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1. NORMED SPACES
Throughout this text F is either C or R.
1.1. Definition and main examples.

Definition 1.1.1. Let X be a vector space over F. A norm on X is a function || - || :
X — R such that Vz,y € X Va € F

i) [J=| = 0;

(ii) ||lz|| =0 <= x = 0x;
(i) [Jevz]| = fel[|[];
(iv) llz +yll < [l=]l + llyll;

Note. If || - || is a norm on X, then d : X x X — Ry,
d(z,y) = [l =y,

defines a metric on X.

Ezxample 1.1.2. Let n € N and recall that F is R or C. In both cases, || - || : F",

||($17755n)|| = (le']|2> (*)

is a norm on F" (the standard norm on F™).
The previous example is a special case of the following:

Ezxample 1.1.3. Let X be a finite-dimensional vector space over F with basis { ey, ..., e, }.
Then any = € X can be written uniquely as

n
T = E )\jej,
j=1

i.e. scalars \; are unique.
Claim: The function || - || : X — R,

]l = <Z |A,»|2> ()

j=1
is a norm on X (Exercise).

Remark. If X =R" (see Example 1.1.2) and = = (z1,...,2,) € R”, then \; = z; (with
standard base) so (x) and (**) are equal. If X = C"(= R*") and = = (21,...,2,) € C",

then z; = z;+14y;. In other words x = (21, Y1, %2, Y2, . - ., Tn, Yp) and (*x) is (with standard
base eq, ..., €ea,)

N |=

——
|22

1
n n 2 n
= (3o 308) = | et
j=1 j=1 j=1
This equals ().

Note. Many normed function spaces are not finite-dimensional!
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Ezample 1.1.4. Let (M,d) be a compact metric space and let
Cp(M) :={f: M — F: f continuous}.
Then the function ||| : Cp(M) — R,
1f]l = sup{[f(z)| : x € M}

is a norm (standard norm on Cr(M)) (Exercise).

Remarks: (a) If M is not compact, for example if M =]0,1[ C R, then f(z) = 1 is
continous on M. However

sup{|f(z)|: x € M} = 4o0.
(b) Here f 4+ g and af are defined pointwise, that is,

(f +9)(@) == f(x) + g(x) | Vo e MVfgeCp(M)
(af)(z) = af(x) Vo € F.

(c) (Cr(M),|| - ) is not finite-dimensional.
Ezample 1.1.5. (a) Let 1 < p < 0o and let

LP(R) := {f : R — R : f measurable and / |fIPdz < oo}
R

1l = ( / |f|pdx)” |

is a norm (LP — norm on R). The triangle-inequality

1F+gll, < 1fllp =+ llglly

is called the Minkowsk:i inequality.
If 1 < p < oo, then the Hélder conjugate of pis 1 < ¢ < 0o so that

Then | - [, : Z'(R) — R,

Hence
le.
(b) Let
L°@R):={ f:R — R : f measurable and esssup |f(z)| < oo}
zeR
(Here esssup,cp |f(2)| < oo means: IM € Ry so that |f(z)| < M for a.e. x € R.)

Then || - [|oo : L¥(R) — R,
[ flloo :=inf{M >0 : |f(z)] <M for ae. x€R},

is a norm on L>*(R) (L*-norm on R).

For p = 1, the Holder conjugate is ¢ = co. Conversely, for p = 0o, the Holder conjugate
is ¢ = 1. Hence we write 1’ = 00, 00" = 1.
Here in (a) and (b), f 4+ ¢g and af are defined pairwise.
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Lemma 1.1.6. Let 1 < p < oo and let q be the Hélder conjugate of p. Then for any
f e LP(R) and g € LY(R)

/R Foldz < 171l

Note. Holder’s inequality follows from Young’s inequality:
1 1
lab] < =lal? + =[b|? (a,b€R, 1 <p<oo, q=17p)
p q

with a trick. The Minkowski inequality follows from the Holder inequality with a trick
(see exercises).

Example 1.1.7. (a) Let 1 < p < oo and let I be the set of all sequences (ay)nen in F' so
that

o0

Z |(a,)]” < oc.

Then

lall = (Zmnrp)p

is a norm on [P (IP-norm).

(b) Let [* be the set of all sequences in F' so that

sup |a,| < oo (bounded sequence).
neN

Then
[(@n)lloe == sup{fan| : n € N}
is a norm on [ (I*°-norm). Here
(an) + (bn) == (a, + b,) and afay,) = (aay).

Theorem 1.1.8. Let 1 < p < 0o and let q be the Holder conjugate of p. Then for any
sequences (a,) € [P, (b,) € 19 we have

D llanbal < llan) ol (Ba)llg-

Proof. The case p = 1 or ¢ = 1 is easy (Write the proof!). Assume that 1 < p < o0
and 1 < ¢ < co. We may also assume that |[(a,)|l, > 0 and ||(b,)]|; > 0. Indeed, if

1
| (an)llp = Ooo2 llan|?)» = 0, then |a,| = 0 for all n € N and therefore the left-hand side

=0.
, . . — an] __|bal
By Young’s inequality with a = ey b= 106n)]

lg 7

|an| ’bn’ l l
1(@)llp 10)lle — p Man)llp — a [1ba)llg

By summing up and using the product + sum-rules for series:
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1 > — 1 Ja,f L b
|anbn| S - + -
[1(@n) ol (o)l nzz:l ;p (a5 ; q 11(bn)llg
11 < 11
T il
P ll(an)lly ; q [1(bn)l[ ;
—— ——
ll(an)li3 ll(bn)11
= 1.
The claim follows. O
1.2. Convergence in normed spaces. A normed space (X, || -||) is a vector space X
Over F which is equipped with a norm || - ||. We assume throughout this subsection that
(X,]| - ]|) is a normed space and z,,r € X.

Definition 1.2.1. The sequence (x,) converges to x in X, denote lim, .., x, = z, if
V e > 0 dn, € N such that
|zn, — 2| <e if n>n..
The sequence (x,,) is a Cauchy sequence if Ve > 0 In. € N such that
|em — x| <e if myn > n..

Lemma 1.2.2. Assume that lim,,_.. z,, = x. Then
(i) The limit x is unique;
(i) im, o T, = x for any subsequence; that is, if i — n; is a strictly increasing
function N — N;
(iii) (x,) is a Cauchy sequence.
Proof. The proofs are as in the case X =R (replace |- | < || - ||). (ii),(ili) Exercise. O

A set M € X is compact if every sequence (z,,) in M contains a subsequence (z,,) such
that lim,, oo z,, =2 € M.
A set M € X is complete if every Cauchy sequence in M converges to x € M.

Ezxzample. X = R — X is complete but not compact. For example xz; = i € R does not
have a convergent subsequence.

Remark. We regard the following known: If M is complete, then a sequence (z,,) con-
verges in M if and only if (z,,) is a Cauchy sequence.

Theorem 1.2.3. Suppose that (x,,) and (y,) are sequences in X such that
limz,=2€X and Ilimy,=y¢€cX.

n—oo

) {llall = llyl| < Il =yl
) limy oo [al] = [l
) lim, o iz, = Q.
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Proof. (i)-(ii) exercise, (iii) skip. Proofs are as in (R, |- ).
(iv) Since (a,,) converges, it forms a bounded sequence. Hence IM > 0 such that
|| < M for Vn € N. By Definition 1.1.1 (iii), (iv),

oz, —az|| = ||ant, — anz + apz — az|™

= Nlan(zn —2) + (an — a)z]]
(i)
< (@ = 2) + [l(an — )|
(iid)
= o] [lzn = 2| + on — a)z]|
< Mllan — 2| + [an — off|l].
Now, for given ¢ > 0, In; € Nsuch that ||z, —z|| < 557 wherever n > n; & 3n, € Nsuch

that |a, —a| < Il (assuming that ||z|| # 0). If n > max(ny, ny), then |layz, —azx| < e.

(*) We use the fact that VaVz holds —azx = (—a)zr = a(—z). O

Definition 1.2.4. Banach space is a complete normed space (X, || - ||), that is, each
Cauchy sequence in X converges to an element of X.

Example. (Q,]-|) is a normed space which is not Banach. For instance the sequence

xn:Z%EQ
k=1

converges to e € R ¢ Q. By Lemma 1.2.2 (iii), (z,,) is a Cauchy sequence. By 1.2.2 (i),
(x,) can not converge to an element in Q.

Theorem 1.2.5. All the normed spaces in Examples 1.1.2, 1.1.4, 1.1.5 and 1.1.7 are
Banach spaces.

Proof. We skip the proof, see Analysis 4 / Rynne & Youngson. O
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2. LINEAR OPERATORS

2.1. Continuous linear transformations.

Let V and W be vector spaces over the same scalar field F. A mapping T : V — W
is called a linear transformation if Vo, € F and z,y € V,

T(ax + By) = aT'(z) + BT (y).(*)

Remark 2.1.1. Let V,W be vector spaces and T : V' — W be linear; see Rynne & Young-
son, p.3, (a)-(e). Let x € V and a € F; let Oy be the zero-element in V' and let Oy be
the zero-element in W.

Claim 1. 0z = 0y, a0y = Oy.
Proof. By (e), 0x = (0+0)z = 0z +0x. We add —0x on both sides = 0y = Oz. similarly
aly = O./(Ov + 0\/) = aly + aOy.

Claim 2. azr = (—a)r = a(—2x).

Proof. By (e)

ar + (—a)r = (o + (—a))z = 0z = Oy,
ar+ a(—z) = a(r + (—z)) = a0 = Oy

Claim 3. T(0y) = Ow and T'(—z) = =T (z)
Proof. By linearity (and Claiml):
T(00y)) = T(00y) + 00y) = 0T'(0y) + 0T (0V),
that is, 7'(0y) = Oy,. Moreover
T(Oy) =T(x + (—z)) = T(x) + T(—x)
that is, T'(—x) = —T'(z).

Recall the necessary definitions:

Definition. Let X and Y be normed spaces. A function F': X — Y is continuous at
x € X if Ve > 0 46 > 0 such that

[z =yllx <d=[[F(z) - Fly)ly <e

F'is continuous on X if F is continous at z Vo € X. F' is uniformly continous on X if
Vo € X Ve > 0 30 > 0 not depending on x such that

[z —yllx <0 =[F(x) - Fly)ly <e

Lemma 2.1.2. Let X and Y be normed spaces and let T : X — Y be a linear transfor-
mation. Then the following are equivalent:

(a) T is uniformly continous on X;

) T is continous on X;

) T is continous at Ox;

) 3k € Ry such that |T(z)]| < k whenever € Xand||z| < 1;
e) dk € Ry such that ||T(2)|| < k||z|| Vo € X.

(b
(c
(d
(
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Proof. The implications (a) = (b) = (c) are trivial.

(¢) = (d). Assume that T is continuous at Ox. Then, for ¢ = 1,35 > 0 such that
|T(z) — T(0x)|| = ||T(x)|| < 1 whenever x € X and ||z — Ox|| = ||z|| < J. Let w € X
with [|w] < 1. As

1% = Y < 5 <3
2 20 T2 7

We have (T is linear)
dw J J
1> (1T(EE) = 12T (w)]| = 21T (w)]].
> 1T = 17w = )]
Hence ||T(w)|| < 2 so that (d) holds with k = 2

(d) = (e). Let k be such that ||T'(x)|| < k whenever x € X and ||z| < 1. Since

T(0x) = Oy, it is clear that ||T(0x)|| = ||0y] = 0 < k||0x]||. Let x € X,z # 0x. As
Hﬁ“ = 1, we have
x 1 1
< ITEDI = I @l = T IT@IL

which implies ||T'(z)|| < k||z||.

() = (a). Assuming

(L) |T(x) =Ty
Hence, for e > 0 and § :=

e) we have by linearity Vz,y € X
I =*"NT(@) + T(=y)ll = |T(z = y)|| < kllz — y]-
we have: If z,y € X and ||z — y|| < 4, then

(
)
r
IT(z) =Tl < kllz —yll <ki=e.

This shows that T is uniformly continous on X. O
Remark. In fact, (L) means that T is Lipschitz. This is more than just uniform conti-

nuity.

Example. Transformation 7" : Cr[0,1] — F defined by
T(f) = £(0)
is linear, since Vo, § € F,Vf, g € Cp|0, 1]
IT(f)l = [fO0) < sup [f(2)] = [f]l,

z€[0,1]

that is, 2.1.2 (c¢) holds with k£ = 1.

Lemma 2.1.3. If (¢,) €1* and (z,,) € I?, 1 < p < o0, then (c,z,) € P and

[e.e] o0
Z |cnnl” < ()15 Z | "
n=1 n=1

Proof. By assumptions, we have
Ai=supq{|e,|: neN} <0

and

[eS)
Dzl = [ < oo
n=1
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Since for all n € N
|Cnxn|p < )‘p’l’n|p

and Y >° | < oo, the series > 7 | |¢,x,|P converges and the claim follows. O

Example 2.1.4. If (¢,) € [, then the transformation 7" : [ — F,

o0

T((2,)) = Y o,

n=1

is linear and continous.
Proof. By Lemma 2.1.3, (c,z,,) € ! for all (x,) € ['. Since (we regard as known)

o0 o0
E i, <00 = E Cniy < 00,
n=1

n=1

T is well-defined. For all a8 € F and (z,), (y,) € I},

T(o(xn) + Byn) = T((axn+ Byn)) = Z cn(Qn + Byn)

= « Z Cny + ﬁz Cnly = ozT((xn)) + ﬁT((ZJn))

since all the series converge. Hence T is linear. Moreover, for any (z,) € I',

|T((In)>| = ‘chxn| < Z |Cnxn| 32'1'3 ||(Cn>HOOH(xn)H1

Hence, Lemma 2.1.2 (e) holds with & = ||(¢;)||cc. Thus T is continous. O
Ezample 2.1.5. If (c,) € [*°, then the transformation T": [* — [2,

T((24)) = (chzy),
is linear and continous.

Proof. By Lemma 2.1.3, (c,z,) € [? for any (z,,) € [*. Hence T is well-defined. For all
a,B € F and (z,), (y,) € I?

T(a(z,) + Byn)) = T((ax+ Byn)) = (calaw, + Byn))
= a(cpn) + Blenyn) = aT(<xn)) + BT((yn))

Hence T is linear. Moreover, for any (z,) € I?,

IT (@) 15 = Y lental® < M)z Y lzal® = (e 2l () 13

Hence, Lemma 2.1.2 (e) holds with k& = ||(¢,)]|eo. Thus T' is continuous. d

Ezample 2.1.6. Let P C Cg[0, 1] be the set of all real polynomials p restricted to [0, 1].
It is evident that P is a vector space and clearly

Ipll = sup{ |p(t)| : ¢ € [0,1] }
defines a norm in P. Let T': P — P be the linear operator

T(p) =p'. (derivative)
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If p, € P is defined by p,(t) = ¢, then
lpnll = sup{|t|”‘t € [0, 1]} =1 VneN
while
T (pn)|| = sup {||nt”_1|‘t € [0, 1]} =nVYn €N
Hence Lemma 2.1.2 (e) does not hold for any k € R,. It follows that T is not continous.

Definition 2.1.7. Let X and Y be normed spaces and let T : X — Y be a linear
transformation. Then T is called bounded if 3k > 0 such that

T(x)| < kl|lz|| Ve X.

Remark. The function 7' : R — R,T(z) = z, is a bounded transformation but not a
bounded function. In fact, a linear transformation 7" : X — Y is a bounded function
only if T'= 0.

