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We study locally univalent functions f analytic in the unit disc D of the complex 
plane such that |f ′′(z)/f ′(z)| (1 − |z|2) ≤ 1 + C(1 − |z|) holds for all z ∈ D, for 
some C ∈ (0, ∞). If C ≤ 1, then f is univalent by Becker’s univalence criterion. We 
discover that for C ∈ (1, ∞) the function f remains to be univalent in certain 
horodiscs. Sufficient conditions which imply that f is bounded, belongs to the 
Bloch space or belongs to the class of normal functions, are discussed. Moreover, 
we consider generalizations for locally univalent harmonic functions.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let f be meromorphic in the unit disc D = {z ∈ C : |z| < 1} of the complex plane C. Then outside of 
the poles of f , we define its spherical derivative as

f#(z) = |f ′(z)|
1 + |f(z)|2

and its Schwarzian derivative as

S(f) =
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

If z0 ∈ D is a pole of f , we define f#(z0) = limw→z0 f
#(w) and S(f)(z0) = limw→z0 S(f)(w) along w ∈ D

where f(w) �= ∞. Both the Schwarzian derivative S(f) and the pre-Schwarzian derivative P (f) = f ′′/f ′

can be derived from the Jacobian Jf = |f ′|2 of f , namely

P (f) = ∂

∂z
(log Jf ), S(f) = P (f)′ − 1

2P (f)2. (1)
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A function f meromorphic in D is locally univalent, denoted by f ∈ UM
loc, if and only if its spherical 

derivative f# is non-vanishing. Equivalently, the Schwarzian derivative S(f) is an analytic function [23, 
p. 176]. According to the famous Nehari univalence criterion [21, Theorem 1], if f ∈ UM

loc satisfies

|S(f)(z)| (1 − |z|2)2 ≤ N, z ∈ D, (2)

for N = 2, then f is univalent. The result is sharp by an example by Hille [15, Theorem 1].
Let f ∈ UM

loc such that f(a) = f(b) for some a �= b. In this case, a paper by Binyamin Schwarz [24, proof 
of Theorem 1] shows that

max
ζ∈〈a,b〉

|S(f)(ζ)| (1 − |ζ|2)2 > 2. (3)

Here 〈a, b〉 = {ϕa(ϕa(b)t) : 0 ≤ t ≤ 1} is the hyperbolic segment between a and b and

ϕa(z) = a− z

1 − az
(4)

is an automorphism of the unit disc. To see the veracity of (3), note first that the differential equation

y′′ + py = 0, (5)

where p = 1
2S(f) is analytic in D, has two linearly independent solutions g, h such that f = g/h. Therefore, 

the assumption f(a) = f(b) = α for some α ∈ C implies that y(a) = y(b) = 0 for the function y = g − αh, 
which also is a solution of (5). Hence, if we assume

max
ζ∈〈a,b〉

|S(f)(ζ)| (1 − |ζ|2)2 = 2 max
ζ∈〈a,b〉

|p(ζ)| (1 − |ζ|2)2 ≤ 2,

then the reasoning in [24, pp. 161–162] implies a contradiction.
Condition (3) implies that if

|S(f)(z)| (1 − |z|2)2 ≤ N, r0 ≤ |z| < 1, (6)

for N = 2 and some r0 ∈ (0, 1), then f has finite valence [24, Corollary 1]. If (6) holds for N < 2, then f
has a spherically continuous extension to D, see [9, Theorem 4].

Chuaqui and Stowe [6, p. 564] asked whether

|S(f)(z)| (1 − |z|2)2 ≤ 2 + C(1 − |z|), z ∈ D, (7)

where C ∈ (0, ∞) is a constant, implies that f is of finite valence. The question remains open despite of 
some progress achieved in [12]. Steinmetz [25, p. 328] showed that if (7) holds, then f is normal, that is, the 
family {f ◦ ϕa : a ∈ D} is normal in the sense of Montel. Equivalently, ‖f‖N = supz∈D

f#(z)(1 −|z|2) < ∞
and we write f ∈ N . A closely related concept is the Bloch space: a function f analytic in D belongs to 
the Bloch space B if ‖f‖B = supz∈D

|f ′(z)|(1 − |z|2) < ∞. For fundamental facts about Bloch and normal 
functions, see [1] and [23, Chapter 9].

A function f analytic in D is locally univalent, denoted by f ∈ UA
loc, if and only if Jf = |f ′|2 is non-

vanishing. By the Cauchy integral formula, if g is analytic in D, then

|g′(z)|(1 − |z|2)2 ≤ 4 max
|ζ|= 1+|z|2

2

|g(ζ)|(1 − |ζ|2), z ∈ D.

