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1 Introduction

Iteration of rational and entire functions has been investigated atleast since the 1910's.
The foundation was created by Fatou and Julia, see for example [8] and [11]. Some
historical discussion is in [6].

Theory of �xed points is important for the theory of iteration. For example, it is vital
for the paper [11] of Julia.

In Section 3 we recall the Fundamental theorem of algebra, Picard's theorem and some
basics of Nevanlinna theory. In Section 4 we state some basic ideas about iteration and
see that we should restrict ourselves to polynomials, rational functions or transcendental
entire functions. In Section 5 we use the theory of Section 3 to prove some theorems
about the existence of �xed points.

2 Notation

We use the following notation for functions Ĉ→ Ĉ:

• P polynomials;

• E entire functions;

• R rational functions;

• M meromorphic functions;

• E = E \ P transcendental entire functions;

• M =M\R transcendental meromorphic functions.

We denote by Fix (f, z0) the exact order of the �xed point z0 of function f . See
Section 4.

3 Existence of zeros

In this section, we recall the Fundamental theorem of algebra, Picard's theorem and some
basics of Nevanlinna theory.
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3.1 Fundamental theorem of algebra

Theorem 3.1 is essential for the study of polynomials and rational functions. It carries
over to rational functions, as Corollary 3.2 shows. Corollary 3.2 and some ideas about
rational functions are needed in the proof of Theorem 5.3. We settle for reviewing these
ideas in Example 3.3.

Theorem 3.1 (Fundamental theorem of algebra) Let f ∈ P and d = deg(f) ≥ 1.
Let a ∈ C. Now the number of a-points of f is d CM.

Corollary 3.2 Let f ∈ R and d = deg(f) ≥ 1. Let a ∈ Ĉ. Now the number of a-points
of f is d CM.

Example 3.3 Let

f(z) =
z(z − 1)2

(z − 2)(z − 3)3
.

Now the degree of the numerator is 3 and the degree of the denumerator is 4. Hence
deg(f) = 4.

Function f attains ∞ once at z = 2 and three times at z = 3. Hence f attains ∞
exactly four times.

Function f attains 0 once at z = 0, twice at z = 1 and once at z = ∞. Hence f
attains 0 exactly four times.

Function f attains 3 once in each of the points z ≈ 1.8, 5.1, 2.2 − i, 2.2 + i. Hence f
attains 3 exactly four times.

The multiplicity of an a-point b of f can be detected by inspecting the derivatives of f
at b. That is, if

f(b)− a = f ′(b) = . . . = f (m−1)(b) = 0 6= f (m)(b),

then b is an a-point of multiplicity m for f . Now, for target ∞, we see that(
1

f

)
(2) = 0 6=

(
1

f

)′
(2)

and (
1

f

)
(3) =

(
1

f

)′
(3) =

(
1

f

)′′
(3) = 0 6=

(
1

f

)′′′
(3).

For target 0, we see that
f(0) = 0 6= f ′(0)

and
f(1) = f ′(1) = 0 6= f ′′(1)

and
f(∞) = 0 6= f ′(∞).

For target 3
f(z)− 3 = 0 6= f ′(z)

for each of the points z ≈ 1.8, 5.1, 2.2− i, 2.2 + i.
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3.2 Picard's theorems

Theorem 3.4 is needed for the proof of Theorems 5.7 and 5.9. Theorem 3.4 has tree
simple corollaries, which we state here. These results are a special case of the results of
Section 3.3.

Theorem 3.4 (Picard) Let f be analytic in D(z0, r) \ {z0} with essential singularity at

z0. Let a, b ∈ Ĉ be distinct. Now

# {z ∈ D(z0, s) \ {z0} : f(z) ∈ {a, b}} =∞, 0 < s < r.

Corollary 3.5 Let f ∈ E and let a, b ∈ C be distinct. Now

# {z ∈ C : f(z) ∈ {a, b}} =∞.

Proof. Let g(z) = f(1/z). Now g is analytic in D(0, 1) \ {0} with essential singularity at
z = 0. Apply Theorem 3.4 to g. 2

Corollary 3.6 Let f ∈M and let a, b, c ∈ Ĉ be distinct. Now

# {z ∈ C : f(z) ∈ {a, b, c}} =∞.

Proof. We can assume that a, b, c ∈ C, by applying a Möbius transformation, if necessary.
Assume that the equations f(z) = a, f(z) = b have only n,m ∈ N0 solutions, respectively.
Now, consider the transcendental meromorphic function

g =
(f − a)(c− b)
(f − b)(c− a)

.

