a convergent subsequence.

Remark. We regard the following known: If M is complete, then a sequence (x_n) converges in M if and only if (x_n) is a Cauchy sequence.

Theorem 1.2.3. Suppose that (x_n) and (y_n) are sequences in X such that

 $\lim_{n \to \infty} x_n = x \in X$ and $\lim_{n \to \infty} y_n = y \in X$.

Then

(i) $\|x\| - \|y\|$ $\vert \leq \Vert x - y \Vert;$ (ii) $\lim_{n\to\infty} ||x_n|| = ||x||$; (iii) $\lim_{n\to\infty}(x_n+y_n)=x+y;$ (iv) $\lim_{n\to\infty} \alpha_n x_n = \alpha x$.

Proof. (i)-(ii) exercise, (iii) skip. Proofs are as in $(\mathbb{R}, |\cdot|)$.

(iv) Since (α_n) converges, it forms a bounded sequence. Hence $\exists M > 0$ such that $|\alpha_n| \leq M$ for $\forall n \in \mathbb{N}$. By Definition 1.1.1 (iii), (iv),

$$
\begin{array}{rcl}\n\|\alpha_n x_n - \alpha x\| & = & \|\alpha_n x_n - \alpha_n x + \alpha_n x - \alpha x\|^{(*)} \\
& = & \|\alpha_n (x_n - x) + (\alpha_n - \alpha)x\| \\
& \leq & \|\alpha_n (x_n - x)\| + \|\alpha_n - \alpha)x\| \\
& \stackrel{(iii)}{=} & |\alpha_n| \ \|x_n - x\| + |\alpha_n - \alpha)x\| \\
& \leq & M\|x_n - x\| + |\alpha_n - \alpha| \|x\|.\n\end{array}
$$

Now, for given $\varepsilon > 0$, $\exists n_1 \in \mathbb{N}$ such that $||x_n-x|| < \frac{\varepsilon}{2M}$ wherever $n \ge n_1 \& \exists n_2 \in \mathbb{N}$ such that $|\alpha_n - \alpha| < \frac{\varepsilon}{2!}$ $\frac{\varepsilon}{2\|x\|}$ (assuming that $\|x\| \neq 0$). If $n \ge \max(n_1, n_2)$, then $\|\alpha_n x_n - \alpha x\| < \varepsilon$. (*) We use the fact that $\forall \alpha \forall x$ holds $-\alpha x = (-\alpha)x = \alpha(-x)$.

Definition 1.2.4. Banach space is a complete normed space $(X, \|\cdot\|)$, that is, each Cauchy sequence in X converges to an element of X .

Example. $(\mathbb{Q}, |\cdot|)$ is a normed space which is *not* Banach. For instance the sequence

$$
x_n = \sum_{k=1}^n \frac{1}{k!} \in \mathbb{Q}
$$

converges to $e \in \mathbb{R} \notin \mathbb{Q}$. By Lemma 1.2.2 (iii), (x_n) is a Cauchy sequence. By 1.2.2 (i), (x_n) can not converge to an element in \mathbb{Q} .

Theorem 1.2.5. All the normed spaces in Examples 1.1.2, 1.1.4, 1.1.5 and 1.1.7 are Banach spaces.

Proof. We skip the proof, see Analysis $4 / R$ ynne & Youngson. \Box

2. Linear operators

2.1. Continuous linear transformations.

Let V and W be vector spaces over the same scalar field F. A mapping $T: V \to W$ is called a *linear transformation* if $\forall \alpha, \beta \in F$ and $x, y \in V$,

$$
T(\alpha x + \beta y) = \alpha T(x) + \beta T(y) . (*)
$$

Remark 2.1.1. Let V,W be vector spaces and $T: V \to W$ be linear; see Rynne & Youngson, p.3, (a)-(e). Let $x \in V$ and $\alpha \in F$; let 0_V be the zero-element in V and let 0_W be the zero-element in W.

Claim 1. $0x = 0_V$, $\alpha 0_V = 0_V$. Proof. By (e), $0_X = (0+0)x = 0x+0x$. We add $-0x$ on both sides $\Rightarrow 0_V = 0x$. similarly $\alpha 0_V = \alpha(0_V + 0_V) = \alpha 0_V + \alpha 0_V.$

Claim 2. $\alpha x = (-\alpha)x = \alpha(-x)$. Proof. By (e) $\alpha x + (-\alpha)x = (\alpha + (-\alpha))x = 0x = 0y,$ $\alpha x + \alpha(-x) = \alpha(x + (-x)) = \alpha 0 = 0$

Claim 3. $T(0_V) = 0_W$ and $T(-x) = -T(x)$ Proof. By linearity (and Claim1):

$$
T(00_V) = T(00_V) + 00_V = 0T(0_V) + 0T(0V),
$$

that is, $T(0_V) = 0_W$. Moreover

$$
T(0_V) = T(x + (-x)) = T(x) + T(-x)
$$

that is, $T(-x) = -T(x)$.

Recall the necessary definitions:

Definition. Let X and Y be normed spaces. A function $F: X \to Y$ is continuous at $x \in X$ if $\forall \varepsilon > 0 \exists \delta > 0$ such that

$$
||x - y||_X < \delta \Rightarrow ||F(x) - F(y)||_Y < \varepsilon.
$$

F is continuous on X if F is continuous at $x \forall x \in X$. F is uniformly continuous on X if $\forall x \in X \ \forall \varepsilon > 0 \ \exists \delta > 0$ not depending on x such that

$$
||x - y||_X < \delta \Rightarrow ||F(x) - F(y)||_Y < \varepsilon.
$$

Lemma 2.1.2. Let X and Y be normed spaces and let $T : X \to Y$ be a linear transformation. Then the following are equivalent:

- (a) T is uniformly continuos on X ;
- (b) T is continuos on X ;
- (c) T is continuous at 0_x ;
- (d) $\exists k \in \mathbb{R}_+$ such that $||T(x)|| \leq k$ whenever $x \in X$ and $||x|| \leq 1$;
- (e) $\exists k \in \mathbb{R}_+$ such that $||T(x)|| \leq k||x|| \forall x \in X$.

Proof. The implications $(a) \implies (b) \implies (c)$ are trivial.

(c) \implies (d). Assume that T is continuous at 0_X . Then, for $\varepsilon = 1, \exists \delta > 0$ such that $||T(x) - T(0_X)|| = ||T(x)|| < 1$ whenever $x \in X$ and $||x - 0_X|| = ||x|| < \delta$. Let $w \in X$ with $||w|| \leq 1$. As

$$
\|\frac{\delta w}{2} = \frac{\delta}{2} \|w\| \le \frac{\delta}{2} < \delta,
$$

We have (T is linear)

$$
1 > ||T(\frac{\delta w}{2})|| = ||\frac{\delta}{2}T(w)|| = \frac{\delta}{2}||T(w)||.
$$

Hence $||T(w)|| < \frac{2}{s}$ $\frac{2}{\delta}$ so that (d) holds with $k = \frac{2}{\delta}$ δ

(d) \implies (e). Let k be such that $||T(x)|| \leq k$ whenever $x \in X$ and $||x|| \leq 1$. Since $T(0_X) = 0_Y$, it is clear that $||T(0_X)|| = ||0_Y|| = 0 \le k||0_X||$. Let $x \in X, x \ne 0_X$. As $\frac{x}{\ln x}$ $\frac{x}{\|x\|}\| = 1$, we have

$$
k \le ||T(\frac{x}{||x||})|| = ||\frac{1}{||x||}T(x)|| = \frac{1}{||x||}||T(x)||,
$$

which implies $||T(x)|| \leq k||x||$.

\n- (e)
$$
\implies
$$
 (a). Assuming (e) we have by linearity $\forall x, y \in X$
\n- (L) $||T(x) - T(y)|| = 2.11$ $||T(x) + T(-y)|| = ||T(x - y)|| \le k||x - y||$
\n

Hence, for $\varepsilon > 0$ and $\delta := \frac{\varepsilon}{k}$ we have: If $x, y \in X$ and $||x - y|| < \delta$, then

$$
||T(x) - T(y)|| \le k||x - y|| < k\delta = \varepsilon.
$$

This shows that T is uniformly continous on X. \Box

Remark. In fact, (L) means that T is Lipschitz. This is more than just uniform continuity.

Example. Transformation $T: C_F[0,1] \to F$ defined by

$$
T(f) = f(0)
$$

is linear, since $\forall \alpha, \beta \in F, \forall f, g \in C_F[0,1]$

$$
|T(f)| = |f(0)| \le \sup_{x \in [0,1]} |f(x)| = ||f||,
$$

that is, 2.1.2 (c) holds with $k = 1$.

Lemma 2.1.3. If $(c_n) \in l^{\infty}$ and $(x_n) \in l^p$, $1 \leq p < \infty$, then $(c_n x_n) \in l^p$ and ∞ ∞

$$
\sum_{n=1} |c_n x_n|^p \le ||(c_n)||_{\infty}^p \sum_{n=1} |x_n|^p.
$$

Proof. By assumptions, we have

$$
\lambda := \sup \{ |c_n| : n \in \mathbb{N} \} < \infty
$$

and

$$
\sum_{n=1}^{\infty} |x_n|^p = ||(x_n)||_p^p < \infty.
$$

Since for all $n \in \mathbb{N}$

$$
|c_n x_n|^p \le \lambda^p |x_n|^p
$$

and $\sum_{n=1}^{\infty} < \infty$, the series $\sum_{n=1}^{\infty} |c_n x_n|^p$ converges and the claim follows.
Example 2.1.4. If $(c_n) \in l^{\infty}$, then the transformation $T : l^1 \to F$,

$$
T((x_n)) = \sum_{n=1}^{\infty} c_n x_n,
$$

is linear and continous.

Proof. By Lemma 2.1.3, $(c_n x_n) \in l^1$ for all $(x_n) \in l^1$. Since (we regard as known)

$$
\sum_{n=1}^{\infty} |c_n x_n| < \infty \quad \implies \sum_{n=1}^{\infty} c_n x_n < \infty,
$$

T is well-defined. For all $\alpha\beta \in F$ and $(x_n), (y_n) \in l^1$,

$$
T(\alpha(x_n) + \beta(y_n)) = T((\alpha x_n + \beta y_n)) = \sum_{n=1}^{\infty} c_n(\alpha x_n + \beta y_n)
$$

= $\alpha \sum_{n=1}^{\infty} c_n x_n + \beta \sum_{n=1}^{\infty} c_n x_n = \alpha T((x_n)) + \beta T((y_n))$

since all the series converge. Hence T is linear. Moreover, for any $(x_n) \in l^1$,

$$
|T((x_n))| = |\sum_{n=1}^{\infty} c_n x_n| \le \sum_{n=1}^{\infty} |c_n x_n| \le 2.13 ||(c_n)||_{\infty} ||(x_n)||_1.
$$

Hence, Lemma 2.1.2 (e) holds with $k = ||(c_n)||_{\infty}$. Thus T is continous. \Box *Example 2.1.5.* If $(c_n) \in l^{\infty}$, then the transformation $T: l^2 \to l^2$, ¡ ¢

$$
T((x_n))=(c_nx_n),
$$

is linear and continous.

Proof. By Lemma 2.1.3, $(c_n x_n) \in l^2$ for any $(x_n) \in l^2$. Hence T is well-defined. For all $\alpha, \beta \in F$ and $(x_n), (y_n) \in l^2$ ¡ ¢ ¡ ¢ ¡ ¢

$$
T(\alpha(x_n) + \beta(y_n)) = T((\alpha x_n + \beta y_n)) = (c_n(\alpha x_n + \beta y_n))
$$

= $\alpha(c_n x_n) + \beta(c_n y_n) = \alpha T((x_n)) + \beta T((y_n)).$

Hence T is linear. Moreover, for any $(x_n) \in l^2$,

$$
||T((x_n))||_2^2 = \sum_{n=1}^{\infty} |c_n x_n|^2 \le ||(c_n)||_{\infty}^2 \sum_{n=1}^{\infty} |x_n|^2 = ||(c_n)||_{\infty}^2 ||(x_n)||_2^2.
$$

Hence, Lemma 2.1.2 (e) holds with $k = ||(c_n)||_{\infty}$. Thus T is continuous. \Box

Example 2.1.6. Let $P \subset C_{\mathbb{R}}[0,1]$ be the set of all real polynomials p restricted to [0, 1]. It is evident that P is a vector space and clearly

$$
||p|| = \sup\{ |p(t)| : t \in [0, 1] \}
$$

defines a norm in P. Let $T: P \to P$ be the linear operator

$$
T(p) = p'. (derivative)
$$

If $p_n \in P$ is defined by $p_n(t) = t^n$, then

$$
||p_n|| = \sup \{|t|^n | t \in [0, 1]\} = 1 \quad \forall n \in \mathbb{N}
$$

while

$$
||T(p_n)|| = \sup \{ ||nt^{n-1}|| \mid t \in [0,1] \} = n \,\forall n \in \mathbb{N}
$$

Hence Lemma 2.1.2 (e) does not hold for any $k \in \mathbb{R}_+$. It follows that T is not continous.

Definition 2.1.7. Let X and Y be normed spaces and let $T : X \rightarrow Y$ be a linear transformation. Then T is called *bounded* if $\exists k > 0$ such that

$$
|T(x)|| \le k||x|| \quad \forall x \in X.
$$

Remark. The function $T : \mathbb{R} \to \mathbb{R}$, $T(x) = x$, is a bounded transformation but not a bounded function. In fact, a linear transformation $T : X \to Y$ is a bounded function only if $T \equiv 0$.

Reason: If there is $x \in X$ such that $||T(x)|| > 0$, then $||T(\alpha x)|| = ||\alpha T(x)||$ $|\alpha| \|T(x)\| \to \infty$ as $|\alpha| \to \infty$.

Notation. Let X and Y be normed spaces. Then $B(X, Y)$ denotes the set of all continous transformations $X \to Y$. Elements in $B(X, Y)$ are often called *bounded linear* operators.

Example 2.1.8. Let $a, b \in \mathbb{R}$, and let $k : [a, b] \times [a, b] \to \mathbb{R}$ be continuous. Denote

$$
C[a, b] := \{ f : [a, b] \to \mathbb{R} : f \text{ continuous} \}.
$$

(a) If $f \in C[a, b]$, then $K : C[a, b] \to C[a, b]$ is defined by

$$
Kf(s) := (K(f))(s) = \int_a^b k(s,t)f(t)dt, \quad s \in [a,b].
$$

Claim. K is well-defined and linear.

Proof. For any $\alpha, \beta \in \mathbb{R}$ and $f, g \in C[a, b]$, we have

$$
(K(\alpha f + \beta g))(s) = \int_a^b k(s, t) (\alpha f(s) + \beta g(s)) dt
$$

= $\alpha \int_a^b k(s, t) f(s) dt + \beta \int_a^b k(s, t) g(s) dt$
= $\alpha (K(f))(s) + \beta (K(g))(s)$

This means that

$$
K(\alpha f + \beta g) = \alpha K(f) + \beta K(g),
$$

that is, K is linear.

We show next that $K(f) \in C[a, b] \forall f \in C[a, b]$. Let $\varepsilon > 0$. Since $[a, b] \times [a, b]$ is compact (closed and bounded in \mathbb{R}^2), k is uniformly continous (we regard this as known!). Hence $\exists \delta > 0$ such that $\forall (x, y), (x', y') \in [a, b] \times [a, b]$

$$
|(x,y)-(x',y')|<\delta \Rightarrow |k(x,y)-k(x',y')|<\varepsilon.
$$

In particular, if $|s - s'| < \varepsilon$, then $|(s,t) - (s',t)| = |s - s'| < \delta$, and $|k(s,t) - k(s',t)| < \varepsilon$. Hence, for $f \in C[a, b]$,

$$
\begin{aligned}\n\left| Kf(s) - Kf(s') \right| &= \left| \int_a^b k(s,t)f(t)dt - \int_a^b k(s',t)f(t)dt \right| \\
&= \left| \int_a^b \left(k(s,t) - k(s',t) \right) f(t)dt \right| \\
&\le \int_a^b \left| \underbrace{k(s,t) - k(s',t)}_{\le \varepsilon} \right| \underbrace{(f(t))}_{\le \|f\|} dt \le \varepsilon \|f\|(b-a)\n\end{aligned}
$$

whenever $|s - s'| < \delta$. Thus Kf is (uniformly) continuos in [a,b].

(b) K is bounded, that is $K \in B(C[a, b], C[a, b])$. See exercise.

Linear transformations on finite-dimensional vector spaces are special in the following sense.

Theorem 2.1.9. Let X be a finite-dimensional vector space, Y any normed space, and let $T: X \to Y$ be linear. Then $T \in B(X, Y)$.

Proof. We define a new norm $\|\cdot\|_1$ on X by setting

$$
||x||_1 := ||x|| + ||T(x)||.
$$

We leave it as an exercise to prove that $\|\cdot\|_1$ is a norm on X. Since X is finite-dimensional, the norms are equivalent (see Analysis 4/ Rynne & Youngson p.43). Hence ∃ a constant $K > 0$ such that $||x||_1 \leq K||x||$ for all $x \in X$. Therefore

$$
||T(x)|| \le ||x||_1 \le K||x|| \quad \forall x \in X,
$$

i.e. T is bounded. \Box

Remark 2.1.10. Let V and W be vector spaces over the same field F . We denote by $L(V,W)$ the set of all linear transformations $V \to W$ and define + and \cdot in $L(V,W)$ by setting $\forall F, G \in L(V, W)$ and $\forall \lambda \in F$

$$
(*) \begin{cases} (F+G)(x) := F(x) + G(x), & x \in V \\ (\lambda F)(x) := \lambda F(x), & x \in V \end{cases}
$$

For each $F, G \in L(V, W)$ and $\lambda \in F$ we have $F + G \in L(V, W)$ and $\lambda F \in L(V, W)$, since $x, y \in V$ and $\alpha, \beta \in F$

$$
(F+G)(\alpha x + \beta y) = F(\alpha x + \beta y) + G(\alpha x + \beta y)
$$

= $\alpha F(x) + \beta F(y) + \alpha G(x) + \beta G(y)$
= $\alpha (F(x) + G(x)) + \beta (F(y) + G(y))$
= $\alpha (F+G)(x) + \beta (F+G)(y)$

and

$$
(\lambda F)(\alpha x + \beta y) = \lambda F(\alpha x + \beta y) = \lambda(\alpha F(x) + \beta F(y))
$$

= $\alpha \lambda F(x) + \beta \lambda F(y) = \alpha(\lambda F)(x) + \beta(\lambda F)(y).$

Hence $L(V, W)$ is a linear subspace of $F(V, W)$ (= the vector space of all functions $V \to W$ with $+$ and \cdot defined pointwise. We regard the existence of $F(V, W)$ known.

2.2. The norm of a bounded linear operator.

If X and Y are normed spaces, we know by Remark 2.1.10 that $B(X, Y)$ is a vector space. Next, we want to define a norm on $B(X, Y)$.

Definition 2.2.1. Let X and Y be normed spaces and let $T \in L(X, Y)$. Then we define

$$
||T|| := \sup\{||T(x)|| : ||x|| \le 1\}.
$$

Remark 2.2.2. Let X and Y be normed spaces and $T \in L(X, Y)$. Recall from Lemma 2.1.2 that $T \in B(X, Y)$ iff $||T|| < \infty$.

Proof. If $T \in B(X, Y)$, $\exists k \in \mathbb{R}_+$, such that $||T|| \leq k||x|| \forall x \in X$. Then

$$
||T|| \le k. \quad (*)
$$

Conversely, assume that $||T|| < \infty$. Since $||\frac{x}{||x||}$ $\frac{x}{\|x\|}\| = 1 \,\forall x \in X, x \neq 0_X$, we have

$$
\frac{\|T(x)\|}{\|x\|} = \left\|\frac{1}{\|x\|}T(x)\right\| = \left\|T(\frac{x}{\|x\|})\right\| \le \|T\|
$$

for all $x \in X$, $x \neq 0_X$. Since $||T(0_X)|| = ||0_Y|| = 0$, we have

$$
(**) \t ||T(x)|| \le ||T|| ||x|| \; \forall x \in X.
$$

Hence T is bounded.

Remark 2.2.3. The proof of Remark 2.2.2 implies that

$$
||T|| = \inf\{k \in \mathbb{R}_+ : ||T(x)|| \le k||x|| \,\,\forall x \in X\}.
$$
 (Exercise)

Hence $||T||$ expresses the "minimal" bound for the boundedness of T.

Theorem 2.2.4. Let X and Y be normed spaces. Then

$$
||T|| := \sup\{||T(x)|| : ||x|| \le 1\}
$$

defines a norm on $B(X, Y)$.

Proof. Recall that $B(X, Y)$ is a vector space by Lemma Let $S, T \in B(X, Y)$ and $\lambda \in \mathbb{F}$. (i) Clearly $||T|| \geq 0$. By Remark 2.2.2, $||T|| \leq \infty$.

(ii)

$$
||T|| = 0 \iff ||T(\frac{x}{||x||})|| = \frac{1}{||x||} ||T(x)|| = 0 \qquad \forall x \in X, x \neq 0_X
$$

\n
$$
\iff ||T(x)|| = 0 \qquad \forall x \in X, x \neq 0_X
$$

\n
$$
\iff T(x) = 0_Y \qquad \forall x \in X
$$

\n
$$
\iff T \text{ is the zero element in } L(X, Y).
$$

(iii) As $||T(x)|| \le ||T|| ||x|| \forall x \in X$ (Remark 2.2.2 (**)), we have (for $\lambda \in \mathbb{F}$) $\|(\lambda T)(x)\| = \|\lambda T(x)\| = |\lambda| \|T(x)\| \le |\lambda| \|T\| \|x\|$

for all $x \in X$ and hence

$$
\|\lambda T\| = \sup_{\|x\| \le 1} \|(\lambda T)(x)\| \le |\lambda| \|T\|. \ (*)
$$

If $\lambda = 0$, then $\|\lambda T\| = 0 = |\lambda| \|T\|$. If $\lambda \neq 0$, then

$$
||T|| = ||\lambda^{-1}(\lambda T)|| \stackrel{(*), T \to \lambda T}{\leq} |\lambda^{-1}| ||\lambda T|| \stackrel{(*)}{\leq} |\lambda^{-1}| |\lambda| ||T|| = ||T||
$$

Hence

$$
||T|| = |\lambda^{-1}|| |\lambda T|| \iff |\lambda| ||T|| = ||\lambda T||.
$$

(iv) For each $x \in X$, we have

$$
||(S+T)(x)|| \stackrel{def}{=} ||S(x) + T(x)|| \stackrel{\Delta - ineq.}{\leq} ||S(x)|| + ||T(x)||
$$

\n
$$
\stackrel{Rem.2.2.2(**)}{\leq} ||S|| ||x|| + ||T|| ||x|| = (||S|| + ||T||) ||x||.
$$

By taking sup over $||x|| \leq 1$ yields

$$
||S + T|| \le ||S|| + ||T||.
$$

¤

There is no general procedure for finding the norm of a bounded linear operator! It is also possible that the supremum in the definition is not attained.