Consequently, the inequality
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‖S(f)‖H∞
2 ≤ 4‖P (f)‖H∞

1 + 1
2‖P (f)‖2

H∞
1

holds. Here, we denote ‖g‖H∞
p

= supz∈D
|g(z)|(1 − |z|2)p for 0 < p < ∞. Thus, each one of the condi-

tions (2), (6) and (7) holds if |f ′′(z)/f ′(z)|(1 −|z|2) is sufficiently small for z ∈ D. Note also that conversely

‖P (f)‖H∞
1 ≤ 2 + 2

√
1 + 1

2‖S(f)‖H∞
2 ,

see [22, p. 133].
The famous Becker univalence criterion [3, Korollar 4.1] states that if f ∈ UA

loc satisfies

|zP (f)(z)| (1 − |z|2) ≤ ρ, z ∈ D, (8)

for ρ ≤ 1, then f is univalent in D, and if ρ < 1, then f has a quasi-conformal extension to C = C ∪{∞}. For 
ρ > 1, condition (8) does not guarantee the univalence of f [4, Satz 6] which can in fact break brutally [10]. 
If (8) holds for ρ ∈ (0, 2), then f is bounded, and in the case ρ = 2, f is a Bloch function.

Becker and Pommerenke proved recently that if∣∣∣∣f ′′(z)
f ′(z)

∣∣∣∣ (1 − |z|2) < ρ, r0 ≤ |z| < 1, (9)

for ρ < 1 and some r0 ∈ (0, 1), then f has finite valence [5, Theorem 3.4]. However, the case of equality 
ρ = 1 in (9) is open and the sharp inequality corresponding to (3), in terms of the pre-Schwarzian, has not 
been found yet.

In this paper, we consider the growth condition∣∣∣∣f ′′(z)
f ′(z)

∣∣∣∣ (1 − |z|2) ≤ 1 + C(1 − |z|), z ∈ D, (10)

where C ∈ (0, ∞) is an absolute constant, for f ∈ UA
loc. When (10) holds, we detect that f is univalent in 

horodiscs D(aeiθ, 1 − a), eiθ ∈ ∂D, for some a = a(C) ∈ [0, 1). Here D(a, r) = {z ∈ C : |z − a| < r} is the 
Euclidean disc with center a ∈ C and radius r ∈ (0, ∞).

The remainder of this paper is organized as follows. In Section 2, we see that under condition (10) the 
function f ∈ UA

loc is bounded. Weaker sufficient conditions which imply that the function f is either bounded, 
a Bloch function or a normal function are investigated. The main results concerning univalence are stated 
in Section 3 and proved in Section 4. Finally in Section 5 we state generalizations of our results to harmonic 
functions. Moreover, for sake of completeness, we discuss the harmonic counterparts of the results proven 
in [12].

2. Distortion theorems

Recall that each meromorphic and univalent function f in D satisfies (2) for N = 6. This is the converse 
of Nehari’s theorem, discovered by Kraus [19]. In the same fashion, each analytic and univalent function f
in D satisfies ∣∣∣∣zf ′′(z)

f ′(z) − 2|z|2
1 − |z|2

∣∣∣∣ ≤ 4|z|
1 − |z|2 , z ∈ D, (11)

and hence (8) holds for ρ = 6, which is the converse of Becker’s theorem [23, p. 21].
The class S consists of functions f univalent and analytic in D such that f(0) = 0 and f ′(0) = 1. Among 

all functions in S, the Koebe function
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k(z) = z

(1 − z)2 = 1
(1 − z)2 − 1

1 − z
,

has the extremal growth. Namely, by inequality (11), each f ∈ S satisfies

|f (j)(z)| ≤ k(j)(|z|),
∣∣∣∣f (j+1)(z)
f (j)(z)

∣∣∣∣ ≤ k(j+1)(|z|)
k(j)(|z|) , j = 0, 1, (12)

for z ∈ D \ {0}, see [23, p. 21]. Moreover, k satisfies condition (2), for N = 6, with equality for each z ∈ D.
Bloch and normal functions emerge in a natural way as Lipschitz mappings. Denote the Euclidean metric 

by dE , and define the hyperbolic metric in D as

dH(z, w) = 1
2 log 1 + |ϕz(w)|

1 − |ϕz(w)| , z, w ∈ D,

where ϕz(w) is defined as in (4), and the chordal metric in C = C ∪ {∞} by setting

χ(z, w) = |z − w|√
1 + |z|2

√
1 + |w|2

, χ(z,∞) = 1√
1 + |z|2

, z ∈ C, w ∈ C.