Reason: If there is # € X such that ||T(x)|| > 0, then |T(az)|| = ||oT(z)| =
| T(2)]| = oo as || — oo.

Notation. Let X and Y be normed spaces. Then B(X,Y) denotes the set of all
continous transformations X — Y. Elements in B(X,Y") are often called bounded linear
operators.

Ezample 2.1.8. Let a,b € R, and let k : [a,b] X [a,b] — R be continuous. Denote
Cla,b] :={f : [a,b] = R: f continuous}.
(a) If f € Cla,b], then K : C[a,b] — Cla,b] is defined by

b
Kf(s) = (K(f))(s) = / K(s.0)f(0)dt, s € [a.b].

Claim. K is well-defined and linear.
Proof. For any «, 5 € R and f, g € Cla, b], we have

(K(af +59)s) = [ hls.0)(af(s)+ sgls))at

:a/( dt+ﬁ/ (5.1)g

= a(K(f))(s) + (K
This means that
K(af +Bg9) = aK(f) + BK(g),

that is, K is linear.

We show next that K(f) € Cla,b] Vf € Cla,b]. Let £ > 0. Since [a, b] X [a, b] is compact
( closed and bounded in R?), k is uniformly continous (we regard this as known!). Hence
30 > 0 such that V(z,y), (¢,y') € [a,b] X [a,b]

|({L’,y) - (xlvy,)| <= |]€<J],y) - k?(l’/,y/)’ <E.
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In particular, if |s — §'| < ¢, then |(s,t) — (¢',t)] = |s — §'| < 0, and |k(s,t) — k(s',1)] < e.
Hence, for f € Cla,b],

Kf(s) = Kf(s)

/ab ks, £)f (1) dt — /ab (' 1) 7 (1)t
/ab (k(s. 1) — k(s’,t))f(t)dt’

b
< /
a

whenever |s — s'| < §. Thus K f is (uniformly) continous in [a,b].

k(s,1) - k(S/,tz‘@dt <e|lfll(b—a)

v~

<e <A1l

(b) K is bounded, that is K € B(C|a,b],C[a,b]). See exercise.

Linear transformations on finite-dimensional vector spaces are special in the following
sense.

Theorem 2.1.9. Let X be a finite-dimensional vector space, Y any normed space, and
let T: X —Y be linear. Then T € B(X,Y).

Proof. We define a new norm || - ||; on X by setting
]l = llll + [T ()]

We leave it as an exercise to prove that ||-||; is a norm on X. Since X is finite-dimensional,
the norms are equivalent (see Analysis 4/ Rynne & Youngson p.43). Hence 3 a constant
K > 0 such that ||z]|; < K||z| for all z € X. Therefore

IT(@)|| < llzll < Klz]] Vo e X,
i.e. T is bounded. 0
Remark 2.1.10. Let V and W be vector spaces over the same field F. We denote by

L(V,W) the set of all linear transformations V' — W and define 4+ and - in L(V,W) by
setting VF,G € L(V,W) and VA € F

(%) { (F+G)(z) = Flx)+G(z), z€V
(AF)(z) := AF(x), z€V

For each F,G € L(V,W) and A € F we have F + G € L(V,W) and A\F' € L(V, W), since
r,ye€Vand o, € F
(F+G)(ax+ py) = F(ax+ By)+ Gax + By)
aF(z) + BF(y) + aG(z) + BG(y)
a(F(z) +G(z)) + B(F(y) + Gy))
= a(F+G)(x)+ B(F +G)y)

and

(AF)(ax + By) = AF (ax + By) = MaF(z) + BF(y))
= aAF(z) + BAF(y) = a(AF)(z) + B(AF)(y).
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Hence L(V,W) is a linear subspacce of F(V,W) (= the vector space of all functions
V — W with + and - defined pointwise. We regard the existence of F'(V, W) known.

2.2. The norm of a bounded linear operator.

If X and Y are normed spaces, we know by Remark 2.1.10 that B(X,Y) is a vector
space. Next, we want to define a norm on B(X,Y).

Definition 2.2.1. Let X and Y be normed spaces and let T' € L(X,Y). Then we define

17| = sup{[|T(z)[| - [l=[] < 1}.

Remark 2.2.2. Let X and Y be normed spaces and T € L(X,Y). Recall from Lemma
2.1.2 that T'e B(X,Y) iff ||| < oc.

Proof. T € B(X,Y), 3k € Ry, such that ||T|| < k||z||Vx € X. Then
1T <k (%)
Conversely, assume that ||T’|| < co. Since ||”i—”|| =1Vz € X,z # 0x, we have
|17 (=)

o= I
for all x € X, x # 0x. Since ||T(0x)|| = ||0y|| = 0, we have

()] = || 7( ” H )< Tl

() T ()| < T[] vz € X.
Hence T is bounded.

Remark 2.2.3. The proof of Remark 2.2.2 implies that

IT|| = inf{k € Ry : |T(2)| < k||z|| Vo € X}. (Exercise)

Hence ||T|| expresses the "minimal” bound for the boundedness of 7T'.

Theorem 2.2.4. Let X and Y be normed spaces. Then

1T = sup{[|T ()| : [l < 1}
defines a norm on B(X,Y).

Proof. Recall that B(X,Y) is a vector space by Lemma Let S,7 € B(X,Y) and \ € F.
(i) Clearly ||T'|| > 0. By Remark 2.2.2, | T|| < oc.

(i)

ITI=0 < |T( ||T =0 Vo € X,z # 0y

el = 1
— ||T(z)]| =0 Vee X, o #0x
> T(z) =0y Ve e X
<= T is the zero element in L(X,Y).

(iii) As ||T(x)|| < ||T||||z]] Yz € X (Remark 2.2.2 (%)), we have (for A € F)

IAT) (@) || = AT @) = IMIT ) < AT 2]



14 V. LATVALA

for all z € X and hence
AT = sup [[(AT) ()|l < [AT]]- (%)

[[=]I<1

If A = 0, then |[AT|| = 0 = |A[||T||. If A # 0, then

1 (%), TAT 1 (%) 1
1T =NA—n) < AT < AT = 7]
Hence
ITIl = AHIAT] <= (AT = [AT]).
(iv) For each x € X, we have

A—ineq.

(S +T)@)| € 1S@) +T@)| < [1S@)]| + | T()]

Rem.2.2.2(xx)
< Sl + 11Tl = ST+ 1T (-
By taking sup over ||z|| < 1 yields

1S+ TN < [1SI + 1.
O

There is no general procedure for finding the norm of a bounded linear operator! It is
also possible that the supremum in the definition is not attained.

Ezample 2.2.5. Let T : Cr|0, 1] — F be the bounded linear operator defined by
T(f) = f(0).
Claim: ||T|| = 1.
Proof. We have
IT(f)] = 1f0)] < sup{|f(z)[ : = € [0, 1]} = [|f]-

By Remark 2.2.3, |T|| < 1.
On the other hand, if g : [0, 1] — F is defined by g(z) = 1,z € [0, 1], then

lgll = sup[g(z)] : x € [0,1] = 1.
Since
T(g9)| = l9(0)] =1,
we have

|T|| = sup{[T(f)] - [[f]| <1},
The claim follows. U

Definition 2.2.6. Let X and Y be normed spaces and let 7' € L(X,Y). Then T is called
an isometry if ||T|| = ||| for all z € X.

Ezample 2.2.7. (a) If X is a normed space and [ is the identity transformation I(z) =
r,xr € X, then [ is an isometry X — X.

(b) We define an operator S : £* — (2 by
5(1'1,332, 3, .. ) = (O, T1,T2,T3, .. )
(S is called unilateral shift).

Claim: S is an isometry ¢2 — (2.
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Proof. Tt is easy to show that S is linear. If (z,) € ¢? and (y,) = S((z,)), then

oo o e.¢]
Z |xn’2 = Z |yn|2 =07+ Z ’:En’2
n=1 n=1 n=1
Hence ||S((zn))|l2 = [|(xn)]]2, i.e S is an isometry. O

Remark 2.2.8. Let X and Y be normed spaces and let 7" : X — Y be an isometry. Then
|IT|| =1if X # {0x}. Indeed, ||T(z)| = ||z|| Yz € X and therefore

1T} = sup{IT'(2)[| - =[] < 1} = sup{[j=[| : l=] <1} <1,
if only X # Ox. In this case 3z € X such that ||z|| > 0 and hence for y := T Wwe have
lyll = 1.

The converse does not hold, i.e. || T|| = 1 does not imply that 7" is an isometry. In fact,
for T : Cpl0,1] — F,T(f) = f(0), we have ||T|| = 1 (2.2.5). However, for the function
Wx) = 2,z € [0,1], [[2]| = 1, but [T'(R)|| = [A(0)] = 0.

Conclusion: T is an isometry is not the same as ||7’|| = 1.
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3. INNER PRODUCT SPACES

3.1. Inner products.
Definition 3.1.1. Let X be a real vector space, i.e. F =R. An inner product on X is
a function (- ,-) : X x X — R such that Vz,y,z € X and Vo, 5 € R

(a) (z,z) >0;

(c) {ax + By, 2z) = a(z, 2) + By, 2);

(d) {z,y) = (y, z).
Ezample 3.1.2. (a) The function (-,-) : RF x R* — R,

k
(2,9) =Y Tnln
n=1

is an inner product on R* (known!). This is called the standard inner product on RE.
(b) The function (- ,-) : L*(R) x L*(R) — R,

@wzémm

is an inner product on L*(R) (Analysis 4). Notice here that we regard LP(R)-spaces as
real vector spaces.

Definition 3.1.3. Let X be a complex vector space, i.e. F = C. An inner product on
X is a function (-,-) : X x X — C such that Vz,y,z € X and Va,3 € C

(a) (z,z) e R &(z,2) >0 ;

(b) (z,2) =0 <= x=0x;

(C) <Oé:L' + By, Z> = <£L‘, Z> + B <y7 Z)S

(d) (z,y) = (y, x).
Here Z is the conjugate of z = a + bi, i.e. Z=a — bi.

Note. Recall that for all z, w € C we have

tw=%+w, ZW=%-W, z=2 ~z+zZ=2Rez 2Z=]|z

Example 3.1.4. (a) The function (-,-) : C¥ x C*¥ — C defined by

k
<xv y) = Z TnYn
n=1

is an inner product on CF (standard inner product on C¥). Here x = (z1,...,3),
y=(y1,...,yx) € C* ie. x;y; € C. We skip the proof.

(b) If (an), (b,) € ¢*(F = C), then the function (-,-) : £* X £> — C defined by

k
(a,b) = Z anby,
n=1

is an inner product on £? (exercise).

Definition 3.1.5. A real or complex vector space X with an inner product (-, -) is called
an inner product space.
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Note. Concerning general abstract results, we always consider axioms for complex inner
product. This covers the case that X happens to be a real vector space. In the real case
the complex conjugate can be ignored.

Lemma 3.1.6. Let X be an inner product space, x,y,z € X and o, 3 € F. Then

(a) (Ox,y) =(z,0x)=0;

(b) (z,ay + Bz) =a(z,y) + B(z, 2);

(¢) {ax + By, az + By) = |af*(z,2) + af(z,y) + faly,z) + [B]*(y, y).
Proof. Exercise. O
Lemma 3.1.7. Let X be an inner product space, x,y € X. Then

(&) Kz, )| <(z,y){x,y) ;

(b) the function || - || : X — R, ||z|| = \/{(z, x) defines a norm on X.
Proof. (a) We are free to assume that x # 0x and y # 0x. Choose o = —ézii (see L.
3.1.6(a) & Def. 3.1.3(b)) and f =1 in (c) of Lemma 3.1.6. We obtain

0 < (ax+y,ar+y)
_ Nyl (z,y) (z,y)
- |<JZ,ZL‘>|2< ,J]> <IL‘,I’><$7 > <x’$><y’x>+<y7y>
[z, ) [, y)P? (=, y)?
= -2 +(yy) =— (z,2) + (Y, y)-
(z,) (z,2) [(, )]
The claim follows by multiplying the inequality with (z,z) > 0.
(b)

(1) [lz]l = V/{z, z) € Ry (3.1.3(a));

(i) ||z|| = V{z,x) =0 <= (z,2) =0 <= 2 =0x (3.1.3(b));

(ili) Fora e F,x € X

3.1.6(c)
loz]| = Aax,ax) ~=" v/]a*(z,z) = |af||z];
(ili) For z,y € X
()
2 A
le+ylI" = (@+yz+y)={z2)+(z,9) (y,7) +{y,y)
= (z,y) +2Re(,y) + (y,y)
(a)
= lzl* + 2l m)| + lyll* < Nzl + 2/, 9)| +
= (lll + llylh*.
The claim follows. O

Remark. Lemma 3.1.7(a) is usually written in a form

{z, )| < |lz|lllyll- (Cauchy-Schwarz-inequality)

Every inner product space is a normed space! How about the converse? The answer
is no!
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Lemma 3.1.8. Let X be an inner product space with the norm || -|| induced by the inner

product (i.e. ||z|| = \/{x,z)). Then for all u,v,x,y € X
(a) (u+v,x+y> - (u—v,:z: _y> = 2<u>y> +2<U,3§'> ;
(b) llz +ylI* + llz = ylI* = 2(|=[* + lly[I*) (The parallelogram rule)

Proof. Exercise. U
Example 3.1.9. In R?%: (Kuva suunnikkaasta.)

The parallelogram rule can be used to prove that the given norm is not induced by any
inner product.

Example 3.1.10. We show that the standard norm in C is not induced by any inner
product. Choose f(z) =1, g(x) = z,2 € [0,1]. Then

(f+9)(x)=1+2, (f-g)r)=1-u,

and

IF+gll=2lf =gl =1 [fl =gl = 1.
Hence

1f +gl* + I1f = gll* =5# 4 =2(I£1" + llglI*)-
This is not possible, if || - || were induced by some inner product.

Remark. Since an inner product space X is a normed space with the induced norm, X
is also a metric space. Any metric space concepts on X will be understood in terms of
the metric induced by the induced norm.

3.2. Orthogonality.

Let X be a real inner product space and z,y € X non-zero vectors. By the Cauchy-
Schwarz inequality

[yl —
Hence we can define an ’angle’ 6 between x and y by

(z,9)
=yl

For complex inner products, the concept of angle is not relevant but we still talk about
orthogonality.

—1<

6 = arccos

Definition 3.2.1. Let X be an inner product space. Then x,y € X are orthogonal if
(x,y) = 0.

Definition 3.2.2. Let X be an inner product space. The set {ej,...,ex} C X is called
orthonormal if

(@) |len]] =1 VYn=1,.. k;

(b) (em,en) =0 VYm,ne{l,...k}, m#n.

Lemma 3.2.3. Let X be an inner product space. Then any orthonormal set {eq, ..., ex} C
X is linearly independent. In particular, if X is k-dimensional then the set {e,...,ex} is
a basis for X and any v € X can be expressed in the form

k

xr = Z(x,en>en.

n=1



FUNCTIONAL ANALYSIS 2009 19

Proof. Suppose that ZZ=1 ane, = 0x, where a,, € F. Then for any m =1,..., k
k k

3.1.6 3.1.3
0 é <Z an6n7em> = Zan<en>em> = am<em7€m> = Qyp.

n=1 n=1

Hence {eq, ..., ex} is linearly independent.