Example 2.2.5. Let $T : C_{\mathbb{F}}[0,1] \to \mathbb{F}$ be the bounded linear operator defined by

$$
T(f) = f(0).
$$

Claim: $||T|| = 1$.

Proof. We have

$$
|T(f)| = |f(0)| \le \sup\{|f(x)| : x \in [0,1]\} = ||f||.
$$

By Remark 2.2.3, $||T|| \le 1$.

On the other hand, if $g : [0, 1] \to \mathbb{F}$ is defined by $g(x) = 1, x \in [0, 1]$, then $||g|| = \sup |g(x)| : x \in [0, 1] = 1.$

Since

$$
|T(g)| = |g(0)| = 1,
$$

we have

$$
||T|| = \sup\{|T(f)| : ||f|| \le 1\},\
$$

The claim follows. \Box

Definition 2.2.6. Let X and Y be normed spaces and let $T \in L(X, Y)$. Then T is called an *isometry* if $||T|| = ||x||$ for all $x \in X$.

Example 2.2.7. (a) If X is a normed space and I is the identity transformation $I(x) =$ $x, x \in X$, then I is an isometry $X \to X$.

(b) We define an operator $S: \ell^2 \to \ell^2$ by

$$
S(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, x_3, \ldots)
$$

 $(S$ is called *unilateral shift*).

Claim: S is an isometry $\ell^2 \to \ell^2$.

Proof. It is easy to show that S is linear. If $(x_n) \in \ell^2$ and $(y_n) = S((x_n))$, then

$$
\sum_{n=1}^{\infty} |x_n|^2 = \sum_{n=1}^{\infty} |y_n|^2 = 0^2 + \sum_{n=1}^{\infty} |x_n|^2.
$$

Hence $||S((x_n))||_2 = ||(x_n)||_2$, i.e S is an isometry.

Remark 2.2.8. Let X and Y be normed spaces and let $T: X \to Y$ be an isometry. Then $||T|| = 1$ if $X \neq \{0_X\}$. Indeed, $||T(x)|| = ||x|| \forall x \in X$ and therefore

$$
||T|| = \sup{||T(x)|| : ||x|| \le 1} = \sup{||x|| : ||x|| \le 1} \le 1,
$$

if only $X \neq 0_X$. In this case $\exists x \in X$ such that $||x|| > 0$ and hence for $y := \frac{x}{||x||}$ we have $||y|| = 1.$

The converse does not hold, i.e. $||T|| = 1$ does not imply that T is an isometry. In fact, for $T: \mathcal{C}_{\mathbb{F}}[0,1] \to \mathbb{F}, T(f) = f(0)$, we have $||T|| = 1$ (2.2.5). However, for the function $h(x) = x, x \in [0, 1], ||h|| = 1$, but $||T(h)|| = |h(0)| = 0$.

Conclusion: T is an isometry is not the same as $||T|| = 1$.

3. Inner product spaces

3.1. Inner products.

Definition 3.1.1. Let X be a real vector space, i.e. $\mathbb{F} = \mathbb{R}$. An *inner product* on X is a function $\langle \cdot , \cdot \rangle : X \times X \to \mathbb{R}$ such that $\forall x, y, z \in X$ and $\forall \alpha, \beta \in \mathbb{R}$

(a) $\langle x, x \rangle > 0$; (b) $\langle x, x \rangle = 0 \iff x = 0_X;$ (c) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle;$ (d) $\langle x, y \rangle = \langle y, x \rangle$.

Example 3.1.2. (a) The function $\langle \cdot, \cdot \rangle : \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}$,

$$
\langle x, y \rangle = \sum_{n=1}^{k} x_n y_n
$$

is an inner product on \mathbb{R}^k (known!). This is called the *standard inner product* on \mathbb{R}^k .

(b) The function $\langle \cdot , \cdot \rangle : L^2(\mathbb{R}) \times L^2(\mathbb{R}) \to \mathbb{R}$,

$$
\langle x, y \rangle = \int_{\mathbb{R}} f g \, dx,
$$

is an inner product on $L^2(\mathbb{R})$ (Analysis 4). Notice here that we regard $L^p(\mathbb{R})$ -spaces as real vector spaces.

Definition 3.1.3. Let X be a complex vector space, i.e. $\mathbb{F} = \mathbb{C}$. An inner product on X is a function $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{C}$ such that $\forall x, y, z \in X$ and $\forall \alpha, \beta \in \mathbb{C}$

- (a) $\langle x, x \rangle \in \mathbb{R} \& \langle x, x \rangle \geq 0$;
- (b) $\langle x, x \rangle = 0 \iff x = 0_X;$

(c)
$$
\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle;
$$

(d) $\langle x, y \rangle = \overline{\langle y, x \rangle}$.

Here \overline{z} is the conjugate of $z = a + bi$, i.e. $\overline{z} = a - bi$.

Note. Recall that for all $z, w \in \mathbb{C}$ we have

$$
\overline{z+w} = \overline{z} + \overline{w}, \quad \overline{zw} = \overline{z} \cdot \overline{w}, \quad \overline{\overline{z}} = z, \quad z + \overline{z} = 2Re \, z, \quad z\overline{z} = |z|^2.
$$

Example 3.1.4. (a) The function $\langle \cdot, \cdot \rangle : \mathbb{C}^k \times \mathbb{C}^k \to \mathbb{C}$ defined by

$$
\langle x, y \rangle = \sum_{n=1}^{k} x_n \overline{y_n}
$$

is an inner product on \mathbb{C}^k (standard inner product on \mathbb{C}^k). Here $x = (x_1, \ldots, x_k)$, $y = (y_1, \ldots, y_k) \in \mathbb{C}^k$, i.e. $x_i, y_i \in \mathbb{C}$. We skip the proof.

(b) If $(a_n), (b_n) \in \ell^2(\mathbb{F} - \mathbb{C})$, then the function $\langle \cdot, \cdot \rangle : \ell^2 \times \ell^2 \to \mathbb{C}$ defined by

$$
\langle a, b \rangle = \sum_{n=1}^{k} a_n \overline{b_n}
$$

is an inner product on ℓ^2 (exercise).

Definition 3.1.5. A real or complex vector space X with an inner product $\langle \cdot, \cdot \rangle$ is called an inner product space.

Note. Concerning general abstract results, we always consider axioms for complex inner product. This covers the case that X happens to be a real vector space. In the real case the complex conjugate can be ignored.

Lemma 3.1.6. Let X be an inner product space, $x, y, z \in X$ and $\alpha, \beta \in \mathbb{F}$. Then

- (a) $\langle 0_X, y \rangle = \langle x, 0_X \rangle = 0$;
- (b) $\langle x, \alpha y + \beta z \rangle = \overline{\alpha} \langle x, y \rangle + \overline{\beta} \langle x, z \rangle;$
- (c) $\langle \alpha x + \beta y, \alpha x + \beta y \rangle = |\alpha|^2 \langle x, x \rangle + \alpha \overline{\beta} \langle x, y \rangle + \beta \overline{\alpha} \langle y, x \rangle + |\beta|^2 \langle y, y \rangle$.

Proof. Exercise. \Box

Lemma 3.1.7. Let X be an inner product space, $x, y \in X$. Then

- (a) $|\langle x, y \rangle| \leq \langle x, y \rangle \langle x, y \rangle$;
- (b) the function $\|\cdot\| : X \to \mathbb{R}, \|x\| =$ \overline{p} $\langle x, x \rangle$ defines a norm on X.

Proof. (a) We are free to assume that $x \neq 0_X$ and $y \neq 0_X$. Choose $\alpha = -\frac{\langle y, x \rangle}{\langle y, x \rangle}$ $\frac{\langle y,x\rangle}{\langle y,x\rangle}$ (see L. 3.1.6(a) & Def. 3.1.3(b)) and $\beta = 1$ in (c) of Lemma 3.1.6. We obtain

$$
0 \leq \langle \alpha x + y, \alpha x + y \rangle
$$

= $\frac{|\overline{\langle x, y \rangle}|^2}{|\langle x, x \rangle|^2} \langle x, x \rangle - \frac{\overline{\langle x, y \rangle}}{\langle x, x \rangle} \langle x, y \rangle - \frac{\langle x, y \rangle}{\langle x, x \rangle} \langle y, x \rangle + \langle y, y \rangle$
= $\frac{|\overline{\langle x, y \rangle}|^2}{\langle x, x \rangle} - 2 \frac{|\overline{\langle x, y \rangle}|^2}{\langle x, x \rangle} + \langle y, y \rangle = - \frac{|\overline{\langle x, y \rangle}|^2}{|\langle x, x \rangle|^2} \langle x, x \rangle + \langle y, y \rangle.$

The claim follows by multiplying the inequality with $\langle x, x \rangle > 0$.

(b)

(i)
$$
||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_+
$$
 (3.1.3(a));
\n(ii) $||x|| = \sqrt{\langle x, x \rangle} = 0 \iff \langle x, x \rangle = 0 \iff x = 0_X$ (3.1.3(b));
\n(iii) For $\alpha \in \mathbb{F}, x \in X$
\n
$$
||\alpha x|| = \sqrt{\langle \alpha x, \alpha x \rangle} \stackrel{3.1.6(c)}{=} \sqrt{|\alpha|^2 \langle x, x \rangle} = |\alpha| ||x||;
$$
\n(iii) For $x, y \in X$
\n
$$
||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + \langle x, y \rangle \overline{\langle y, x \rangle} + \langle y, y \rangle
$$
\n
$$
= \langle x, y \rangle + 2Re \langle x, y \rangle + \langle y, y \rangle
$$
\n
$$
= ||x||^2 + 2|\langle x, y \rangle| + ||y||^2 \stackrel{(a)}{\leq} ||x||^2 + 2|\langle x, y \rangle| + ||y||^2
$$

The claim follows. \Box

Remark. Lemma $3.1.7(a)$ is usually written in a form

 $= (||x|| + ||y||)^2.$

 $|\langle x, y \rangle| \le ||x|| ||y||.$ (Cauchy-Schwarz-inequality)

Every inner product space is a normed space! How about the converse? The answer is no!

Lemma 3.1.8. Let X be an inner product space with the norm $\|\cdot\|$ induced by the inner product (i.e. $||x|| = \sqrt{\langle x, x \rangle}$). Then for all $u, v, x, y \in X$

- (a) $\langle u + v, x + y \rangle \langle u v, x y \rangle = 2\langle u, y \rangle + 2\langle v, x \rangle$;
- (b) $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$ (The parallelogram rule)

Proof. Exercise. \Box

Example 3.1.9. In \mathbb{R}^2 : (Kuva suunnikkaasta.)

 \parallel

The parallelogram rule can be used to prove that the given norm is not induced by any inner product.

Example 3.1.10. We show that the standard norm in $\mathcal C$ is not induced by any inner product. Choose $f(x) = 1$, $g(x) = x, x \in [0, 1]$. Then

$$
(f+g)(x) = 1+x
$$
, $(f-g)(x) = 1-x$,

and

$$
||f + g|| = 2
$$
, $||f - g|| = 1$, $||f|| = ||g|| = 1$.

Hence

$$
f + g||^2 + ||f - g||^2 = 5 \neq 4 = 2(||f||^2 + ||g||^2).
$$

This is not possible, if $\|\cdot\|$ were induced by some inner product.

Remark. Since an inner product space X is a normed space with the induced norm, X is also a metric space. Any metric space concepts on X will be understood in terms of the metric induced by the induced norm.

3.2. Orthogonality.

Let X be a real inner product space and $x, y \in X$ non-zero vectors. By the Cauchy-Schwarz inequality

$$
-1 \le \frac{\langle x, y \rangle}{\|x\| \|y\|} \le 1.
$$

Hence we can define an 'angle' θ between x and y by

$$
\theta = \arccos \frac{\langle x, y \rangle}{\|x\| \|y\|}.
$$

For complex inner products, the concept of angle is not relevant but we still talk about orthogonality.

Definition 3.2.1. Let X be an inner product space. Then $x, y \in X$ are *orthogonal* if $\langle x, y \rangle = 0.$

Definition 3.2.2. Let X be an inner product space. The set $\{e_1, ..., e_k\} \subseteq X$ is called orthonormal if

- (a) $||e_n|| = 1 \quad \forall n = 1, ..., k;$
- (b) $\langle e_m, e_n \rangle = 0 \quad \forall m, n \in \{1, ..., k\}, \quad m \neq n.$

Lemma 3.2.3. Let X be an inner product space. Then any orthonormal set $\{e_1, ..., e_k\}$ X is linearly independent. In particular, if X is k-dimensional then the set $\{e_1, ..., e_k\}$ is a basis for X and any $x \in X$ can be expressed in the form

$$
x = \sum_{n=1}^{k} \langle x, e_n \rangle e_n.
$$

Proof. Suppose that $\sum_{n=1}^{k} \alpha_n e_n = 0_X$, where $\alpha_n \in \mathbb{F}$. Then for any $m = 1, ..., k$

$$
0 \stackrel{3.1.6}{=} \langle \sum_{n=1}^k \alpha_n e_n, e_m \rangle \stackrel{3.1.3}{=} \sum_{n=1}^k \alpha_n \langle e_n, e_m \rangle = \alpha_m \langle e_m, e_m \rangle = \alpha_m.
$$

Hence $\{e_1, ..., e_k\}$ is linearly independent.

Suppose that dim $X = k$. Since $\{e_1, ..., e_k\}$ is linearly independent and dim $X = k$, ${e_1, ..., e_k}$ forms a basis for X (this is regarded as known from linear algebra!). Then for $\{e_1, ..., e_k\}$ forms a basis for X (this is really $x \in X$ and $\lambda_n \in \mathbb{F}$ such that $x = \sum_{n=1}^{k}$ $_{n=1}^{k} \alpha_{n} e_{n}$. It follows that

$$
\langle x, e_m \rangle = \langle \sum_{n=1}^{k} \lambda_n e_n, e_m \rangle = \sum_{n=1}^{k} \lambda_n \langle e_n, e_m \rangle = \lambda_m
$$

for any $m = 1, ..., k$.

Lemma 3.2.4. Let X be an inner product space and let $\{x_1, ..., x_k\} \subset X$ be linearly independent. Let

$$
S = Sp\{x_1, ..., x_k\} = \{\sum_{n=1}^k \lambda_n x_n : \lambda_n \in \mathbb{F}\}.
$$

Then there is an orthonormal basis $\{e_1, ..., e_k\}$ for S.

Proof. Proof by Gram-Schmidt method (see linear algebra). \Box

Lemma 3.2.5. (Pythagoras) Let X be an inner product space and let $x_1, ..., x_k \in X$ be pairwise orthogonal, i.e. $\langle x_i, x_j \rangle = 0$ for all $i, j \in \{1, ..., k\}, i \neq j$. Then

$$
||x_1 + x_2 + \dots + x_k||^2 = ||x_1||^2 + ||x_2||^2 + \dots + ||x_k||^2.
$$

Proof. Exercise. \Box

Definition 3.2.6. Let X be an inner product space and let $A \subset X$. The orthogonal complement of A is the set

$$
A^{\perp} := \{ x \in X : \langle x, a \rangle = 0 \,\,\forall \,\, a \in A \}.
$$

Example. If $X = \mathbb{R}^3$ and $A = \{(a_1, a_2, 0) : a_1, a_2 \in \mathbb{R}\},\$ then

$$
x = (x_1, x_2, x_3) \in A^{\perp} \iff \langle x, a \rangle = x_1 a_1 + x_2 a_2 = 0 \quad \forall a_1, a_2 \in \mathbb{R}.
$$

Assume that $x \in A^{\perp}$. Choosing $a_1 = x_1$ and $a_2 = x_2$, we have $x_1^2 + x_2^2 = 0$ and hence $x_1 = x_2 = 0$. On the other hand, if $x_1 = x_2 = 0$ (and $x_3 \in \mathbb{R}$) then $x \in A^{\perp}$. We conclude that $A^{\perp} = \{(0, 0, x_3) : x_3 \in \mathbb{R}\}.$

Example 3.2.7. Let X be k-dimensional inner product space and let $\{e_1, ..., e_k\}$ be an orthonormal basis for X. If $A = Sp\{e_1, ..., e_p\}$ for all $1 \leq p < k$, then $A^{\perp} = Sp\{e_{p+1}, ..., e_k\}$. (Exercise)

Note. It appears below that A^{\perp} is always a linear subspace. Therefore Example 3.2.7 essentially solves the problem of finding A^{\perp} for $A \subset X$ whenever X is finite-dimensional.

Lemma 3.2.8. Let X be an inner product space and suppose that $(x_n), (y_n)$ are sequences in X such that $\lim_{n\to\infty} x_n = x \in X$ and $\lim_{n\to\infty} y_n = y \in X$. Then

$$
\lim_{n \to \infty} \langle x_n, y_n \rangle = \langle x, y \rangle.
$$

Proof. We have (by using Δ -inequality in \mathbb{F} and Cauchy-Schwarz)

$$
|\langle x_n, y_n \rangle - \langle x, y \rangle| = |\langle x_n, y_n \rangle - \langle x_n, y \rangle + \langle x_n, y \rangle - \langle x, y \rangle|
$$

\n
$$
\leq \quad |\langle x_n, y_n \rangle - \langle x_n, y \rangle| + |\langle x_n, y \rangle - \langle x, y \rangle|
$$

\n
$$
\leq \quad 3.1.6(b)
$$

\n
$$
\leq \quad |\langle x_n, y_n - y \rangle| + |\langle x_n - x, y \rangle|
$$

\n
$$
\leq \quad ||x_n|| ||y_n - y|| + ||x_n - x|| ||y||.
$$

Since (x_n) converges in X, (x_n) is bounded, i.e. $\exists M > 0$ such that $||x_n|| \leq M \quad \forall n \in \mathbb{N}$. (Reason: $\exists n_1 \in \mathbb{N}$ such that

$$
n \ge n_1 \Rightarrow ||x_n - x|| < 1 \Rightarrow ||x_n|| = ||x_n - x + x|| \le ||x_n - x|| + ||x|| \le 1 + ||x||.
$$

Hence we may choose $M := \max\{1 + ||x||, ||x_1||, ..., ||x_{n_1-1}||\}$.) Therefore

$$
0 \le |\langle x_n, y_n \rangle - \langle x, y \rangle| \le M ||y_n - y|| + ||x_n - x|| ||y||.
$$

By assumptions, $\lim_{n\to\infty} M||y_n - y|| = 0$ and $\lim_{n\to\infty} ||y|| ||x_n - x|| = 0$. Therefore $\lim_{n\to\infty}(M||y_n-y||+||y||||x_n-x||) = 0$. By the sandwich principle

$$
\lim_{n \to \infty} |\langle x_n, y_n \rangle - \langle x, y \rangle| = 0.
$$

¤

Lemma 3.2.9. Let X be an inner product space and $A \subset X$, $A \neq \emptyset$.

(a)
$$
0_X \in A^{\perp}
$$
;
\n(b) $A \cap A^{\perp} = \begin{cases} \{0_X\} & \text{if } 0_X \in A \\ \emptyset & \text{if } 0_X \notin A; \end{cases}$
\n(c) $\{0_X\}^{\perp} = X$ and $X^{\perp} = \{0_X\}$;
\n(d) A^{\perp} is a closed linear subspace of X.

Proof. (a) Since $\langle 0_X, a \rangle = 0 \quad \forall \ a \in A$, we have $0_X \in A^{\perp}$. (b) Suppose that $x \in A \cap A^{\perp}$. Then $\langle x, x \rangle = 0$ and $x = 0_X$. The claim follows since $0_X \in A^{\perp}$ by (a).

(c) If $A = \{0_X\}$, then $\forall x \in X$ we have $\langle x, 0_X \rangle = 0$. Hence $A^{\perp} = X$.

If $A = X$ and $x \in A^{\perp}$, then $\langle x, x \rangle = 0$ and hence $x = 0_X$. Therefore $A^{\perp} = \{0_X\}$ by (a). (d)To show that A^{\perp} is a linear subspace of X, let $x, y \in A^{\perp}$ and $\alpha, \beta \in \mathbb{F}$. Then $\forall a \in A$

$$
\langle \alpha x + \beta y, a \rangle \stackrel{3.1.3}{=} \alpha \langle x, a \rangle + \beta \langle y, a \rangle = 0
$$

so that $\alpha x + \beta y \in A^{\perp}$. To show that A^{\perp} is closed, let (x_n) be a sequence in A^{\perp} such that $\lim_{n\to\infty}x_n=x\in X$. By Lemma 3.2.8, for all $a\in A$

$$
0 = \langle 0_X, a \rangle = \langle \lim_{n \to \infty} (x_n - x), a \rangle = \lim_{n \to \infty} \langle x_n - x, a \rangle = \lim_{n \to \infty} (\langle x_n, a \rangle - \langle x, a \rangle) = -\langle x, a \rangle.
$$

Since $x_n \in A^{\perp} \Rightarrow \langle x, a \rangle = 0$. Hence $x \in A^{\perp}$ and A^{\perp} is closed (see Rynne & Youngson, Theorem 1.25(c)). \Box

Minimization on Hilbert spaces.

Definition 3.2.10. Let X be an inner product space. If X is complete as a metric space induced by the induced norm, we call X a Hilbert space.

Lemma 3.2.11. Let Y be a linear subspace of an inner product space X. Then

$$
x \in y^{\perp} \Leftrightarrow \|x - y\| \ge \|x\| \quad \forall \ x \in Y.
$$

Proof. . For all $x \in X, y \in Y$ and $\alpha \in \mathbb{F}$ (by Lemma 3.1.6(c))

$$
||x - \alpha y||^2 = \langle x - \alpha y, x - \alpha y \rangle = ||x||^2 - \overline{\alpha} \langle x, y \rangle - \alpha \langle y, x \rangle + |\alpha| ||y||^2 \quad (*)
$$

 (\Rightarrow) Suppose that $x \in Y^{\perp}$ and $y \in Y$. Then $\langle x, y \rangle = 0 = \langle y, x \rangle$. So choosing $\alpha = 1$ in (∗) we have

$$
||x - y||2 = ||x||2 + ||y||2 \ge ||x||2.
$$

(←) Suppose that $x \in X$ and $||x - y||^2 \ge ||x||^2 \quad \forall y \in Y$. Since Y is a linear subspace, $\alpha y \in Y \quad \forall \alpha \in \mathbb{F}, y \in Y$, and $(*)$ implies that

$$
-\overline{\alpha}\langle x,y\rangle - \alpha\langle y,x\rangle + |\alpha|^2 \|y\|^2 \ge 0. \quad (**)
$$

For given $y \in Y$, we want to prove that $\langle x, y \rangle = 0$. Assume that $\langle x, y \rangle \neq 0$. Denote $\alpha := t \frac{|\langle x,y \rangle|}{\langle y,x \rangle}$ $\frac{\langle x,y\rangle}{\langle y,x\rangle}$ for $t > 0$. We replace α in $(**)$ and obtain

$$
-t\frac{|\langle x,y\rangle|}{\langle y,x\rangle}\langle x,y\rangle - t\frac{|\langle x,y\rangle|}{\langle y,x\rangle}\langle y,x\rangle + t^2\frac{|\langle x,y\rangle|^2}{|\langle y,x\rangle|^2}\|y\|^2 \ge 0
$$

$$
\Leftrightarrow \qquad |\langle x,y\rangle| \le \frac{1}{2}t\|y\|^2 \quad \forall \ t > 0.
$$

Hence $\langle x, y \rangle = 0$ and $x \in Y^{\perp}$. [⊥]. ¤

Example. Let $Y = \mathbb{R}^2 \times \{0\} \subset \mathbb{R}^3$ and $Y^{\perp} = \{0\}^2 \times \mathbb{R}$, see Example after Definition 3.2.6.