Then each f ∈ B is a Lipschitz function from (D, dH) to (C, dE) with a Lipschitz constant equal to ‖f‖B, 
and each f ∈ N is a Lipschitz map from (D, dH) to (C, χ) with constant ‖f‖N , see [7, Theorems 5 and 10]. 
Here, we prove the first claim, the second claim can be verified in similar fashion. Let f be analytic in D
such that

|f(z) − f(w)| ≤ MdH(z, w), z, w ∈ D.

By letting w → z, we obtain |f ′(z)|(1 − |z|2) ≤ M , for all z ∈ D, and conclude that ‖f‖B ≤ M . Conversely, 
if f ∈ B, then

|f(z) − f(w)| ≤
∫

〈z,w〉

|f ′(ζ)||dζ| ≤ sup
ζ∈〈z,w〉

|f ′(ζ)|(1 − |ζ|2)dH(z, w),

and we conclude that f is a Lipschitz map with a constant M ≤ ‖f‖B.
In the same fashion as above, we deduce that

∣∣∣∣f ′′(z)
f ′(z)

∣∣∣∣ ≤ B

1 − |z|2 + C(1 − |z|)
1 − |z|2 , z ∈ D,

for some B, C ∈ (0, ∞), is equivalent to
∣∣∣∣log f ′(z)

f ′(w)

∣∣∣∣ ≤ BdH(z, w) + C

(
1 − |z + w|

2 + |z − w|
2

)
dH(z, w), z, w ∈ D.

This follows from the fact that the hyperbolic segment 〈z, w〉 is contained in the disc D ((z + w)/2, |z − w|/2), 
which yields

1 − |ζ| ≤ 1 − |z + w|
2 + |z − w|

2 , ζ ∈ 〈z, w〉 .

For the convenience of the reader, we list some relationships between the classes B and N which can 
be found in [7]. By the Schwarz–Pick lemma, each bounded analytic function belongs to B. If f ∈ B, then 
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both f ∈ N and ef ∈ N . This is clear, since χ(z, w) ≤ dE(z, w) for all z, w ∈ C and since the exponential 
function is Lipschitz from (C, dE) to (C, χ). Moreover, since each rational function R is Lipschitz from (C, χ)
to itself, R ◦ f ∈ N whenever f ∈ N . However, it is not clear under which assumptions f2 ∈ N implies 
f ∈ N .

If f ∈ UM
loc is univalent, then both f, f ′ ∈ N by the estimate

(f (j))#(z) = |f (j+1)(z)|
1 + |f (j)(z)|2 ≤ 1

2

∣∣∣∣f (j+1)(z)
f (j)(z)

∣∣∣∣
and (12). However, it is not clear if f ′′ ∈ N . At least, each primitive g of a univalent function satisfies 
g′′ ∈ N . Recently, similar normality considerations which have connections to differential equations, were 
done in [11].

We denote by Δp(α, ρ) = {z ∈ D : |ϕα(z)| ≤ ρ} a pseudo-hyperbolic disc with center α ∈ D and radius 
ρ ∈ (0, 1). This set is a Euclidean disc, that is,

Δp(α, ρ) = D(ξ,R) = {z ∈ C : |z − ξ| < R} (13)

where the center ξ and radius R are given by the well-known formulas

ξ = 1 − ρ2

1 − ρ2|α|2α and R = 1 − |α|2
1 − ρ2|α|2 ρ,

respectively. Any number in the set {|α|, ρ, |ξ|, R} can be expressed in terms of two other numbers in the 
set, see [16, pp. 17–19], for example. In particular,

ρ = ρ(α, ξ) = ρ(|α|, |ξ|) =

√
|α| − |ξ|

|α|(1 − |α||ξ|) , (14)

whenever α ∈ D \ {0}, a fact needed in Section 4.
If f ∈ UA

loc and there exists δ ∈ (0, 1) such that f is univalent in each pseudo-hyperbolic disc Δp(a, δ), 
for a ∈ D, then f is called uniformly locally univalent. Binyamin Schwarz showed [24, Theorems 3–4] that 
this is the case if and only if supz∈D

|S(f)(z)|(1 − |z|2)2 < ∞, or equivalently if log f ′ ∈ B. Consequently, 
the derivative of each uniformly locally univalent function is normal.

By using arguments similar to those in the proof of [5, Theorem 3.2] and in [18], we obtain the following 
result.