Suppose that dim X = k. Since {ey,...,ex} is linearly independent and dim X = k,
{eq, ..., e} forms a basis for X (this is regarded as known from linear algebra!). Then for
any © € X 3\, € Fsuch that z = 32F_ aye,. Tt follows that

k k
<l’7 €m> - <Z )\nenu em> - Z )\n<€n7 6m> = )\m
n=1 n=1

forany m =1, ..., k. O

Lemma 3.2.4. Let X be an inner product space and let {xy,...,xp} C X be linearly
independent. Let

k
S = Sp{xy, ..., zp} = {Z AnZn @ Ay € F}
n=1

Then there is an orthonormal basis {e, ...,ex} for S.
Proof. Proof by Gram-Schmidt method (see linear algebra). O

Lemma 3.2.5. (Pythagoras) Let X be an inner product space and let 1, ...,z € X be
pairwise orthogonal, i.e. (x;,x;) =0 for alli,j € {1,....k},i # j. Then

1 4 @2 4o+ @ = [l |+ o+
Proof. Exercise. O

Definition 3.2.6. Let X be an inner product space and let A C X. The orthogonal
complement of A is the set

At ={r e X :{(r,a) =0V ac A}.
Example. If X = R3 and A = {(ay,as,0) : a;,as € R}, then
T = (x1,T9,73) € AT <= (2,a) = 210, + 905 =0 V ar,as € R.

Assume that x € At. Choosing a1 = z; and ay = x, we have 2? + 25 = 0 and hence
11 = 29 = 0. On the other hand, if z; = 25 = 0 (and 23 € R) then x € AL. We conclude
that AL = {(0,0,x3) : x3 € R}.

Ezample 3.2.7. Let X be k-dimensional inner product space and let {eq, ..., ex} be an or-
thonormal basis for X. If A = Sp{ey,...,e,} forall 1 < p < k, then A+ = Sp{eyi1, ..., ex}.
(Exercise)

Note. It appears below that At is always a linear subspace. Therefore Example 3.2.7
essentially solves the problem of finding A+ for A C X whenever X is finite-dimensional.

Lemma 3.2.8. Let X be an inner product space and suppose that (x,,), (y,) are sequences
i X such that lim,, .o x, =2 € X and lim, .y, =y € X. Then

nhi{.locfna yn> = <JZ, y>
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Proof. We have (by using A-inequality in F and Cauchy-Schwarz)

A—ineq
< H@nyn) = (@ )|+ [@n, y) — (2,9)]
3.1.6(b)

(s yn = y)| + [0 — 2, 9)]

c-S
< Alzallllyn =yl + llzn — 2yl

Since (z,,) converges in X, (z,) is bounded, i.e. 3 M > 0 such that ||z,|| < M VneN.
(Reason: 3 ny € N such that

n=m = |z, -z <1= o]l = llon — 2 + 2l <z =2 + [l <14 [l].
Hence we may choose M := max{1 + ||z||, [|z1], .., [|Zn,—1]|}.) Therefore

0 < [(@n, yn) = (2, 9)] < Mllyn = yll + lzn = 2[lly]-

By assumptions,lim, .. M|y, — y|| = 0 and lim, . ||y|/||z. — x| = 0. Therefore
limy, oo (M ||y, — yl| + ||yll||zn — 2||) = 0. By the sandwich principle

Tim (20, yn) = (2, 9)] = 0.

Lemma 3.2.9. Let X be an inner product space and A C X, A # (.

(a) Ox € AL;

1 {Ox} if OxeA

(b) An4 —{ D if Oy ¢ A
(c) {0x}+ =X and X+ = {0x};

(d) At is a closed linear subspace of X.
Proof. (a) Since (Ox,a) =0 V a € A, we have Ox € A*.
(b) Suppose that z € AN AL, Then (z,2) = 0 and x = Ox. The claim follows since
Ox € At by (a)
(c) If A= {0x}, then V z € X we have (x,0x) = 0. Hence A+ = X.
If A= X and x € A+, then (z,z) = 0 and hence = = 0x. Therefore A+ = {0x} by (a).
(d)To show that A is a linear subspace of X, let 2,y € At and o, 3 € F. Then Va € A

(o + Py, a) 343 alz,a) + B{y,a) =0

so that ax + By € A+. To show that At is closed, let (z,,) be a sequence in A+ such that
lim, .oz, =z € X. By Lemma 3.2.8, for all a € A

0= (0x,a) = <7}LII(>IO($n —x),a) = nh—{{olo<$n —x,a) = lim ((z,a) — (z,a)) = —(x,a).

n—oo

Since z,, € At = (x,a) = 0. Hence z € A+ and A" is closed (see Rynne & Youngson,
Theorem 1.25(c)). O

Minimization on Hilbert spaces.

Definition 3.2.10. Let X be an inner product space. If X is complete as a metric space
induced by the induced norm, we call X a Hilbert space.

Lemma 3.2.11. Let Y be a linear subspace of an inner product space X. Then

vey & le—yl =z VreY
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Proof. . For allz € X,y € Y and a € F (by Lemma 3.1.6(c))

|2 — oyl = (z — ay,z — ay) = |lz]]> —a(z,y) — aly,z) + |a|[Jy[]> (*).

(=) Suppose that + € Y+ and y € Y. Then (x,y) = 0 = (y,x). So choosing a = 1 in
(x) we have

lz = ylI* = llzl* + [lylI* = [l[|*.

(<) Suppose that z € X and ||z — y||* > ||z||* Vy € Y. Since Y is a linear subspace,
ay €Y VaelF,yeY, and (x) implies that

—a(z,y) — aly,z) +la*yl* > 0. (+)

For given y € Y, we want to prove that (x,y) = 0. Assume that (z,y) # 0. Denote

Q= t'g Yl for ¢ > 0. We replace a in (x+) and obtain
[{z, )| [{z, )| 2@ )P
—t <x7y> - t—<y7l’> +1 H H
(y, ) (y, ) [(y. )2
1 2
e [yl <gtyl® vi>0
Hence (z,y) =0 and z € Y. O

Ezample. Let Y = R? x {0} C R3 and Y+ = {0}* x R, see Example after Definition 3.2.6.

Definition 3.2.12. A subset A of a vector space X is convez if for all z,y € A and
A €[0,1] we have Az + (1— M)y € A.

Example. A= {x € R?: ||z|| < 1} is convex but B = {x € R? : ||z|| = 1} is not convex.

Theorem 3.2.13. Let A be a non-empty closed convex subset of a Hilbert space H and
let p € H. Then there exists a unique q € A such that

lp = qll = mf{[lp — al| : a € A}(= min{|[p —af - a € A}).
Proof. Exercise. O

Remark. In any metric space X and for any A C X, A # (), we may define the distance
between A and x by

d(z, A) = inf{d(z,a) : a € A}.

If A is compact, inf is attained since we can prove that z +— d(z, A) is continuous. The
point is that the convexity quarantees uniqueness, which is important for applications
e.g. convex optimization and variational calculus.

Ezample. Let A = {z € R? : ||z|| = 1} and let = (0,0). Then all points in A are
distance-minimizing!

Theorem 3.2.14. LetY be a closed linear subspace of a Hilbert space H. Then for any
r € H exists uniquey € Y and z € Y+ such that v = y+z. Moreover, ||z]|*> = |ly||*+|z|*.

Proof. Exercise. U
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Ezample. Let H = R? and Y = R x {0}. It is easy to prove that Y+ = {0} x R. In this
case Theorem 3.2.14 is a version of the classical Pythagoras Theorem.

Suppose that Y is closed linear subspace of a Hilbert space H and x € H. The de-
composition

r=y+z, yeY,zeY*

is called the orthogonal decomposition of z with respect to Y. We denote Y4+ = (Y+)L.
Corollary 3.2.15. IfY is a closed linear subspace of a Hilbert space H, then Y+ =Y.
Proof. Exercise. O

Remark. We can also prove that Y+ =Y (closure of Y) if Y is a linear subspace of H
(see Rynne & Youngson p.71).

3.3. Orthonormal bases in infinite dimensions.

Definition 3.3.1. Let X be an inner product space. A sequence (e,) in X is called an
orthonormal sequence if

(i) |lex]l =1 VneN;

(ii) (en,em) =0 VY n,meN, n#m.

n—1
—~
Ezample 3.3.2. (a) Let ¢, = (1,0,0,...),é, = (0, 1,0, ...),...€, = (0,...,0,1,0,...) neN.
Then €, € IP,1 <p<oo (|len]|]=1 V p), and (¢é,) forms an orhonormal sequence in
[2, since

(1) llenll2 = (en,en) =1 1=1

(b) For any [a,b] C R we define the space L?([a, b]) by setting f € L?([a, b)) iff f € LP(R),

where
= | f in|a,0]
f—{ 0 inR\ [a,b].

Moreover, for any f : [a,b0] — C, f = (f1, f2), we write
f e Lfab) < fi € LPla,b], i=1,2.

The norm in L{.[a, b] is defined as

b b N
||f||=||f||Lg[a,b]=( [nra [ |f2(t)|pdt) |

We define the sequence (e,), e, : [—m, 7] — C by

1 )
n(x) = e meN
() = ==
By Euler’s formula e, (x) = LG ( cos(nx) + isin(n:z:)). Hence the coodinate function

L(x) = cos(nz), €2 = sin(nx)

D
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are bounded (and continuous). Therefore e,, € L [—m, 7] ¥ p. We claim that (e,) is an
orthonormal sequence in LZ[—m, 7] once Li[—m, 7] is equipped with the complex inner

product
9) = / fgdz.

(We omit an "easy” proof that (-,-) is an inner product.)

(1) H6n||2 = <en7en> = f,;r ;%ema: . mem:pdx _ 17rf :einx . efin:p dr = % o =1

e0
(ii) Let m,n € Z, m # n. Then

A 1 —
(em,en) = / e 5 ey

= i(mfn)xd
o e T

1 K K
= 2—(/ cos(m—n)a:dcc,/ sin(m—n)xdx)
m —7 —m
1
= —(0,0
27T( Y )

= (070)

Remark 3.3.3. (a) It is clear that X is infinite-dimensional if it contains an orthonormal
sequence. Indeed, if (e,) is an orthonormal sequence in X and dim X = k < oo, then
{e1,...,ex} is a basis for X and (Lemma 3.2.3)

k

Ck+1 = Z(ek-‘rla 6,> €; = 0X

i=1

This contradicts with ||exyq1]| = 1.
(b) Also the converse is true: Any infinite-dimensional inner product space contains an
orthonormal sequence. We omit the proof, see Rymme & Youngson, Chapter 3.4.

Question. Let (e,) be an orthonormal sequence in an infinite-dimensional inner product
space X. Then it is natural to ask whether the formula

Zmen en (%)

holds? There are two major problems associated with (x):

(a) Does the series converge?
(b) Does it converge to z?

Lemma 3.3.4. Let {ey,...,ex} be an orthonormal subset of an inner product space X.
Then, for any o, € F, n=1,....k

Hzanen”2 Z’O‘n|2
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Proof. By orthonormality

k
| Z ane,|? =
n=1

E

k k k
3.1.3
Oénen7§ Oémem> = E Oén<en7§ amem>
1

m=1

k
anE O €n,€m E § OénOCm enaem
1 m=1 n=1m=1
2
E ||

n

w

[|=

(2}
-

n

ﬁmw

g

Lemma 3.3.5. (Bessel’s inequality) Let X be an inner product space and let (e,) be
an orthonormal sequence in X. Then, for any x € X the series > -, |{x, e,)|? converges
and

e}

> Kz, ea)” < lz)*.
n=1

Proof. Let v € X. For each k € N, let y;, := Zzzl(m, én)en. Then (by Lemma 3.3.4)

3.1.6(c)

k k

= lal* =) {zen)(w,en) = ) (z,en) {x,€0) +]yl”
(Ive"l>

3.34 2 b 2 i 2
=zl =2 e+ D (e, en)]

n=1 n=1

k

= lz* = [z e
n=1

Therefore
k
S en)? = el — lle = well? < ol
n=1

Hence the sequence (Zizl |(z,e,)]?) is upper bounded, ||z||* as an upper bound. The

partial sums form an increasing sequence and therefore

[e%s) k k
Sl el = Jim 3w, en) = sup > [, e) P < Jlal
n=1 n=1 keN n=1

Note. A series Y |z, in a normed space X converges if 3 z € X such that

k k
x:hmg :cn<:>limHE xy, — x| = 0.
k—o00 k—o00
n=1 n=1

In this case we write z = -

n=1Tn-
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Theorem 3.3.6. Let H be a Hilbert space and let (e,) be an orthonormal sequence in H.
Then the series Y o, aye, converges iff > oo |an|* < oo, a, € F. If this holds, then

S
> e = Iz
n=1

Proof. (=) Exercise.

(<) Suppose that 3°°° |a,[> < oco. For each k € N, let z, := Y.F_ ape,. Since
>0 | lan|* < oo, the partial sums of this series form a Cauchy sequence. Therefore, for
each € > 0, 4 n. so that

if k> j > n., then ||Z|ozn]2 Z\any | = Z |2 < e

n=j+1
By Lemma 3.3.4, for k > j,
k

k
low — 22 =11 D omeal? 2D ol < e

n=j+1 n=j+1

whenever j > n.. Hence (zy) is a Cauchy sequence in ‘H and by completeness it converges
in H. Finally, by Lemma 1.2.3(ii) and Lemma 3.3.4

o0
| ZanenHz = || hm Zanen||2 lm I Zan n||2 lm I Zanll2 Z | .
n=1

U
Remark. In other words, Theorem 3.3.6 says that > " | aye, converges iff (a,) € I°.

Corollary 3.3.7. Let (e,) be an orthonormal sequence in a Hilbert space H. Then
S {x,en)e, converges in H for any x € H.

n=1

Proof. By Bessel’s inequality,
Z|<az,en)|2<oo Vo eH.

Hence, by Theorem 3.3.6 Y7 (z, e,)e, converges. O

By Corollary 3.3.7, the answer to Question (a) is always positive in Hilbert spaces. The
answer to Question (b) requires some additional assumptions on (e,,):

Ezample. Let (e,) be an orthonormal sequence in a Hilbert space and let s be the se-
quence s = (ez,). Then s is an orthonormal sequence in H.

Claim. ey # Y 7 (€1, €a,) e,
Proof. Suppose that e; = Zoo_l Qo for o, € F. Then, by Lemma 3.2.8, for all m € N

0= <€1,€2m hm E O €on, Com) = hm E i {€on, €om) " lim = Q.
k—oo k—oo k—o0

Hence e; = 0y which contradmts with ||eq]] = 1. O
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Definition 3.3.8. Let X be a normed space and let ' C X, F # (). Then the closed
linear span of E, denoted by SpFE, is the intersection of all closed linear subspaces which
contain F.

Definition 3.3.8 makes sense since any intersection

e of linear subspaces is a linear subspace
e of closed sets is closed

Thus SpE is the smallest closed linear subspace that contains F.

Theorem 3.3.9. Let H be a Hilbert space and let (ey,) be an orthonormal sequence. The
following are equivalent:

(a) {e,:n € N} = {0y}

(b) Sp{e, :n €N} =H

() llell* = >=0rs Kayen)? for allz € H

(d) 2 =527 (w,en)e,  forallze™

Proof. We proof that (a)=-(d)=(b)=(a) and (a)=(d)=(c)=(a).

a)= Let z € 'H and let y = = — ~(x,ep)e, (see Corollary 3.3.7). For each
n=1
n €N, by Lemma 3.2.8,

k

(f% 6n> = <:L'7 6m> - <k:hm <I‘, en>en7 em>
- n=1
k
3.2.8 )
= (z,em) — ]}g&(Z;(x, €n)€n; Cm)
k

= <LE, €m> - khl{olo <£L’, €n> <€n7 em>
— —— —
n=1 (zyem) for k > m

= (z,em) — (x,e,) =0.