Definition 3.2.12. A subset A of a vector space X is convex if for all $x, y \in A$ and $\lambda \in [0, 1]$ we have $\lambda x + (1 - \lambda)y \in A$.

Example. $A = \{x \in \mathbb{R}^2 : ||x|| \le 1\}$ is convex but $B = \{x \in \mathbb{R}^2 : ||x|| = 1\}$ is not convex.

Theorem 3.2.13. Let A be a non-empty closed convex subset of a Hilbert space H and let $p \in \mathcal{H}$. Then there exists a unique $q \in A$ such that

$$
||p - q|| = \inf{||p - a|| : a \in A} (= \min{||p - a|| : a \in A}).
$$

Proof. Exercise. \Box

Remark. In any metric space X and for any $A \subset X$, $A \neq \emptyset$, we may define the *distance* between A and x by

$$
d(x, A) = \inf\{d(x, a) : a \in A\}.
$$

If A is compact, inf is attained since we can prove that $x \mapsto d(x, A)$ is continuous. The point is that the convexity quarantees *uniqueness*, which is important for applications e.g. convex optimization and variational calculus.

Example. Let $A = \{x \in \mathbb{R}^2 : ||x|| = 1\}$ and let $x = (0,0)$. Then all points in A are distance-minimizing!

Theorem 3.2.14. Let Y be a closed linear subspace of a Hilbert space H . Then for any $x \in \mathcal{H}$ exists unique $y \in Y$ and $z \in Y^{\perp}$ such that $x = y+z$. Moreover, $||x||^2 = ||y||^2 + ||z||^2$.

Proof. Exercise. \Box

Example. Let $\mathcal{H} = \mathbb{R}^2$ and $Y = \mathbb{R} \times \{0\}$. It is easy to prove that $Y^{\perp} = \{0\} \times \mathbb{R}$. In this case Theorem 3.2.14 is a version of the classical Pythagoras Theorem.

Suppose that Y is closed linear subspace of a Hilbert space $\mathcal H$ and $x \in \mathcal H$. The decomposition

$$
x = y + z, \ y \in Y, z \in Y^{\perp}
$$

is called the orthogonal decomposition of x with respect to Y. We denote $Y^{\perp\perp} = (Y^{\perp})^{\perp}$.

Corollary 3.2.15. If Y is a closed linear subspace of a Hilbert space H, then $Y^{\perp \perp} = Y$.

Proof. Exercise. \Box

Remark. We can also prove that $Y^{\perp \perp} = \overline{Y}$ (closure of Y) if Y is a linear subspace of H (see Rynne & Youngson p.71).

3.3. Orthonormal bases in infinite dimensions.

Definition 3.3.1. Let X be an inner product space. A sequence (e_n) in X is called an orthonormal sequence if

- (i) $||e_n|| = 1 \quad \forall n \in \mathbb{N};$
- (ii) $\langle e_n, e_m \rangle = 0 \quad \forall n, m \in \mathbb{N}, n \neq m.$

Example 3.3.2. (a) Let $\tilde{e}_1 = (1, 0, 0, ...)$, $\tilde{e}_2 = (0, 1, 0, ...)$, $\tilde{e}_n = ($ $\overbrace{\qquad \qquad }^{n-1}$ $0, ..., 0, 1, 0, ...$ $n \in \mathbb{N}$. Then $\tilde{e_n} \in l^p, 1 \le p \le \infty$ ($||e_n|| = 1 \quad \forall p$), and $(\tilde{e_n})$ forms an orhonormal sequence in l^2 , since

(i)
$$
||e_n||_2 = \langle e_n, e_n \rangle = 1 \cdot \overline{1} = 1
$$

\n(ii) $\langle e_n, e_n \rangle = 1 \cdot \overline{1} = 1$

(ii) $\langle e_n, e_m \rangle = 0$ if $n \neq m$.

(b) For any $[a, b] \subset \mathbb{R}$ we define the space $L^p([a, b])$ by setting $f \in L^p([a, b])$ iff $\tilde{f} \in L^p(\mathbb{R})$, where ½

$$
\tilde{f} = \begin{cases} f & \text{in } [a, b] \\ 0 & \text{in } \mathbb{R} \setminus [a, b]. \end{cases}
$$

Moreover, for any $f : [a, b] \to \mathbb{C}$, $f = (f_1, f_2)$, we write

$$
f \in L_{\mathbb{C}}^p[a, b] \Leftrightarrow f_i \in L^p[a, b], \quad i = 1, 2.
$$

The norm in L^p_{σ} $_{\mathbb{C}}^{p}[a,b]$ is defined as

$$
||f|| = ||f||_{L_{\mathbb{C}}^p[a,b]} = \left(\int_a^b |f_1(t)|^p dt + \int_a^b |f_2(t)|^p dt\right)^{\frac{1}{p}}.
$$

We define the sequence $(e_n), e_n : [-\pi, \pi] \to \mathbb{C}$ by

$$
e_n(x) = \frac{1}{\sqrt{2\pi}} e^{inx}, \quad n \in \mathbb{N}.
$$

By Euler's formula $e_n(x) = \frac{1}{\sqrt{2}}$ $\overline{2\pi}$ \overline{a} $cos(nx) + i sin(nx)$ ´ . Hence the coodinate function $e_n^1(x) = \cos(nx), \quad e_n^2 = \sin(nx)$

are bounded (and continuous). Therefore $e_n \in L^p_{\mathbb{C}}$ $\mathcal{C}[-\pi,\pi] \quad \forall \ p.$ We claim that (e_n) is an orthonormal sequence in $L_{\mathbb{C}}^2[-\pi,\pi]$ once $L_{\mathbb{C}}^2[-\pi,\pi]$ is equipped with the complex inner product

$$
\langle f, g \rangle = \int_{-\pi}^{\pi} f \overline{g} dx.
$$

(We omit an "easy" proof that $\langle \cdot, \cdot \rangle$ is an inner product.)

(i)
$$
||e_n||_2 = \langle e_n, e_n \rangle = \int_{-\pi}^{\pi} \frac{1}{\sqrt{2\pi}} e^{inx} \cdot \frac{1}{\sqrt{2\pi}} \overline{e^{inx}} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \underbrace{e^{inx} \cdot e^{-inx}}_{e^0} dx = \frac{1}{2\pi} \cdot 2\pi = 1
$$

(ii) Let $m, n \in \mathbb{Z}, m \neq n$. Then

$$
\langle e_m, e_n \rangle = \int_{-\pi}^{\pi} \frac{1}{\sqrt{2\pi}} e^{imx} \cdot \frac{1}{\sqrt{2\pi}} e^{imx} dx
$$

\n
$$
= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(m-n)x} dx
$$

\n
$$
= \frac{1}{2\pi} \Big(\int_{-\pi}^{\pi} \cos(m-n)x dx, \int_{-\pi}^{\pi} \sin(m-n)x dx \Big)
$$

\n
$$
= \frac{1}{2\pi} (0,0)
$$

\n
$$
= (0,0)
$$

Remark 3.3.3. (a) It is clear that X is infinite-dimensional if it contains an orthonormal sequence. Indeed, if (e_n) is an orthonormal sequence in X and dim $X = k < \infty$, then $\{e_1, ..., e_k\}$ is a basis for X and (Lemma 3.2.3)

$$
e_{k+1} = \sum_{i=1}^{k} \langle e_{k+1}, e_i \rangle e_i = 0_X.
$$

This contradicts with $||e_{k+1}|| = 1$.

(b) Also the converse is true: Any infinite-dimensional inner product space contains an orthonormal sequence. We omit the proof, see Rymme & Youngson, Chapter 3.4.

Question. Let (e_n) be an orthonormal sequence in an infinite-dimensional inner product space X . Then it is natural to ask whether the formula

$$
x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n \qquad (*)
$$

holds? There are two major problems associated with (∗):

- (a) Does the series converge?
- (b) Does it converge to x ?

Lemma 3.3.4. Let $\{e_1, ..., e_k\}$ be an orthonormal subset of an inner product space X. Then, for any $\alpha_n \in \mathbb{F}$, $n=1,\ldots,k$

$$
\|\sum_{n=1}^{k} \alpha_n e_n\|^2 = \sum_{n=1}^{k} |\alpha_n|^2.
$$

Proof. By orthonormality

$$
\|\sum_{n=1}^{k} \alpha_n e_n\|^2 = \sum_{n=1}^{k} \alpha_n e_n, \sum_{m=1}^{k} \alpha_m e_m \rangle \stackrel{3.1.3}{=} \sum_{n=1}^{k} \alpha_n \langle e_n, \sum_{m=1}^{k} \alpha_m e_m \rangle
$$

$$
\stackrel{3.1.6}{=} \sum_{n=1}^{k} \alpha_n \sum_{m=1}^{k} \overline{\alpha_m} \langle e_n, e_m \rangle = \sum_{n=1}^{k} \sum_{m=1}^{k} \alpha_n \overline{\alpha_m} \langle e_n, e_m \rangle
$$

$$
= \sum_{n=1}^{k} \alpha_n \overline{\alpha_n} = \sum_{n=1}^{k} |\alpha_n|^2.
$$

 \Box

Lemma 3.3.5. (Bessel's inequality) Let X be an inner product space and let (e_n) be an orthonormal sequence in X. Then, for any $x \in X$ the series $\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2$ converges and

$$
\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 \le ||x||^2.
$$

Proof. Let $x \in X$. For each $k \in \mathbb{N}$, let $y_k := \sum_{n=1}^k \langle x, e_n \rangle e_n$. Then (by Lemma 3.3.4)

$$
||x - y_k||^2 = \langle x - y_k, x - y_k \rangle \stackrel{3.1.6(c)}{=} \langle x, x \rangle - \langle x, y_k \rangle - \langle y_k, x \rangle \langle y_k, y_k \rangle
$$

\n
$$
= ||x||^2 - \sum_{n=1}^k \overline{\langle x, e_n \rangle} \langle x, e_n \rangle - \sum_{n=1}^k \langle x, e_n \rangle \underbrace{\langle x, e_n \rangle}_{\overline{\langle x, e_n \rangle}} + ||y||^2
$$

\n
$$
\stackrel{3.3.4}{=} ||x||^2 - 2 \sum_{n=1}^k |\langle x, e_n \rangle|^2 + \sum_{n=1}^k |\langle x, e_n \rangle|^2
$$

\n
$$
= ||x||^2 - \sum_{n=1}^k |\langle x, e_n \rangle|^2
$$

Therefore

$$
\sum_{n=1}^{k} |\langle x, e_n \rangle|^2 = ||x||^2 - ||x - y_k||^2 \le ||x||^2.
$$

Hence the sequence $(\sum_{n=1}^k |\langle x, e_n \rangle|^2)$ is upper bounded, $||x||^2$ as an upper bound. The partial sums form an increasing sequence and therefore

$$
\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 = \lim_{k \to \infty} \sum_{n=1}^{k} |\langle x, e_n \rangle|^2 = \sup_{k \in \mathbb{N}} \sum_{n=1}^{k} |\langle x, e_n \rangle|^2 \le ||x||^2.
$$

Note. A series $\sum_{n=1}^{\infty} x_n$ in a normed space X converges if $\exists x \in X$ such that

$$
x = \lim_{k \to \infty} \sum_{n=1}^{k} x_n \Leftrightarrow \lim_{k \to \infty} \|\sum_{n=1}^{k} x_n - x\| = 0.
$$

In this case we write $x = \sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} x_n$. **Theorem 3.3.6.** Let H be a Hilbert space and let (e_n) be an orthonormal sequence in H . **Theorem 3.3.6.** Let π be a nubert space and let (e_n) be an orthonormal sequence in
Then the series $\sum_{n=1}^{\infty} \alpha_n e_n$ converges iff $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty, \alpha_n \in \mathbb{F}$. If this holds, then

$$
\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 = ||x||^2.
$$

Proof. (\Rightarrow) Exercise.

Proof. (\Rightarrow) Exercise.
 (\Leftarrow) Suppose that $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$. For each $k \in \mathbb{N}$, let $x_k := \sum_{n=1}^k \alpha_n e_n$. Since $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$, the partial sums of this series form a Cauchy sequence. Therefore, for each $\varepsilon > 0$, $\exists n_{\varepsilon}$ so that

if
$$
k > j \ge n_{\varepsilon}
$$
, then $\|\sum_{n=1}^{k} |\alpha_n|^2 - \sum_{n=1}^{j} |\alpha_n|^2 \| = \sum_{n=j+1}^{k} |\alpha_n|^2 < \varepsilon$.

By Lemma 3.3.4, for $k > j$,

$$
||x_k - x_j||^2 = ||\sum_{n=j+1}^k \alpha_n e_n||^2 \stackrel{3.3.4}{=} \sum_{n=j+1}^k |\alpha_n|^2 < \varepsilon
$$

whenever $j \geq n_{\varepsilon}$. Hence (x_k) is a Cauchy sequence in H and by completeness it converges in H . Finally, by Lemma 1.2.3(ii) and Lemma 3.3.4

$$
\|\sum_{n=1}^{\infty} \alpha_n e_n\|^2 = \|\lim_{k \to \infty} \sum_{n=1}^k \alpha_n e_n\|^2 \stackrel{1.2.3}{=} \lim_{k \to \infty} \|\sum_{n=1}^k \alpha_n e_n\|^2 \stackrel{3.3.4}{=} \lim_{k \to \infty} \|\sum_{n=1}^k \alpha_n\|^2 = \sum_{n=1}^{\infty} |\alpha_n|^2.
$$

Remark. In other words, Theorem 3.3.6 says that $\sum_{n=1}^{\infty} \alpha_n e_n$ converges iff $(a_n) \in l^2$.

Corollary 3.3.7. Let (e_n) be an orthonormal sequence in a Hilbert space \mathcal{H} . Then $\sum_{n=1}^{\infty} \langle x, e_n \rangle e_n$ converges in $\mathcal H$ for any $x \in \mathcal H$.

Proof. By Bessel's inequality,

$$
\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 < \infty \qquad \forall \ x \in \mathcal{H}.
$$

Hence, by Theorem 3.3.6 $\sum_{n=1}^{\infty} \langle x, e_n \rangle e_n$ converges.

By Corollary 3.3.7, the answer to Question (a) is always positive in Hilbert spaces. The answer to Question (b) requires some additional assumptions on (e_n) :

Example. Let (e_n) be an orthonormal sequence in a Hilbert space and let s be the sequence $s = (e_{2n})$. Then s is an orthonormal sequence in H.

Claim. $e_1 \neq \sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} \langle e_1, e_{2n} \rangle e_{2n}$ *Proof.* Suppose that $e_1 = \sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} \alpha_n e_{2n}$ for $\alpha_n \in \mathbb{F}$. Then, by Lemma 3.2.8, for all $m \in \mathbb{N}$ $0 = \langle e_1, e_{2m} \rangle \stackrel{3.2.8}{=} \lim_{k \to \infty} \langle$ \overline{K} $n=1$ $\langle \alpha_n e_{2n}, e_{2m} \rangle = \lim_{k \to \infty}$ \overline{K} $n=1$ $\alpha_n \langle e_{2n}, e_{2m} \rangle \stackrel{k \ge m}{=} \lim_{k \to \infty} \alpha_m = \alpha_m.$

Hence $e_1 = 0_{\mathcal{H}}$ which contradicts with $||e_1|| = 1$.

Definition 3.3.8. Let X be a normed space and let $E \subset X$, $E \neq \emptyset$. Then the closed linear span of E, denoted by $\overline{Sp}E$, is the intersection of all closed linear subspaces which contain E.

Definition 3.3.8 makes sense since any intersection

- of linear subspaces is a linear subspace
- of closed sets is closed

Thus $\overline{Sp}E$ is the smallest closed linear subspace that contains E .

Theorem 3.3.9. Let H be a Hilbert space and let (e_n) be an orthonormal sequence. The following are equivalent:

- (a) $\{e_n : n \in \mathbb{N}\}^{\perp} = \{0_{\mathcal{H}}\}$ (b) $\overline{Sp}\lbrace e_n : n \in \mathbb{N} \rbrace = \mathcal{H}$ (c) $\|x\|^2 = \sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2$ for all $x \in \mathcal{H}$ (c) $||x||^{-} = \sum_{n=1}^{\infty}$
- $\sum_{n=1}^{\infty} \langle x, e_n \rangle e_n$ for all $x \in \mathcal{H}$

Proof. We proof that $(a) \Rightarrow (d) \Rightarrow (b) \Rightarrow (a)$ and $(a) \Rightarrow (d) \Rightarrow (c) \Rightarrow (a)$.

(a)⇒(d) Let $x \in \mathcal{H}$ and let $y = x - \sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} \langle x, e_n \rangle e_n$ (see Corollary 3.3.7). For each $n \in \mathbb{N}$, by Lemma 3.2.8,

$$
\langle y, e_n \rangle = \langle x, e_m \rangle - \langle \lim_{k \to \infty} \sum_{n=1}^{k} \langle x, e_n \rangle e_n, e_m \rangle
$$

$$
\stackrel{3.2.8}{=} \langle x, e_m \rangle - \lim_{k \to \infty} \langle \sum_{n=1}^{k} \langle x, e_n \rangle e_n, e_m \rangle
$$

$$
= \langle x, e_m \rangle - \lim_{k \to \infty} \sum_{n=1}^{k} \underbrace{\langle x, e_n \rangle \langle e_n, e_m \rangle}_{\langle x, e_m \rangle \text{ for } k \ge m}
$$

$$
= \langle x, e_m \rangle - \langle x, e_m \rangle = 0.
$$

Hence $y \in \{e_m : m \in \mathbb{N}\}^{\perp} = \{0_{\mathcal{H}}\}$ so that $y = 0_{\mathcal{H}}$ and (d) holds.

(d)⇒(b) By assumption, for any $x \in \mathcal{H}$, we have $x = \lim_{k \to \infty} \sum_{n=1}^{k} \langle x, e_n \rangle e_n$. But

$$
\sum_{n=1}^{k} \langle x, e_n \rangle e_n \in Sp\{e_1, ..., e_k\} \subset \overline{Sp}\{e_n : n \in \mathbb{N}\}\
$$

and therefore $x \in \overline{Sp}\{e_n : n \in \mathbb{N}\}\$ since $\overline{Sp}\{e_n : n \in \mathbb{N}\}\$ is closed. Hence $\mathcal{H} \subset \overline{Sp}\{e_n : n \in \mathbb{N}\}.$

(d)
$$
\Rightarrow
$$
 (c) Since $x = \lim_{k \to \infty} \sum_{n=1}^{k} \langle x, e_n \rangle e_n$ for any $x \in \mathcal{H}$, we have
\n
$$
||x||^2 \stackrel{1.2.3}{=} \lim_{k \to \infty} ||\sum_{n=1}^{k} \langle x, e_n \rangle e_n||^2 \stackrel{3.3.4}{=} \lim_{k \to \infty} \sum_{n=1}^{k} |\langle x, e_n \rangle|^2 = \sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2
$$

by Lemma 1.2.3 and Lemma 3.3.4.

(b)⇒(a) Suppose that (b) holds and let $y \in \{e_n : n \in \mathbb{N}\}^{\perp}$. Then $\langle y, e_n \rangle = 0 \quad \forall n \in \mathbb{N}$,

so that $e_n \in \{y\}^{\perp}$ for all $n \in \mathbb{N}$. By Lemma 3.2.9 (d) $\{y\}^{\perp}$ is a closed linear subspace. Hence

$$
\mathcal{H} = \overline{Sp} \{ e_n : n \in \mathbb{N} \} \subset \{ y \}^{\perp}
$$

and so $y \in \{y\}^{\perp}$. Therefore $\langle y, y \rangle = 0$ i.e. $y = 0_{\mathcal{H}}$.

 $(c) \Rightarrow$ (a) If $x \in \{e_n : n \in \mathbb{N}\}^{\perp}$, then $\langle x, e_n \rangle = 0$ for any $n \in \mathbb{N}$. Hence by (c),

$$
||x||^2 = \sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 = 0,
$$

so that $x = 0_H$. We have proved that $\{e_n : n \in \mathbb{N}\}^{\perp} \subset \{0_H\}$. The converse is clear. \Box

Definition 3.3.10. Let H be a Hilbert space and let (e_n) be an orthonormal sequence in H. Then (e_n) is called *orthonormal basis* for H if the conditions (a)-(d) of Theorem 3.3.9 hold.

The scalars $\langle x, e_n \rangle$ in Theorem 3.3.9 (d) are often called the Fourier coefficients of x with respect to the basis (e_n) .

Example. The orthonormal sequence $(\tilde{e_n})$ in l^2 ,

$$
\tilde{e_n} = (0, ..., 0, \underbrace{1}_{n}, 0, ...)
$$

is an orthonormal basis in l^2 (the standard orthonormal basis in l^2).

Proof. Let $x := (x_n) \in l^2$. By definitions,

$$
||x||_2^2 = \sum_{n=1}^{\infty} |x_n|^2 = \sum_{n=1}^{\infty} |\langle x, \tilde{e_n} \rangle|^2
$$

i.e. Theorem $3.3.9(c)$ holds.

Note. It is usually not so easy to decide whether the given orthonormal sequence is a basis or not, see Fourier series below.

Definition 3.3.11. A metric space X is called *separable* if it has a countable subset $E \subset X$ such that $E = X$ (i.e. E is dense in X).

Example. It is well known that $\mathbb Q$ is dense in $\mathbb R$. Hence $\mathbb R$ is separable with respect to euclidean metric.

Theorem 3.3.12.

- (a) Finite dimensional normed spaces are separable.
- (b) Infinite dimensional Hilbert space $\mathcal H$ is separable iff $\mathcal H$ has an orthonormal basis.

Proof. (a) Let X be a finite-dimensional, real normal space and let $\{e_1, ..., e_k\}$ be a basis for X . Then the set

$$
E = \{ \sum_{n=1}^{k} \alpha_n e_n : \alpha_n \in \mathbb{Q} \}
$$

is countable since \mathbb{Q}^k is countable. The claim $\overline{E} = X$ can be proved as in the proof of (b) below. In the complex case we define E similarly by using scalars

$$
\alpha_n = p_n + iq_n
$$
, where $p_n, q_n \in \mathbb{Q}$.

Such numbers α_n are called *complex rationals*.