Theorem 1. Let f be meromorphic in D such that
∣∣∣∣f ′′(z)
f ′(z)

∣∣∣∣ ≤ ϕ(|z|), 0 ≤ R ≤ |z| < 1, (15)

for some ϕ : [R, 1) → [0, ∞).

(i) If

lim sup
r→1−

(1 − r) exp

⎛
⎝ r∫

R

ϕ(t) dt

⎞
⎠ < ∞, (16)

then sup |f ′(z)|(1 − |z|2) < ∞.

R<|z|<1
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(ii) If

1∫
R

exp

⎛
⎝ s∫

R

ϕ(t) dt

⎞
⎠ ds < ∞, (17)

then sup
R<|z|<1

|f(z)| < ∞.

Proof. Let ζ ∈ ∂D. Let R ≤ ρ < r < 1 and note that f ′ is non-vanishing on the circle |z| = ρ. Then

∣∣∣∣log f ′(rζ)
f ′(ρζ)

∣∣∣∣ ≤
r∫

ρ

∣∣∣∣f ′′(tζ)
f ′(tζ)

∣∣∣∣ dt ≤
r∫

ρ

ϕ(t) dt.

Therefore

|f ′(rζ)| ≤ |f ′(ρζ)| exp

⎛
⎝ r∫

ρ

ϕ(t) dt

⎞
⎠ ,

which implies the first claim. By another integration,

|f(rζ) − f(ρζ)| ≤
r∫

ρ

|f ′(sζ)| ds ≤ |f ′(ρζ)|
r∫

ρ

exp

⎛
⎝ s∫

ρ

ϕ(t) dt

⎞
⎠ ds.

Hence,

|f(z)| ≤ M(ρ, f) + M(ρ, f ′)
1∫

ρ

exp

⎛
⎝ s∫

ρ

ϕ(t) dt

⎞
⎠ ds < ∞

for ρ < |z| < 1. �
The assumptions in Theorem 4(i) and (ii) are satisfied, respectively, by the functions

ϕ(t) = 2
1 − t2

=
(

log 1 + t

1 − t

)′

and

ψ(t) = B

1 − t2
+ C

1 − t2

(
log e

1 − t

)−(1+ε)

,

where ε ∈ (0, ∞), B ∈ (0, 2) and C ∈ (0, ∞).
By Theorem 1, if f is meromorphic in D and satisfies (15) and (16) for some ϕ, then f ∈ N . Moreover, 

if f is also analytic in D, then f ∈ B, and if (17) holds, then f is bounded.
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3. Main results

Next we turn to present our main results. We consider Becker’s condition in a neighborhood of a bound-
ary point ζ ∈ ∂D as well as univalence in certain horodiscs. Furthermore, we state some distortion type 
estimates similar to the converse of Becker’s theorem. Some examples which concern the main results and 
the distribution of preimages of a locally univalent function are discussed.

Theorem 2. Let f ∈ UA
loc and ζ ∈ ∂D.

If there exists a sequence {wn} of points in D tending to ζ such that

∣∣∣∣f ′′(wn)
f ′(wn)

∣∣∣∣ (1 − |wn|2) → c (18)

for some c ∈ (6, ∞], then for each δ > 0 there exists a point w ∈ f(D) such that at least two of its distinct 
preimages belong to D(ζ, δ) ∩D.

Conversely, if for each δ > 0 there exists a point w ∈ f(D) such that at least two of its distinct preimages 
belong to D(ζ, δ) ∩D, then there exists a sequence {wn} of points in D tending to ζ such that (18) holds for 
some c ∈ [1, ∞].

Example 3. It is clear that (18), c ∈ (6, ∞), does not imply that f is of infinite valence. For example, the 
polynomial f(z) = (1 − z)2n+1, n ∈ N, satisfies the sharp inequality

∣∣∣∣f ′′(z)
f ′(z)

∣∣∣∣ (1 − |z|2) ≤ 4n, z ∈ D,

although f(z) = ε2n+1 has n solutions in D(1, δ) ∩ D for each ε ∈ (0, δ) when δ ∈ (0, 1) is small enough 
(depending on n).

The function f(z) = (1 − z)−p, p ∈ (0, ∞), satisfies the sharp inequality

∣∣∣∣f ′′(z)
f ′(z)

∣∣∣∣ (1 − |z|2) ≤ 2(p + 1), z ∈ D,

and for each p ∈ (2n, 2n + 2], n ∈ N ∪ {0}, the valence of f is n + 1 for suitably chosen points in the image 
set.

Under the condition (10), the function f is bounded, see Theorem 1 in Section 2. Condition (10) implies 
that f is univalent in horodiscs.

