
A proof of the Heine-Borel Theorem

Theorem (Heine-Borel Theorem). A subset S of R is compact if and only if S is closed and bounded.

Proof. First we suppose that S is compact. To see that S is bounded is fairly simple: Let In = (−n, n).
Then

∞⋃

n=1

In = R.

Therefore S is covered by the collection of {In}. Hence, since S is compact, finitely many will suffice.

S ⊆ (In1
∪ · · · ∪ Ink

) = Im,

where m = max{n1, . . . , nk}. Therefore |x| ≤ m for all x ∈ S, and S is bounded.
Now we will show that S is closed. Suppose not. Then there is some point p ∈ (cl S) \ S. For each n,

define the neighborhood around p of radius 1/n, Nn = N(p, 1/n). Take the complement of the closure of
Nn, Un = R \ clNn. Then Un is open (since its complement is closed), and we have

∞⋃

n=1

Un = R \

∞⋂

n=1

cl Nn = R \ {p} ⊇ S.

Therefore, {Un} is an open cover for S. Since S is compact, there is a finite subcover {Un1
, · · · , Unk

}
for S. Furthermore, by the way they are constructed, Ui ⊆ Uj if i ≤ j. It follows that S ⊆ Um where
m = max{n1, . . . , nk}. But then S ∩ N(p, 1/m) = ?, which contradicts our choice of p ∈ (cl S) \ S.

Conversely, we want to show that if S is closed and bounded, then S is compact. Let F be an open
cover for S. For each x ∈ R, define the set

Sx = S ∩ (−∞, x],

and let
B = {x : Sx is covered by a finite subcover of F}.

Since S is closed and bounded, our lemma tells us that S has both a maximum and a minimum. Let
d = min S. Then Sd = {d} and this is certainly covered by a finite subcover of F . Therefore, d ∈ B and B is
nonempty. If we can show that B is not bounded above, then it will contain a number p greater than maxS.
But then, Sp = S so we can conclude that S is covered by a finite subcover, and is therefore compact.

Toward this end, suppose that B is bounded above and let m = supB. We shall show that m ∈ S and
m /∈ S both lead to contradictions.

If m ∈ S, then since F is an open cover of S, there exists F0 in F such that m ∈ F0. Since F0 is open,
there exists an interval [x1, x2] in F0 such that

x1 < m < x2.

Since x1 < m and m = supB, there exists F1, . . . , Fk in F that cover Sx1
. But then F0, F1, . . . , Fk cover

Sx2
, so that x2 ∈ B. But this contradicts m = supB.
If m /∈ S, then since S is closed there exists ε > 0 such that N(m, ε) ∩ S = ?. But then

Sm−ε = Sm+ε.

Since m − ε ∈ B we have m + ǫ ∈ B, which again contradicts m = supB.
Therefore, either way, if B is bounded above, we get a contradiction. We conclude that B is not bounded

above, and S must be compact.