(b) Suppose that H has an orthonormal basis (e_n) . For fixed $k \in \mathbb{N}$, let

$$
E_k = \{\sum_{n=1}^k \alpha_n e_n : \alpha_n \text{rational (complex rational)}\}.
$$

Then E_k is countable and also $E = \bigcup_{k=1}^{\infty} E_k$ is countable. We show that $\overline{E} = \mathcal{H}$. Let $y \in \mathcal{H}$. By assumptions (and Theorem 3.3.9(d))

$$
y = \sum_{n=1}^{\infty} \beta_n e_n
$$
, $\sum_{n=1}^{\infty} |\beta_n|^2 < \infty$, $\beta_n = \langle y, e_n \rangle$.

For any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $\sum_{n=N+1}^{\infty} |\beta_n|^2 < \frac{\varepsilon^2}{2}$ $\frac{e^2}{2}$. For each $n = 1, ..., N$ choose rational (complex rational) coefficients such that $|\beta_n - \alpha_n|^2 < \frac{\varepsilon^2}{2\lambda}$ choose rational (complex rational) coefficients such that $|\beta_n - \alpha_n|^2 < \frac{\varepsilon^2}{2N}$, and let $x = \sum_{n=0}^{\infty}$ $\sum_{n=N}^{\infty} \alpha_n e_n \in E$. Then

$$
y - x = \sum_{n=1}^{\infty} \gamma_n e_n
$$
, where $\gamma_n = \begin{cases} \beta_n - \alpha_n, & \text{if } 1 \le n \le N \\ \beta_n, & \text{if } n \ge N+1 \end{cases}$

We obtain that (see Theorem 3.3.9; the proof of $(d) \Rightarrow (c)$)

$$
||y - x||^2 = \sum_{n=1}^{\infty} |\gamma_n|^2 = \sum_{n=1}^{N} |\beta_n - \alpha_n|^2 + \sum_{n=N+1}^{\infty} |\beta_n|^2 < N \cdot \frac{\varepsilon^2}{2N} + \frac{\varepsilon^2}{2} = \varepsilon^2,
$$

i.e. $||y - x|| < \varepsilon$. Hence $y \in \overline{E}$ and $\overline{E} = H$. We skip the proof that every separable Hilbert space has an orthonormal basis, see Rynne & Youngson p.80. \Box

Corollary 3.3.13. The Hilbert space l^2 is separable.

Example 3.3.14. (Briefly on Fourier series; no details) One can prove that

$$
C = (c_n), \qquad \text{where } c_0(x) = \sqrt{\frac{1}{\pi}} \qquad \text{and } c_n(x) = \sqrt{\frac{2}{\pi}} \cos nx, \ n \in \mathbb{N},
$$

is an orthonormal basis in $L^2[0, \pi]$.

The idea of the proof:

- (1) Orthonormality is a calculus-exercise.
- (2) By Theorem 3.3.9(d) it suffices to show that SpC (finite linear combinations of functions in C) is dense in $L^2[0, \pi]$.
- (3) Suppose that $f \in L^2[0, \pi]$. Recall that f is real valued. It is well-known fact in L^p -theory that $\mathcal{C}[0,\pi]$ is dense in $L^2[0,\pi]$, i.e. for a given $\varepsilon > 0$ there is $g_1 \in \mathcal{C}[0,\pi]$ such that $||f - g_1||_2 < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$.
- (4) Using the Stone-Weierstrass theorem (see Rymme & Youngson, Theorem 1.39) polynomials are dense in $\mathcal{C}[0, \pi]$ with respect to sup-norm plus some trigonometry one can prove that

$$
\exists g_2, g_2(x) = \sum_{n=0}^m \beta_n(\cos nx) \quad \text{such that } \|g_1 - g_2\| < \frac{\varepsilon}{2}.
$$

(5) It then follows that $||f - g_2|| < \varepsilon$. As a consequence we conclude that $L^2[0, \pi]$ is separable! Moreover, any function $f \in$ $L^2[0, \pi]$ (for example any $f \in \mathcal{C}[0, \pi]$) can be written as a sum

$$
f = \sum_{n=0}^{\infty} \langle f, c_n \rangle c_n.
$$

Here the convergence of the series is understood in L^2 -sense. One can also proof that

$$
S = (s_n), \qquad s_n(x) = \sqrt{\frac{2}{\pi}} \sin nx
$$

is an orthonormal basis in $L^2[0, \pi]$ and

$$
E = (e_n), \qquad e_n(x) = \frac{1}{\sqrt{2\pi}} e^{inx}
$$

in $L_{\mathbb{C}}^2[-\pi,\pi]$.

4. Dual spaces

4.1. The space $B(X, Y)$. Recall that $B(X, Y)$ denotes the normed space of bounded linear operators $T : X \to Y$ whenever X and Y are normed spaces, see Theorem 2.2.4. The norm of T is defined by

$$
||T|| = \sup{||T(x)|| : ||x|| \le 1}.
$$

Theorem 4.1.1. If X is a normed space and Y is a Banach space, then $B(X, Y)$ is a Banach space.

Proof. We have to show that $B(X, Y)$ is complete. Let (T_n) be a Cauchy sequence in $B(X, Y)$. Then (T_n) is a bounded sequence, so. $\exists M > 0$ such that

$$
||T_n|| \le M \quad \forall n \in \mathbb{N}.
$$

Let $x \in X$. As

$$
||T_n(x) - T_m(x)|| = ||(T_n - T_m)(x)|| \le ||T_n - T_m|| ||x||
$$

(see Remark 2.2.2 (**)), it follows that $(T_n(x))$ is a Cauchy sequence in Y. (In fact, for $\varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}$ such, that $||T_n - T_m|| < \frac{\varepsilon}{||x||}$ $\frac{\varepsilon}{\|x\|}$ if $m, n \geq n_{\varepsilon}$ and $\|x\| > 0$.) Since Y is complete, $(T_n(x))$ converges in Y, so we may define a mapping $T: X \to Y$ by

$$
T(X) = \lim_{n \to \infty} T_n(x).
$$

We show first that T is linear. For any $x, y \in X$ and $\alpha, \beta \in \mathbb{F}$ (scalar field of X) we have

$$
T(\alpha x + \beta y) = \lim_{n \to \infty} T_m(\alpha x + \beta y)^{T_m \underline{\text{lin}}}. \lim_{m \to \infty} \alpha T_m(x) + \beta T_m(y)
$$

= $\alpha \lim_{n \to \infty} T_n(x) + \beta \lim_{m \to \infty} T_m(x) = \alpha T(x) + \beta T(y).$

Next we show that T is bounded. As

$$
||T(x)|| = \lim_{n \to \infty} ||T_n(x)||
$$

by Lemma 1.2.3, we obtain

$$
||T(x)|| \le \sup\{||T_n(x)|| : n \in \mathbb{N}\}\
$$

\n
$$
\le \sup\{||T_n(x)|| : n \in \mathbb{N}\}\
$$

\n
$$
\le M||x||.
$$

Hence $T \in B(X, Y)$.

Finally we show that $\lim_{n\to\infty} T_n = T$ in $\|\cdot\|$. Let $\varepsilon > 0$. Since (T_n) is a Cauchy sequence $\exists n_1 \in \mathbb{N}$ such that

$$
||T_n - T_m|| < \frac{\varepsilon}{2} \quad \text{if } m, n \ge n_1.
$$

Hence, for any $x \in X$ with $||x|| \leq 1$,

$$
||T_n(x) - T_m(x)|| \le ||T_n - T_m|| ||x|| < \frac{\varepsilon}{2}
$$

whenever $m, n \geq n_1$. As $T(x) = \lim_{n \to \infty} T_n(x)$, there is $n_2 \geq n_1$ depending on $x \in X$ such that

$$
||T(x) - T_m(x)|| < \frac{\varepsilon}{2} \quad \text{if } m \ge n_2.
$$

Hence, if $||x|| \leq 1, n \geq n_1$ and $m \geq n_2$, we conclude that

$$
||T(x) - T_n(x)|| \le ||T(x) - T_m(x)|| + ||T_n(x) - T_m(x)|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
$$

Therefore

$$
||T - T_m|| = \sup \{ ||T(x) - T_n(x)|| : ||x|| \le 1 \} \le \varepsilon
$$

if $n > n_{\varepsilon}$. This shows that $\lim_{n \to \infty} T_n = T$, i.e $B(X, Y)$ is a Banach space.

Lemma 4.1.2. Let X, Y and Z be normed spaces and let $T \in B(X, Y)$ and $S \in B(Y, Z)$. Then $S \circ T \in B(X, Z)$ and

$$
||S \circ T|| \le ||S|| ||T||.
$$

Proof. Exercise. \Box

In finite-dimensional spaces X, Y and Z, the matrix of the composite $S \circ T$ is the product of the matrixes of S and T. Hence the function composition is a natural candidate for the product of bounded linear operators.

Definition 4.1.3. Let X, Y, Z be normed spaces and let $T \in B(X, Y), S \in B(Y, Z)$. Then $S \circ T$ is called product of S and T. We denote

$$
ST:=S\circ T.
$$

In general, ST and TS are both defined only if $X = Y = Z$. Even in this case, in general holds

 $TS \neq ST$.

Notation. If X is a normed space, we denote $B(X) := B(X, X)$.

Lemma 4.1.4. Let X be a normed space. Then

- (a) $B(X)$ is a ring with the identity $I(I(x) = x)$;
- (b) If (T_n) and (S_n) are sequences in $B(X)$ such that $\lim_{n\to\infty}T_n=T$ and $\lim_{n\to\infty}S_n=$ S, then

$$
\lim_{n \to \infty} S_n T_n = ST.
$$

Proof. (a) Since $B(X)$ is a vector space, $B(X)$ is an Abelian group with respect to + (pointwise sum). We should show that $\forall R, S, T \in B(X)$

- (1) $R(ST) = (RS)T$,
- (2) $R(S+T) = RS + RT$ and $(R + S)T = RT + ST$,

$$
(3) IR = RI = R.
$$

Here (1) and (3) are trivial. For all $x \in X$, we have

$$
(R(S+T))(x) = (R \circ (S+T))(x) = R((S+T)(x)) = R(S(x) + T(x))
$$

$$
\stackrel{Rlin.}{=} R(S(x)) + R(T(x)) = (R \circ S)(x) + (R \circ T)(x)
$$

$$
= (RS + RT)(x).
$$

The other equality in (2) is similar. (b) Exercise.

Notation. Let X ba a normed space and let $T \in B(X)$.

(a) Then $T^2 = T \circ T$, $T^3 = T^2 \circ T$, ..., $T^n = T^{n-1} \circ T$.

(b) If $a_0, \ldots, a_n \in \mathbb{F}$ and $p : \mathbb{F} \to \mathbb{F}$ is polynomial $p(x) = a_n x^n + \ldots + a_1 x + a_0$, then we define $p(T)$ by $p(T) = a_n T^n + ... + a_1 T + a_0$.

Definition 4.1.5. Let X be a normed space over \mathbb{F} . The space $B(X, \mathbb{F})$ is called the dual space of X. We denote $X' := B(X, \mathbb{F})$.

Corollary 4.1.6. If X is a normed space, then X is a Banach space.

Proof. Since $\mathbb{F} = \mathbb{R}$ of $\mathbb{F} = \mathbb{C}$, the claim follows from Theorem 4.1.1.

Example 4.1.7. Let H be a Hilbert space over F and let $y \in \mathcal{H}$. Define $f : \mathcal{H} \to \mathbb{F}$ by

$$
f(x) = \langle x, y \rangle.
$$

Then $f \in \mathcal{H}'$ and $||f|| = ||y||$ (Exercise).

Theorem 4.1.8. (Riesz-Frechet Theorem). If H is a Hilbert space and $f \in \mathcal{H}'$, then there is a unique $y \in \mathcal{H}$ such that

$$
f(x) = \langle x, y \rangle
$$

for all $x \in \mathcal{H}$. Moreover, $||f|| = ||y||$.

For the proof we need a simple lemma.

Lemma 4.1.9. If X and Y are normed spaces and $T \in B(X, Y)$, then

$$
Ker(T) = \{ x \in X : T(x) = 0_Y \} = T^{-1}(\{0_Y\})
$$

is a closed linear subspace of X.

Proof. $Ker(T)$ is a linear subspace, since for all $x, x' \in Ker(T)$ and for all $\alpha, \beta \in \mathbb{F}$

$$
T(\alpha x + \beta x') \stackrel{T \text{ lin.}}{=} \alpha \underbrace{T(x)}_{0_Y} + \beta \underbrace{T(x')}_{0_Y} = 0_Y.
$$

Hence $\alpha x + \beta x' \in Ker(T)$. Since T is a bounded operator, $T : X \to Y$ is continuous (Lemma 2.1.2). Since $\{0_Y\}$ is closed, $Ker(T)$ is closed (we regard known that the preimage of a closed set is closed if the mapping is continuous.) \Box

Proof of Theorem 4.1.8. (1) Existence: If $f = 0$, then $y = 0_H$ will do. Assume that $f \neq 0$. Then $Ker(f)$ is a proper closed subspace of \mathcal{H} , which implies that $Ker(f)^{\perp} \neq \{0_{\mathcal{H}}\}$. In fact, if $Ker(f)^{\perp} = \{0_{\mathcal{H}}\}\text{, then}$

$$
Ker(f)^{\perp\perp} = \{0_{\mathcal{H}}\}^{\perp} = \mathcal{H}
$$

(L. 3.2.9 (c)). By corollary 3.2.15,

$$
Ker(f) = Ker(f)^{\perp \perp} = \mathcal{H},
$$

which is a contradiction, since $Ker(f)$ is a proper subset of H. Hence $\exists z' \in Ker(f) \perp \setminus \{0_H\}.$ Now $f(z') \neq 0$ (see Lemma 3.2.9 (b)) and for

$$
z = \frac{z'}{f(z')}
$$

it holds $z \neq 0_H$,

$$
f(z) = f(\frac{z'}{f(z')}) \stackrel{flin.}{=} \frac{1}{f(z')} f(z') = 1.
$$

Choose $y = \frac{z}{\|z\|}$ $\frac{z}{\|z\|^2}$. By linearity of f,

 $f(x - f(x)z) = f(x) - f(x)f(z) = 0,$ and hence $x - f(x)z \in Ker(f)$ $\forall x \in \mathcal{H}$. Since $z \in Ker(f)^{\perp}$ $(z = \alpha z')$, we have

$$
\langle x - f(x)z, z \rangle = 0 \iff \langle x, z \rangle - f(x) \langle z, z \rangle = 0.
$$

It then follows that

$$
f(x) = \frac{\langle x, z \rangle}{\|z\|^2} = \langle x, \frac{z}{\|z\|^2} \rangle = \langle x, y \rangle
$$

for all $x \in \mathcal{H}$. The claim $||f|| = ||y||$ is an exercise.

(2) Uniqueness: If $y_1, y_2 \in \mathcal{H}$ are such that

$$
f(x) = \langle x, y_1 \rangle = \langle x, y_2 \rangle \quad \forall x \in \mathcal{H}.
$$

Then $\langle x, y_1 - y_2 \rangle = 0$ $\forall x \in \mathcal{H}$. By choosing $x = y_1 - y_2$ we get $||y_1 - y_2||^2 = 0$. Hence $y_1 = y_2.$

It is often a challenge to characterize the dual of a given space. However, the dual of ℓ^1 is relatively easy to identify:

Theorem 4.1.10. Let $c = (c_n) \in \ell^{\infty}$.

(a) If $(x_n) \in \ell^1$, then $(c_n x_n) \in \ell^1$. If the linear transformation $f_c : \ell^1 \to \mathbb{F}$ is defined by

$$
f_c((x_n)) = \sum_{n=1}^{\infty} c_n x_n,
$$

then $f_c \in (\ell^1)'$ with

$$
||f_c|| \le ||c||_{\infty}.
$$

- (b) If $f \in (\ell^1)'$, there exists $c \in \ell^{\infty}$ such that $f = f_c$ and $||c||_{\infty} \le ||f|| = ||f_c||$.
- (c) There is a bijective isometry between ℓ^{∞} and $(\ell^{1})'$.

Proof. (a) The assertions are included in Example 2.1.4, see also Lemma 2.1.3. (b) Let (\tilde{e}_n) be the standard orthomormal sequence in ℓ^1 . Let $c_n := f(\tilde{e}_n)$, $n \in \mathbb{N}$. Then

$$
|c_n| = |f(\tilde{e}_n)| \overset{2.1.1}{\leq} ||f|| ||\tilde{e}_n||_1 = ||f||
$$

for all $n \in \mathbb{N}$, so that $||c||_{\infty} \le ||f||$ (take sup over $n \in \mathbb{N}$). Let S be the linear subspace of ℓ^1 consisting of sequences with only finitely many non-zero terms. Then S is dense in ℓ^1 since for each $x := (x_n) \in \ell^1$ and for each $\varepsilon > 0$ we have $n_{\varepsilon} \in \mathbb{N}$ such that if $y=(x_1,\ldots,x_{n_{\varepsilon}},0,\ldots)\in S$, then

$$
||x - y||_1 = \sum_{n=n_{\varepsilon+1}}^{\infty} |x_n| < \varepsilon.
$$

For any $z := (z_1, \ldots, z_n, 0, \ldots) \in S$, we have

$$
f(z) = f(\sum_{j=1}^{n} z_j \tilde{e}_j) \stackrel{f \text{ lin.}}{=} \sum_{j=1}^{n} z_j f(\tilde{e}_j)
$$

$$
= \sum_{j=1}^{n} z_j c_j = f_c(z).
$$

Hence the continuous functions f and f_c are equal in a dense subset S of ℓ^1 , which implies that $f = f_c$ in ℓ^1 (see Lemma 4.1.11 below).

(c) The mapping $T : \ell^{\infty} \to (\ell^1)'$, $T(c) = f_c$ for $c := (c) \in \ell^{\infty}$, is linear (exercise). By (b) , T is surjective, and

$$
||c||_{\infty} \le ||f_c|| = ||T(c)||.
$$

By (a) ,

$$
||f_c|| = ||T(c)|| \le ||c||_{\infty}.
$$

Hence $||T(c)|| = ||c||_{\infty}$ for all $c \in \ell^{\infty}$, i.e. T is an isometry. An isometry is always injective, see Exercise 6.

Lemma 4.1.11. Let X be a metric space and E a dense subset of X. Let $f, g: X \rightarrow Y$ be continuous functions (Y is a metric space) such that $f = g$ in E. Then $f = g$.

Proof. Exercise. \Box

4.2. Inverses of operators. In finite-dimensional vector spaces, the matrix equation

$$
Ax = y
$$

is solved by $x = A^{-1}y$ whenever A^{-1} exists and y is given. In this subsection, we study the existence of an inverse operator in the case of an infinite-dimensional space.

The basic question is: How to solve $x \in X$ if $T(x) = y$ and $T \in B(X, Y, y \in Y)$ are given?

Definition 4.2.1. Let X be normed space. An operator $T \in B(X)$ is called *invertible* if $\exists S \in B(X)$ such that $ST = I = TS$. Such an S is called the *inverse* of T. We denote T^{-1} for the inverse of T.

Lemma 4.2.2. Let X be a normed space and let $T_1, T_2 \in B(X)$ be invertible. Then

(a) T_1^{-1} is invertible with $(T_1^{-1})^{-1} = T_1$;

(b) T_1T_2 is invertible with $(T_1T_2)^{-1} = T_2^{-1}T_1^{-1}$.

Proof. (a) Clear since

$$
T_1^{-1}T_1 = T_1T_1^{-1} = I.
$$

(b) Since the product is associative, we have

$$
T_2^{-1}T_1^{-1}T_1T_2 = T_2^{-1}IT_2 = T_2^{-1}T_2 = I.
$$

Similarly $T_1 T_2 T_2^{-1} T_1^{-1}$ $I_1^{-1} = I.$

Remark 4.2.3. Recall also that if X is a normed space, then for every $R, S, T \in B(X)$

(a)
$$
R(-S) = (-R)S = -RS
$$
;

(b)
$$
(-R)(-S) = RS;
$$

(c) $(R - S)T = RT - ST$ and $R(S - T) = RS - RT$.

These properties hold true in every ring, see Algebra.

Example 4.2.4. For any $h \in \mathcal{C}[0,1]$, we define $T_h \in B(L^2[0,1])$ by

$$
(T_h g)(t) = h(t)g(t), \quad t \in [0, 1].
$$

(a) If $f \in \mathcal{C}[0,1]$ is defined by $f(t) = 1 + t$, then T_f is invertible.

 \Box

Proof. We showed in Exercise 3/1 that T_h is bounded for any $h \in \mathcal{C}[0,1]$. Let $k(t) = \frac{1}{1+t}$. Then $k \in \mathcal{C}[0,1]$ and for any $g \in L^2[0,1]$

$$
(T_kT_fg)(t) = T_k(fg)(t) = \underbrace{k(t)f(t)}_1 g(t) = g(t).
$$

Thus

$$
(T_kT_f)(g) = g \quad \forall g \in L^2[0,1].
$$

Hence $T_kT_f = I_{L^2[0,1]}$.

Similarly, we have $T_f T_k = I_{L^2[0,1]}$, i.e $T_f^{-1} = T_k$.

(b) Let $f \in \mathcal{C}[0,1]$ be defined by $f(t) = t$. Then the idea in (a) would give the function $k(t) = \frac{1}{t}$. But k is not continuous (or bounded) in [0, 1]! We can not directly conclude that T_f is not invertible as T_f could have an inverse not of the form T_k for $k \in \mathcal{C}[0,1]$.

Theorem 4.2.5. Let X be a Banach space. If $T \in B(X)$ is an operator with $||T|| <$ 1, $I - T$ is invertible and the inverse is given by

$$
(I - T)^{-1} = \sum_{n=0}^{\infty} T^n.
$$

Proof. Because X is Banach, $B(X)$ is Banach (Cor. 4.1.6). Since $||T|| < 1$, the series $\sum_{n=0}^{\infty} ||T||^n$ converges, and

 $||T^n|| \leq ||T||^n$

for all $n \in \mathbb{N}$ (Lemma 4.1.2), the series $\sum_{n=0}^{\infty} ||T^n||$ converges. By Exercise 7/6, the series $\sum_{n=0}^{\infty} T^n$ converges in $B(X)$. Let $S := \sum_{n=0}^{\infty} T^n$ and let $S_k := \sum_{n=0}^k T^n$. Hence $\lim_{k\to\infty} S_k = S$ in $B(X)$. We have

$$
||(I - T)S_k - I|| = ||\sum_{n=0}^k T^n - \sum_{n=1}^{k+1} T^n - I||
$$

= $||I - T^{k+1} - I|| = || - T^{k+1}||$
 $\leq ||T||^{k+1}.$

Since $||T|| < 1$, we deduce that

$$
\lim_{k \to \infty} (I - T)S_k - I = 0_{B(X)} \iff \lim_{k \to \infty} (I - T)S_k = I. \quad (*)
$$

By Lemma 4.1.4 (b)

$$
(I - T)S = (I - T) \lim_{k \to \infty} S_k \stackrel{4.1.4}{=} \lim_{k \to \infty} (I - T) S_k \stackrel{(*)}{=} I.
$$

Similarly, $S(I-T) = I$. Hence $S = (I-T)^{-1}$.