Theorem 4. Let f ∈ UA
loc and assume that (10) holds for some C ∈ (0, ∞). If C ∈ (0, 1], then f is univalent 

in D. If C ∈ (1, ∞), then there exists a ∈ (0, 1), a = a(C), such that f is univalent in all discs D(aeiθ, 1 −a), 
θ ∈ [0, 2π). In particular, we can choose a = 1 − (1 + C)−2.

Let f ∈ UA
loc be univalent in each horodisc D(aeiθ, 1 − a), θ ∈ [0, 2π), for some a ∈ (0, 1). By the proof 

of [12, Theorem 6], for each w ∈ f(D), the sequence of pre-images {zn} ∈ f−1(w) satisfies

∑
zn∈Q

(1 − |zn|)1/2 ≤ K�(Q)1/2 (19)

for any Carleson square Q and some constant K ∈ (0, ∞) depending on a. Here
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Q = Q(I) =
{
reiθ : eiθ ∈ I, 1 − |I|

2π ≤ r < 1
}

is called a Carleson square based on the arc I ⊂ ∂D and |I| = �(Q) is the Euclidean arc length of I.
By choosing Q = D in (19), we obtain

n(f, r, w) = O

(
1√

1 − r

)
, r → 1−,

where n(f, r, w) is the number of pre-images {zn} = f−1(w) in the disc D(0, r). Namely, arrange {zn} =
f−1(w) by increasing modulus, and let 0 < |zn| = r < |zn+1| to deduce

(1 − r)1/2n(f, r, w) ≤
n∑

k=0

(1 − |zk|)1/2 ≤ K�(D)1/2 < ∞

for some K(a) ∈ (0, ∞).

Theorem 5. Let f ∈ UA
loc be univalent in all Euclidean discs

D

(
C

1 + C
eiθ,

1
1 + C

)
, eiθ ∈ ∂D,

for some C ∈ (0, ∞). Then
∣∣∣∣f ′′(z)
f ′(z)

∣∣∣∣ (1 − |z|2) ≤ 2 + 4(1 + K(z)), z ∈ D,

where K(z) � (1 − |z|2) as |z| → 1−.

In view of (11), Theorem 5 is sharp. Moreover, since (11) implies
∣∣∣∣f ′′(z)
f ′(z)

∣∣∣∣ (1 − |z|) ≤ 4 + 2|z|
1 + |z| ≤ 4

for univalent analytic functions f , the next theorem is sharp as well.

Theorem 6. Let f ∈ UA
loc be univalent in all Euclidean discs

D(aeiθ, 1 − a) ⊂ D, eiθ ∈ ∂D,

for some a ∈ (0, 1). Then
∣∣∣∣f ′′(z)
f ′(z)

∣∣∣∣ (1 − |z|) ≤ 4, a ≤ |z| < 1. (20)

Example 7. Let f = fC,ζ be a locally univalent analytic function in D such that f(−1) = 0 and

f ′(z) = −i

(
1 + z

1 − z

) 1
2

e
Cζz
2 , ζ ∈ ∂D, z ∈ D.

Then
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Fig. 1. Shape of the image domain f(D) for different values of C. In (a), ∂f(D) is a simple closed curve. In (b), the valence of the 
simply connected domain Dj under f is j, for j = 1, 2, 3, respectively.

f ′′(z)
f ′(z) = 1

1 − z2 + Cζ

2 ,

hence (10) holds and f is univalent in D if C ≤ 1 by Becker’s univalence criterion. If f is univalent, then 
f − f(0) ∈ S and we obtain for ζ = 1,

1 ≥ f ′(x)
k′(x) = e

Cx
2 (1 − x)5/2

(1 + x)1/2
∼ 1 + Cx/2

1 + 3x , x → 0+.

Therefore, if C > 6, then f is not univalent.
The boundary curve ∂f(D) has a cusp at f(−1) = 0. When ζ = −i, the cusp has its worst behavior, and 

by numerical calculations the function f is not univalent if C > 2.21. Moreover, as C increases, the valence 
of f increases, see Fig. 1.

The curve 
{
f(eit) : t ∈ (0, π]

}
is a spiral unwinding from f(−1). We may calculate the valence of f by 

counting how many times h(t) = Re(f(eit)) changes its sign on (0, π]. Numerical calculations suggest that 
the valence of f is approximately equal to 100

63 C.

4. Proofs of main results

In this section, we prove the results stated in Section 3.