Function g has only n zeros that occur, when f(z) = a. Similarly g has only m poles.
Hence g(1/z) is analytic in D(0, r) \ {0} for some r > 0 and has atmost n zeros in
D(0, r) \ {0}. By Theorem 3.4, g attains 1 in�nitely often in D(0, r) \ {0} and hence f
attains c in�nitely often. 2

By combining Corollary 3.2 and Corollary 3.7, we get Corollary 3.7.

Corollary 3.7 Let f ∈M and let a, b, c ∈ Ĉ be distinct. If

# {z ∈ C : f(z) ∈ {a, b, c}} = 0,

then f is a constant.

3.3 Nevanlinna theory

We recall the basic theorems of Nevanlinna theory and state them in the most suitable
way for Section 5.

In Nevanlinna theory, we measure the growth of a meromorphic function with a char-
acteristic function T . The growth of a function inside a disc D(0, r) is related to the
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number of zeros the function has inside the disc. Hence, by measuring a function with T ,
we get quantitative versions of the results of Sections 3.1 and 3.2.

Theorem 3.8 is an analogue of Corollary 3.2. It states that if for a meromorphic
function f equality f(z) = a happens rarely, then |f − a| is small on average.

Theorems 3.9 and 3.10 say that in some sence there are only a few values that a
meromorphic function does not attain. Theorem 3.11 is a generalization of Theorem 3.9
from constant targets to slowly moving targets.

The functions n,N, n,N,m, T, S, δ, θ and Θ are de�ned as in [12]. This section fol-
lows [12].

Theorem 3.8 (First Main Theorem) Let f ∈M be non-constant and a ∈ C. Now

T (r, f) = T

(
r,

1

f − a

)
+O(1)

for all r ≥ 0. [12, p. 9]

Theorem 3.9 (Second Main Theorem) Let f ∈M be non-constant and
a1, . . . , aq ∈ C be q ≥ 2 distinct points. Then

(q − 1)T (r, f) ≤ N(r, f) +

q∑
i=1

N

(
r,

1

f − ai

)
+ S(r, f).

[12, p. 18, Corollary 6.5.]

Since N ≤ N ≤ T , we have

(q − 1)T (r, f) ≤ T (r, f) +

q∑
i=1

N

(
r,

1

f − ai

)
+ S(r, f),

which gives for f = h

q∑
j=1

N (h, aj, r) =

q∑
j=1

N

(
r,

1

h− aj

)
≥ (q − 2)T (h, r)− o(T ((h, r)), (3.1)

for all r ≥ r0 outside a set E of �nite Lebesgue measure. This is needed in the proof of
Lemma 5.13.

Theorem 3.9 is needed to prove Theorem 3.10. Theorem 3.10 is an improvement of
Corollary 3.6.

Theorem 3.10 (Nevanlinna's theorem on de�cient values) Let f ∈ M. Now the
set of values a ∈ C for which

Θ(a, f) > 0

is countable and ∑
a∈Ĉ

(δ(a, f) + θ(a, f)) ≤
∑
a∈Ĉ

Θ(a, f) ≤ 2.

[12, p. 10, Theorem 6.11]
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Theorem 3.11 [12, Theorem 6.14., p. 21] Let f ∈ M be non-constant and let a1, a2, a3
be distinct small functions with respect to f . Then

T (r, f) ≤
3∑

j=1

N

(
r,

1

f − aj

)
+ S(r, f).

4 Basics of iteration

Let X be a set and f : X → X a function. We set f1 = f and set inductively

fn+1 = fn ◦ f

for n ∈ N. A point z0 ∈ X is a �xed point of order n for f if fn(z0) = z0. (If n = 1, we
simply say, that z0 is a �xed point for f .) In this case

Fix (f, z0) = min {n ∈ N : fn(z0) = z0}

is the exact order of the �xed point z0 of f .
Now z0 is a �xed point of order m for f if and only if Fix (f, z0) | m. For this,

let fm(z0) = z0 and let Fix (f, z0) = n. Now n ≤ m and hence m = qn + r for some
q ∈ N, r ∈ N0, 0 ≤ r < n. Now r = 0. Otherwise we would have

z0 = fm(z0) = fr(fqn(z0)) = fr(fn(fn(· · · (fn(z0)))) = fr(z0),

a contradiction.
For a �xed S ∈ {P , E , E ,R} and f, g ∈ S we have f ◦ g ∈ S. Hence, in this case S is

closed with respect to composition of functions. However, in general it is not possible to
iterate inM as Example 4.1 shows. The author has seen Example 4.2 on many occasions
and it gave him the idea about Example 4.1.

Example 4.1 Let f : Ĉ→ Ĉ,

f(z) =
sin z

z2
.

Then f is meromorphic, but f2 is not.

Proof. Clearly f has a pole of order 1 at the origin and ∞ is an essential singularity for
the sine function. Hence the origin is an essential singularity of

sin
sin z

z2
.