Note. The series $\sum_{n=0}^{\infty} T^n$ in Theorem 4.2.5 is called the *Neumann series*.

Example 4.2.6. Let $\lambda \in \mathbb{R}$ and let $k : [0, 1] \times [0, 1] \rightarrow \mathbb{R}$ be defined by $k(x, y) = \lambda \sin(x - y)$ Claim. If $|\lambda| < 1$, then $\forall f \in \mathcal{C}[0,1] \exists g \in \mathcal{C}[0,1]$ such that

$$
g(x) = f(x) + \int_0^1 k(x, y)g(y) dy
$$

= $f(x) + \lambda \int_0^1 \sin(x - y)g(y) dy$. (*)

Proof. In Example 2.1.8 and Exercise $2/4$ we showed that the linear transformation K : $\mathcal{C}[0, 1] \rightarrow \mathcal{C}[0, 1],$

$$
(K(g))(s) = \int_0^1 k(s, t)g(t) dt,
$$

is bounded and $||K(g)|| \le |\lambda| ||g||$. Hence $||K|| \le |\lambda|$. Since the integral equation (*) can be written as

$$
(I - K)g = f
$$

and $I - K$ is invertible by Theorem 4.2.5, the equation (*) has the unique solution

$$
g = (I - K)^{-1}f.
$$

Corollary 4.2.7. Let X be a Banach space. Then the set $\mathcal A$ of invertible elements in $B(x)$ is open.

Proof. The set A is non-empty since $I \in \mathcal{A}$. Let $T \in \mathcal{A}$ and let $r := ||T^{-1}||^{-1}$. Notice that $r > 0$ since $||T^{-1}||$ implies $T^{-1} \equiv 0$. This contradicts with $TT^{-1} = I$. It suffices to show that $S \in \mathcal{A}$ whenever $||S - T|| < r$.

Let $S \in B(X)$, $||T - S|| < r$. Then (Lemma 4.1.2)

$$
||(T - S)T^{-1}|| = ||T - S|| ||T^{-1}||
$$

$$
< ||T^{-1}||^{-1} ||T^{-1}|| = 1.
$$

Hence $I - (T - S)T^{-1}$ is invertible by Theorem 4.2.5. However,

$$
I - (T - S)T^{-1} = I - TT^{-1} + ST^{-1}
$$

= $I - I + ST^{-1} = ST^{-1}$.

Therefore ST^{-1} is invertible and $S = (ST^{-1})T$ is invertible (Lemma 4.2.2 (b)). Hence $S \in \mathcal{A}$.

 \Box

Lemma 4.2.8. Let V, W be vector spaces and let $T \in L(V, W)$.

- (a) T is injective iff $Ker(T) = \{0_V\}$;
- (b) T is surjective iff $Im(T) = T(V) = W$;
- (c) T is bijective iff $\exists S \in L(W, V)$, which is bijective and $S \circ T = I_V$, $T \circ S = I_W$.

Proof. (a) See Algebra or Linear Algebra. (b) Trivial.

(c) If T is bijective, $\exists T^{-1}: W \to V$ such, that $T^{-1} \circ T = I_V$ and $T \circ T^{-1} = I_W$. Let us recall that $T^{-1} \in L(W, V)$, i.e. T^{-1} is linear. Let $\alpha, \beta \in \mathbb{F}$ and $x, y \in W$. Then $T^{-1}(\alpha x + \beta y) \in V$ and

$$
(*)\quad T(T^{-1}(\alpha x + \beta y)) = \alpha x + \beta y.
$$

On the other hand, $T^{-1}(x)$, $T^{-1}(y) \in V$ and

$$
(**) \quad T(\alpha T^{-1}(x) + \beta T^{-1}(y)) \stackrel{T \text{ lin.}}{=} \alpha T(T^{-1}(x)) + \beta T(T^{-1}(y)) = \alpha x + \beta y.
$$

Since T is injective, we conclude from $(*)$ and $(*)$ that

$$
T^{-1}(\alpha x + \beta y) = \alpha T^{-1}(x) + \beta T^{-1}(y).
$$

The converse is well-known.

Note. Suppose that T is a bijective element in $B(X, Y)$. Then, by Lemma 4.2.8 there is $T^{-1} \in L(Y,X)$. However, we do not know that T^{-1} is a bounded operator. This additional knowledge is studied in the next subsection.

4.3. Uniform boundedness principle and open mapping theorem. To prove two corner-stones of functional analysis (open mapping theorem and uniform boundedness principle) we need a deep topological result called Baire's category theorem. The proof of this is omitted, see Väisälä: Topologia II.

Theorem 4.3.1. Let X be a complete metric space. If $V_j \subset X$, $j \in \mathbb{N}$ is a countable **Theorem 4.3.1.** Let X be a complete metric space.

collection of open subsets, then $\bigcap_{j=1}^{\infty} V_j$ is dense in X.

Corollary 4.3.2. Let X be a complete metric space and let $F_i \subset X$ be closed for all $j \in \mathbb{N}$ such that

$$
X = \bigcup_{j=1}^{\infty} F_j.
$$

Then there is $j_0 \in \mathbb{N}$ such that F_{j0} contains an open ball.

Proof. Denote $V_j = X \setminus F_j, j \in \mathbb{N}$. Then V_j is open for all $j \in \mathbb{N}$. Assume, on the contrary, that none of the sets F_i contains an open ball, that is,

$$
V_j \cap B(x,r) \neq \emptyset \quad \forall j \in \mathbb{N}, \forall x \in X, \forall r > 0.
$$

This implies that V_j is dense in X for all $j \in \mathbb{N}$. By Theorem 4.3.1, $\bigcap_{j=1}^{\infty} V_j$ is dense in This implies that V_j is dense in X for an $j \in \mathbb{N}$. By The X . In particular, $\bigcap_{j=1}^{\infty} \neq \emptyset$, so there is $x \in X$ such that

$$
x \in \bigcap_{j=1}^{\infty} V_j = \bigcap_{j=1}^{\infty} (X \setminus F_j) = X \setminus \bigcap_{j=1}^{\infty} F_j.
$$

This contradicts with the assumption $X = \bigcup_{i=1}^{\infty} X_i$ $\sum_{j=1}^{\infty} F_j$

Theorem 4.3.3. Let X be a Banach space, Y a normed space and $(T_{\alpha})_{\alpha \in J}$ an arbitrary collection of elements $T_{\alpha} \in B(X, Y)$. If

$$
M(x) := \sup_{\alpha \in J} ||T_{\alpha}(x)|| < \infty
$$

for all $x \in X$, then

$$
\sup_{\alpha \in J} \|T_\alpha\| = \sup_{\alpha \in J} \sup \{ \|T_\alpha(x)\| : \|x\| \le 1 \} < \infty
$$

Note. Observe that J is an arbitrary index set, J is not necessarily countable.

Before we prove Theorem 4.3.3, let us consider some applications of it.

$$
\mathbf{1}_{\mathcal{A}} = \mathbf{1}_{\mathcal{A}} \mathbf
$$

Theorem 4.3.4. Let X be a Banach space, Y a normed space and $(T_n)_{n\in\mathbb{N}}$ a sequence of elements in $B(X, Y)$ such that

$$
T(x) = \lim_{n \to \infty} T_n(x)
$$

exists for every $x \in X$. Then $T \in B(X, Y)$.

Proof. The mapping T is linear (see the proof of Theorem 4.1.1). By assumption $(T_n(x))$ converges for all $x \in X$. Hence $(T_n(x))$ is a bounded sequence for all $x \in X$, so that

$$
M(x) := \sup_{n \in \mathbb{N}} \|T_n(x)\| < \infty \,\,\forall x \in X
$$

By Theorem 4.3.3, there is $M \in \mathbb{R}_+$ such that $||T_n|| \leq M \forall n \in \mathbb{N}$. We obtain

$$
||T(x)|| = || \lim_{n \to \infty} T_n(x)|| = \lim_{n \to \infty} ||T_n(x)|| \le \sup_{n \in \mathbb{N}} ||T_n(x)|| \le \sup_{n \in \mathbb{N}} ||T_n|| ||x|| \le M ||x||.
$$

Note. In Theorem 4.1.1 Y is Banach, in Theorem 4.3.3 X is Banach. Otherwise Theorem 4.1.1 has stronger assumptions.

Example 4.3.5. Let $\mathcal{P} = \{x : x \text{ is a real polynomial }\}$ and let $||x||_{\infty} = \sup\{|x(t)| : t \in [0, 1]\}, \quad x \in \mathcal{P}.$

For each $n \in \mathbb{N}$, we define $T_n : \mathcal{P} \to \mathbb{R}$ by

$$
T_n(x) = n(x(1) - x(1 - \frac{1}{n})).
$$

Then $T_n \in B(\mathcal{P}, \mathbb{R})$ since linearity is obvious and

$$
|T_n(x)| \le 2n \|x\|_{\infty}.
$$

Hence $||T_n|| \leq 2n$. Moreover,

$$
\lim_{n \to \infty} T_n(x) = \lim_{n \to \infty} \frac{x(1) - x(1 - \frac{1}{n})}{\frac{1}{n}} = x'(1)
$$

so that $\lim_{n\to\infty} T_n(x) = T(x)$ for all $x \in \mathcal{P}$, where $T(x) = x'(1)$. However, T is not continous, since for $x_n(t) = t^n$ we have $||x_n||_{\infty} = 1$ but

$$
|T(x_n)| = |x'_n(1)| = n.
$$

Conclusions:

- (1) Theorem 4.3.4 implies that P is not complete with respect to $||x||_{\infty}$.
- (2) We infer that the completeness assumption for X is necessary in Theorem 4.3.4.

Proof of Theorem 4.3.3. Let

$$
F(n, \alpha) := \{ x \in X : ||T_{\alpha}(x)|| < n \}, \quad \alpha \in J, \ n \in \mathbb{N}.
$$

The function $f_{\alpha}(x) = ||T_{\alpha}(x)||$ is continuous as a composite function of continuous functions T_{α} and $\|\cdot\|$. Therefore $F(n,\alpha) = f_{\alpha}^{-1}([0,n])$ is closed X since the pre-image of an open (closed) set is a continuous function is open (closed). Hence the set

$$
F_n := \bigcap_{\alpha \in J} F(n, \alpha)
$$

is closed in X.

Assume that

$$
\sup_{\alpha \in J} \|T_{\alpha}(x)\| < \infty
$$

for all $x \in X$. Let $x \in X$ be arbitrary. Then $\exists n \in \mathbb{N}$ such that

$$
\sup_{\alpha \in J} ||T_{\alpha}(x)|| \le n. \quad (\Leftrightarrow f_{\alpha}(x) \le n \,\,\forall \alpha)
$$

Hence $x \in F(n, \alpha) \forall \alpha \in J$, that is, $x \in F_n$. It follows that

$$
X = \bigcup_{n \in \mathbb{N}} F_n.
$$

Since X is Banach, Corollary 4.3.2 implies that $\exists n_0 \in \mathbb{N}$ and an open ball $B(x_0, r_0) \subset X$ such that $B(x_0, r_0) \subset F_{n0}$. We are free to assume (by choosing a smaller r_0) that

$$
\overline{B}(x_0, r_0) \subset F_{n0}. (*)
$$

It is enough to prove that $||T_\alpha(x)|| \leq \frac{2n_0}{r_0} \forall \alpha \in J$ and $x \in X$, $||x|| \leq 1$. Let $x \in X$ with $||x|| \le 1$. Then $x_0 + r_0x \in \overline{B}(x_0, b_0)$ (since $||x_0 + r_0x - x_0|| = r_0||x|| \le r_0$) and (*) implies that

$$
||T_{\alpha}(x_0+r_0x|| \leq n_0.
$$

Therefore

$$
||T_{\alpha}(x)|| = \frac{1}{r_0} ||T_{\alpha}(r_0 x)|| = \frac{1}{r_0} ||T_{\alpha}(x_0 + r_0 x) - T_{\alpha}(x_0)||
$$

$$
\leq \frac{1}{r_0} (||T_{\alpha}(x_0 + r_0 x)|| + ||T_{\alpha}(x_0)||) \leq \frac{2n_0}{r_0}
$$

for all $\alpha \in J$.

To understand the idea of the open mapping theorem we first recall some topological background.

Definition 4.3.6. Let X Y be normed spaces. A mapping $f : X \to Y$ is called open if $f(U)$ is open in Y whenever U is open in X.

Recall here that $U \subset X$ is open in a normed space $(X, \|\cdot\|)$ if for each $x \in U \exists r > 0$ so that, $B_X(x,r) = \{y \in X : ||x - y|| < r\} \subset U$.

Lemma 4.3.7. Let X and Y be normed spaces with norms $\lVert \cdot \rVert_X \rVert \cdot \lVert_Y$ respectively. Then $f: X \to Y$ is an open mapping if and only if for each $x \in X$ and $r > 0$ there is $r' > 0$ such that $B_Y(f(x), r') \subset f(B_X(x, r)).$

Proof. (\Rightarrow). Assume that $f: X \to Y$ is open. Let $x \in X$ and $r > 0$. Then $B_X(x,r)$ is open in X and hence by assumption $f(B_X(x, r))$ is open in Y. Since $f(x) \in f(B_X(x, r))$, there is $r' > 0$ so that $B_Y(f(x), r') \subset f(B_X(x, r)).$

(←). Let $U \subset X$ be open and assume that the (r, r') -condition holds. Let $y \in f(U)$ be arbitrary. Choose $x \in U$ so that $y = f(x)$. Since U is open, $\exists r > 0$ so that $B_X(x, r) \subset U$. By assumption, $\exists r' > 0$ such that

$$
B_Y(y,r') = B_Y(f(x),r') \subset f(B_X(x,r)) \subset f(U).
$$

Hence $f(U)$ is open in Y.

$$
^{39}
$$

In what follows, we say that $f: X \to Y$ (X, Y normed spaces) is open at $x \in X$ if $\forall r > 0 \exists r' > 0$ so that

$$
B_Y(f(x),r') \subset f(B_X(x,r)).
$$

Example. (a) The function $f : \mathbb{R} \to \mathbb{R}$, $f(x) = (x)$, is not open. In fact, f is not open zero, since $f($ $|-\varepsilon,\varepsilon|$ $) = [0,\varepsilon]$ does not contain any open neighborhood of $f(0) = 0$.

(b) The function $f : \mathbb{R} \to \mathbb{R}$, $f(x) = (1)$, is not open at any point $x \in \mathbb{R}$.

Remark 4.3.8. Lemma 4.3.7 is analogical to the well-known characterization of continuity which says that $f: X \to Y$ (X, Y normed spaces) is continuous at each point $x \in X$ $(\forall \varepsilon > 0 \exists r > 0$ so that $f(B_X(x,r)) \subset B(f(x), \varepsilon)$ if and only if for each $V \subset Y$ open the pre-image $f^{-1}(V)$ is open in X.

Lemma 4.3.9. Let X and Y be normed spaces and $T \in L(X, Y)$. Then T is an open mapping if and only if T is open at 0_X .

Proof. (\Rightarrow) . This is included in Lemma 4.3.7.

 (\Leftarrow) . Assume that T is open 0_X . By Lemma 4.3.7, it suffices to show that T is open at x for any $x \in X$. Let $x \in X$ and $r > 0$. By assumption, there is $r' > 0$ such that

$$
B(T(0_X), r') = B(0_Y, r') \subset T(B(0_X, r)).
$$
 (*)

We claim that

$$
T(B(x,r)) = T(x + B(0_X, r)) = T(x) + T(B(0_X, r)),
$$

where (by definition of the direct sum)

$$
x + B(0_X, r) = x + y : y \in B(0_X, r).
$$

(1) $B(x,r) = x + B(0_X, r)$: If $y \in B(0_X, r)$, then $||x - y|| < r$. Hence $y = x + (y - x)$, where $y - x \in B(0_X, r)$ So $y \in x + B(0_X, r)$. Conversely, if $y \in x + B(0_X, r)$, then $y = x + z$, where $||z|| < r$. Then $||y - x|| = ||z|| < r$, so that $y \in B(x, r)$.

(2) $T(x + B(0_X, r)) = T(x) + T(B(0_X, r))$: For any $x \in B(0_X, r)$ we have by linearity $T(x + y) = T(x) + T(y)$. Now, by using (1) and (2) together with (*) gives

$$
T(B(x,r)) = T(x + B(0x,r)) = T(x) + T(B(0x,r)) \supset T(x) + B(0_Y,r') = B(T(x),r').
$$

Hence the claim follows. \Box

As an exercise we obtain that an open mapping $T \in L(X, Y)$ (where X and Y normed spaces) is always surjective, that is, $T(x) = Y$. The open mapping theorem states that the converse is true if X and Y are Banach spaces and $T \in B(X, Y)$.

Theorem 4.3.10. Let X and Y be Banach spaces and let $T \in B(X, Y)$ be surjective. Then T is an open mapping.

We obtain Theorem 4.3.10 as a consequence of the following result whose proof we skip (see Rynne & Youngson, p. 115–117).

Theorem 4.3.11. Let X and Y be Banach spaces and let $T \in B(X, Y)$ be surjective. Then there is $t > 0$ such that

$$
\{y \in Y : ||y|| \le t\} \subset T(\{x \in X : ||x|| \le 1\})
$$
(*)

To conclude Theorem 4.3.10, we infer from Theorem 4.3.11 that T is open at 0_X (see Lemma 4.3.9). Let $r > 0$ and let $y \in Y$ such that $||y|| < \frac{r}{2}$ $\frac{r}{2}t$. Then

$$
\|\frac{2}{r}y\| = \frac{2}{r} \|y\| < t
$$

and (*) implies that $\frac{2}{r}y = T(x)$ for some $x \in X, ||x|| \leq 1$. Now

$$
y = \frac{r}{2}T(x) = T(\frac{r}{2}x),
$$

where $\|\frac{r}{2}\|$ $\frac{r}{2}x \leq \frac{r}{2} < r$. We conclude that

$$
B(0_Y, \frac{r}{2}t) \subset T(B(0_X, r)),
$$

that is, T is open at 0_X .

Corollary 4.3.12. Let X and Y be Banach spaces and let $T \in B(X, Y)$ be surjective. Then $T^{-1} \in B(Y, X)$.

Proof. Exercise. \Box

Definition 4.3.13. Let X and Y be normed spaces and let $F: X \to Y$ be a mapping. Then the *graph* of F, denoted by $G(F)$, is defined as

$$
G(F) = \{ (x, F(x)) : x \in X \}.
$$

Theorem 4.3.14. Let X and Y be normed spaces and let $F: X \rightarrow Y$ be continuous. Then $G(F)$ is a closed subset of $X \times Y$, whose vector sum and scalar multiplication are defined by

$$
(x_1, y_1) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)
$$

and

$$
a(x_1,y_1):=(ax_1,ay_1)
$$

for all $x_i, x_2 \in X$, $y_1, y_2 \in Y$, $a \in F$, and whose norm $\| \cdot \|$ is defined by

$$
||(x,y)|| := ||x||_X + ||y||_Y.
$$

Here $||x||_X$ (resp. $||y||_Y$) is the norm of X (resp. Y).

Proof. We leave as an exercise to prove that $X \times Y$, $\|\cdot\|$ is a normed space. To prove that $G(F)$ is closed in $X \times Y$, let $((x_n, y_n))$ be a sequence in $X \times Y$ such that $(x_n, y_n) \to Y$ $(x, y) \in X \times Y$. This implies that $\lim_{n \to \infty} x_n = x$ in X and $\lim_{n \to \infty} y_n = y$ in Y. On the other hand, $y_n = F(x_n)$, so that

$$
y = \lim_{n \to \infty} y_n = \lim_{n \to \infty} F(x_n) = F(x)
$$

by continuity of F, see Remark 4.3.15 below. Therefore $(x, y) = (x, F(x)) \in G(F)$ and so $G(F)$ is closed.

Remark 4.3.15. If X and Y are normed spaces and $T : X \to Y$ is linear, then $G(T)$ is a subspace of $X \times Y$. Indeed, for any $(x, y), (x', y') \in G(T)$ and for any $\alpha, \beta \in F$, we have

$$
\alpha(x, y) + \beta(x', y') = \alpha(x, T(X)) + \beta(x', T(x')) = (\alpha x + \beta x', \alpha T(x) + \beta T(x'))
$$

= $(\alpha x + \beta x', T(\alpha x + \beta x'))$,

which implies that $\alpha x + \beta x' \in G(T)$.

The closed graph theorem states that the converse for Theorem 4.3.14 holds if X and Y are Banach spaces and T is linear.

Theorem 4.3.16. Let X and Y be Banach spaces and let $T : X \rightarrow Y$ be linear such that the graph $G(T)$ is closed. Then $T \in B(X,Y)$, that is, T is continuous.

Proof. As $X \times Y$ is a Banach space (see exercise), $G(T)$ is a Banach space since it is a closed subspace of $X \times Y$. (In fact, a Cauchy sequence in $G(T)$ converges to an element of $X \times Y$ by completeness. But this limit is contained in $G(T)$ since $G(T)$ is closed.) Let $\phi: G(T) \to X$ be the mapping

$$
\phi(x,T(x))=x.
$$

Then ϕ is linear since $\forall x, y \in X$, $\alpha, \beta \in F$

$$
\begin{array}{rcl}\n\phi(\alpha(x,T(x))+\beta(y,T(y))) & = & \phi(\alpha x+\beta y,\alpha T(x)+\beta T(y)) \\
& = & \phi(\alpha x+\beta y,T(\alpha x+\beta y)) \\
& = & \alpha x+\beta y=\alpha\phi(x,T(x))+\beta\phi(y,T(y))).\n\end{array}
$$

The mapping ϕ is clearly bijective. Since

$$
\|\phi(x,T(x))\|_{X} = \|x\|_{X} \le \|x\|_{X} + \|T(x)\|_{Y} = \|(x,T(x))\|_{X\times Y}
$$

we obtain that ϕ is bounded with $\|\phi\| \leq 1$. By Corollary 4.3.12, $\phi^{-1}: X \to G(T)$ is a bounded linear operator. Since $\phi^{-1}(x) = (x, T(x)) \,\forall x \in X$, we obtain

 $||T(x)||_Y \le ||x||_X + ||T(x)||_Y = ||(x, T(x)))||_{X \times Y} = ||\phi^{-1}(x)||_{X \times Y} \le ||\phi^{-1}|| ||x||_X.$

Hence T is a bounded operator. \Box

We continue the study of invertibility by using the open mapping theorem. This requires some lemmas.

Lemma 4.3.17. If X is a normed linear space and $T \in B(X)$ is invertible, then for all $x \in X$

$$
||T(x)|| \ge ||T^{-1}||^{-1}||x||
$$

Proof. Exercise. \Box

By Lemma 4.3.17, an invertible operator $T \in B(X)$ has the property that \exists constants $\alpha > 0, \beta > 0$ such, that

$$
\alpha ||x|| \le ||T(x)|| \le \beta ||x||
$$

for all $x \in X$.

