Examples in differentiation and integration

The examples are filtered with JavaScript. When you check more boxes, you will get more examples.

differentiation
integration

xn
sin, cos
exp
ln

perus
fg
fpg
fog
different base


Differentiation

\(Dx^5=5x^4\)
\(D(5x)^7=7(5x)^6\cdot 5\)
\(D\sin(5x)=5\cos(5x)\)
\(D\cos(5x)=-5\sin(5x)\)
\(D\exp(5x)=5\exp(5x)\)
\(D2^{x}=D\exp(x\ln(2)))=\exp(x\ln(2))\cdot \ln(2)=2^{x}\ln(2)\)
\(D2^{5x}=D\exp(5x\ln(2)))=\exp(5x\ln(2))\cdot 5\ln(2)=5\cdot 2^{5x}\ln(2)\)
\(D\ln(5x)=\frac{1}{5x}\cdot D5x=\frac{1}{x}\)
\(D\log_2(x)=D\frac{\ln(x)}{\ln(2)}=\frac{1}{x\ln(2)}\)
\(D\sin(x)+x^5=\cos(x)+5x^4\)
\(D\sin(x)+x^5=\cos(x)+5x^4\)
\(D(\sin(x))^5=5(\sin(x))^4\cos(x)\)
\(D\sin(x)x^5=\cos(x)x^5+\sin(x)\cdot 5x^4\)
\(D\sin(x)\ln(x)=\cos(x)\ln(x)+\sin(x)\frac{1}{x}\)
\(D\sin(x)\exp(x)=\cos(x)\exp(x)+\sin(x)\exp(x)\)
\(D\sin(x)\cos(x)=\cos(x)\cos+\sin(x)(-\sin(x))\)
\(Dx^5\ln(x)=5x^4\ln(x)+x^5\frac{1}{x}=(5\ln(x)+1)x^4\)
\(D\ln(x)\exp(x)=\frac{1}{x}\exp(x)+\ln(x)\exp(x)\)
\(Dx^3\exp(x)=3x^2\exp(x)+x^3\exp(x)\)
\(D\sin(x)/x^5\)
\(D\sin(x)/\exp(x)=D\sin(x)\exp(-x)=\cos(x)\exp(-x)+\sin(x)(-\exp(x))\)
\(D\sin(x)+\exp(x)=\cos(x)+\exp(x)\)
\(D\sin(x^3)=\cos(x^3)\cdot 3x^2\)
\(D\sin(\exp(x))=\cos(\exp(x))\cdot \exp(x)\)
\(D\sin(\ln(x))=\cos(\ln(x))\cdot\frac{1}{x}\)
\(Dx^x=D\exp(x\ln(x))=\exp(x\ln(x))\cdot D(x\ln(x))=x^x\cdot (1\cdot\ln(x)+x\cdot\frac{1}{x})=x^x(\ln(x)+1)\)

Integration

In the end, most times, you can add an additive constant "+C". It is not done here.

\(\int x^5dx=\frac{x^6}{6}\)
\(\int \sin(5x)dx=-\frac15\cos(5x)\)
\(\int \cos(5x)dx=\frac15\sin(5x)\)
\(\int \exp(5x)dx=\frac15\exp(5x)\)
\(\int \ln(5x)dx=\int \ln(5)+\ln(x)dx=x\ln(5)+(x\ln(x)-x)\)
\(\int \ln(x)\cdot xdx=\ln(x)\cdot\frac{x^2}{2}-\int \frac{1}{x}\cdot\frac{x^2}{2}dx=\frac{x^2}{2}-\frac{x^2}{4}=\frac{x^2}{4}\)
\(\int x\cdot\exp(x)dx=x\cdot\exp(x)-\int 1\cdot\exp(x)dx=x\exp(x)-\exp(x)\)
\(\int x\cdot\sin(x)dx=x\cdot(-\cos(x))-\int 1\cdot(-\cos(x))dx=-x\cos(x)+\sin(x)\)