Proof of Theorem 2. To prove the first assertion, assume on the contrary that there exists δ > 0 such that 
f is univalent in D(ζ, δ) ∩ D. Without loss of generality, we may assume that ζ = 1. Let T be a conformal 
map of D onto a domain Ω ⊂ D(ζ, δ) ∩ D with the following properties:

(i) T (ζ) = ζ;
(ii) ∂Ω ⊃ {eiθ : | arg ζ − θ| < t} for some t > 0;
(iii)

∣∣∣T ′′(z)
T ′(z)

∣∣∣ (1 − |z|2) 1
2 ≤ 1 − ρ for all z ∈ D, where ρ ∈ (0, 1) is any prescribed number.

The existence of such a map follows, for instance, by [8, Lemma 8]. Then

∣∣∣∣f ′′(T (z))
′ T ′(z) + T ′′(z)

′

∣∣∣∣ (1 − |z|2) ≤ 6, z ∈ D,

f (T (z)) T (z)
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by (11), since f ◦ T is univalent in D. Moreover, T
′′(z)

T ′(z) (1 − |z|2) → 0, as |z| → 1−, by (iii). Let {wn} be a 
sequence such that wn → ζ, and define zn by T (zn) = wn. Then zn → ζ, and since T ′ belongs to the disc 
algebra by [8, Lemma 8], we have

1 <
1 − |T (zn)|2

|T ′(zn)|(1 − |zn|2)
→ 1+, n → ∞.

For more details, see [12, p. 879]. It follows that

lim sup
n→∞

∣∣∣∣f ′′(wn)
f ′(wn)

∣∣∣∣ (1 − |wn|2)

= lim sup
n→∞

∣∣∣∣f ′′(T (zn))
f ′(T (zn))

∣∣∣∣ (1 − |T (zn)|2)

= lim sup
n→∞

∣∣∣∣f ′′(T (zn))
f ′(T (zn))

∣∣∣∣ |T ′(zn)|(1 − |zn|2)
(1 − |T (zn)|2)

|T ′(zn)|(1 − |zn|2)
≤ 6,

which is the desired contradiction.
To prove the second assertion, assume on the contrary that (18) fails, so that there exist ρ ∈ (0, 1) and 

a constant δ ∈ (0, 1) such that
∣∣∣∣f ′′(z)
f ′(z)

∣∣∣∣ (1 − |z|2) ≤ ρ, z ∈ D(ζ, δ) ∩ D. (21)

If g = f ◦ T , then (21) and (i)–(iii) yield
∣∣∣∣g′′(z)g′(z)

∣∣∣∣ (1 − |z|2) ≤
∣∣∣∣f ′′(T (z))
f ′(T (z))

∣∣∣∣ |T ′(z)|(1 − |z|2) +
∣∣∣∣T ′′(z)
T ′(z)

∣∣∣∣ (1 − |z|2)

≤
∣∣∣∣f ′′(T (z))
f ′(T (z))

∣∣∣∣ (1 − |T (z)|2) + 1 − ρ ≤ 1

for all z ∈ D. Hence g is univalent in D by Becker’s univalence criterion, and so is f on Ω. This is clearly a 
contradiction. �
Proof of Theorem 4. Assume that condition (10) holds for some C ∈ (0, 1]. Now

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ (1 − |z|2) ≤ |z|(1 + C(1 − |z|)) ≤ |z| + 1 − |z| = 1,

and hence f is univalent in D by Becker’s univalence criterion.
Assume that (10) holds for some C ∈ (1, ∞). It is enough to consider the case θ = 0. Let T (z) = a +(1 −a)z

for z ∈ D, and g = f ◦ T . Then

(1 − |z|2)
∣∣∣∣g′′(z)g′(z)

∣∣∣∣ = (1 − |z|2)
∣∣∣∣f ′′(T (z))
f ′(T (z))

∣∣∣∣ |T ′(z)|

=
∣∣∣∣f ′′(T (z))
f ′(T (z))

∣∣∣∣ (1 − |T (z)|2) (1 − |z|2)|T ′(z)|
1 − |T (z)|2

≤ (1 + C(1 − |T (z)|)) (1 − |z|2)(1 − a)
1 − |T (z)|2

≤ (1 + C(1 − |a + (1 − a)z|)) (1 − |z|2)(1 − a)
2 .
1 − |a + (1 − a)z|
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By the next lemma, for a = 1 −(1 +C)−2, g is univalent in D and f is univalent in D(a, 1 −a). The assertion 
follows. �
Lemma 8. Let C ∈ (1, ∞). Then, for z ∈ D,

(
1 + C

(
1 −

∣∣∣∣ C2 + 2C
C2 + 2C + 1 + 1

(1 + C)2 z
∣∣∣∣
))

×
(1 − |z|2) 1

(1+C)2

1 −
∣∣∣ C2+2C
C2+2C+1 + 1

(1+C)2 z
∣∣∣2 ≤ 1.