Hence y € {e,, : m € N}+ = {0y} so that y = 03 and (d) holds.

(d)=(b) By assumption, for any x € H, we have z = limj_,, 2221@’ en)en. But

k
Z(x,en>en € Sp{ei,...,er} C Sp{e, :n € N}

n=1

and therefore x € Sp{e, : n € N} since Sp{e, : n € N} is closed.
Hence H C Sp{e, : n € N}.

(d)=(c) Since = = limy oo S _ (x, e,)e, for any @ € H, we have

k 0o
3.34
2?2 tim HZ zoeenl 2 tim S (a2 = 3 [, ea)
n=1 n=1

k—o00

by Lemma 1.2.3 and Lemma 3.3.4.

(b)=-(a) Suppose that (b) holds and let y € {e, : n € N}*. Then (y,e,) =0 Vn €N,
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so that e, € {y}* for all n € N. By Lemma 3.2.9 (d) {y}* is a closed linear subspace.
Hence

H = Sp{e, :n € N} C {y}*
and so y € {y}+. Therefore (y,y) = 0i.e. y = Oy.

(c)=(a) If x € {e,, : n € N}, then (z,e,) = 0 for any n € N. Hence by (c),
2] =Y [z, en)* =0,
n=1

so that z = 04. We have proved that {e, : n € N}* C {0y4}. The converse is clear. [

Definition 3.3.10. Let H be a Hilbert space and let (e,) be an orthonormal sequence
in H. Then (e,) is called orthonormal basis for H if the conditions (a)-(d) of Theorem
3.3.9 hold.

The scalars (x, e,) in Theorem 3.3.9 (d) are often called the Fourier coefficients of x with
respect to the basis (ey,).

Example. The orthonormal sequence (€,) in [?,

¢, =(0,..,0,_ 1 ,0,..)
~—

n

is an orthonormal basis in [? (the standard orthonormal basis in [?).

Proof. Let x := (x,) € [*. By definitions,

) 0
213 = lzal® =D [, €)1,
n=1 n=1

i.e. Theorem 3.3.9(c) holds. 0

Note. It is usually not so easy to decide whether the given orthonormal sequence is a
basis or not, see Fourier series below.

Definition 3.3.11. A metric space X is called separable if it has a countable subset
E C X such that £ = X (i.e. E is dense in X).

Ezxample. It is well known that Q is dense in R. Hence R is separable with respect to
euclidean metric.

Theorem 3.3.12.
(a) Finite dimensional normed spaces are separable.
(b) Infinite dimensional Hilbert space 'H is separable iff H has an orthonormal basis.

Proof. (a) Let X be a finite-dimensional, real normal space and let {ey,..,ex} be a basis
for X. Then the set

k
E:{Zanen:anGQ}
n=1
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is countable since QF is countable. The claim E = X can be proved as in the proof of
(b) below. In the complex case we define E' similarly by using scalars
Op = Pp + 1y, where p,, g, € Q.

Such numbers «,, are called complex rationals.

(b) Suppose that H has an orthonormal basis (e,). For fixed k£ € N, let
k
E, = {Z Qpéy, : aprational (complex rational)}.
n=1
Then Ej, is countable and also £/ = U2 | E, is countable. We show that E ="H.
Let y € H. By assumptions (and Theorem 3.3.9(d))

Yy = Zﬁnena Z ‘6n‘2 < 00, 671 = <yven>'
n=1 n=1

For any ¢ > 0, there is N € N such that Y >° . [6,]> < % For each n = 1,...,N

choose rational (complex rational) coefficients such that |8, — a,|? < %, and let z =
Y oos N ey € E. Then
- [ Bu—an, f1<n<N
y_x_zlﬁ)/nen7 WherefYn_{ ﬁn; 1fnZN—|—1
We obtain that (see Theorem 3.3.9; the proof of (d)=-(c))
e 2 - 2 - 2 e? ¢ 2
ly—al? =3 P =S e auP + 3 AP <N S+ S =
n=1 n=1 n=N-+1

ie. |ly—z| <e Hencey € F and E = H. We skip the proof that every separable
Hilbert space has an orthonormal basis, see Rynne & Youngson p.80. U

Corollary 3.3.13. The Hilbert space I? is separable.
Ezample 3.3.14. (Briefly on Fourier series; no details) One can prove that

1 2
C = (cn), where ¢o(z) =4/ — and ¢, (z) = \/jcos nx, n € N,
m

™

is an orthonormal basis in L?[0, 7.

The idea of the proof:

(1) Orthonormality is a calculus-exercise.

(2) By Theorem 3.3.9(d) it suffices to show that SpC' (finite linear combinations of
functions in C) is dense in L?[0, 7).

(3) Suppose that f € L?[0,7]. Recall that f is real valued. It is well-known fact in
LP-theory that C[0, ] is dense in L?[0, 7], i.e. for a given € > 0 there is g; € C[0, 7]
such that || f — g1z < 5.

(4) Using the Stone-Weierstrass theorem (see Rymme & Youngson, Theorem 1.39)
polynomials are dense in C|[0, 7] with respect to sup-norm plus some trigonometry
one can prove that

m

3 g, go(x) = Zﬁn(cos nx) such that ||g1 — go| <

n=0

€
5"
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(5) It then follows that || f — gaf < €.

As a consequence we conclude that L2[0,7] is separable! Moreover, any function f €
L?[0, 7] (for example any f € C[0,7]) can be written as a sum

f= Z<f’ Cn)Cn-

Here the convergence of the series is understood in L2-sense.

One can also proof that
2
S = (sn), sp(x) = \/jsin n
s

is an orthonormal basis in L?[0, 7| and

E = (e,), en(x) = ene

in L4[—m, 7).
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4. DUAL SPACES

4.1. The space B(X,Y). Recall that B(X,Y’) denotes the normed space of bounded
linear operators T': X — Y whenever X and Y are normed spaces, see Theorem 2.2.4.
The norm of T is defined by

1T = sup{IT(@)[] - fl=]] < 1}.

Theorem 4.1.1. If X is a normed space and Y is a Banach space, then B(X,Y) is a
Banach space.

Proof. We have to show that B(X,Y) is complete. Let (7,) be a Cauchy sequence in
B(X,Y). Then (7,) is a bounded sequence, so. 3M > 0 such that

IT.|| <M ¥neN.
Let x € X. As

1T (x) = Ton (@)l = [(To = Ton) (@)[] < T = Tl |

(see Remark 2.2.2 (xx)), it follows that (7,,(z)) is a Cauchy sequence in Y. (In fact, for
e > 0,3n. € N such, that ||, — T || < g5 if m,n > ne and |z > 0.) Since Y is
complete, (T,,(x)) converges in Y, so we may define a mapping 7' : X — Y by

T(X) = lim T,(x).
We show first that T is linear. For any z,y € X and «, f € F (scalar field of X') we have

Tm_lin.

T(ax + By) = lim T (o + By) lim a5, (2) + 5T (y)
= anliﬁlrgo T, (x) + 5%1};0 To(z) =T (z) + BT (y).
Next we show that 7" is bounded. As
IT(@)] = lim |17, @)]
by Lemma 1.2.3, we obtain

1T < sup{[|Tu(@)] : n € N}

2.2.2

< sup{||Tu(2)[| : n € N}
< M|

Hence T' € B(X,Y).
Finally we show that lim, .7, = T in || - ||. Let ¢ > 0. Since (7},) is a Cauchy
sequence dn; € N such that

”Tn - Tm” < g if m,n > ny.
Hence, for any x € X with ||z| <1,
€
I1T(2) = Tn(@) | < NI T0 = Tullllll < 5

whenever m,n > ny. As T(x) = lim, .o, T,,(z), there is ny > n; depending on z € X
such that .
1T (x) — Trn(2)] < 3 if m > no.
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Hence, if ||z|| < 1,n > ny; and m > ny, we conclude that
e €
I1T(2) = Tu(@)| < I T(2) = Tu(2)]| + [Tn(2) = Tu(2)ll < 5 + 5 =€
Therefore
|7 = Tl = sup{[|T'(z) = Ta(2)| : ||| <1} <e
if n > n.. This shows that lim, .., 7, = T, i.e B(X,Y) is a Banach space. O

Lemma 4.1.2. Let X,Y and Z be normed spaces and let T € B(X,Y) and S € B(Y, Z).
Then SoT € B(X,Z) and
15 o Tl < IS

Proof. Exercise. O

In finite-dimensional spaces X, Y and Z, the matrix of the composite SoT is the product
of the matrixes of S and T. Hence the function composition is a natural candidate for
the product of bounded linear operators.

Definition 4.1.3. Let X,Y,Z be normed spaces and let T € B(X,Y),S € B(Y,Z).
Then S o T is called product of S and T'. We denote

ST :=SoT.

In general, ST and T'S are both defined only if X =Y = Z. Even in this case, in general
holds
TS # ST.

Notation. If X is a normed space, we denote B(X) := B(X, X).

Y

Lemma 4.1.4. Let X be a normed space. Then

(a) B(X) is a ring with the identity I (I(x) = x);

(b) If(T},) and (S,) are sequences in B(X) such thatlim, ., T, =T and lim,_., S, =

S, then
lim S, T, = ST.

Proof. (a) Since B(X) is a vector space, B(X) is an Abelian group with respect to +
(pointwise sum). We should show that VR,S,T € B(X)

(1) R(ST) = (RS)T
(2) R(S+T)= RS+ RT and (R+ S)T = RT + ST,
(3) IR = RI = R.
Here (1) and (3) are trivial. For all z € X, we have

(R(S+T))(x) = (Ro(S+T))(z) = R((S+T)(w)) = R(S() + T())
=R(S@) + R(T(@)) = (Ro 8)(x) + (RoT)(x)
— (RS + RT)(x).
The other equality in (2) is similar.
(b) Exercise. O

Notation. Let X ba a normed space and let T' € B(X).
(a) Then T2 =T o T, T*=T?oT, ..., T"=T""1oT.
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(b) If ag,...,a, € F and p: F — F is polynomial p(z) = a,2" + ... + a1z + ag, then
we define p(T") by p(T) = a, " + ... + a1 T + ay.

Definition 4.1.5. Let X be a normed space over F. The space B(X,F) is called the
dual space of X. We denote X' := B(X,TF).

Corollary 4.1.6. If X is a normed space, then X is a Banach space.

Proof. Since F = R of F = C, the claim follows from Theorem 4.1.1. O
Example 4.1.7. Let 'H be a Hilbert space over F and let y € H. Define f : H — F by
f(x) = (z,y).

Then f € H' and ||f|| = |ly|| (Exercise).

Theorem 4.1.8. (Riesz-Frechet Theorem). If H is a Hilbert space and f € H', then
there is a unique y € H such that

f(x) = (z,y)
for all x € H. Moreover, || f]| = ||yll.

For the proof we need a simple lemma.

Lemma 4.1.9. If X and Y are normed spaces and T € B(X,Y'), then
Ker(T)={x € X : T(x) =0y} = T *({0y})
1s a closed linear subspace of X.
Proof. Ker(T) is a linear subspace, since for all z, 2" € Ker(T) and for all a, 3 € F
T(az + B2') "2 aT(z) +8T(z') = Oy.
o o

Hence ax + B2’ € Ker(T). Since T is a bounded operator, 7' : X — Y is continuous
(Lemma 2.1.2). Since {0y} is closed, Ker(T') is closed (we regard known that the pre-
image of a closed set is closed if the mapping is continuous.) U

Proof of Theorem 4.1.8. (1) Existence: If f = 0, then y = 03y will do. Assume that f # 0.
Then Ker(f) is a proper closed subspace of H, which implies that Ker(f)t # {0x}. In
fact, if Ker(f)* = {04}, then

Ker(f) ={0n}" =M
(L. 3.2.9 (c)). By corollary 3.2.15,
Ker(f) = Ker(f)** =H,

which is a contradiction, since Ker(f) is a proper subset of H. Hence 32’ € Ker(f)\{0x}.
Now f(2') # 0 (see Lemma 3.2.9 (b)) and for

)
it holds z # Oy,
_ Z fl:m~ L ) =
1) = Fi) 2 s ) = 1

z

Choose y = Bk By linearity of f,
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[l = f(x)z) = fz) = f(2)f(2) = 0,

It then follows that

J(@) = jfz 2

for all € H. The claim || f]| = ||y|| is an exercise.

= (z, W> = (r,y)

(2) Uniqueness: If y1,y, € H are such that

f(@) = (2, ) = (v,52) Yz €N
Then (z,y; — y2) = 0 Vo € ‘H. By choosing x = y; — y2 we get ||y1 — y2/|* = 0. Hence
Y1 = Ya. 0

I

It is often a challenge to characterize the dual of a given space. However, the dual of
¢! is relatively easy to identify:
Theorem 4.1.10. Let ¢ = (¢,) € (*°.
(a) If (z,) € ', then (cpxy) € 1. If the linear transformation f.: (' — F is defined
by

fe((2n)) = Z Cnn,

then f. € (€') with
1 fell < lelloo-
(b) If f € (£, there exists ¢ € > such that f = f. and ||c||e < ||f]l = Ifell-

(c) There is a bijective isometry between (>° and (¢1)'. -

Proof. (a) The assertions are included in Example 2.1.4, see also Lemma 2.1.3.
(b) Let (é,) be the standard orthomormal sequence in ¢!. Let ¢, := f(é,), n € N. Then

211 _
lenl = [F(E)] < LFIlEnlls = 1111

for all n € N, so that ||c||l < ||f]| (take sup over n € N). Let S be the linear subspace
of ¢! consisting of sequences with only finitely many non-zero terms. Then S is dense
in ¢! since for each x := (z,) € ¢! and for each ¢ > 0 we have n. € N such that if
y=(x1,...,2,.,0,...) €S, then

lr—yli= D ol <e.
N=nNec41
For any z := (z1,...,2,,0,...) € S, we have
- ~ \ flin. = ~
F2) = FO%E) =" %f (&)
j=1 J=1

n

= szcj = fo(2).

j=1
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Hence the continuous functions f and f, are equal in a dense subset S of ¢!, which implies
that f = f.in ¢* (see Lemma 4.1.11 below).

(c) The mapping T : (> — ('Y, T(c) = f. for ¢ := (c) € €, is linear (exercise).
By (b), T is surjective, and
lelloe < [l fell = [IT(0)]]-
By (a),
[fell = IT ()| < [lelloo-
Hence ||T(c)|| = ||¢||eo for all ¢ € £°,i.e. T is an isometry. An isometry is always injective,

see Exercise 6.
O

Lemma 4.1.11. Let X be a metric space and E o dense subset of X. Let f,g: X — Y
be continuous functions (Y is a metric space) such that f = g in E. Then f = g.

Proof. Exercise. O

4.2. Inverses of operators. In finite-dimensional vector spaces, the matrix equation
Ar =y

is solved by x = A~ly whenever A~! exists and y is given. In this subsection, we study
the existence of an inverse operator in the case of an infinite-dimensional space.

The basic question is: How to solve x € X if T'(z) = y andT € B(X,Y, y € Y are
given?

Definition 4.2.1. Let X be normed space. An operator T' € B(X) is called invertible
if 35 € B(X) such that ST =1 =TS. Such an S is called the inverse of T. We denote

T~ for the inverse of T.