Lemma 4.3.18. If X is a Banach space and $T \in B(X)$ has the property that there is a constant $\alpha > 0$ such that

$$
||T(x)|| \ge \alpha ||x|| \quad \forall x \in X,
$$

then $Im(T) = T(X)$ is a closed set.

Proof. Let (y_n) be a sequence in $Im(T)$ such that, $\lim_{n\to\infty} y_n = y \in Y$. As $y_n \in Im(T)$, there exists $x_n \in X$ such that $T(x_n) = y_n$. As (y_n) converges, it is a Cauchy sequence by Lemma 1.2.2. Since

$$
||y_m - y_n|| = ||T(x_m) - T(x_n)|| = ||T(x_m - x_n)|| \ge \alpha ||x_m - x_n||,
$$

it is easy to see that (x_n) is a Cauchy sequence as well. By the completeness of X, there is $x \in X$ so that $\lim_{n\to\infty} x_n = x$. Therefore, by continuity of T, see Remark 4.3.15,

$$
T(x) = \lim_{n \to \infty} T(x_n) = \lim_{n \to \infty} y_n = y.
$$

Hence $y = T(x) \in Im(x_n)$ and so $Im(T)$ is closed.

Remark 4.3.19. Let X and Y be normed spaces and let $f: X \to Y$ be continuous. Assume that $x_n, y_n \in X$ so that $\lim_{n\to\infty} x_n = x$. Then $\lim_{n\to\infty} f(x_n) = f(x)$.

Proof. Let $\varepsilon > 0$. By continuity of f, $\exists \delta > 0$ so that

$$
|x_n + x| < \delta \Rightarrow |f(x_n) - f(x)| < \varepsilon.
$$

Since $\lim_{n\to\infty}x_n=x, \exists n_\delta\in\mathbb{N}$ such that

$$
n \ge n_{\delta} \to |x_n - x| < \delta.
$$

Hence $n \geq n_{\delta}$ implies that $|f(x_n) - f(x)| < \varepsilon$. The claim $\lim_{n \to \infty} f(x_n) = f(x)$ follows. ¤

Theorem 4.3.20. Let X be a Banach space and let $T \in B(X)$. The following are equivalent:

- (a) T is invertible in $B(X)$;
- (b) Im(T) is dense in X and there is a constant $\alpha > 0$ so that $||T(x)|| \ge \alpha ||x||$ for all $x \in X$.

Proof. (a) \Rightarrow (b). This follows from 4.3.17 since $Im(T) = X$ if T is invertible.

(b) \Rightarrow (a). By hypothesis $Im(T)$ is dense in X. We claim first that $Im(T) = X$. For any $x \in X$, we find a sequence $x_n \in Im(T)$ such that $\lim_{n \to \infty} x_n = x$ by picking $x_n \in$ $B(x, \frac{1}{n}) \bigcap Im(T)$. By assumption and Lemma 4.3.18, $Im(T)$ is closed. Therefore $x \in$ $Im(T)$ and so $Im(T) = X$. Hence T is surjective. To prove that T is injective, let $x \in Ker(T)$. Then $T(x) = 0$ _X so that

$$
0 = ||T(x)|| \ge \alpha ||x||
$$

Hence $x = 0$ _X and $Ker(T) = \{0_X\}$. Lemma 4.2.8 implies that T is bijective. Corollary 4.3.12 yields that T is invertible in X.

Theorem 4.3.20 can be used to show that an operator $T \in B(X)$ is not invertible. For this purpose we first reformulate Theorem 4.3.20.

Corollary 4.3.21. Let X be a Banach space and let $T \in B(X)$. Then T is not invertible if and only if $Im(T)$ is not dense or

$$
\exists (x_n) \subset X, \ \|x_n\| = 1 \ \forall n \in \mathbb{N} \ such \ that \ \lim_{n \to \infty} T(x_n) = 0. \quad (*)
$$

Proof. The condition $||T(x)|| \ge \alpha ||x||$ does not hold for any $\alpha > 0$ if and only if

$$
\exists (x'_n) \subset X \setminus \{0_X\} \text{ with } ||T(x'_n)|| < \frac{1}{n} ||x'_n||. \quad (**)
$$

If (**) holds, then for $x_n = \frac{x'_n}{\|x'_n\|}$,

$$
||T(x_n)|| = ||T(\frac{x'_n}{||x'_n||})|| = \frac{1}{||x'_n|| ||T(x'_n)||} < \frac{1}{||x'_n||} \frac{1}{n} ||x'_n||.
$$

It follows that $\lim_{n\to\infty} T(x_n) = 0$. Hence (*) holds. The implication (*) \Rightarrow (**) is similar. \Box

Example 4.3.22. In Example 4.2.4 we studied for any $h \in C[0,1]$ an operator $T_h \in$ $B(L^2[0,1]),$

$$
(T_h g)(t) = h(t)g(t), \quad t \in [0, 1].
$$

We show now that T_f is not invertible if $f \in C[0,1]$. For each $n \in \mathbb{N}$, let $g_n =$ √ $\overline{n} \chi_{[0,\frac{1}{n}]}$. Then $g_n \in L^2[0,1]$ and

$$
||g_n||_2^2 = \int_0^1 (\sqrt{n} \chi_{[0, \frac{1}{n}]})^2(t) dt = \int_0^{\frac{1}{n}} n dt = 1
$$

for all $n \in \mathbb{N}$. However

$$
||T_f(g_n)||^2 = \int_0^1 (f(t)g_n(t))^2 dt = \int_0^{\frac{1}{n}} nt^2 dt = \frac{n}{3}n^3
$$

Hence

$$
\lim_{n \to \infty} ||T_f(g_n)|| = 0
$$

and Corollary 4.3.21 implies that T is not invertible.

5. Linear operators on Hilbert spaces

5.1. The adjoint of an operator.

We consider next a linear $T : \mathcal{H} \to \mathcal{K}$, where \mathcal{H} and \mathcal{K} are Hilbert spaces. For simplicity we denote inner products in each of the spaces $\mathcal H$ and $\mathcal K$ by $\langle \cdot, \cdot \rangle$. Throughout this section we assume that $\mathbb{F} = \mathbb{C}$.

Theorem 5.1.1. Let H and K be complex Hilbert spaces and let $T \in B(H,\mathcal{K})$. Then there is a unique operator $T^* \in B(K, \mathcal{H})$ such that

$$
\langle T(x), y \rangle = \langle x, T^*(y) \rangle
$$

for all $x \in \mathcal{H}$ and $y \in \mathcal{K}$. Moreover $||T^*|| \le ||T||$.

Proof. Let $y \in \mathcal{K}$ and let $f : \mathcal{H} \to \mathbb{C}$ be defined by

$$
f(x) = \langle T(x), y \rangle.
$$

Then f is linear, since for all $\alpha, \beta \in \mathbb{C}$ and $x, x' \in \mathcal{H}$,

$$
f(\alpha x + \beta x') = \langle T(\alpha x + \beta x'), y \rangle
$$

= $\langle \alpha T(x) + \beta T(x'), y \rangle$
= $\alpha \langle T(x), y \rangle + \beta \langle T(x'), y \rangle$
= $\alpha f(x) + \beta f(x').$

By Cauchy-Schwarz and by the boundedness of T ,

$$
|f(x)| = |\langle T(x), y \rangle| \le ||T(x)|| ||y|| = ||T|| ||x|| ||y||
$$

for all $x \in \mathcal{H}$. Hence f is bounded and Riesz-Frechet theorem (Theorem 4.1.8) implies that there exists unique $z \in \mathcal{H}$ such that

$$
f(x) = \langle x, z \rangle \quad \forall \ x \in \mathcal{H}.
$$

We define $T^*: \mathcal{K} \to \mathcal{H}$ by $T^*(y) = z$. Then

$$
\langle T(x), y \rangle = \langle x, T^*(y) \rangle \qquad (*)
$$

for all $x \in \mathcal{H}, y \in \mathcal{K}$. Now it is enough to show that T^* is linear, bounded and unique. T is linear: Let $y_1, y_2 \in \mathcal{K}$, let $\alpha, \beta \in \mathbb{C}$ and let $x \in \mathcal{H}$. By $(*)$,

$$
\langle x, T^*(\alpha y_1 + \beta y_2) \rangle \stackrel{(*)}{=} \langle T(x), \alpha y_1 + \beta y_2 \rangle
$$

$$
\stackrel{3.1.6}{=} \overline{\alpha} \langle T(x), y_1 \rangle + \overline{\beta} \langle T(x), y_2 \rangle
$$

$$
\stackrel{(*)}{=} \overline{\alpha} \langle x, T^*(y_1) \rangle + \overline{\beta} \langle x, T^*(y_2) \rangle
$$

$$
\stackrel{3.1.6}{=} \langle x, \alpha T^*(y_1) + \beta T^*(y_2) \rangle.
$$

This holds for all $x \in \mathcal{H}$ and therefore (Exercise 4/1)

$$
T^*(\alpha y_1 + \beta y_2) = \alpha T^*(y_1) + \beta T^*(y_2).
$$

Boundedness with $||T^*|| \le ||T||$ and uniqueness exercise.

Definition 5.1.2. If H and K are complex Hilbert spaces and $T \in B(H,\mathcal{K})$, then the operator T^* of Theorem 5.1.1 is called the *adjoint of* T .

The uniqueness part of Theorem 5.1.1 is very useful when finding the adjoint of an operator. If we find a mapping S which satisfies

$$
\langle T(x), y \rangle = \langle x, S(y) \rangle \quad \forall \ x \in \mathcal{H}, y \in \mathcal{K},
$$

then $S = T^*$.

Example 5.1.3. Recall that the inner product in \mathbb{C}^2 is defined by

$$
\langle x, y \rangle = x_1 \overline{y_1} + x_2 \overline{y_2} ; \qquad x_i, y_i \in \mathbb{C}, i = 1, 2.
$$

We denote by $M_{2x2}(\mathbb{C})$ the set of 2×2 matrices with complex entries a_{ij} . Let $T: \mathbb{C}^2 \to \mathbb{C}^2$ be a linear mapping. Then T is continuous (Theorem 2.1.9) and (by linear algebra) there is $A = (a_{ij}) \in M_{2x2}(\mathbb{C})$ such that

$$
T(x) = Ax = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}
$$

for all $x_1, x_2 \in \mathbb{C}$. To find the adjoint T^* , we write equation

$$
\langle T(x),y\rangle = \langle x,T^*(y)\rangle
$$

in a form $(T^*(y) = By)$

$$
\left\langle \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle
$$

\n
$$
\Leftrightarrow \left\langle \begin{pmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} b_{11}y_1 + b_{12}y_2 \\ b_{21}y_1 + b_{22}y_2 \end{pmatrix} \right\rangle
$$

\n
$$
\Leftrightarrow a_{11}x_1\overline{y_1} + a_{12}x_2\overline{y_1} + a_{21}x_1\overline{y_2} + a_{22}x_2\overline{y_2} = x_1\overline{b_{11}}\overline{y_1} + x_1\overline{b_{12}}\overline{y_2} + x_2\overline{b_{21}}\overline{y_1} + x_2\overline{b_{22}}\overline{y_2}.
$$

Since this holds for all $x_i, y_i \in \mathbb{C}$, we may choose $x_1 = y_1 = 1$ and $x_2 = y_2 = 0$, so that $a_{11} = \overline{b_{11}}$. Similarly $a_{12} = \overline{b_{21}}$, $a_{21} = \overline{b_{12}}$, $a_{22} = \overline{b_{22}}$. In general $b_{ij} = \overline{a_{ji}}$.

The result can be proved similarly for any $T \in B(\mathbb{C}^n, \mathbb{C}^m)$. Hence if

$$
T(x) = Ax,
$$

where $A \in M_{m \times n}(\mathbb{C}), A = (a_{ij}),$ then

$$
T^*(x) = Bx,
$$

where $B = (b_{ij})$ and $b_{ij} = \overline{a_{ji}}$. We also denote $B = A^*$.

Warning. Here $A^* \neq adjA$. We call the matrix A^* conjugate transpose (adjucate, Hermitean adjucate).

Example 5.1.4. For any $k \in \mathcal{C}_{\mathbb{C}}[0,1]$, let $T_k \in B(L_{\mathbb{C}}^2[0,1])$ be defined by

$$
(T_k g)(t) = k(t)g(t), \quad t \in [0, 1].
$$

Note here that the proof of Exercise 3/1 applies also in complex case. Hence $||T_k|| \le ||k||_{\infty}$.

$$
\left(\|T_k g\|_2^2 = \int_0^1 |k(t)|^2 |g(t)|^2 dt \leq \|k\|_{\infty}^2 \int_0^1 |g(t)|^2 dt = \|k\|_{\infty}^2 \|g\|_2^2.
$$

Claim. If $f \in \mathcal{C}_{\mathbb{C}}[0,1]$, then $(T_f)^* = T_{\overline{f}}$, where $f = f_1 + if_2$ and $\overline{f} = f_1 - if_2$.

Proof. Let $g, h \in L^2_{\mathbb{C}}[0,1]$ and let $k = (T_f)^*h$. By definition $\langle T_f g, h \rangle = \langle g, (T_f)^* h \rangle = \langle g, k \rangle$

so that (See Example 3.3.2)

$$
\int_0^1 f(t)g(t)\overline{h(t)}dt = \int_0^1 g(t)\overline{k(t)}dt.
$$

This clearly holds if $\overline{k(t)} = f(t)\overline{h(t)}$, that is $k(t) = \overline{f(t)}h(t) = (T_{\overline{z}}h)(t).$

$$
\kappa(t) = f(t)\kappa(t) - (T_{\bar{f}}\kappa)(t).
$$

adjoint, we deduce that $(T_f)^* = T_{\bar{f}}$.

By the uniqueness of adjoint, we deduce that $(T_f)^* = T_{\overline{f}}$

Example 5.1.5. Let $S \in B(l^2)$ be the unilateral shift

$$
S(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, x_3, \ldots).
$$

Claim. $S^*(y_1, y_2, y_3, ...) = (y_2, y_3, y_4, ...).$ *Proof.* Let $x = (x_n), y = (y_n) \in l^2$ and let $z = (z_n) = S^*(y)$. By definition $\langle S(x), y \rangle = \langle x, S^*(y) \rangle$

so that

$$
\langle (0, x_1, x_2, x_3, \ldots), (y_1, y_2, y_3, \ldots) \rangle = \langle (x_1, x_2, x_3, \ldots), (z_1, z_2, z_3, \ldots) \rangle.
$$

Therefore

$$
0 \cdot \overline{y_1} + x_1 \overline{y_2} + x_2 \overline{y_3} + \ldots = x_1 \overline{z_1} + x_2 \overline{z_2} + x_3 \overline{z_3} + \ldots
$$

holds true for all $x = (x_n) \in l^2$ if and only if $z_1 = y_2, z_2 = y_3, \dots$. Hence by the uniqueness of the adjoint

$$
S^*(y) = z = (y_2, y_3, y_4, \ldots).
$$

In what follows, we also call S a *forward shift* and S^* a *backward shift*.

Example 5.1.6. Let H be a complex Hilbert space. If I is the identity operator on H , then

 $I^* = I$.

Proof. If $x, y \in \mathcal{H}$, then

$$
\langle I(x), y \rangle = \langle x, I^*(y) \rangle \Leftrightarrow \langle x, y \rangle = \langle x, I^*(y) \rangle.
$$

Therefore, by the uniqueness of the adjoint, $I^* = I$.

Lemma 5.1.7. Let H, K and L be complex Hilbert spaces and let $R, S \in B(H, K)$ and $T \in B(K, \mathcal{L})$. Then

(a) $(\mu R + \lambda S)^* = \overline{\mu} R^* + \overline{\lambda} S^*$ for all $\mu, \lambda \in \mathbb{C}$; (b) $(TR)^* = R^*T^*$.

Proof. Exercise. \Box

Theorem 5.1.8. Let H and K be complex Hilbert spaces and let $T \in B(H,\mathcal{K})$. Then

(a) $(T^*)^* = T;$ (b) $||T^*|| = ||T||;$

(c) the function $f : B(H, K) \to B(K, H)$, $f(T) = T^*$, is continuous;

(d) $||T^*T|| = ||T||^2$.

Proof. (a) Exercise.

(b) By Theorem 5.1.1, we have $||T^*|| \le ||T||$. Applying this result to T^* and using (a) gives

$$
||T|| \stackrel{(a)}{=} ||(T^*)^*|| \le ||T^*||.
$$

Hence $||T^*|| = ||T||$.

(c) Let $\varepsilon > 0$ and choose $\delta = \varepsilon$. If $R, S \in B(H, K)$ and $||R - S|| < \delta = \varepsilon$, then by Lemma 5.1.7 and (b)

$$
||f(R) - f(S)|| = ||R^* - S^*|| \stackrel{5.1.7}{=} ||(R - S)^*|| \stackrel{(b)}{=} ||R - S|| < \varepsilon.
$$

Hence f is uniformly continuous in $B(\mathcal{H}, \mathcal{K})$. (d) Since $||T|| = ||T^*||$, we have

$$
||T^*T|| \le ||T^*|| ||T|| = ||T||^2.
$$

On the other hand, by the definition of T^* , (a) and Cauchy-Schwarz inequality,

$$
||T(x)||^2 = \langle T(x), T(x) \rangle \stackrel{def. of T^*}{=} \langle T^*(T(x)), x \rangle \stackrel{C-S}{\leq} ||T^*(T(x))|| ||x|| \leq ||T^*T|| ||x||^2.
$$

By taking sup over $||x|| \leq 1$, we obtain

$$
||T||^2 \le ||T^*T||.
$$

The claim follows. \Box

Note. By the proof of (c) , we have in particular

$$
||f(R)|| = ||R|| \quad \forall R \in B(\mathcal{H}, \mathcal{K}),
$$

since $0^* = 0$. However, f is not isometry since f is not (quite) linear, see Lemma 5.1.7 (a).

Next, we obtain an improved characterization for invertibility in the case of Hilbert spaces.

Lemma 5.1.9. Let H and K be complex Hilbert spaces and let $T \in B(H,\mathcal{K})$. Then

- (a) $Ker(T) = Im(T^*)^{\perp};$
- (b) $Ker(T^*) = Im(T)^{\perp}$.

Proof. (a) 1° $Ker(T) \subset Im(T^{*})^{\perp}$: Let $x \in Ker(T)$ and $z \in Im(T^*)$. As $z \in Im(T^*)$, $\exists y \in \mathcal{K}$ such that $T^*(y) = z$. Then $\Gamma^*(\lambda) = \Gamma(\Gamma(\lambda), \lambda) = 10$

$$
\langle x, z \rangle = \langle x, T^*(y) \rangle = \langle T(x), y \rangle = \langle 0_{\mathcal{H}}, y \rangle = 0.
$$

Hence $x \subset Im(T^*)^{\perp}$. $2^{\circ} Im(T^{*})^{\perp} \subset Ker(T)$: Let $x \in Im(T^*)^{\perp}$. As $T^*T(x) = T^*(T(x)) \in Im(T^*)$, we have $||T(x)||^2 = \langle T(x), T(x) \rangle = \langle T^*(T(x)) \rangle$ $\in Im(T^*)$ $, x \rangle = 0.$

Thus $||T(x)|| = 0$ so that $T(x) = 0_K$. Therefore $x \in Ker(T)$. (b) By (a) and Theorem 5.1.8 (a) we have

$$
Ker(T^*) \stackrel{(a)}{=} (Im(T^*)^*)^{\perp} \stackrel{5.1.8}{=} Im(T)^{\perp}.
$$

 \Box

Lemma 5.1.10. If X is any linear subspace of a Hilbert space \mathcal{H} , then $X^{\perp \perp} = \overline{X}$.

Proof. Since $X \subset \overline{X}$, it follows from Exercise 5/1 that $\overline{X}^{\perp} \subset X^{\perp}$ and $X^{\perp\perp} \subset \overline{X}^{\perp\perp}$. But X is closed and therefore by Corollary 3.2.15 $\overline{X}^{\perp\perp} = \overline{X}$. Hence we conclude that $X^{\perp\perp} \subset \overline{X}.$

By Exercise 5/1, $X \subset X^{\perp\perp}$. Since $X^{\perp\perp}$ is closed (Lemma 3.2.9), we have $\overline{X} \subset X^{\perp\perp}$. The last conclusion is regarded as known from topology. \Box

Theorem 5.1.11. Let H and K be complex Hilbert spaces and let $T \in B(H,\mathcal{K})$. Then $Ker(T^*) = \{0_{\mathcal{K}}\}$ if and only if $Im(T)$ is dense in K.

Proof. 1° Assume that $Ker(T^*) = \{0_{\mathcal{K}}\}$. By Lemma 5.1.9

$$
(Im(T)^{\perp})^{\perp} = Ker(T^*)^{\perp} = \{0_{\mathcal{K}}\}^{\perp} = \mathcal{K}.
$$

By Lemma 5.1.10, $\overline{Im(T)} = K$, so that $Im(T)$ is dense in K. 2° Assume that $Im(T)$ is dense in K. By Lemma 5.1.10

$$
(Im(T)^{\perp})^{\perp} = \overline{Im(T)} = \mathcal{K}.
$$

Since $Im(T)$ is closed (Lemma 3.2.9), we obtain by Lemma 5.1.9 and Corollary 3.2.15 that

$$
Ker(T^*) \stackrel{5.1.9}{=} Im(T)^{\perp} \stackrel{3.2.9,3.2.15}{=} ((Im(T)^{\perp})^{\perp})^{\perp} = \mathcal{K}^{\perp} = \{0_{\mathcal{K}}\}.
$$

Corollary 5.1.12. Let H be a complex Hilbert space and let $T \in B(H)$. The following are equivalent:

(a) T is invertible;

(b)
$$
Ker(T^*) = \{0_H\}
$$
 and $\exists \alpha > 0$ such that $||T(x)|| \ge \alpha ||x|| \quad \forall x \in \mathcal{H}$.

Proof. Follows from Theorem 5.1.11 and Theorem 4.3.20. \Box

Despite having to do one more step it is often easier to find the adjoint of an operator T and then decide whether $Ker(T^*) = \{0_{\mathcal{H}}\}$ than show that $Im(T)$ is dense in \mathcal{H} .

Example 5.1.13. The forward shift $S \in B(l^2)$,

$$
S(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, x_3, \ldots) \quad \forall (x_n) \in l^2,
$$

is not invertible.

Proof. We showed in Example 5.1.5 that

$$
S^*(y_1, y_2, y_3, \ldots) = (y_2, y_3, y_4, \ldots) \quad \forall (y_n) \in l^2.
$$

Hence $(1,0,0,0,...) \in Ker(S^*)$ and the claim follows from Corollary 5.1.12.

5.2. Normal, self-adjoint and unitary operators. Adjoint can be used to define particular classes of operators which frequently arise in applications and for which much more than above is known.

Definition 5.2.1. If H is a complex Hilbert space and $T \in B(H)$, then T is normal if $TT^* = T^*T$.