Proof. Let h : [0, 1) → R, be defined by h(t) = (1 + C(1 − t))/(1 − t2). Then

h′(t) = −Ct2 + 2(1 + C)t− C

(1 − t2)2 = 0

if and only if t = tC = 1+C−
√

1+2C
C ∈ (0, 1). Hence, h is strictly decreasing on [0, tC ] and strictly increasing 

on [tC , 1]. If

t =
∣∣∣∣ C2 + 2C
C2 + 2C + 1 + 1

(1 + C)2 z
∣∣∣∣ ≤ tC ,

then

h(t)(1 − |z|2) 1
(1 + C)2 ≤ h(0)(1 − |z|2) 1

(1 + C)2 ≤ 1
1 + C

≤ 1.

On the other hand, if

tC < t =
∣∣∣∣ C2 + 2C
C2 + 2C + 1 + reiθ

(1 + C)2

∣∣∣∣ ≤ C2 + 2C + r

C2 + 2C + 1 = t′,

then we obtain

h(t) (1 − |z|2)
(1 + C)2 ≤ h(t′) 1 − r2

(1 + C)2 = (1 + C)2 + C(1 − r)
2(1 + C)2 − (1 − r) (1 + r) ≤ 1, (22)

provided that

kC(r) = (1 + r)
[
(1 + C)2 + C(1 − r)

]
+ 1 − r ≤ 2(1 + C)2.

Since kC(1) ≤ 2(1 + C)2 and

k′C(r) = (1 + C)2 + C(1 − r) − C(1 + r) − 1 > 0

for r < 1 + C/2, inequality (22) holds. This ends the proof of the lemma. �
Proof of Theorem 5. Let a ∈ D, 0 < C/(1 +C) < |a| < 1 and g(z) = f(ϕa(raz)), where ϕa(z) is defined as 
in (4). By equations (13) and (14), we let

ra = ρ

(
a,

a

|a|
C

1 + C

)
=

√√√√ |a| − C
1+C

|a|
(
1 − |a| C

) (23)

1+C
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and deduce for some R ∈ (0, 1)

Δp(a, ra) = D

(
a

|a|
C

1 + C
,R

)
⊂ D

(
a

|a|
C

1 + C
,

1
1 + C

)
.

Hence, g is univalent in D. Now

g′′(0)
g′(0) = f ′′(a)

f ′(a) ϕ
′
a(0)ra + ϕ′′

a(0)
ϕ′
a(0)ra = −f ′′(a)

f ′(a) (1 − |a|2)ra + 2ara.

By (11), |g′′(0)/g′(0)| ≤ 4 and therefore

∣∣∣∣f ′′(a)
f ′(a) (1 − |a|2) − 2a

∣∣∣∣ ≤ 4
ra

,

which implies
∣∣∣∣f ′′(a)
f ′(a)

∣∣∣∣ (1 − |a|2) ≤ 2 + 4
ra

= 2 + 4(1 + K(a)),

where

K(a) = 1
ra

− 1 = 1 − r2
a

ra(1 + ra)
∼ 1

2(1 − r2
a) = 1

2

C
1+C (1 − |a|2)

|a|
(
1 − |a| C

1+C

) ∼ C

2 (1 − |a|2),

as |a| → 1−. �
Proof of Theorem 6. It suffices to prove (20) for |z| = a, since trivially f is univalent also in D(beiθ, 1 −b) ⊂
D(aeiθ, 1 − a) for b ∈ (a, 1) and eiθ ∈ ∂D. Moreover, by applying a rotation z �→ λz, λ ∈ ∂D, it is enough 
to prove (20) for z = a.

Let T (z) = a + (1 − a)z for z ∈ D. Now g = f ◦ T is univalent in D and by (11)

∣∣∣∣f ′′(a)
f ′(a)

∣∣∣∣ (1 − a) =
∣∣∣∣f ′′(T (0))
f ′(T (0))

∣∣∣∣ |T ′(0)| =
∣∣∣∣g′′(0)
g′(0)

∣∣∣∣ ≤ 4.

The assertion follows. �
5. Generalizations for harmonic functions

Let f be a complex-valued and harmonic function in D. Then f has the unique representation f = h + g, 
where both h and g are analytic in D and g(0) = 0. In this case, f = h + g is orientation preserving and 
locally univalent, denoted by f ∈ UH

loc, if and only if its Jacobian Jf = |h′|2 − |g′|2 > 0, by a result by 
Lewy [20]. In this case, h ∈ UA

loc and the dilatation ωf = ω = g′/h′ is analytic in D and maps D into itself. 
Clearly f = h + g is analytic if and only if the function g is constant.