Lemma 4.2.2. Let X be a normed space and let Ty, Ty € B(X) be invertible. Then
(a) Ty ids inwertible with (T =Ty ;
(b) T\T; is invertible with (TyTy)™" = T, "I,

Proof. (a) Clear since
7' =TT =1
(b) Since the product is associative, we have
T, T N, =Ty T, =T, ' Ty = 1.
Similarly TyToT, Ty ! = 1. O
Remark 4.2.3. Recall also that if X is a normed space, then for every R, S,T € B(X)
(a) R(—S)=(—R)S=—-RS;

(b) (=R)(=5) = RS;
(¢) (R—S)T = RT — ST and R(S — T) = RS — RT.

These properties hold true in every ring, see Algebra.
Ezample 4.2.4. For any h € C[0, 1], we define T}, € B(L?[0,1]) by

(Thg)(t) = h(t)g(t), te€[0,1].
(a) If f €CJ0,1] is defined by f(t) = 1+ ¢, then T} is invertible.
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Proof. We showed in Exercise 3/1 that Tj, is bounded for any h € C[0,1]. Let k(t) = 1.
Then k € C[0, 1] and for any g € L?[0, 1]

(TiTrg)(t) = T(f9)(t) = k@) (1) 9(t) = g(t).
1
Thus
(TiTy)(9) =g Vg€ L*[0,1].
Hence T} Ty = Ir2p,1)-
Similarly, we have TyT}, = I12q01), i.e T; " = Ty O
(b) Let f € C[0,1] be defined by f(t) = t. Then the idea in (a) would give the function

k(t) = 1. But k is not continuous (or bounded) in [0,1]! We can not directly conclude
that T is not invertible as Ty could have an inverse not of the form 7}, for k € C[0, 1].

Theorem 4.2.5. Let X be a Banach space. If T € B(X) is an operator with ||T| <
1, I —T s invertible and the inverse is given by

(I-T)"'= iT“.

Proof. Because X is Banach, B(X) is Banach (Cor. 4.1.6). Since ||T'|| < 1, the series
Yol o lIT|I™ converges, and

17| < 17"
for all n € N (Lemma 4.1.2), the series >~ ||7™|| converges. By Exercise 7/6, the
series Y00 T converges in B(X). Let S := 3.2 7" and let S := >.*_ 7" Hence
limg .o, Sk = S in B(X). We have

k k+1
(I =T)Se =1l = > T"=> 1"~
n=0 n=1
= | =T =1 =] =T

41.2
< Tt
Since ||T']| < 1, we deduce that

lim (I —T)S, — I =0px) <= klim (I -=T)Sx=1. (%)

k—o0
By Lemma 4.1.4 (b)

1.4

(I-T)S = (I-T) lim E lim (1 = 7)8, “r

Similarly, S(I —T) = I. Hence S = (I —T)~".
Note. The series ) > 7™ in Theorem 4.2.5 is called the Neumann series.

Ezample 4.2.6. Let A € R and let k£ : [0,1] x [0,1] — R be defined by
K, y) = Asin(z — y)
Claim. If |A\| < 1, then Vf € C[0, 1] 3¢ € C[0, 1] such that
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g(x) = fl)+ / Kz, 9)g(y) dy

= f(x) +A/O sin(z —y)g(y) dy. (%)

Proof. In Example 2.1.8 and Exercise 2/4 we showed that the linear transformation K :
C[0,1] — C|0, 1],

(K (9))(s) = / K(s, D)g(t) dr,

is bounded and || K (g)|| < |Al|lg]]. Hence || K| < |A|. Since the integral equation (%) can
be written as

(I —-K)g=f
and I — K is invertible by Theorem 4.2.5, the equation () has the unique solution
g=I-K)'f.
O

Corollary 4.2.7. Let X be a Banach space. Then the set A of invertible elements in
B(x) is open.

Proof. The set A is non-empty since I € A. Let T € A and let r := ||T7!||7!. Notice
that r > 0 since |T~!|] implies 7~ = 0. This contradicts with 7T~ = I. Tt suffices to
show that S € A whenever ||S —T| <.

Let S € B(X), ||T"— S| <r. Then (Lemma 4.1.2)

(T =T = T = SIIT|
< T =1
Hence [ — (T — S)T! is invertible by Theorem 4.2.5. However,

I—(T-ST"' = I-TT '+ 8T!
= I—-I1+ST'=95T""

Therefore ST~! is invertible and S = (ST~1T is invertible (Lemma 4.2.2 (b)). Hence
Se A
U

Lemma 4.2.8. Let V, W be vector spaces and let T € L(V,W).

(a) T is injective iff Ker(T) = {0y},

(b) T is surjective iff Im(T) =T(V)=W;

(c) T is bijective iff 3S € L(W, V), which is bijective and SoT = Iy, T o S = Iy.
Proof. (a) See Algebra or Linear Algebra.
(b) Trivial.
(c) If T is bijective, 7' : W — V such, that T' o T = Iy and T o T~ = Iy,. Let
us recall that 77! € L(W,V), i.e. T7! is linear. Let a,3 € F and z,y € W. Then
T (ax+ By) € V and

(x) T(T"'(az + By)) = az + PBy.
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On the other hand, T7(z), T-!(y) € V and

(+%) T(aT Y(x)+ BT Hy)) "2 aT(T"(x)) + BT(T " (y)) = az + Fy.

Since T is injective, we conclude from (%) and () that
T~ Haw + fy) = aTH(z) + T (y).

The converse is well-known.

i

Note. Suppose that 7" is a bijective element in B(X,Y). Then, by Lemma 4.2.8 there
is T71 € L(Y,X). However, we do not know that T—! is a bounded operator. This
additional knowledge is studied in the next subsection.

4.3. Uniform boundedness principle and open mapping theorem. To prove two
corner-stones of functional analysis (open mapping theorem and uniform boundedness
principle) we need a deep topological result called Baire’s category theorem. The proof
of this is omitted, see Vaisila: Topologia II.

Theorem 4.3.1. Let X be a complete metric space. If V; C X, j € N is a countable
collection of open subsets, then ﬂ;; V; is dense in X.

Corollary 4.3.2. Let X be a complete metric space and let F; C X be closed for all
J € N such that
x=JF
j=1

Then there is jo € N such that Fjo contains an open ball.

Proof. Denote V; = X \ F;,j € N. Then V; is open for all j € N. Assume, on the
contrary, that none of the sets F}; contains an open ball, that is,

ViNB(x,r) #2@ VjeNVre X Vr>0.

This implies that V; is dense in X for all 7 € N. By Theorem 4.3.1, ﬂj’;l V; is dense in
X. In particular, ﬂjoil # &, so there is x € X such that

re(\V;=X\E)=X\[)F
j=1 =1 j=1
This contradicts with the assumption X = (J7Z, F}. O

Theorem 4.3.3. Let X be a Banach space, Y a normed space and (Ty)acy an arbitrary
collection of elements T, € B(X,Y). If

M(z) := sup || T(z)[| < oo

acJ
forall x € X, then

sup | T | = supsup{ | Zu(@)]| : [l2]] < 1} < oo
acJ acJ
Note. Observe that J is an arbitrary index set, J is not necessarily countable.

Before we prove Theorem 4.3.3, let us consider some applications of it.
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Theorem 4.3.4. Let X be a Banach space, Y a normed space and (T,,)nen a sequence
of elements in B(X,Y) such that

T(x) = lim T,(x)

n—oo

ezists for every x € X. Then T € B(X,Y).

Proof. The mapping T is linear (see the proof of Theorem 4.1.1). By assumption (7,,(z))
converges for all z € X. Hence (T,,(x)) is a bounded sequence for all € X, so that

M(zx) :=sup || T,(z)|]| < 0o Vz e X
neN

By Theorem 4.3.3, there is M € R such that ||T,,|| < MVn € N. We obtain
7@ = 1 fim To(e)ll = Jim [T} < snp 1720 < sup [Tl < Ml

g

Note. In Theorem 4.1.1 Y is Banach, in Theorem 4.3.3 X is Banach. Otherwise The-
orem 4.1.1 has stronger assumptions.

Example 4.3.5. Let P = {x : x is a real polynomial } and let
2]l = sup{l(t)| : ¢ € [0,1]}, =€ P.
For each n € N, we define T}, : P — R by
1
Ta(z) = n(2(1) —2(1 = ).
Then T,, € B(P,R) since linearity is obvious and
Ta(@)] < 2n][2]|oo-
Hence ||T,|| < 2n. Moreover,

lim 7,,(z) = lim z(l) - af(l ) =2'(1)

n—oo n—oo -
n

so that lim, .. T,,(x) = T(x) for all z € P, where T'(x) = 2'(1). However, T is not
continous, since for x,(t) = t" we have ||z,|-. = 1 but

T(2n)| = |, (1)] = n.

Conclusions:

(1) Theorem 4.3.4 implies that P is not complete with respect to ||z co-
(2) We infer that the completeness assumption for X is necessary in Theorem 4.3.4.

Proof of Theorem 4.3.3. Let
F(n,a) ={ze X |Ta(r)[ <n}, acJ neN

The function f,(x) = ||To(z)]| is continuous as a composite function of continuous func-
tions T, and || - ||. Therefore F(n,a) = f;'([0,n]) is closed X since the pre-image of an
open (closed) set is a continuous function is open (closed). Hence the set

F, = ﬂ F(n,«)

aeJ
is closed in X.
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Assume that

sup || To(z)|| < o0
acJ
for all z € X. Let x € X be arbitrary. Then dn € N such that

sup [To(2)[| <n. (& falz) <n Vo)
acJ

Hence x € F(n,a)Va € J, that is, x € F,,. Tt follows that

X:UFH.

neN

Since X is Banach, Corollary 4.3.2 implies that dny € N and an open ball B(zg,ry) C X
such that B(zg,r9) C Fno. We are free to assume (by choosing a smaller ) that

B(IQ,T’()) C FnO- (*)

It is enough to prove that ||T,(z)| < %Va € Jand z € X, ||z]| < 1. Let z € X with
|z|| < 1. Then z¢ + rox € B(z¢,bo) (since ||z + rox — 20| = 70||2|| < 70) and (*) implies
that

| To(zo + roz|| < no.

Therefore

1 1

1Ta(@) = = [ Ta(roz)|| = = | Ta(zo + rox) — To(zo)||
70 70
1 2n
< = (ITu(wo + ro2) | + 1 Talwo)ll) < =

T0 To

for all o € J. O

To understand the idea of the open mapping theorem we first recall some topological
background.

Definition 4.3.6. Let X Y be normed spaces. A mapping f : X — Y is called open if
f(U) is open in Y whenever U is open in X.

Recall here that U C X is open in a normed space (X, || - ||) if for each x € U Ir > 0

so that, Bx(z,r) ={ye X : ||z —y| <r} CU.

Lemma 4.3.7. Let X andY be normed spaces with norms ||-||x || ||y respectively. Then
f: X — Y is an open mapping if and only if for each x € X and r > 0 there is ' > 0
such that By (f(x),r") C f(Bx(z,1)).

Proof. (=). Assume that f: X — Y is open. Let 2 € X and r > 0. Then Bx(z,r) is
open in X and hence by assumption f(Bx(x,r)) is open in Y. Since f(z) € f(Bx(z,r)),
there is 7' > 0 so that By (f(z),r") C f(Bx(x,r)).

(«<). Let U C X be open and assume that the (r,r’)-condition holds. Let y € f(U) be
arbitrary. Choose x € U so that y = f(z). Since U is open, 3r > 0 so that Bx(z,r) C U.
By assumption, 3/ > 0 such that

By(y,r') = By (f(x),r) C f(Bx(z,r)) C f(U).
Hence f(U) is open in Y. d
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In what follows, we say that f : X — Y (X, Y normed spaces) is open at © € X if
Vr >0 3’ > 0 so that
By (f(z),r") C f(Bx(x,1)).

Example. (a) The function f : R — R, f(z) = (z), is not open. In fact, f is not open
zero, since f(] —¢e,¢[) = [0, e[ does not contain any open neighborhood of f(0) = 0.
(b) The function f: R — R, f(x) = (1), is not open at any point = € R.

Remark 4.3.8. Lemma 4.3.7 is analogical to the well-known characterization of continuity
which says that f: X — Y (X, Y normed spaces) is continous at each point x € X

(Ve > 0 3r > 0 so that f(Bx(z,r)) C B(f(x),¢)) if and only if for each V' C Y open the
pre-image f~1(V) is open in X.

Lemma 4.3.9. Let X and Y be normed spaces and T € L(X,Y). Then T is an open
mapping if and only if T is open at Ox.

Proof. (=). This is included in Lemma 4.3.7.
(«). Assume that T is open Ox. By Lemma 4.3.7, it suffices to show that T is open at
x for any x € X. Let x € X and r > 0. By assumption, there is ' > 0 such that

B(T(0x),r") = B(0y,r") C T(B(0x,7)). (x)
We claim that
T(B(z,r)) =T(x+ B(0x,r)) =T(x) + T(B(0x,7)),
where (by definition of the direct sum)
r+ B0x,7r)=x+y:ye B(0x,r).

(1) B(z,r) = o+ B(0x,r): If y € B(0x,r), then ||z —y|| < r. Hence y =z + (y — ),
where y — 2 € B(0x,r) Soy € z + B(0x,r). Conversely, if y € = + B(0x,r), then
y =+ z, where ||z|| <r. Then ||y — x|| = ||z[| <r, so that y € B(z,7).

(2) T(x + B(0x,r)) = T(x) + T(B(0x,7)): For any x € B(0x,r) we have by linearity
T(x+y)=T(x)+T(y). Now, by using (1) and (2) together with (x) gives

T(B(z,r)) =T(z+ B(0x,r)) =T(x) + T(B(0x,r)) D T(z) + B(0y,r") = B(T(x),r").
Hence the claim follows. O

As an exercise we obtain that an open mapping 7' € L(X,Y) (where X and Y normed
spaces) is always surjective, that is, T'(x) = Y. The open mapping theorem states that
the converse is true if X and Y are Banach spaces and T' € B(X,Y).

Theorem 4.3.10. Let X and Y be Banach spaces and let T € B(X,Y) be surjective.
Then T is an open mapping.

We obtain Theorem 4.3.10 as a consequence of the following result whose proof we skip
(see Rynne & Youngson, p. 115-117).

Theorem 4.3.11. Let X and Y be Banach spaces and let T € B(X,Y) be surjective.
Then there 1s t > 0 such that

{yeY lyl<ty cT{re X |zl <1}) (+)
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To conclude Theorem 4.3.10, we infer from Theorem 4.3.11 that T is open at Ox (see
Lemma 4.3.9). Let 7 > 0 and let y € Y such that ||y|| < 5z. Then

2 2
1=yl = ~liyll <t
and (x) implies that 2y = T'(z) for some z € X, ||z|| < 1. Now

where ||Zz| < £ < r. We conclude that
B(0y, gt) c T(B(0x, 7)),

that is, T" is open at Ox.

Corollary 4.3.12. Let X and Y be Banach spaces and let T € B(X,Y) be surjective.
Then T~ € B(Y, X).

Proof. Exercise. U

Definition 4.3.13. Let X and Y be normed spaces and let F': X — Y be a mapping.
Then the graph of F, denoted by G(F), is defined as

GF)={(z,F(z)):x € X }.