Note. A complex $n \times n$ -matrix A is called normal if $AA^* = A^*A$.

Example. Complex numbers can be regarded as $|x|$ -matrices. What is the set of normal matrices? Now $a^* = \overline{a}$, so that the set of all normal operators $\mathbb{C} \to \mathbb{C}$ consists of mappings $z \to az$, where $a\overline{a} = \overline{a}a$. Hence any $a \in \mathbb{C}$ will do since

$$
a\overline{a} = \overline{a}a = |a|^2.
$$

Example 5.2.2. For any $k \in C_{\mathbb{C}}[0,1]$, let $T_k \in B(L_{\mathbb{C}}^2[0,1])$ be defined by $T_k g = gk$. We claim that T_k is normal.

Proof. From Example 5.1.4 we know that $T_k^* = T_{\bar{k}}$ for any $k \in C_{\mathbb{C}}[0,1]$. Hence, for all $g \in L^2_{\mathbb{C}}[0,1],$

$$
(T_k(T_k^*))(g) = T_k(T_k^*g) = T_k(T_{\bar{k}}g) = T_k(g\bar{k}) = g\bar{k}k,
$$

\n
$$
(T_k^*T_k)(g) = T_k^*(T_kg) = T_{\bar{k}}(gk) = gk\bar{k},
$$

So $T_k^*T_k = T_kT_k^*$

Example 5.2.3. The forward shift $S \in B(\ell^2)$ of Example 5.1.5 is not normal.

Proof. We know that

$$
S^*(y_1, y_2, y_3, \ldots) = (y_2, y_3, y_4, \ldots) \quad \forall (y_n) \in \ell^2.
$$

Hence for any $(x_n) \in \ell^2$,

$$
S^*(S(x_1, x_2, x_3, \ldots)) = S^*(0, x_1, x_2, \ldots)) = (x_1, x_2, x_3, \ldots),
$$

\n
$$
S(S^*(x_1, x_2, x_3, \ldots)) = S(x_2, x_3, x_4, \ldots)) = (0, x_2, x_3, \ldots).
$$

If $x_1 \neq 0$, then $S^*(S((x_n))) \neq S(S^*((x_n)))$. Hence $S^*S \neq SS^*$.

Example 5.2.4. If H is a complex Hilbert space, I is the identity on $H, \lambda \in \mathbb{C}$, and $T \in B(H)$ is normal, then $T - \lambda I$ is normal.

Proof. By Lemma 5.1.7 and Example 5.1.6,

$$
(T - \lambda I)^{*} \stackrel{5.1.7}{=} T^{*} - \overline{\lambda} I^{*} \stackrel{5.1.6}{=} T^{*} - \overline{\lambda} I.
$$

We obtain

$$
(T - \lambda I)(T - \lambda I)^* = (T - \lambda I)(T^* - \overline{\lambda}I)
$$

=
$$
TT^* - T\overline{\lambda}I - \lambda IT^* + \lambda I\overline{\lambda}I
$$

=
$$
TT^* - \overline{\lambda}T - \lambda T^* + |\lambda|^2I
$$

and similarly

$$
(T - \lambda I)^*(T - \lambda I) = (T^* - \overline{\lambda}I)(T - \lambda I)
$$

=
$$
T^*T - \lambda T^* - \overline{\lambda}T + |\lambda|^2 I.
$$

By assumption $TT^* = T^*T$ and the claim follows.

Notice above e.g. that

$$
(T\overline{\lambda}I)(x) = T(\overline{\lambda}I(x)) = T(\overline{\lambda}x) \stackrel{\text{Tlin.}}{=} \overline{\lambda}T(x) = (\overline{\lambda}T)(x).
$$

$$
(\lambda I\overline{\lambda}I)(x) = \lambda I(\overline{\lambda}x) = \lambda \overline{\lambda}x = (|\lambda|^2 I)(x).
$$

We study next the basic properties of normal operators.

Lemma 5.2.5. Let H be a complex Hilbert space, let $T \in B(H)$ be normal. Then (a) $||T(x)|| = ||T^*(x)|| \quad \forall x \in \mathcal{H};$

(b) If $||T(x)|| \ge \alpha ||x||$ for some $\alpha > 0$ and for all $x \in \mathcal{H}$, then $Ker(T^*) = \{0_H\}.$

Proof. (a) Let $x \in \mathcal{H}$. AS $T^*T = TT^*$, we obtain by the definition of the adjoint and Theorem 5.1.8 (a)

$$
||T(x)||^2 - ||T^*(x)||^2 = \langle T(x), T(x) \rangle - \langle T^*(x), T^*(x) \rangle
$$

\n
$$
\stackrel{5.1.8(a)}{=} \langle x, T^*(T(x)) \rangle - \langle x, T(T^*(x)) \rangle
$$

\n
$$
= \langle x, T^*(T(x)) - T(T^*(x)) \rangle = \langle x, 0_H \rangle = 0.
$$

Therefore

$$
||T(x)|| = ||T^*(x)|| \quad \forall x \in \mathcal{H}.
$$

(b) Let $y \in Ker(T^*)$, i.e. $T^*(y) = 0_{\mathcal{H}}$. Then by (a) and the assumption

$$
0 = \|T^*(y)\| \stackrel{(a)}{=} \|T(y)\| \ge \alpha \|y\| \ge 0.
$$

Therefore $||y|| = 0$ and hence $y = 0_{\mathcal{H}}$. Hence $Ker(T^*) = \{0_{\mathcal{H}}\}.$

Corollary 5.2.6. Let H be a complex Hilbert space and let $T \in B(H)$ be a normal operator. The following are equivalent:

- (a) T is invertible;
- (b) $\exists \alpha > 0$ such that $||T(x)|| > \alpha ||x||$ $\forall x \in \mathcal{H}$.

Proof. Corollary 5.1.12 and Lemma 5.2.5. \Box

Definition 5.2.7. If H is a complex Hilbert space and $T \in B(H)$, then T is self-adjoint if $T=T^*$.

Note. A complex $n \times n$ -matrix A is self-adjoint if $A = A^*$.

Example. What is the set of self-adjoint operators $z \to az$; $z \in \mathbb{C}$, $a \in \mathbb{Z}$? Now we require that $a^* = \overline{a} = a$, which holds iff $a \in \mathbb{R}$.

There are two natural ways to show that a given operator is self-adjoint.

Example 5.2.8. The matrix

$$
A = \left[\begin{array}{cc} 2 & i \\ -i & 3 \end{array} \right]
$$

is self adjoint. This is clear since

$$
A^* = \overline{A^T} = \overline{\begin{bmatrix} 2 & -i \\ i & 3 \end{bmatrix}} = \begin{bmatrix} 2 & i \\ -i & 3 \end{bmatrix} = A.
$$

The second approach is to show that

$$
\langle T(x), y \rangle = \langle x, T(y) \rangle
$$

 $\forall x, y \in \mathcal{H}$. The uniqueness of adjoint then gives $T = T^*$.

Example 5.2.9. It is clear that $I \in B(\mathcal{H})$ satisfies

$$
\langle I(x), y \rangle = \langle x, I(y) \rangle \quad \forall x, y \in \mathcal{H}.
$$

Hence I is self-adjoint.

Example 5.2.10. For any $k \in \mathcal{C}[0,1]$, let $T_k \in B(L_{\mathbb{C}}^2[0,1])$ be defined by $T_k g = gk$. Hence we assume that k is real-valued. In this case T_k is self-adjoint.

Proof. Let $k \in \mathcal{C}[0,1]$. Now $(T_k)^* = T_{\overline{k}} = T_k$ since k is real (i.e. $k = k_1 + ik_2$, where $k_2 \equiv 0$).

Lemma 5.2.11. Let H be a complex Hilbert space and let S be the set of self-adjoint operators in $B(H)$. Then

- (a) $\alpha T_1 + \beta T_2 \in S \quad \forall T_1, T_2 \in S, \ \alpha, \beta \in \mathbb{R};$
- (b) S is a closed subset of $B(\mathcal{H})$.

Proof. (a) As T_1 and T_2 are self-adjoint, Lemma 5.1.7 gives

$$
(\alpha T_1 + \beta T_2)^* \stackrel{5.1.7}{=} \overline{\alpha} T_1^* + \overline{\beta} T_2^* \stackrel{\alpha, \beta \in \mathbb{R}}{=} \alpha T_1 + \beta T_2.
$$

(b) Exercise. \Box

An alternative way of stating Lemma 5.2.11 is to say that the set of salf-adjoint operators in $B(\mathcal{H})$ is a real Banach space.

Lemma 5.2.12. Let H be a complex Hilbert space and let $T \in B(H)$. Then

(a) T^*T and TT^* are self-adjoint;

(b) $T = R + iS$, where R and S are self-adjoint.

Proof. (a) By Lemma 5.1.7 and Theorem 5.1.8 (a)

$$
(T^*T)^* \stackrel{5.1.7}{=} T^*(T^*)^* \stackrel{5.1.8}{=} T^*T.
$$

Hence T^*T is self-adjoint. Similarly TT^* is self-adjoint. (b) Let $R=\frac{1}{2}$ $\frac{1}{2}(T+T^*)$ and $S=\frac{1}{2i}$ $\frac{1}{2i}(T - T^*)$. Then

$$
R + iS = \frac{1}{2}T + \frac{1}{2}T^* + i\frac{1}{2i}(T - T^*) = T.
$$

On the other hand, by Lemma 5.1.7

$$
R^* = \frac{1}{2}T^* + \frac{1}{2}(T^*)^* = \frac{1}{2}(T^* + T) = R
$$

and

$$
S^* = \left(\frac{1}{2i}T - \frac{1}{2i}T^*\right)^* = \frac{1}{2i}T^* - \frac{1}{2i}T = -\frac{1}{2i}T^* - \frac{1}{2i}T = S,
$$

since

$$
\frac{1}{2i} = \frac{2i}{4i^2} = -\frac{i}{2} \Rightarrow \frac{\overline{1}}{2i} = \frac{i}{2} = -\frac{1}{2i}
$$

.

Hence R and S are self-adjoint. \Box

Note. By analogy with complex numbers, the operators R and S in Lemma 5.2.12 are sometimes called the real and imaginary parts of T.

Definition 5.2.13. If H is a complex Hilbert space and $T \in B(H)$, then T is unitary if $TT^* = T^*T = I.$

Note. (a) By definition, for unitary operators $T^* = T^{-1}$. (b) A complex $n \times n$ -matrix A is called *unitary* if $AA^* = A^*A = I$.

Example. What are the unitary operators of $\mathbb{C} \to \mathbb{C}$? Now we require that the mapping $z \to az$ is such that $aa^* = 1$. This holds iff $|a| = 1$. Hence a is the point of the unit circle.

Example 5.2.14. For any $k \in \mathcal{C}_{\mathbb{C}}[0,1]$, let $T_k \in B(L_{\mathbb{C}}^2[0,1])$ be defined by

$$
T_k g = g k.
$$

Claim. If $f \in \mathcal{C}_{\mathbb{C}}[0,1]$ satisfies $|f(t)| = 1 \ \forall t \in [0,1]$, then T_f is unitary.

Proof. We know from Example 5.1.4 that $(T_f)^* = T_{\overline{f}}$, where $\overline{f} = f_1 - if_2$ and $f = f_1 + if_2$. Let $g \in L^2_{\mathbb{C}}[0,1]$. Then

$$
(T_f^*T_f)(g) = T_f^*(T_f g) = T_{\overline{f}}(gf) = gf \overline{f}.
$$

Since $|f(t)| = 1 \ \forall t \in [0, 1]$, we obtain

$$
(f\overline{f})(t) = f(t)\overline{f}(t) = f_1^2(t) + f_2^2(t) = |f(t)|^2 = 1.
$$

Hence $\forall t \in [0,1]$

$$
(T_f^*T_f)(g)(t) = g(t),
$$

so that $(T_f^*T_f)(g) = g$. The proof of $(T_f^*T_f^*)(g) = g$ is similar.

For example, a natural choice in Example 5.2.14 for f would be $f : [0, 1] \to \mathbb{C}$,

$$
f(t) = e^{2i\pi t}
$$

.

We give next a more geometric characterization for unitary operators. This requires a lemma.

Lemma 5.2.15. If X is a complex inner product space and $S, T \in B(X)$ are such that $\langle S(x), x \rangle = \langle T(x), x \rangle$

for all $x \in X$, then $S = T$.

Proof. By Lemma 3.1.8 for any $u, v, x, y \in X$

$$
\langle u+v, x+y \rangle - \langle u-v, x-y \rangle = 2\langle u, y \rangle + 2\langle v, x \rangle. \quad (*)
$$

Replacing here v by iv and y by iy gives

$$
\langle u + iv, x + iy \rangle - \langle u - iv, x - iy \rangle = 2\langle u, iy \rangle + \langle iv, x \rangle
$$

= -2*i* $\langle u, y \rangle + 2i\langle v, x \rangle$.

Multiplying this with i and adding $(*)$ yields

$$
\langle u+v, x+y \rangle - \langle u-v, x-y \rangle + i \langle u+v, x+y \rangle - i \langle u-v, x-y \rangle = 4 \langle u, y \rangle \quad (**)
$$

We replace $u = T(x)$, $v = T(y)$ in (**) and obtain by linearity and the assumption that

 $4\langle T(x), y\rangle$ $= \langle T(x + y), x + y \rangle - \langle T(x - y), x - y \rangle + i \langle T(x + iy), x + iy \rangle - \langle T(x - iy), x - iy \rangle$ $= \langle S(x + y), x + y \rangle - \langle S(x - y), x - y \rangle + i \langle S(x + iy), x + iy \rangle - \langle S(x - iy), x - iy \rangle$ $\stackrel{(**)}{=} 4\langle S(x), y \rangle \quad \forall x, y \in X.$ Hence $\langle T(x), y \rangle = \langle S(x), y \rangle \ \forall x, y \in X$ and Exercise 4/1 implies that $T(x) = S(x) \ \forall x \in X$

 $X.$

Theorem 5.2.16. Let H be a complex Hilbert space and let $T, U \in B(H)$. Then

- (a) $T^*T = I$ iff T is an isometry;
- (b) U is unitary iff U is a bijective isometry $\mathcal{H} \to \mathcal{H}$.

Proof. (a) Suppose first that $T^*T = I$. Then

$$
||T(x)||^2 = \langle T(x), T(x) \rangle = \langle x, T^*(T(x)) \rangle = \langle x, I(x) \rangle = \langle x, x \rangle
$$

= $||x||^2 \quad \forall x \in \mathcal{H}.$

Hence T is an isometry. Conversely, suppose that T is an isometry. Then

$$
\langle (T^*T)(x), x \rangle = \langle T^*(T)(x)), x \rangle \stackrel{(T^*)^* = T}{=} \langle T(x), T(x) \rangle
$$

= $||T(x)||^2 = ||x||^2 = \langle x, x \rangle = \langle I(x), x \rangle \quad \forall x \in \mathcal{H}.$

Now Lemma 5.2.15 implies that $T^*T = I$.

(b) Suppose first that U is unitary. Then U is an isometry by (a). Hence clearly U is injective. Moreover, if $y \in H$, then $y = U(U^*(y))$, which gives $y \in Im(U)$. Hence $Im(U) = H$ so that U is surjective.

Conversely, suppose that $U: \mathcal{H} \to \mathcal{H}$ is a bijective isometry. Then $U^*U = I$ by (a). Moreover, if $y \in \mathcal{H}$, then there is $x \in \mathcal{H}$ such that $y = U(x)$. Hence

$$
(UU^*)(y) = U(U^*(Y)) = U(U^*(U(x))) \stackrel{U^*U = I}{=} U(x) = y.
$$

Thus $UU^* = I$ so that U is unitary. \Box

Corollary 5.2.17. Let H be a complex Hilbert space and let U be the set of unitary operators in $B(\mathcal{H})$. Then $U^* \in \mathcal{U}$ for all $U \in \mathcal{U}$ and

$$
||U|| = ||U^*|| = 1.
$$

Proof. Let $U \in \mathcal{U}$. Then $UU^* = U^*U = I$. In other words (by Theorem 5.1.8)

$$
(U^*)^*U^* = U^*(U^*)^* = I,
$$

so that $U^* \in \mathcal{U}$. By Theorem 5.2.16, $||U|| = ||U^*|| = 1$ since U and U^* are isometres. \square

Remark 5.2.18. Let H and U be as in Corollary 5.2.17. Then $u_1u_2 \in U$ and $u_1^{-1} \in U$ for all $u_1, u_2 \in \mathcal{U}$ (exercise). Hence \mathcal{U} forms a group with respect to the operator product.

5.3. The spectrum of an operator. Given a complex $n \times n$ -matrix A, a number $\lambda \in \mathbb{C}$ is called an *eigenvalue* of A if there exists a non-zero vector $x \in \mathbb{C}^n$ such that

$$
Ax = \lambda x.
$$

Here x is an *eigenvector*. It can be proved (see Linear Algebra) that λ is an eigenvalue if and only if $A - \lambda I$ is not invertible.

Definition 5.3.1. Let H be a complex Hilbert space, let $I \in B(H)$ be the identity and let $T \in B(\mathcal{H})$. The spectrum of T is defined as a set

$$
\sigma(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible} \}.
$$

A number $\mu \in \mathbb{C}$ is called an *eigenvalue* of T if there exists $x \in \mathcal{H}$, $x \neq 0_H$, such that

$$
T(x) = \mu x.
$$

Example 5.3.2. Let H be a complex Hilbert space and let I be the identity on H . Then, for any $\mu \in \mathbb{C}$,

$$
\sigma(\mu I) = {\mu}.
$$

In fact, for any $\tau \in \mathbb{C}$, τI is invertible if and only if $\tau \neq 0$, since

$$
\tau I \tau^{-1} I = \tau^{-1} I \tau I = I \quad \text{if } \tau \neq 0.
$$

Clearly $0 \cdot I$ is not invertible. Hence

$$
\sigma(\mu I) = \{ \lambda \in \mathbb{C} : \mu I - \lambda I \text{ is not invertible} \}
$$

= $\{ \lambda \in \mathbb{C} : (\mu - \lambda)I \text{ is not invertible} \}$
= $\{ \mu \}.$

Lemma 5.3.3. Let H be a complex Hilbert space and let $T \in B(H)$. If λ is an eigenvalue of T, then $\lambda \in \sigma(T)$.

Proof. Let $x \in \mathcal{H} \setminus \{0_{\mathcal{H}}\}$ be such that $T(x) = \lambda x$. Then

$$
T(x) - \lambda x = 0
$$
 _{\mathcal{H}} i.e. $(T - \lambda I)(x) = 0$ _{\mathcal{H}} .

Hence $x \in Ker(T - \lambda I)$ and Lemma 4.2.8 (a) implies that $T - \lambda I$ is not invertible. \Box

It appears that on infinite-dimensional spaces the spectrum does not necessarily coincide with the set of eigenvalues.

Example 5.3.4. The forward shift $S \in B(l^2)$ has no eigenvalues. To see this, assume that $\lambda \in \mathbb{C}$ is an eigenvalue of S and $x = (x_n)$ is the corresponding non-zero eigenvector. Then

$$
S(x) = (0, x_1, x_2, x_3, \ldots) = (\lambda x_1, \lambda x_2, \lambda x_3, \ldots) = \lambda x.
$$

If $\lambda = 0$, then $x = (x_n) = 0_{l^2}$, which is a contradiction.

If $\lambda \neq 0$, then $\lambda x_1 = 0$ implies that $x_1 = 0$. Hence $\lambda x_2 = 0$ and again $x_2 = 0$. Continuing this way we conclude $x = 0_l$, a contradiction.

How to find the spectrum if there are no eigenvalues? The following two results can sometimes help.

Theorem 5.3.5. Let H be a complex Hilbert space and let $T \in B(H)$. Then

- (a) $\lambda \notin \sigma(T)$ if $|\lambda| > ||T||$;
- (b) $\sigma(T)$ is a closed set.

Proof. (a) If $|\lambda| > ||T||$, then

$$
\frac{1}{|\lambda^{-1}||\lambda|} > |\lambda^{-1}|||T|| = ||\lambda^{-1}T||.
$$

Hence $\|\lambda^{-1}T\| < 1$ and so $I - \lambda^{-1}T$ is invertible by Theorem 4.2.5. Hence

$$
\lambda I - T = \lambda (I - \lambda^{-1} T)
$$

is invertible and so $T - \lambda I$ is invertible. Therefore $\lambda \notin \sigma(T)$. (b) Define $F: \mathbb{C} \to B(\mathcal{H})$ by $F(\lambda) = T - \lambda I$. As

$$
||F(\mu) - F(\lambda)|| = ||T - \mu I - (T - \lambda I)|| = |\mu - \lambda| ||I|| = |\mu - \lambda|,
$$

F is continuous. By Corollary 4.2.7, the set of invertible elements in $B(\mathcal{H})$ is open. Hence the set C concisting of non-invertible elements in $B(\mathcal{H})$ is closed. Since

$$
\sigma(T) = F^{-1}(\mathcal{C}) \quad \text{(pre-image)}
$$

we infer by continuity of F that $\sigma(T)$ is closed. \Box

Theorem 5.3.5 states that the spectrum of an operator T is a closed bounded (and hence compact) subset of $\mathbb C$ which is contained in an open disc with the center origin and the radius $||T||$.

Lemma 5.3.6. If H is a complex Hilbert space and $T \in B(H)$, then

 $\sigma(T^*) = {\overline{\lambda} : \lambda \in \sigma(T)}.$

Proof. 1^o) If $\lambda \in \sigma(T)$, then $T - \lambda I$ is invertible and so

$$
(T - \lambda I)^* = T^* - \overline{\lambda} I
$$

is invertible by Exercise 9/7. Hence $\overline{\lambda} \in \sigma(T^*)$.

2°) Conversely, if $\overline{\lambda} \notin \sigma(T^*)$, then $T^* - \overline{\lambda}I$ is invertible and so

$$
(T^* - \overline{\lambda}I)^* = (T^*)^* - \lambda I = T - \lambda I
$$

is invertible since $(T^*)^* = T$. Hence $\lambda \notin \sigma(T)$. The claim follows by combining $1°$ and $2°$. . The contract of the contract of \Box

Example 5.3.7. If $S: l^2 \to l^2$ is the forward shift, then

(a) λ is an eigenvalue of S^* for any $\lambda \in \mathbb{C}, |\lambda| < 1$; (b) $\sigma(S) = {\lambda \in \mathbb{C} : |\lambda| < 1}.$

Proof. (a) Let $\lambda \in \mathbb{C}$ with $|\lambda| < 1$. We have to find a non-zero vector $(x_n) \in l^2$ such that $S^*((x_n)) = \lambda(x_n).$

By Example 5.1.5,

$$
S^*(x_1, x_2, x_3, \ldots) = (x_2, x_3, x_4, \ldots),
$$

so we need to find a non-zero $(x_n) \in l^2$ such that

$$
(x_2, x_3, x_4, \ldots) = (\lambda x_1, \lambda x_2, \lambda x_3, \ldots),
$$

that is $x_{n+1} = \lambda x_n$ for all $n \in \mathbb{N}$. This holds if $x_n = \lambda^{n-1}$. Here we agree that $0^0 = 1$. Then $(x_n) = (\lambda^{n-1})$ is non-zero even for $\lambda = 0$. Moreover, as $|\lambda| < 1$,

$$
\sum_{n=1}^{\infty} |x_n|^2 = \sum_{n=0}^{\infty} |\lambda^n|^2 = \sum_{n=0}^{\infty} |\lambda|^{2n} < \infty,
$$

and so $(x_n) \in l^2$. Thus λ is an eigenvalue of S^* with an eigenvector (λ^{n-1}) , where $0^0 = 1$.

