Functional Analysis Exercises 1/2009

1. Let (M, d) be a compact metric space and let

$$C_{\mathbf{F}}(M) := \{ f : M \to \mathbf{F} : f \text{ continuous } \}.$$

Show that $||f|| := \sup\{ |f(x)| : x \in M \}$ defines a norm on $C_{\mathbf{F}}(M)$. (Hint! You are free to use the fact that elements in $C_{\mathbf{F}}(M)$ are bounded functions.)

2. Prove the ℓ^p -version of the Minkowski inequality: Let $(a_n), (b_n) \in \ell^p$ with 1 . Show that

$$||(a_n) + (b_n)||_p \le ||(a_n)||_p + ||(b_n)||_p.$$

(Hint. Use ℓ^p -version of the Hölder inequality, compare with DiBenedetto: Real Analysis, p. 224.)

3. Let $x_1, \ldots, x_k \in \mathbf{F}, y_1, \ldots, y_k \in \mathbf{F}$ and let 1 . Show that

$$\sum_{j=1}^{k} |x_j y_j| \le \left(\sum_{j=1}^{k} |x_j|^p\right)^{\frac{1}{p}} \left(\sum_{j=1}^{k} |y_j|^q\right)^{\frac{1}{q}}$$

for $q = \frac{p}{p-1}$.

4. Let X be a n-dimensional vector space over **F** with the basis $\{e_1, \ldots, e_n\}$. Show that

$$||x|| := \left(\sum_{j=1}^{n} |\lambda_j|^2\right)^{\frac{1}{2}}, \quad x = \sum_{j=1}^{n} \lambda_j e_j,$$

defines a norm on X.

- 5. Let $(X, \|\cdot\|)$ be a normed space such that $\lim_{n\to\infty} x_n = x$. Prove that
 - (i) $\lim_{i\to\infty} x_{n_i} = x$ for any subsequence (x_{n_i}) ;
 - (ii) (x_n) is a Cauchy sequence.
- **6.** Let $(X, \|\cdot\|)$ be a normed space. Prove that
 - (i) $|||x|| ||y||| \le ||x y||$ for all $x, y \in X$;
 - (ii) $\lim_{n\to\infty} ||x_n|| = ||x||$ if $\lim_{n\to\infty} x_n = x$.