Conformal mappings map small circles approximately to
small circles

Let D be a domain and let f : D — C be analytic. Let a € D such that
f'(a) #0. Then f can be represented as

f(z) = fa) + f'(a)(z — a) + g(2)(z — a)

where ¢ is an analytic map satisfying ¢g(z) — 0 as z — a. Therefore

f(z) = f(a) + f(a)(z = a)

when z &~ a. A small circle D(a,r) with center a and radius r will be approx-
imately mapped to a small circle D(A, R) where A = f(a) and R = r|f'(a)|.
The mapping f magnifies the lengths near a with a factor |f’(a)|. The area will
be magnified by a factor |f/(a)|?.

Cauchy-Riemann equations

The number |f’(a)|? is the Jacobian determinant of f at a. To see this, let
z = x + ity and let v and v be the real and imaginary part of f respectively.
Now f(z,y) = u(z,y) + iv(z,y) and its Jacobian determinant is
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where the subscripts denote partial derivatives. Because f is differentiable, the
limits
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are equal to f’(a). We obtain the Cauchy-Riemann equations

Hence, the Jacobian satisfies

Jy(a) = uzvy — uyv, = ui + Ui = |uy + ivw|2 = |f’(a)|2.



Real and imaginary parts are harmonic functions
Taking partial derivatives in the Cauchy-Riemann equations we obtain

{(uw)a: = (Uy)w

(V)y = —(uy)y-

Because u and v have continuous partial derivatives of arbitrary order, we can
change the order of differentiation and (vy), = (vs)y. Consequently,

Ugy + Uyy = 0,

that is, u is a harmonic function.

Moebius transformations

Consider the mapping
az+b

where the denominator is not identically zero. Such mapping is called a Moebius
transformation or a linear fractional transformation.

If ¢ =0, then f(z) = 92 + 3 is a linear map, that is, a combination of a
multiplication and a translation.

If ¢ # 0, then

cz+d acz + ad c ¢

az+b acz+ad+bc—ad a_a 1 ad — be
acz + ad

Hence, function f is a composition of multiplications, translations, and inversion
Z % Moreover, f(z) is not constant whenever ad — be # 0. In this case, f is
a conformal map from CtoC.

Because multiplications, translations and inversion z — %
circles, so does f.

map circles to

The cross-ratio

Define the cross-ratio as

(21 — 22)(23 — 21)
(21— 24)(23 — 22)

CT(Zl, 22,23, 24) =

The cross-ratio is invariant under Moebius transformations. That is, we have
cr(T(21), T (22), T (23), T(21)) = cr(z1, 22, 23, 24) for

az+b
cz+d

T(z) =

The fact can be seen with direct calculation.



Mappings from D to C

Let D be the unit disc of the complex plane. Let f : D — C be locally univalent
with f(0) =0 and f’(0) = 1. There are several criteria, when f is univalent.
By the Becker univalence criterion, if

[2Pr(2)[(1 - |2*) <1, 2 €D,
then f is univalent. Here
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is the pre-Schwarzian derivative of f.

Let "N 1)\
Sp(z) = <f’(z)) S 2 (f’(2)>

be the Schwarzian derivative of f. The Schwarzian derivative of any Moebius
map is zero. We have Sp(z) = 0 for T(z) = 2£2.
By the Nehari univalence criterion, if

1Sp(2)|(1 = |21*)? <1, zeD,

Py(z)

then f is univalent.

Simple univalent maps

Mapping f: D — C,
2

f(z):z+%

is univalent. Namely, let z,w € D and consider

f(z) = fw) = (z —w) <1+Z;w>.

Since 25% € D, having f(z) = f(w) implies z = w.
Similarly,

n

z

is univalent for any n € N.
Let a€e D andlet f: D — C,
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Hence f maps 9D to itself.
Let z € D. Now f(z) = a. Therefore f maps D to itself.
Function f is its own inverse.