(b) We have $\{\lambda \in \mathbb{C} : |\lambda| < 1\} \subset \sigma(S^*)$ by (a) and Lemma 5.3.3. Thus $\{\overline{\lambda} \in \mathbb{C} : |\lambda| < 1\}$ is contained in $\sigma(S)$ by Lemma 5.3.6. Clearly

$$
\{\overline{\lambda} \in \mathbb{C} : |\lambda| < 1\} = \{\lambda \in \mathbb{C} : |\lambda| < 1\}
$$

and so

$$
\{\lambda \in \mathbb{C} : |\lambda| < 1\} \subset \sigma(S).
$$

As $\sigma(S)$ is closed, by Theorem 5.3.5, we infer that $\{\lambda \in \mathbb{C} : |\lambda| \leq 1\} \subset \sigma(S)$. On the other hand, if $|\lambda| > 1$, then $\lambda \notin \sigma(S)$ by Theorem 5.3.5 since $||S|| = 1$. Hence

$$
\sigma(S) = \{ \lambda \in \mathbb{C} : |\lambda| \le 1 \}.
$$

¤

If we know the spectrum of T, it is easy to find the spectrum of powers of T and (if T is invertible) the inverse of T.

Theorem 5.3.8. Let H be a complex Hilbert space and let $T \in B(H)$. (a) If $p : \mathbb{C} \to \mathbb{C}$ is a polynomial, then

$$
\sigma(p(T)) = \{p(\mu) : \mu \in \sigma(T)\};
$$

(b) If T is invertible, then

$$
\sigma(T^{-1}) = \{\mu^{-1} : \mu \in \sigma(T)\}.
$$

Here

$$
p(T) = a_n T^n + a_{n-1} T^{n-1} + \ldots + a_1 T + a_0 I
$$

whenever

$$
p(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0.
$$

Proof. (a) Let $\lambda \in \mathbb{C}$ and let $q(z) = \lambda - p(z)$, $z \in \mathbb{C}$. Then q is a polynomial, so by the fundamental theorem of algebra, it has a factorization

$$
q(z) = c(z - \mu_1) \cdots (z - \mu_n),
$$

where $c, \mu_i \in \mathbb{C}$ with $c \neq 0$ and μ_i are roots of q. Here we may assume that $p \neq \lambda$, since if $p \equiv \lambda$, then (Example 5.3.2)

$$
\sigma(p(T)) = \sigma(\lambda I) = {\lambda} = {p(\mu) : \mu \in \sigma(T)}.
$$

Hence

$$
\lambda \notin \sigma(p(T)) \iff q(T) = \lambda I - p(T) \text{ is invertible}
$$

\n
$$
\Leftrightarrow c(T - \mu_1 I) \cdots (T - \mu_n I) \text{ is invertible}
$$

\n
$$
\Leftrightarrow T - \mu_j I \text{ is invertible for all } j = 1, ..., n
$$

\n
$$
\Leftrightarrow \mu_j \notin \sigma(T) \quad \forall j = 1, ..., n
$$

\n
$$
\Leftrightarrow q(\mu) \neq 0 \quad \forall \mu \in \sigma(T)
$$

\n
$$
\Leftrightarrow \lambda \neq p(\mu) \quad \forall \mu \in \sigma(T).
$$

Hence $\sigma(p(T)) = \{p(\mu) : \mu \in \sigma(T)\}\.$ Here the equivalence $(*)$ is left as an exercise.

(b) As $T^{-1} = T^{-1} - 0 \cdot I$ is invertible, $0 \notin \sigma(T^{-1})$. Hence any element of $\sigma(T^{-1})$ is of the form μ^{-1} for some $\mu \in \mathbb{C} \setminus \{0\}$. For any $\mu \neq 0$,

$$
\mu^{-1}I - T^{-1} = -\mu^{-1}T^{-1}(\mu I - T),
$$

and $-\mu^{-1}T^{-1}$ is invertible. Hence

$$
\mu^{-1} \in \sigma(T^{-1}) \iff \mu^{-1}I - T^{-1} \text{ is not invertible}
$$

\n
$$
\iff -\mu^{-1}T^{-1}(\mu I - T) \text{ is not invertible}
$$

\n
$$
\overset{(*)}{\iff} \mu I - T \text{ is not invertible}
$$

\n
$$
\iff \mu \in \sigma(T).
$$

The proof of (∗):

1° If $\mu I - T$ is invertible, then $-\mu^{-1}T^{-1}(\mu I - T)$ is invertible by Lemma 4.2.2. 2° If $-\mu^{-1}T^{-1}(\mu I - T)$ is invertible, then

$$
(-\mu^{-1}T^{-1})^{-1}(-\mu^{-1}T^{-1})(\mu I - T) = \mu I - T
$$

is invertible by Lemma 4.2.2.

Thus $\sigma(T^{-1}) = {\mu^{-1} : \mu \in \sigma(T)}$.

Notation. Let H be a complex Hilbert space and let $T \in B(H)$. If $p : \mathbb{C} \to \mathbb{C}$ is polynomial, we denote

$$
p(\sigma(T)) = \{p(\mu) : \mu \in \sigma(T)\}.
$$

Corollary 5.3.9. If H is a complex Hilbert space and $U \in B(H)$ is unitary, then

 $\sigma(U) \subset {\lambda \in \mathbb{C} : |\lambda| = 1}.$

Proof. As U is unitary, $||U|| = 1$ and Theorem 5.3.5 implies that

$$
\sigma(U) \subset \{ \lambda \in \mathbb{C} : |\lambda| \le 1 \}.
$$

Similarly

$$
\sigma(U^*) \subset \{\lambda \in \mathbb{C} : |\lambda| \le 1\}
$$

since U is unitary. However, $U^* = U^{-1}$ so that Theorem 5.3.8 (b) implies that $(0 \notin \sigma(U^*))$ since U^* is invertible)

$$
\sigma(U) = \{\lambda^{-1} : \lambda \in \sigma(U^*)\} \subset \{\lambda \in \mathbb{C} : |\lambda| \ge 1\}.
$$

The claim follows. \Box

Definition 5.3.10. Let H be a complex Hilbert space and let $T \in B(H)$. Then

(a) the spectrum radius of T, denoted by $r_{\sigma}(T)$, is defined as

$$
r_{\sigma}(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\};
$$

(b) the numerical range of T, denoted by $V(T)$, is defined as

$$
V(T) = \{ \langle T(x), x \rangle : ||x|| = 1 \}.
$$

Note. In (a), $\sup = \max$ since $\sigma(T)$ is closed and bounded (i.e. compact).

Lemma 5.3.11. If H is a complex Hilbert space and $T \in B(H)$ is normal, then

$$
\sigma(T) \subset \overline{V(T)}.
$$

Proof. Let $\lambda \in \sigma(T)$. As $T - \lambda I$ is normal by Example 5.2.4 and $T - \lambda I$ is noninvertible, Corollary 5.2.6 implies that there exists $(x_n) \in \mathcal{H}$ such that $||x|| = 1 \ \forall n \in \mathbb{N}$ and

$$
\lim_{n \to \infty} ||(T - \lambda I)(x_n)|| = 0.
$$

¡ Corollary 5.2.6: For any $n \in \mathbb{N} \exists x'_n \neq 0$ such that

$$
\|\overbrace{S}^{T-\lambda I}(x'_n)\| < \frac{1}{n} \|(x'_n)\|.
$$

Take $x'_n = \frac{x'_n}{\|x'_n\|}$. Hence $||S(x'_n)|| < \frac{1}{n}$ $\frac{1}{n}.$ ¢ By the Cauchy-Schwarz-inequality,

$$
|\langle (T - \lambda I)(x_n), x_n \rangle| \stackrel{\|x_n\| = 1}{\leq} ||(T - \lambda I)(x_n)||
$$

so that

$$
0 = \lim_{n \to \infty} \langle \overbrace{(T - \lambda I)(x_n)}^{T(x_n) - \lambda(x_n)}, x_n \rangle = \lim_{n \to \infty} (\langle T(x_n), x_n \rangle - \lambda \langle x_n, x_n \rangle).
$$

However, $\langle x_n, x_n \rangle = ||x_n|| = 1$ and so

$$
\lim_{n \to \infty} \langle \underbrace{T(x_n), x_n}_{\in V(T)} \rangle = \lambda.
$$

Therefore $\lambda \in \overline{V(T)}$.

Theorem 5.3.12. Let H be a complex Hilbert space and let $S \in B(H)$ be self-adjoint. Then

- (a) $V(S) \subset \mathbb{R}$; (b) $\sigma(S) \subset \mathbb{R}$; (c) At least one of $||S||$ and $-||S||$ is contained in $\sigma(S)$;
- (d) $r_{\sigma}(S) = \sup\{|\tau| : \tau \in V(S)\} = ||S||.$

Proof. (a) As S is self-adjoint,

$$
\langle S(x), x \rangle \stackrel{S^* = S}{=} \langle x, S(x) \rangle = \overline{\langle S(x), x \rangle}
$$

for all $x \in \mathcal{H}$. Hence $\langle S(x), x \rangle \in \mathbb{R} \ \ \forall \ x \in \mathcal{H}$ and hence $V(S) \subset \mathbb{R}$.

(b) Lemma 5.3.11; notice that $|\langle S(x), x \rangle| \leq C-S \leq ||S(x)|| \leq ||S||$ if $||x|| = 1$.

(c) Since $0 - 0 \cdot I$ is non-invertible, the claim holds for $S = 0$. So by working with $||S||^{-1}S$, we may assume that $||S|| = 1$. By the definition of $||S||$, there exists $(x_n) \in \mathcal{H}$ such that $||x_n|| = 1$ and $\lim_{n\to\infty} ||S(x_n)|| = 1$. In fact, since $||S|| = 1$, the definition of norm implies the existence of a sequence $(x'_n) \subset \mathcal{H} \setminus \{0_{\mathcal{H}}\}$ such that $||x'_n|| \leq 1$ and $\lim_{n\to\infty} ||S(x'_n)|| = 1.$ Since

$$
||S(x'_n)||\leq ||S|| ||x'_n||=||x'_n||,
$$

we have $\lim_{n\to\infty} ||x'_n|| = 1$ as well. Choose $x_n = \frac{x'_n}{||x'_n||}$. Then $||x_n|| = 1$ and

$$
||S(x_n)|| = \frac{||S(x'_n)||}{||x'_n||} \to 1
$$

as $n \to \infty$.

Since S^2 is self-adjoint $((S^2)^* = S^*S^* = S^2)$, we have $\langle S^2(x), x \rangle = \langle x, S^2(x) \rangle \quad \forall \ x \in \mathcal{H}.$

Therefore, by Lemma 3.1.6,

$$
||(I - S^{2})(x_{n})||^{2} = \langle (I - S^{2})(x_{n}), (I - S^{2})(x_{n}) \rangle = \langle x_{n} - S^{2}(x_{n}), x_{n} - S^{2}(x_{n}) \rangle
$$

\n
$$
\stackrel{3.1.6}{=} ||x_{n}||^{2} + ||S^{2}(x_{n})||^{2} - \langle x_{n}, S^{2}(x_{n}) \rangle - \langle S^{2}(x_{n}), x_{n} \rangle
$$

\n
$$
\stackrel{||S^{2}|| \le ||S|| ||S|| = 1}{\le} 2 - 2\langle S^{2}(x_{n}), x_{n} \rangle \stackrel{S^{*} = S}{=} 2 - 2\langle S(x_{n}), S(x_{n}) \rangle
$$

\n
$$
= 2 - 2||S(x_{n})||^{2}.
$$

It follows that

$$
\lim_{n \to \infty} \left\| (I - S^2)(x_n) \right\| = 0
$$

and Corollary 5.2.6 implies that $I - S^2$ is non-invertible. Hence $1 \in \sigma(S^2)$ and Theorem 5.3.8 implies that $1 \in (\sigma(S))^2$. This is possible if either 1 or −1 is in $\sigma(S)$. (d) Exercise. \Box

Example 5.3.13. (a) If A is a self-adjoint matrix with eigenvalues $\{\lambda_1, ..., \lambda_n\}$, then by (d) of Theorem 5.3.12

$$
||A|| = \max\{|\lambda_1|, ..., |\lambda_n|\}.
$$

(b) If B is any square matrix, then B^*B is self-adjoint by Lemma 5.2.12 and

$$
||B||^2 = ||B^*B||
$$

by Theorem 5.1.8. Hence $||B||$ can be calculated by using eigenvalues of B^*B .

6. Compact operators

6.1. Some general properties.

Definition 6.1.1. Let X and Y be normed spaces. A linear transformation $T \in L(X, Y)$ is *compact* if for any bounded sequence (x_n) in X the sequence $(T(x_n))$ in Y contains a convergent subsequence.

The set of compact transformations in $L(X, Y)$ is denoted by $K(X, Y)$.

Theorem 6.1.2. Let X and Y be normed spaces and let $T \in K(X, Y)$. Then $T \in$ $B(X, Y)$.

Proof. Exercise. \Box

Theorem 6.1.3. Let X, Y, Z be normed spaces. Then

- (a) If $S, T \in K(X, Y)$ and $\alpha, \beta \in \mathbb{C}$, then $\alpha S + \beta T$ is compact.
- (b) If $S \in B(X, Y)$, $T \in B(Y, Z)$, and at least one of the operators S, T is compact, then $TS \in B(X,Z)$ is compact.

Proof. (a) Let (x_n) be a bounded sequence in X. Since S is compact, there is a subsequence (x_{n_j}) such that $(S(x_{n_j}))$ converges. Since the subsequence (x_{n_j}) is bounded and T is compact, there is a subsequence $(x_{n_{j_k}})$ of (x_{n_j}) such that $T(x_{n_{j_k}})$ converges. Hence, for the sequence $(x_{n_{j_k}})$, there exists $y, y' \in Y$ so that

$$
\lim_{k \to \infty} S(x_{n_{j_k}}) = y \quad \text{and} \quad \lim_{k \to \infty} T(x_{n_{j_k}}) = y';
$$

see Lemma 1.2.2 (iii). Therefore

$$
\lim_{k \to \infty} (\alpha S + \beta T)(x_{njk}) = \lim_{k \to \infty} \alpha S(x_{njk}) + \beta T(x_{njk}) = \alpha y + \beta y' \in Y,
$$

and so $\alpha s + \beta T$ is compact.

(b) Let (x_n) be a bounded sequence in X. If S is compact, there is a subsequence (x_{n_j}) so that $\lim_{j\to\infty} S(x_{n_j}) = y \in Y$. Since T is bounded, and hence continuous, $\lim_{j\to\infty} T(S(x_{n_j})) = T(y)$ by Remark 4.3.19. Thus TS is compact.

Suppose that S is bounded and T is compact. Then the sequence $(S(x_n))$ is bounded. Since T is compact, there is a subsequence (x_{n_j}) so that $(T(S(x_{n_j})))$ converges. Again TS is compact.

Notation. When dealing with compact operators one often considers subsequences or subsequences of subsequences. For notational simplicity, it is common to write (x_n) for subsequences (and for subsequences of subsequences etc.) of the sequence (x_n) .

Definition 6.1.4. Let V, W be vector spaces and let $T \in L(V, W)$. The rank of T is the number

$$
r(T) = dim(Im(T)).
$$

Moreover, T is called a *finite rank operator* (or T has *finite rank*) if $dim(Im(T)) < \infty$, that is, $Im(T)$ has a finite basis.

Theorem 6.1.5. Let X and Y be normed spaces and let $T \in B(X, Y)$. If T has finite rank, then T is compact.

The proof if based on the following *Bolzano-Weierstrass theorem*, which we recall without proof.

Lemma 6.1.6. Any infinite and bounded set A in \mathbb{C}^k has an accumulation point.

The proof of Theorem 6.1.5. Since T has finite rank, the space $Im(T)$ is finitedimensional. If (x_n) is a bounded sequence in X, then by boundedness of T, $(T(x_n))$ dimensional. If (x_n) is a bounded sequence in X , then by bounded sequence in $Im(T)$. Let $y_n = T(x_n)$. Then $y_n = \sum_{i=1}^k x_i$ $\sum_{i=1}^k \lambda_{in} e_i$, where $\lambda_{in} \in \mathbb{C}$ and $\{e_1, \ldots, e_k\}$ is a base of $Im(T)$. Moreover, if

$$
y = \sum_{i=1}^{k} \mu_i e_i \in Im(T),
$$

then $y_n \to y$ in $Im(T)$ if and only if

$$
\lambda_n:=(\lambda_{1n},\ldots,\lambda_{kn})\to(\mu_1,\ldots,\mu_k)
$$

in \mathbb{C}^k , see Example 1.1.3 and notice that all norms and equivalent in $Im(T)$, since $Im(T)$ is finite-dimensional (Analysis 4/Rynne & Youngson, p.43). Since (y_n) is a bounded sequence, (λ_n) is a bounded sequence in \mathbb{C}^k . If $\{\lambda_n : n \in \mathbb{N}\}\$ is a finite set, (λ_n) contains a subsequence which is constant; hence converging. If $\{\lambda_n : n \in \mathbb{N}\}\$ is infinite, Lemma 6.1.6 implies that (λ_n) contains a converging subsequence. In any case for some subsequence $(\lambda_{n_j}), (\lambda 1 n_j, \ldots, \lambda k n_j) \to (\mu_1, \ldots, \mu_k) \in \mathbb{C}^k$, and then

$$
y_{n_j} \to y = \sum_{i=1}^k \mu_i e_i \in Im(T). \quad \Box
$$

Remark 6.1.7. Let X, Y be normed spaces and let $T \in B(X, Y)$. If $dim(X) < \infty$, then T has finite rank (see Linear algebra). Hence T is compact.

In general, compact operators have analogical properties as bounded operators in finitedimensional case! Many operators related to applications are compact.

Theorem 6.1.8. Let X be normed spaces, Y a Banach space, and let T_k) be a sequence in $K(X, Y)$ so that $T_k \to T$ in $B(X, Y)$. Then T is compact, that is, $K(X, Y)$ is a closed subset of $B(X, Y)$.

Proof. Let (x_n) be a bounded sequence in X. Since T_1 is compact, there is a subsequence $(x_{n_i(1)})$ so that $(T_1(x_{n_i(1)}))$ converges. Again, since T_2 is compact, there is a subsequence $(x_{n_i(2)})$ of $(x_{n_i(1)})$ so that $(T_2(x_{n_i(2)}))$ converges. Clearly, $(T_1(x_{n_i(2)}))$ converges as well as a subsequence of a converging sequence. Continuing in this fashion, we find subsequences $(x_{n_i(k)})$, $k \in \mathbb{N}$ so that

$$
\{n_j(1)\}\supset\{n_j(2)\}\supset\cdots\supset\{n_j(k)\}\supset\cdots
$$

and $(T_i(x_{n_i(k)}))$ converges for all $i = 1, ..., k$ for each $k \in \mathbb{N}$.

Let $n_k := n_k(k)$ be the diagonal of indices, $k \in \mathbb{N}$. Now $(T_i(x_{n_k}))$ converges for all $i \in \mathbb{N}$. By completeness of Y, it is enough to show that $(T(x_{n_k}))$ is a Cauchy sequence. Let $\varepsilon > 0$. Since the subsequence (x_{n_k}) is bounded, $\exists M > 0$ so that $||x_{nk}|| \leq M \,\forall k \in \mathbb{N}$. Also, since $||T_k - T|| \to 0$ as $k \to \infty$, $\exists k_1 \in \mathbb{N}$ so that

$$
||T_k - T|| < \frac{\varepsilon}{3M}
$$
 whenever $k \leq k_1$.

Next, since $(T_{k_1}(x_{n_k}))$ converges (and therefore is a Cauchy sequence), $\exists k_2 \in \mathbb{N}$ so that

$$
||T_{k_1}(x_{n_r}) - T_{k_1}(x_{n_s})|| < \frac{\varepsilon}{3} \quad \text{whenever } r, s \le k_2.
$$

Now, since

$$
||T_{k_1}(x_{n_i}) - T(x_{n_i})|| \le ||T_{k_1} - T|| ||x_{n_i}|| < \frac{\varepsilon}{3}
$$

for all $i \in \mathbb{N}$, we have for all $r, s \leq k_2$

$$
||T(x_{nr}) - T(x_{ns})||
$$

\n
$$
\leq ||T_{k1}(x_{nr}) - T(x_{nr})|| + ||T_{k1}(x_{nr}) - T_{k1}(x_{ns})|| + ||T_{k1}(x_{nr}) - T_{k1}(x_{ns})||
$$

\n
$$
< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.
$$

This proves the claim. \Box

Note. The process for selecting the subsequence in Theorem 6.1.8 is called *Cantor's* diagonalization. The same idea is used in Ascoli-Arzela theorem.

Corollary 6.1.9. If X is a normed space, Y a Banach space and (T_k) is a sequence of finite rank operators in $B(X, Y)$ so that $T_k \to T$ in $B(X, Y)$, then \hat{T} is compact.

Example 6.1.10. We show that $T \in B(l^2)$,

$$
T((a_n)) = (\frac{1}{n}a_n),
$$

is compact.

Proof. We know by Example 2.1.5 that $T \in B(l^2)$. For each $k \in \mathbb{N}$, let $T_k : l^2 \to l^2$ be defined by

$$
T_k((a_n)) = ((a_1, \frac{1}{2}a_2, \cdots, \frac{1}{k}a_k, 0, \cdots)).
$$

Then T_k are bounded and linear, and have finite rank since $dim(Im(T_k)) = k$. For any $a := (a_n) \in l^2,$

$$
||(T_{k}-T)(a)||^{2} = \sum_{n=k+1}^{\infty} \frac{|a_{n}|^{2}}{n^{2}} \leq (k+1)^{-2} \sum_{n=k+1}^{\infty} |a_{n}|^{2} \leq (k+1)^{-2} ||a||^{2}.
$$

It follows that (by taking sup over a, $||a|| \le 1$)

$$
||T_k - T|| \le (k+1)^{-1}.
$$

Hence $T_k \to T$ in $B(l^2)$ and T is compact by Corollary 6.1.9.

Remark 6.1.11. It is possible to prove: If X is a normed space, $\mathcal H$ is a Hilbert space, and $T \in K(X, \mathcal{H})$, then there is a sequence (T_k) of finite rank operators so that $T_k \to T$ in $B(X, \mathcal{H})$. See Rynne & Youngson, p. 167.