Theorem 4.3.14. Let X and Y be normed spaces and let F' : X — Y be continous.
Then G(F) is a closed subset of X XY, whose vector sum and scalar multiplication are
defined by

(1, 91) + (22,92) := (21 + T2, 51 + ¥2)
and
a(z1,y1) := (aw1, ay)
for all z;,xe € X, y1,y2 €Y, a € F, and whose norm || - || is defined by
1z )l = llllx + llylly-
Here ||x||x (resp. ||lylly) is the norm of X (resp. Y ).
Proof. We leave as an exercise to prove that X x Y || -||) is a normed space. To prove
that G(F) is closed in X x Y, let ((x,,y,)) be a sequence in X x Y such that (x,,y,) —

(x,y) € X x Y. This implies that lim,, .. 2, =z in X and lim,, ..y, =y in Y. On the
other hand, y, = F(x,), so that

y = lim y, = lim F(z,) = F(x)

by continuity of F', see Remark 4.3.15 below. Therefore (z,y) = (z, F(z)) € G(F) and
so G(F) is closed. O

Remark 4.3.15. If X and Y are normed spaces and 7" : X — Y is linear, then G(7T) is a
subspace of X x Y. Indeed, for any (z,v), (z/,y') € G(T') and for any «, 3 € F', we have

a(z,y) + (@', y) = a(z,T(X)) + B(2', T(2)) = (az + f2',aT'(x) + BT (2"))
= (ax + 2, T(ax + Ba')),
which implies that ax + g2’ € G(T).

The closed graph theorem states that the converse for Theorem 4.3.14 holds if X and
Y are Banach spaces and T is linear.
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Theorem 4.3.16. Let X and Y be Banach spaces and let T : X — 'Y be linear such that
the graph G(T') is closed. Then T € B(X,Y'), that is, T is continuous.

Proof. As X x Y is a Banach space (see exercise), G(T) is a Banach space since it is a
closed subspace of X x Y. (In fact, a Cauchy sequence in G(T') converges to an element
of X xY by completeness. But this limit is contained in G(7") since G(T') is closed.) Let
¢ : G(T) — X be the mapping

o(z,T(x)) = .
Then ¢ is linear since Vx,y € X, a, 3 € F

¢z, T(x)) + 8y, T(y) = oélax+ Py, aT(z)+ T (y))
= ¢lax + By, T(ax + By))
= ax+ Py = ag(z, T(x)) + By, T(y)))-

The mapping ¢ is clearly bijective. Since
lp(z, T(@))l[x = llzllx < llzllx + [ T@)y = [I(z, T(2)) ] xxy
we obtain that ¢ is bounded with ||¢|| < 1. By Corollary 4.3.12, ¢! : X — G(T) is a
bounded linear operator. Since ¢~ '(z) = (z,T(x)) Vo € X, we obtain
IT@)lly < llzllx + 1Ty = (2, T@)) lxxy = 167" @) lxxy < o7 H2]x-
Hence T' is a bounded operator. O

We continue the study of invertibility by using the open mapping theorem. This
requires some lemmas.

Lemma 4.3.17. If X is a normed linear space and T' € B(X) is invertible, then for all
reX
1T @)l = 177 |l
Proof. Exercise. O
By Lemma 4.3.17, an invertible operator 7' € B(X) has the property that 3 constants
a > 0,4 > 0 such, that
allzl| < ||T(2)] < Bl
for all z € X.
Lemma 4.3.18. If X is a Banach space and T € B(X) has the property that there is a
constant o > 0 such that
IT(2)| = aflz]| vz e X,
then Im(T) = T(X) is a closed set.
Proof. Let (y,) be a sequence in I'm(T) such that, lim, .y, =y € Y. Asy, € Im(T),

there exists x,, € X such that T'(z,) = y,. As (y,) converges, it is a Cauchy sequence by
Lemma 1.2.2. Since

[ym = ynll = 1T (@m) = T()ll = 1T (2m = 20)ll = f|zm — 2],

it is easy to see that (x,) is a Cauchy sequence as well. By the completeness of X, there
is x € X so that lim,, .., x,, = x. Therefore, by continuity of T, see Remark 4.3.15,

T(z)= lim T(x,) = lim y, = y.
Hence y = T'(x) € Im(x,) and so Im(T") is closed. O
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Remark 4.3.19. Let X and Y be normed spaces and let f : X — Y be continuous.
Assume that x,,y, € X so that lim,, .. z, = . Then lim, ., f(z,) = f(z).

Proof. Let € > 0. By continuity of f, 30 > 0 so that
|z, + 2| <0 = |f(zn) — f(z)] <e.
Since lim,, . =, = =, dns € N such that
n>ns — |, — x| <.

Hence n > ng implies that |f(z,) — f(x)| < e. The claim lim, ., f(x,) = f(x) follows.
U

Theorem 4.3.20. Let X be a Banach space and let T € B(X). The following are
equivalent:
(a) T is invertible in B(X);
(b) Im(T) is dense in X and there is a constant o > 0 so that ||T(x)| > «f|z| for
allx € X.

Proof. (a) = (b). This follows from 4.3.17 since Im(T) = X if T is invertible.

(b) = (a). By hypothesis Im(T) is dense in X. We claim first that Im(7T) = X. For
any © € X, we find a sequence x,, € Im(T) such that lim, .., x, = x by picking z,, €
B(z,X)(Im(T). By assumption and Lemma 4.3.18, Im(7T') is closed. Therefore z €
Im(T) and so Im(T) = X. Hence T is surjective. To prove that T is injective, let
x € Ker(T). Then T'(z) = 0x so that

0=[T(@)] = all|

Hence x = 0x and Ker(T) = {Ox}. Lemma 4.2.8 implies that T is bijective. Corollary
4.3.12 yields that T is invertible in X. U

Theorem 4.3.20 can be used to show that an operator T € B(X) is not invertible. For
this purpose we first reformulate Theorem 4.3.20.

Corollary 4.3.21. Let X be a Banach space and let T € B(X). Then T is not invertible
if and only if Im(T) is not dense or

A(z,) C X, ||zn|| =1 Vn € N such that lim T'(z,) =0. (%)

n—oo

Proof. The condition ||T(x)| > «||x| does not hold for any a > 0 if and only if

() © X\ {0x} with [T} < | (x)

’

If (**) holds, then for x, = -

A

x! 1 1 1

1T ()l = T (I = 7= i < -

Bl [l ([T ()

It follows that lim,, .., T(z,) = Ox. Hence (%) holds. The implication (%) = (%) is
similar. O

!
(Elp

(K

Ezample 4.3.22. In Example 4.2.4 we studied for any h € C0,1] an operator T}, €
B(L*[0,1]),

(Thg)(t) = h(t)g(t), tel0,1].
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We show now that T’ is not invertible if f € C[0,1]. For each n € N, let g, = /nx 1;-
Then g, € L?[0,1] and

1 1
lonlli= [ (Vin20ae = [ nat =1
0 0

for all n € N. However

HE%W=AU@MW%=A

3=

n
nt’dt = —n?
3

Hence
Jim |7 (gu) | = 0
and Corollary 4.3.21 implies that T is not invertible.
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5. LINEAR OPERATORS ON HILBERT SPACES
5.1. The adjoint of an operator.
We consider next a linear 7' : 'H — K, where H and K are Hilbert spaces. For sim-

plicity we denote inner products in each of the spaces H and K by (-, -). Throughout this
section we assume that F = C.

Theorem 5.1.1. Let H and K be complex Hilbert spaces and let T € B(H,K). Then
there is a unique operator T* € B(K, H) such that

(T'(x),y) = (&, T*(y))
for allz € H and y € K. Moreover || T*| < ||T|.
Proof. Let y € K and let f : H — C be defined by

flx) = (T'(z),y).
Then f is linear, since for all o, 3 € C and z,2' € H,
flax+ B2") = (T(ax+ p'),y)
= (aT'(z) + BT (2),y)
= a(T(z),y) + B(T(2"),y)
af(z) + Bf(z").
By Cauchy-Schwarz and by the boundedness of T,

[f (@) = [T (@), »| < IT@yl = 1Tyl

for all x € ‘H. Hence f is bounded and Riesz-Frechet theorem (Theorem 4.1.8) implies
that there exists unique z € H such that

flz)=(x,z) VazeH.
We define 7% : K — H by T*(y) = 2. Then
(T'(x),y) = (z,T°(y)) (%)

for all z € H,y € K. Now it is enough to show that 7™ is linear, bounded and unique.
T is linear: Let v,y € K, let o, 5 € C and let x € H. By (%),

—

*

~

(z, T"(ayr + By2)) (T'(z), ayr + Bya)
L QT (), pr) + BT (), )
ale, T (y1)) + B, T* (1))
=0 (o () + BT (1)),
This holds for all x € H and therefore (Exercise 4/1)
T (o + By2) = oT™(y1) + BT (y2).

Boundedness with ||7%|| < ||7|| and uniqueness exercise. O

—

*

=

Definition 5.1.2. If H and K are complex Hilbert spaces and T" € B(H, K), then the
operator T™ of Theorem 5.1.1 is called the adjoint of T.
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The uniqueness part of Theorem 5.1.1 is very useful when finding the adjoint of an
operator. If we find a mapping S which satisfies

(T'(z),y) = (x,5@y)) VzeHyek,
then S = T™.
Ezample 5.1.3. Recall that the inner product in C? is defined by
(x,y) = 2177 + 273 ; zi,y; €C, i =1,2.

We denote by Ms,2(C) the set of 2 x 2 matrices with complex entries a;.
Let T : C* — C? be a linear mapping. Then T is continuous (Theorem 2.1.9) and (by
linear algebra) there is A = (a;;) € Ma,2(C) such that

T(x)zsz(an a12><x1)
G21  G22 T3
for all z1, x5 € C. To find the adjoint T, we write equation

(T(x),y) = (=, T"(y))
in a form (7T*(y) = By)

@11 Q12 € Y1 _ Ty bii bio Y1
a1 Ao T2 )7\ Yo Ta )7\ b2 ba Yo
PN 1171 + A1222 Y1 _ T bi1y1 + bi2y2
a1 + axry )\ Y2 o )7\ baryr + baoyo
S anT Ui + ATl + a1 + a0l = Tibnli + 1012l + Tebn i + Tabxnls.

Since this holds for all z;,y; € C, we may choose xy = y; = 1 and x5 = y» = 0, so that
a;l = b11~ Slmllarly 19 = b21, 91 = b12, Q99 = b22. In general bij = CL_]Z

The result can be proved similarly for any 7' € B(C",C™). Hence if
T(x) = Ax,

where A € M,,5,(C), A = (a;;), then
T*(z) = Bz,

where B = (b;;) and b;; = @;;. We also denote B = A*.

Warning. Here A* # adjA. We call the matrix A* conjugate transpose (adjucate, Her-
mitean adjucate).

Ezample 5.1.4. For any k € Cc[0,1], let T}, € B(L2[0,1]) be defined by

(Teg)(t) = k(t)g(t), ¢ € [0,1].
Note here that the proof of Exercise 3/1 applies also in complex case. Hence ||T;|| < ||k]] -

1 1
(HTkgus _ / kO PlgPdt < K2 / g(t)2dt = Hkuzougus.)

Claim. If f € Cc[0,1], then (T})* = T%, where f = fi +ify and f=fi—ifs
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Proof. Let g, h € L£]0,1] and let k = (T})*h. By definition

(Trg, h) = (g, (Ty)"h) = {9, k)
so that (See Example 3.3.2)

/ f(t) /0 1 g(t)k(t)dt.

This clearly holds if k(t) = f(t)h(t), that is

k(t) = f(£)h(t) = (T7h)(1).
By the uniqueness of adjoint, we deduce that (Ty)* = T+. O

Ezample 5.1.5. Let S € B(I?) be the unilateral shift
S(x1, 9, x3,...) = (0,21, 22, 3, ...).
Claim. S*(y1, Y2, Y3, ---) = (Y2, Y3, Y, --.)-
Proof. Let x = (z,),y = (yn) € [? and let z = (2,) = S*(y). By definition
(5(x),y) = (,5(y))

so that
(0,21, w9, x3, ...), (Y1, Y2, Y3, --.)) = (w1, X2, 3, ...), (21, 22, 23, -..)) -
Therefore
0-71 +21Y2 +22y3s + ... = 2121 + 2220 + 323 + . ..
holds true for all z = (z,,) € [ if and only if z; = 95, 2o = y3, .... Hence by the uniqueness

of the adjoint
S*(y) =z = (Y2, Y3, Ya -.)-

In what follows, we also call S a forward shift and S* a backward shift.

Example 5.1.6. Let 'H be a complex Hilbert space. If I is the identity operator on H,
then
I"=1.

Proof. It x,y € H, then

(I(x),y) = (2, I"(y)) & (x,y) = (x. 1" (y)).
Therefore, by the uniqueness of the adjoint, [* = 1. O
Lemma 5.1.7. Let H,K and L be complex Hilbert spaces and let R, S € B(H,K) and
T e B(K,L). Then
(a) (LR + \S)* = mR* + \S* for all p, \ € C;
(b) (TR)* = R*T™.
Proof. Exercise. O

Theorem 5.1.8. Let H and K be complex Hilbert spaces and let T € B(H,K). Then
(a) (T7)" =T,
(b) 1T =175
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(¢) the function f: B(H,K) — B(KC,H), f(T)=T*, is continuous;
() 77| = || T

Proof. (a) Exercise.
(b) By Theorem 5.1.1, we have ||[T%|| < ||T'||. Applying this result to 7% and using (a)
gives
(@) *\ * *
1] = [(T) [ < {177
Hence |7° = |7].
(c) Let € > 0 and choose § =¢. If R, S € B(H,K) and |R— S|| < § = ¢, then by Lemma
5.1.7 and (b)
N w1 5.1.7 « (0
[F(R) = F) = 1R" = 57| =" [[(R=5)"| = [k = 5] <e.
Hence f is uniformly continuous in B(H, K).
(d) Since ||T'|| = ||T*||, we have
17T < IT* T = ||7)1*.
On the other hand, by the definition of 7%, (a) and Cauchy-Schwarz inequality,

2 def.ofT* " c-5 * * 2
[T @) = (T(2),T(x)) "= (I"(T(x)),z) < |T(T()|llz] < T
By taking sup over ||z|| < 1, we obtain
17> < |77
The claim follows. U
Note. By the proof of (c¢), we have in particular
(B =R Vv ReB(HK),

since 0* = 0. However, f is not isometry since f is not (quite) linear, see Lemma 5.1.7 (a).

Next, we obtain an improved characterization for invertibility in the case of Hilbert
spaces.

Lemma 5.1.9. Let H and K be complex Hilbert spaces and let T € B(H,K). Then
(a) Ker(T) = Im(T*)*;
(b) Ker(T*) = Im(T)*.
Proof. (a) 1° Ker(T) C Im(T*)*:
Let x € Ker(T) and z € Im(T*). As z € Im(T*), 3y € K such that T*(y) = z. Then
(€, 2) = (2, T"(y)) = (T'(x),y) = (0, y) = 0.
Hence z C Im(T*)*.
2° Im(T*)* C Ker(T):
Let z € Im(T*)*. As T*T(z) = T*(T(z)) € Im(T™), we have
IT(@)II* = (T(2), T(2)) = (T"(T(x)),x) = 0.
(T*)
elm(T*

Thus [|T(z)]| = 0 so that T'(x) = Ox. Therefore z € Ker(T).
(b) By (a) and Theorem 5.1.8 (a) we have

Ker(T*) @ (Im(T")")* "% 1m/(T)*.
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Lemma 5.1.10. If X is any linear subspace of a Hilbert space H, then X*++ = X.

Proof. Since X C X, it follows from Exercise 5/1 that X c Xt and X' c X

But X is closed and therefore by Corollary 3.2.15 X" = X. Hence we conclude that
Xt cXx.

By Exercise 5/1, X € X**. Since X** is closed (Lemma 3.2.9), we have X C X*+.
The last conclusion is regarded as known from topology. U

Theorem 5.1.11. Let H and K be complex Hilbert spaces and let T' € B(H,K). Then
Ker(T*) = {0k} if and only if Im(T) is dense in K.