For f = h + g ∈ UH
loc, equation (1) yields the harmonic pre-Schwarzian and Schwarzian derivatives:

P (f) = P (h) − ω ω′

1 − |ω|2 ,

and
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S(f) = S(h) + ω

1 − |ω|2
(
h′′

h′ ω
′ − ω′′

)
− 3

2

(
ω ω′

1 − |ω|2
)2

.

This generalization of P (f) and S(f) to harmonic functions was introduced and motivated in [13].
There exists δ0 ∈ (0, 2) such that if f ∈ UH

loc satisfies (2) for N = δ0, then f is univalent in D, see [2]
and [14]. The sharp value of δ0 is not known. Moreover, if f ∈ UH

loc satisfies

|P (f)| (1 − |z|2) + |ω′(z)|(1 − |z|2)
1 − |ω(z)|2 ≤ 1, z ∈ D,

then f is univalent. The constant 1 is sharp, by the sharpness of Becker’s univalence criterion. If one of these 
mentioned inequalities, with a slightly smaller right-hand-side constant, holds in an annulus r0 < |z| < 1, 
then f is of finite valence [17].

Conversely to these univalence criteria, there exist absolute constants C1, C2 ∈ (0, ∞) such that if f ∈ UH
loc

is univalent, then (2) holds for N = C1 and (8) holds for ρ = C2, see [13]. The sharp values of C1 and C2
are not known.

By the above-mentioned analogues of Nehari’s criterion, Becker’s criterion and their converses, we obtain 
generalizations of the results in this paper for harmonic functions. Of course, the correct operators and 
constants have to be involved. Theorem 2 and its analogue [12, Theorem 1] for the Schwarzian derivative 
S(f) are valid as well. Moreover, Theorems 4, 5, and 6 are valid. We leave the details for the interested 
reader.

We state the important generalization of [12, Theorem 3] for harmonic functions here. It gives a sufficient 
condition for the Schwarzian derivative of f ∈ UH

loc such that the preimages of each w ∈ f(D) are separated 
in the hyperbolic metric. Here ξ(z1, z2) is the hyperbolic midpoint of the hyperbolic segment 〈z1, z2〉 for 
z1, z2 ∈ D.

Theorem 9. Let f = h + g ∈ UH
loc such that

|SH(f)|(1 − |z|2) ≤ δ0(1 + C(1 − |z|)), z ∈ D,

for some C ∈ (0, ∞). Then each pair of points z1, z2 ∈ D such that f(z1) = f(z2) and 1 − |ξ(z1, z2)| < 1/C
satisfies

dH(z1, z2) ≥ log 2 − C1/2(1 − |ξ(z1, z2)|)1/2
C1/2(1 − |ξ(z1, z2)|)1/2

. (24)

Conversely, if there exists a constant C ∈ (0, ∞) such that each pair of points z1, z2 ∈ D for which f(z1) =
f(z2) and 1 − |ξ(z1, z2)| < 1/C satisfies (24), then

|SH(f)|(1 − |z|2) ≤ C2(1 + ΨC(|z|)(1 − |z|)1/3), 1 − |z| < (8C)−1,

where ΨC is positive, and satisfies ΨC(|z|) → (2(8C)1/3)+ as |z| → 1−.

We have not found a natural criterion which would imply that f = h + g ∈ UH
loc is bounded. However, 

the inequality |g′(z)| < |h′(z)| can be utilized. A domain D ⊂ C is starlike if for some point a ∈ D all linear 
segments [a, z], z ∈ D, are contained in D. Let h ∈ UA

loc be univalent, let h(D) be starlike with respect to 
z0 ∈ h(D) and f = h + g ∈ UH

loc. Then the function

z �→ Ω(z) = g(z) − g(z0)

h(z) − h(z0)
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maps D into D. To see this, let a ∈ D and let R = h−1([h(z0), h(a)]) be the pre-image of the segment 
[h(z0), h(a)] under h. Then

|h(a) − h(z0)| =
∫
R

|h′(ζ)||dζ| ≥

∣∣∣∣∣∣
∫
R

g′(ζ) dζ

∣∣∣∣∣∣ = |g(a) − g(z0)|.

Consequently, if f = h + g ∈ UH
loc is such that h(D) is starlike and bounded, then f(D) is bounded.
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