Proof. 1° Assume that Ker(T*) = {Ox}. By Lemma 5.1.9
(Im(T)")" = Ker(T*)" = {0c}" =K.

By Lemma 5.1.10, Im(7T) = K, so that Im(7T) is dense in K.
2° Assume that Im(7T) is dense in K. By Lemma 5.1.10

(Im(T)*)* = Tm(T) = K.

Since I'm(T) is closed (Lemma 3.2.9), we obtain by Lemma 5.1.9 and Corollary 3.2.15
that

Ker(T*) "2 Im(T): "2 277 (Im(T)*)1)* = K* = {0k}
O

Corollary 5.1.12. Let H be a complex Hilbert space and let T € B(H). The following
are equivalent:

(a) T is invertible;
(b) Ker(T*) = {0y} and 3 a > 0 such that | T(z)|| > ajz|| V = € H.

Proof. Follows from Theorem 5.1.11 and Theorem 4.3.20. U

Despite having to do one more step it is often easier to find the adjoint of an operator T'
and then decide whether Ker(T*) = {0y} than show that Im(7) is dense in H.

Example 5.1.13. The forward shift S € B(I?),

S(x1,x9,73,...) = (0,21, 29, 73,...) ¥ (z,) € 12,
is not invertible.
Proof. We showed in Example 5.1.5 that

S*<ylay27y37 ) = (y27y37y47 ) v (yn) S 12'
Hence (1,0,0,0,...) € Ker(S*) and the claim follows from Corollary 5.1.12. O

5.2. Normal, self-adjoint and unitary operators. Adjoint can be used to define
particular classes of operators which frequently arise in applications and for which much
more than above is known.

Definition 5.2.1. If H is a complex Hilbert space and T' € B(H), then T' is normal if
TT* =T*T.

Note. A complex n x n-matrix A is called normal if AA* = A*A.
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Example. Complex numbers can be regarded as |x|-matrices. What is the set of normal
matrices? Now a* = @, so that the set of all normal operators C — C consists of mappings
2z — az, where aa = aa. Hence any a € C will do since

aa = aa = |al?.

Ezample 5.2.2. For any k € Ccl0,1], let T}, € B(L4[0,1]) be defined by Trg = gk. We
claim that 7}, is normal.

Proof. From Example 5.1.4 we know that T} = T} for any k € Cc[0,1]. Hence, for all
g € L¢[0,1],

(Te(T))(9) = Te(Tiig) = Ti(Trg) = Tu(gk) = gkk,
(T5T)(9) = Ty, (Trg) = T (gk) = gkk,
Ezample 5.2.3. The forward shift S € B(¢?) of Example 5.1.5 is not normal.
Proof. We know that

S* (Y1 vz, Yss - ) = (Y2, Y3, Y4, - ) V() € L2,
Hence for any (z,) € (2,
S*(S(xy, x9,x3,...)) = S*0,21,29,...)) = (21,22, 73, ...),
S(S*(x1,x9,x3,...)) = S(xa,x3,24,...)) = (0,29, 23,...).
If 21 # 0, then S*(S((x,))) # S(S*((x,))). Hence S*S # SS*.
U

Ezxample 5.2.4. If 'H is a complex Hilbert space, I is the identity on H, A € C, and
T € B(H) is normal, then T'— AI is normal.

Proof. By Lemma 5.1.7 and Example 5.1.6,
« 5.7

(T = AI)* "7 7 = X[ °Z° 7 — X1
We obtain
(T =X (T = XI)* = (T —M)(T* = )
= TT* —TX — NT* + M\
= TT* = XT — \T* + |\
and similarly
(T —AD*(T —X) = (T* = N)(T — M)
= T*T — NI — \T + |\*1.
By assumption T7T* = T*T and the claim follows. O

Notice above e.g. that
Tlin.

(TA)(z) =T (z)) = T(\x) =" XT(z) = (\T)(z).
(M) (x) = M(Ax) = Mz = (|A\*1) ().
We study next the basic properties of normal operators.

Lemma 5.2.5. Let H be a complex Hilbert space, let T'€ B(H) be normal. Then
(a) [T(z)] = [T*(z)| V= eH;
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(b) If || T(x)|| > a||lz|| for some a > 0 and for all x € H, then Ker(T*) = {0x4}.

Proof. (a) Let x € H. AS T*T = TT*, we obtainby the definition of the adjoint and
Theorem 5.1.8 (a)

HED (o TH(T (@) — (2, T

= (2, T"(T(2)) = T(T"(x))) = (x,04) = 0.

—~

IT@IF = 1T*@)* = (T(2),T(x)) = {T"(x), T"(x))
(

Therefore
1T = T*(@)]| Vo e™H.
(b) Let y € Ker(T™), i.e. T*(y) = 0y4. Then by (a) and the assumption
* (a)
0=1T"W)I = ITWI = allyl = 0.
Therefore ||y|| = 0 and hence y = 0y. Hence Ker(T*) = {0y}. O

Corollary 5.2.6. Let H be a complex Hilbert space and let T € B(H) be a normal
operator. The following are equivalent:

(a) T is invertible;
(b) Ja > 0 such that |T(z)|| > «a||lz|| Vz € H.

Proof. Corollary 5.1.12 and Lemma 5.2.5. U

Definition 5.2.7. If H is a complex Hilbert space and T' € B(H), then T is self-adjoint
it T =T~

Note. A complex n x n-matrix A is self-adjoint if A = A*.

Example. What is the set of self-adjoint operators z — az; 2z € C, a € Z? Now we
require that a* = @ = a, which holds iff a € R.

There are two natural ways to show that a given operator is self-adjoint.

2 1
A= { —i 3 }
is self adjoint. This is clear since

— 2 —q 2 1
* _ AT _ _ _
A_A_{i 3}_{—2'3}_14'

The second approach is to show that

(T'(x),y) = (x, T(y))
Va,y € H. The uniqueness of adjoint then gives T" = T™.

Ezxample 5.2.8. The matrix

Ezample 5.2.9. Tt is clear that I € B(H) satisfies
(I(x),y) = (z, I(y)) Yo,y cH,
Hence [ is self-adjoint.

Example 5.2.10. For any k € C[0,1], let Ty, € B(L[0,1]) be defined by T}g = gk. Hence
we assume that k is real-valued. In this case T} is self-adjoint.
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Proof. Let k € C[0,1]. Now (T})* = Ty = T}, since k is real (i.e. k = ky + iky, where
Lemma 5.2.11. Let 'H be a complex Hilbert space and let S be the set of self-adjoint
operators in B(H). Then

(a) CKTl +ﬂT2 es VTl,TQ S S, cuﬁ S R,’

(b) S is a closed subset of B(H).
Proof. (a) As Ty and T, are self-adjoint, Lemma 5.1.7 gives

* a7ﬂ_eR

(aTy + BTy)* "=" GTy + BT; “= oy + BT,
(b) Exercise. O

An alternative way of stating Lemma 5.2.11 is to say that the set of salf-adjoint operators
in B(H) is a real Banach space.

Lemma 5.2.12. Let H be a complex Hilbert space and let T € B(H). Then
(a) T*T and TT* are self-adjoint;
(b) T'= R+ 1S, where R and S are self-adjoint.

Proof. (a) By Lemma 5.1.7 and Theorem 5.1.8 (a)
« 5.7

(T*T)* °Z" T*(T*)* °Z° T*T.
Hence 77T is self-adjoint. Similarly 77 is self-adjoint.
(b) Let R= (T +T*) and S = (T — T*). Then

1 1 1
R+iS==-T+=-T"+i—(T-T")="1T.
+1 5 + 5 + 222,( )
On the other hand, by Lemma 5.1.7
1 1 1
jol— _T* - T* * T* T —
R = T4 S(T) = J(T" + T) = R
and _ _
1 1 1 1 1 1
= (=T —-=TY)Y==T"—-—T=——T"4+——=—T=
S (22' 21 ) 21 21 2i + 21 S,
since _
I 2 i N I i 1
2 42 2 2% 2 2%
Hence R and S are self-adjoint. O

Note. By analogy with complex numbers, the operators R and S in Lemma 5.2.12 are
sometimes called the real and imaginary parts of T

Definition 5.2.13. If H is a complex Hilbert space and T' € B(H), then T is unitary if
Tr*=1*T=1.

Note. (a) By definition, for unitary operators T = T
(b) A complex n x n-matrix A is called unitary if AA* = A*A = 1.

Example. What are the unitary operators of C — C? Now we require that the mapping
z — az is such that aa* = 1. This holds iff |[a] = 1. Hence a is the point of the unit
circle.
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Ezample 5.2.14. For any k € Cc|0,1], let Ty, € B(L%[0,1]) be defined by
Tvg = gk.
Claim. If f € Cc[0, 1] satisfies | f(¢)| =1 Vt € [0, 1], then T} is unitary.
Proof. We know from Example 5.1.4 that(7})* = T, where f=fi—ifsand f = fi+ifo.
Let g € L2[0,1]. Then
(T7Ty)(9) = T7 (Tyg) = T5(gf) = 9[-
Since |f(t)| = 1 Vt € [0, 1], we obtain
(S = FOF() = i) + () = [f )] = 1.
Hence Vt € [0, 1]
(T3 Ty)(9)(t) = 9(),
so that (T77%)(g) = g. The proof of (T;T7)(g) = g is similar. O

For example, a natural choice in Example 5.2.14 for f would be f : [0,1] — C,
f(t) — e2i7rt‘

We give next a more geometric characterization for unitary operators. This requires a
lemma.

Lemma 5.2.15. If X is a complex inner product space and S,T € B(X) are such that
(S(z),2) = (T(x),z)
forallx € X, then S =T.
Proof. By Lemma 3.1.8 for any u,v,z,y € X
(utv,z4+y)—(u—v,2—y) =2(u,y) + 2{v,z). (%)
Replacing here v by v and y by iy gives

(u+iv,z +iy) — (u —iv,x —iy) = 2(u,iy) + (v, z)
= —2i(u,y) + 2i{v, x).
Multiplying this with ¢ and adding (x) yields

(utv,z+y) —(u—v,z—y)+ilu+v,e+y) —i{lu—v,z—y) =4(u,y) (xx)
We replace u = T'(x), v = T(y) in (x*) and obtain by linearity and the assumption that

Za(s(@).y) ey eX.
Hence (T'(z),y) = (S(x),y) Vz,y € X and Exercise 4/1 implies that T'(z) = S(z) Vz €
X. U
Theorem 5.2.16. Let H be a complex Hilbert space and let T,U € B(H). Then
(a) T*T = I iff T is an isometry;
(b) U is unitary iff U is a bijective isometry H — H.
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Proof. (a) Suppose first that 7*T = I. Then

IT@)* = (T(2),T(z)) = (&, T"(T(x))) = (@, 1(z)) = (z,)
= |jz|]* VzeH.

Hence T' is an isometry. Conversely, suppose that 7" is an isometry. Then

(T*)*=T

(T"T)(x), ) = (TH(T)(x)),z) = (T(x),T(x))
= ||T@)I° = [|2]* = (z,2) = (I(x),2) VzeH.

Now Lemma 5.2.15 implies that T*7T = I.
(b) Suppose first that U is unitary. Then U is an isometry by (a). Hence clearly U
is injective. Moreover, if y € H, then y = U(U*(y)), which gives y € Im(U). Hence
Im(U) = H so that U is surjective.

Conversely, suppose that U : H — H is a bijective isometry. Then U*U = I by (a).
Moreover, if y € H, then there is x € H such that y = U(x). Hence

(UU)(y) = UUY)) = UU"(U(x))) U(z) =y.
Thus UU* = I so that U is unitary. U

UrU=I

Corollary 5.2.17. Let 'H be a complex Hilbert space and let U be the set of unitary
operators in B(H). Then U* € U for allU € U and

10 = U] = 1.
Proof. Let U € U. Then UU* = U*U = I. In other words (by Theorem 5.1.8)
so that U* € U. By Theorem 5.2.16, |U|| = ||U*|| = 1 since U and U* are isometres. [

Remark 5.2.18. Let ‘H and U be as in Corollary 5.2.17. Then ujus € U and ufl € U for
all uy,us € U (exercise). Hence U forms a group with respect to the operator product.

5.3. The spectrum of an operator. Given a complex n X n-matrix A, a number A € C
is called an eigenvalue of A if there exists a non-zero vector z € C" such that

Az = A\zx.

Here x is an eigenvector. It can be proved (see Linear Algebra) that A is an eigenvalue if
and only if A — Al is not invertible.

Definition 5.3.1. Let H be a complex Hilbert space, let I € B(H) be the identity and
let T'€ B(H). The spectrum of T is defined as a set

o(T) ={X € C:T — M is not invertible}.
A number p € C is called an eigenvalue of T if there exists x € H, x # 0y, such that
T(x) = pz.

Ezxample 5.3.2. Let 'H be a complex Hilbert space and let I be the identity on H. Then,
for any pu € C,

o(ul) = {n}.
In fact, for any 7 € C, 71 is invertible if and only if 7 # 0, since

It I =717 =1 if1+#0.
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Clearly 0 - I is not invertible. Hence
o(pul) = {Ae€C:pul — A is not invertible}

= {A e C: (u— NI is not invertible}

= {u}
Lemma 5.3.3. Let H be a complex Hilbert space and let T € B(H). If X is an eigenvalue
of T, then A € o(T).
Proof. Let © € H \ {0y} be such that T'(z) = Az. Then

T(x)— Az =0y ie. (T —M\)(z)=0y.

Hence x € Ker(T — AI) and Lemma 4.2.8 (a) implies that 7" — Al is not invertible. [

It appears that on infinite-dimensional spaces the spectrum does not necessarily coincide
with the set of eigenvalues.

Example 5.3.4. The forward shift S € B(I?) has no eigenvalues. To see this, assume that
A € Cis an eigenvalue of S and x = (z,,) is the corresponding non-zero eigenvector. Then

S(LIZ') = (O,.CEl,l'Q,SCg, ) = ()\512'1, )\],‘2, )\ng, ) = \7.

If A =0, then = = (x,) = 0;2, which is a contradiction.
If A # 0, then Axy = 0 implies that z; = 0. Hence Axy = 0 and again x5 = 0.
Continuing this way we conclude z = 02, a contradiction.

How to find the spectrum if there are no eigenvalues? The following two results can
sometimes help.

Theorem 5.3.5. Let H be a complex Hilbert space and let T' € B(H). Then
(a) A& o(T) if [Al>[IT]];
(b) (T is a closed set.

Proof. (a) If |A| > ||T||, then
1
ety —1 -1
ATHIAL> AT = AT
Hence ||A\7'T|| < 1 and so I — A7'T is invertible by Theorem 4.2.5. Hence
M —T=\I-X'T)

is invertible and so T'— AI is invertible. Therefore A ¢ o(T').
(b) Define F': C — B(H) by F(A\) =T — M. As

1E (1) = F) = 1T = pl = (T = AD| = | = Al = | = Al
F is continuous. By Corollary 4.2.7, the set of invertible elements in B(H) is open. Hence
the set C concisting of non-invertible elements in B(H) is closed. Since
o(T) = F'(C) (pre-image)
we infer by continuity of F' that o(7') is closed. O

Theorem 5.3.5 states that the spectrum of an operator T is a closed bounded (and
hence compact) subset of C which is contained in an open disc with the center origin and
the radius ||T||.
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Lemma 5.3.6. If H is a complex Hilbert space and T € B(H), then
o(T*)={A:Aea(T)}.
Proof. 1°) If A € o(T), then T"— A is invertible and so
(T —X)*=T* =\

is invertible by Exercise 9/7. Hence A € o(T7).
2°) Conversely, if A ¢ o(T™*), then T* — A is invertible and so

(T* =X = (T") = N[ =T — I
is invertible since (7%)* = T. Hence A ¢ o(T).
The claim follows by combining 1° and 2°. U

Example 5.3.7. If S : 1> — [? is the forward shift, then

(a) A is an eigenvalue of S* for any A € C, |\| < 1;
(b) o(S) ={Ae C: |\ <1}

Proof. (a) Let A € C with |\| < 1. We have to find a non-zero vector (z,,) € [? such that
S™((#n)) = Al@n).
By Example 5.1.5,

S*(l’l,ﬂlg,xg, ) = (1’2,Q33,$4, ),
so we need to find a non-zero (z,) € I? such that

(SL’Q, T3, T4, ) = ()\I‘l, )\132, >\l’3, ),

that is x,.1 = Az, for all n € N. This holds if z, = A"~!. Here we agree that 0° = 1.
Then (z,,) = (A"™1) is non-zero even for A = 0. Moreover, as |A| < 1,

0 ) )
Dozl =) NP =) A < oo,
n=1 n=0 n=0

and so (z,,) € [2. Thus )\ is an eigenvalue of S* with an eigenvector (A"~1), where 0° = 1.

(b) We have {\ € C: |A\| <1} C 0(S*) by (a) and Lemma 5.3.3. Thus {\ € C: |\ < 1}
is contained in o(S) by Lemma 5.3.6. Clearly

NeC:MN<l={AeC:|\<1}
and so
{AeC: |\ <1} Ca(9).
As o(S) is closed, by Theorem 5.3.5, we infer that {\ € C : |A\|] < 1} C o(5). On the
other hand, if [A\| > 1, then A ¢ o(S) by Theorem 5.3.5 since ||S|| = 1. Hence

o(S)={NeC: |\ <1}
O

If we know the spectrum of 7', it is easy to find the spectrum of powers of T" and (if T is
invertible) the inverse of 7.

Theorem 5.3.8. Let H be a complex Hilbert space and let T € B(H).
(a) If p: C — C is a polynomial, then

o(p(T)) = {p(p) : p € o(T)};
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(b) If T is invertible, then

o(T™) ={u":peca(l)}
Here
p(T) = ap,T" + ap T" ' + ...+ arT + agl
whenever

p(Z) - anzn + an_lzn_l + ...+ a1z —+ agp.

Proof. (a) Let A € C and let ¢q(z) = A — p(z), z € C. Then g is a polynomial, so by the
fundamental theorem of algebra, it has a factorization
q(2) = c(z =) -+ (2 = ),

where ¢, ; € C with ¢ # 0 and p; are roots of q. Here we may assume that p # A, since
if p = A, then (Example 5.3.2)

o(p(T)) = a(Al) = {A} = {p(p) - p € o (1)}
Hence

Aé¢ o(p(T)) q(T) = A — p(T) is invertible

(T — ) (T — p,I) is invertible
T — p;l is invertible for all j =1,...,n
pi¢o(l) Vji=1,...n
a) £0 ¥ € o(T)
A#p(p) Vo)

(T))}. Here the equivalence (x) is left as an exercise.

S I A CON

Q

Hence o(p(T)) = {p(n) : p €
(b) As T7' = T7'—0-1 is invertible, 0 ¢ o(7T~"'). Hence any element of o(T')
is of the form p~! for some p € C\ {0}. For any u # 0,
p =T = —p T (ul = T),
and —p~ T~ is invertible. Hence
pteo(T) & p'I—T""isnot invertible

& —p 'TH(ul —T) is not invertible

) pul — T is not invertible

& pea().

The proof of (x):
1° If ul —T is invertible, then —p='T~*(ul —T) is invertible by Lemma 4.2.2.
2° If —p YT Y ul —T) is invertible, then

(= T )N T (ul = T) = pl =T
is invertible by Lemma 4.2.2.

Thus o(T ) ={p':pea(l} O

Notation. Let H be a complex Hilbert space and let T € B(H). If p : C — C is
polynomial, we denote

p(o(T)) = {p(p) : p € o(T)}.
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Corollary 5.3.9. If H is a complex Hilbert space and U € B(H) is unitary, then
o(U)c{reC: |\ =1}

Proof. As U is unitary, ||U|| =1 and Theorem 5.3.5 implies that
oU)c{reC:|A <1}

Similarly
oU)c{reC: |\ <1}

since U is unitary. However, U* = U~! so that Theorem 5.3.8 (b) implies that (0 ¢ o(U*)
since U* is invertible)

cU)y={\":xeaU"}c{reC:|)\>1}
The claim follows. 0
Definition 5.3.10. Let H be a complex Hilbert space and let 7' € B(H). Then
(a) the spectrum radius of T, denoted by r,(T), is defined as
ro(T) = sup{|\| : A € o(T)};
(b) the numerical range of T', denoted by V(T'), is defined as
V(T) = {{T'(x), ) : [l«] = 1}.

Note. In (a), sup = max since o(7") is closed and bounded (i.e. compact).

Lemma 5.3.11. If H is a complex Hilbert space and T € B(H) is normal, then
o(T) c V(T).
Proof. Let A\ € o(T). As T — X is normal by Example 5.2.4 and T — A is non-
invertible, Corollary 5.2.6 implies that there exists (x,) € H such that ||z]| =1 Vn €N
and
lim [[(T — A1)z = 0.

( Corollary 5.2.6: For any n € N 3 2/, # 0 such that
T—\I .
=

IS (@)l < —lI(z)]l-

Take 2, = —=2-. Hence [|S(z},)|| < 1.)

EA

By the Cauchy-Schwarz-inequality;,

[l ||=1

(T = AD)(xn), 2| < (T = ML) ()]

so that
T(zn)—A(zn)
———
0= lim ((T"— N )(z,),z,) = Um ((T'(z,), Tn) — Mz, x,)).
However, (x,,z,) = ||z,|| = 1 and so
lim (T'(x,,), x,) = A.
n—oo h\/—/

eV (T)

Therefore A € V(7). O
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Theorem 5.3.12. Let ‘H be a complex Hilbert space and let S € B(H) be self-adjoint.
Then

Proof. (a) As S is self-adjoint,

(S(x),2) °=* (z,5(x)) = (S(a).2)
for all z € H. Hence (S(z),z) € R V x € H and hence V(S) C R.
(b) Lemma 5.3.11; notice that |(S(x),2)| < |IS()| < IS|| if [l = 1.
(c) Since 0 — 0 -1 is non-invertible, the claim holds for S = 0. So by working with
|S||71S, we may assume that ||S|| = 1. By the definition of ||.S||, there exists (z,) € H
such that ||z,]| = 1 and lim, . ||S(x,)|| = 1. In fact, since ||S|| = 1, the definition
of norm implies the existence of a sequence (z],) C H \ {0y} such that ||2/| < 1 and
lim,, o [|S(2,)]] = 1. Since

1S (@) I < STl = [l I,

| =1 as well. Choose x,, = ”x%”. Then ||z,|| = 1 and

st = B

[l
as n — 0o.
Since S? is self-adjoint ((S?)* = S*S* = S?), we have
(S%(z),2) = (x,5%(x)) VrecH.
Therefore, by Lemma 3.1.6,
I(7 = $%) ()|

we have lim,,_, ||z},

(I = 8*)(@n), (I = 8*)(2n)) = (@0 — S*(wn), 20 — 5*(20))

= 2nl|? 4+ 1% ()2 = (2, S%(20)) —(S2 (), )
N’
€R
[ERIESIENE S .
< 2 — 2(S%(2n), 2) =" 2 — 2(S(2), S(xn)

= 2 — 2|15 (xn) 1.
It follows that
lim [|(I — 5?)(z)]| =0

and Corollary 5.2.6 implies that I —S? is non-invertible. Hence 1 € ¢(S5?) and Theorem
5.3.8 implies that 1 € (o(S))?. This is possible if either 1 or —1 is in o (S).
(d) Exercise. O

Ezxample 5.3.13. (a) If A is a self-adjoint matrix with eigenvalues {Ay, ..., A, }, then by (d)
of Theorem 5.3.12
| Al = max{|A1], ..., | Anl}-

(b) If B is any square matrix, then B*B is self-adjoint by Lemma 5.2.12 and
1B]* = ||B"B|
by Theorem 5.1.8. Hence || B|| can be calculated by using eigenvalues of B*B.
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6. COMPACT OPERATORS

6.1. Some general properties.

Definition 6.1.1. Let X and Y be normed spaces. A linear transformation 7' € L(X,Y)
is compact if for any bounded sequence (z,) in X the sequence (T(z,)) in Y contains a
convergent subsequence.

The set of compact transformations in L(X,Y) is denoted by K(X,Y).

Theorem 6.1.2. Let X and Y be normed spaces and let T € K(X,Y). Then T €
B(X,Y).

Proof. Exercise. O

Theorem 6.1.3. Let X,Y ,Z be normed spaces. Then
(a) If S, T € K(X,Y) and «, 5 € C, then aS + [T is compact.
(b) If S € B(X,Y), T € B(Y,Z), and at least one of the operators S, T is compact,
then T'S € B(X, Z) is compact.

Proof. (a) Let (z,,) be a bounded sequence in X. Since S is compact, there is a subse-
quence (x,,) such that (S(x,,)) converges. Since the subsequence (z,,) is bounded and
T'is compact, there is a subsequence (x,,; ) of (x,;) such that T'(z,,, ) converges. Hence,
for the sequence (z,;, ), there exists y,y" € Y so that

lim S(x

k—o00

n;,) =y and kh_)rgo T(0,) =y
see Lemma 1.2.2 (iii). Therefore
dim (@S BT) (2njn) = Jim @S (znse) + 0T (@nje) = oy + By €Y,

and so as + BT is compact.
(b) Let (x,) be a bounded sequence in X. If S is compact, there is a subsequence
(2n;) so that lim; .o S(zn;) = y € Y. Since T is bounded, and hence continuous,
lim; o T(S(2n,)) = T'(y) by Remark 4.3.19. Thus T'S is compact.

Suppose that S is bounded and 7" is compact. Then the sequence (S(x,)) is bounded.
Since T is compact, there is a subsequence (z,,) so that (7'(S(z,,))) converges. Again
TS is compact. O

Notation. When dealing with compact operators one often considers subsequences or
subsequences of subsequences. For notational simplicity, it is common to write (z,,) for
subsequences (and for subsequences of subsequences etc.) of the sequence (x,,).

Definition 6.1.4. Let V, W be vector spaces and let T € L(V,W). The rank of T is the
number

r(T) = dim(Im(T)).
Moreover, T is called a finite rank operator (or T' has finite rank) if dim(Im(T)) < oo,
that is, Im(7T") has a finite basis.

Theorem 6.1.5. Let X and Y be normed spaces and let T € B(X,Y). If T has finite
rank, then T is compact.

The proof if based on the following Bolzano-Weierstrass theorem, which we recall with-
out proof.

Lemma 6.1.6. Any infinite and bounded set A in C* has an accumulation point.
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The proof of Theorem 6.1.5. Since T has finite rank, the space I'm(T) is finite-
dimensional. If (z,) is a bounded sequence in X, then by boundedness of T', (T'(z,))
is a bounded sequence in Im(T). Let y, = T'(z,). Then y, = Zle Ain€i, Where \;, € C
and {ey,...,ex } is a base of Im(T). Moreover, if

k
y=> e € Im(T),
=1

then y, — y in Im(7) if and only if
A= (Mny ey Mken) — (B -+, lig)

in C*, see Example 1.1.3 and notice that all norms and equivalent in Im(T'), since Im(T)
is finite-dimensional (Analysis 4/Rynne & Youngson, p.43). Since (y,) is a bounded
sequence, (\,) is a bounded sequence in C*. If {\, : n € N} is a finite set, (\,)
contains a subsequence which is constant; hence converging. If {\, : n € N} is infinite,
Lemma 6.1.6 implies that (\,) contains a converging subsequence. In any case for some
subsequence (A, ), (Alny, ..., Akn;) — (p1, ..., px) € CF, and then

k

Yn, =Y = Zﬂiei e Im(T). O

i=1
Remark 6.1.7. Let X,Y be normed spaces and let 7' € B(X,Y). If dim(X) < oo, then
T has finite rank (see Linear algebra). Hence T" is compact.

In general, compact operators have analogical properties as bounded operators in finite-
dimensional case! Many operators related to applications are compact.

Theorem 6.1.8. Let X be normed spaces, Y a Banach space, and let Ty,) be a sequence
in K(X,Y) so that Ty, — T in B(X,Y). Then T is compact, that is, K(X,Y') is a closed
subset of B(X,Y).

Proof. Let (x,) be a bounded sequence in X. Since T} is compact, there is a subsequence
(Zn,; (1)) s0 that (T1(wy,;(1))) converges. Again, since T3 is compact, there is a subsequence
(Zn;(2)) Of (Tn;(1)) 50 that (Ta(zy;(2))) converges. Clearly, (T1(zn,(2))) converges as well as
a subsequence of a converging sequence. Continuing in this fashion, we find subsequences
(Tn; %)), k € N so that

{n;()} 2> {ni(2)}>--->{m(k)} >
and (T;(zn,k))) converges for all i = 1,... k for each k € N.
Let ny := ni(k) be the diagonal of indices, k¥ € N. Now (T;(x,,)) converges for all
i € N. By completeness of Y, it is enough to show that (7'(z,,)) is a Cauchy sequence.
Let € > 0. Since the subsequence (z,,) is bounded, 3M > 0 so that ||z,.|| < M Vk € N.
Also, since ||T, — T'|| — 0 as k — oo, Jk; € N so that

|Tx — T < BLM whenever k < k;.
Next, since (T}, (x,,)) converges (and therefore is a Cauchy sequence), 3k € N so that
T, () — Thy (20, )] < % whenever r, s < k.

Now, since

HTkl ({lfm) - T(xnz)

< Ty = Tllln;

<<
3
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for all i € N, we have for all 7, s < ky
T (nr) — T (@ns)|

< ||Tk1(xm"> - T@W)” + ”Tkl(an) - Tkl(xnsm + HTkl(xm") - Tkl(an)H

<€+€+8—5
3 3 3 7

This proves the claim. U

Note. The process for selecting the subsequence in Theorem 6.1.8 is called Cantor’s
diagonalization. The same idea is used in Ascoli-Arzela theorem.

Corollary 6.1.9. If X is a normed space, Y a Banach space and (Ty) is a sequence of
finite rank operators in B(X,Y) so that Ty — T in B(X,Y), then T is compact.

Example 6.1.10. We show that T € B(I?),
T — (=
((an)) (nan)v

is compact.

Proof. We know by Example 2.1.5 that T' € B(I?). For each k € N, let T}, : 1> — [* be

defined by

1 1

T ((an)) = ((a1, 302,77 30 05 ).

Then T}, are bounded and linear, and have finite rank since dim(Im(T})) = k. For any
a:= (a,) € I?

o0 9 0
1@ D@E = Y < k412 3 ol < (6 1)l
n=k+1 n=k+1
It follows that (by taking sup over a, |lal| < 1)
IT% =Tl < (k+ 1)~
Hence Ty, — T in B(I?) and T is compact by Corollary 6.1.9. U
Remark 6.1.11. It is possible to prove: If X is a normed space, H is a Hilbert space, and

T € K(X,H), then there is a sequence (7)) of finite rank operators so that 7, — T in
B(X,H). See Rynne & Youngson, p. 167.