Now

f(f(z)) =
sin sin z

z2(
sin z
z2

)2
is not meromorphic, since if it was,

sin
sin z

z2
= f(f(z)) ·

(
sin z

z2

)2

would also be. 2
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Example 4.2 Let f ∈ R, g ∈M. Now f ◦ g ∈M, but g ◦ f /∈M is possible. To see the
�rst, note that g is a quotient of two entire functions and hence so is f . For the latter,
take g(z) = sin z and f(z) = 1

z
, which gives g(f(z)) = sin 1

z
.

5 Existence of �xed points

5.1 Polynomials and rational functions

For this section, let f ∈ R, d = deg(f) and n ∈ N. When does f have �xed points of
exact order n?

First we discuss some basics in Example 5.1 and see an exceptional polynomial in
Example 5.2. Then we prove Theorem 5.3 which shows that a polynomial has �xed
points of all exact orders with possibly one exception. Theorem 5.4 and Example 5.5 give
a complete solution of the question for rational functions, but would require extra work,
see [2].

Example 5.1 Every polynomial has a �xed point in C. If the polynomial is a constant,
the constant is a �xed point. Let p be a polynomial with degree d = deg(p) = 1. If
p(z) − z ≡ 0, then every point is a �xed point. Otherwise p(z) − z has exactly one
solution. If d = deg(p) ≥ 2, then p has exactly d �xed points CM.

Since the composition of two polynomials is a polynomial, every polynomial has a �xed
point of order n for every n ∈ N. If p is a polynomial with d = deg(p) ≥ 2, then
deg(pn) = dn. We see that pn has dn �xed points CM, that is, p has dn �xed points of
order n CM.

The number of �xed points of exact order n is always atmost dn. There migth be
none, as Example 5.2 shows.

Example 5.2 [1, p. 284] Consider f(z) = z2 − z. Now f(z) = z implies

f(z)− z = z2 − 2z = z(z − 2) = 0,

giving Fix (f, 0) = Fix (f, 2) = 1. Moreover

f(f(z))− z = (z2 − z)2 − (z2 − z)− z = z3(z − 2)

shows that Fix (f, z) | 2 implies z ∈ {0, 2} and hence Fix (f, z) = 1 < 2.

We prove Theorem 5.3, which originates in [1, p. 280]. Our proof is from [10, p. 52].
We state Theorem 5.4 and Example 5.5, which give in some sence a complete solution.

Theorem 5.3 (Baker 1960) Let f ∈ P, deg(f) ≥ 2 and n, k ∈ N. Now

# {z ∈ C : Fix (f, z) ∈ {n, k}} ≥ 1.
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Proof. Let d = deg(f) ≥ 2. Now fn(z) has degree dn and so f(z) has �x-points of every
order n. In particular f(z) has a �x-point of exact order 1. Suppose that f(z) has no
�x-points of exact orders n, k, where n > k ≥ 2. We consider

ϕ(z) =
fn(z)− z
fn−k(z)− z

.

Now ϕ(z) = 0 has roots only where fn(z) = z, and these roots occur only when fj(z) = z
for some j < n. Also, if j is the exact order of z, then the numbers zt = ft(z) form a
cycle of j points and so if zn = z0 = z, j | n. If n = 3, we must have j = 1, so that there
are at most d distinct zeros of ϕ(z). If n = 4, any �x-point of exact order 1 is a �x-point
of order 2, so that since j = 1 or 2, ϕ(z) has at most d2 distinct zeros. If n > 4, we must
have j ≤ n− 3 (assuming n = jk, k ≥ 2, j ∈ {n− 1, n− 2}, we get n > n), and so ϕ(z)
has at most

n−3∑
j=1

dj =
dn−2 − 1

d− 1
≤ dn−2

distinct zeros. Thus in all cases ϕ(z) has at most dn−2 distinct zeros.
Again ϕ(z) = 1 implies fn−k(z) = fn(z) = fk(fn−k(z)), so that ζ = fn−k is a �x point

of fk and so a �x-point of fj, for some divisor j of k with 1 ≤ j < k. Thus

fj(fn−k(z)) = fn−k+j(z) = fn−k(z).

The polynomial fn−k+j(z)− fn−k(z) has degree dn−k+j so that the number of di�erent
1-points of ϕ(z) is at most

∑
j

dn−k+j ≤
k−2∑
j=1

dn−k+j ≤ dn−1, k ≥ 3,

and ∑
j

dn−k+j = dn−1, k = 2.

Let N be the number of zeros of ϕ′(z) CM. Then we deduce that the total number
of distinct solutions of the equation ϕ(z) = 0, 1 is at most dn−1 + dn−2 and so the total
number of solutions CM is at most

N + dn−1 + dn−2.

Suppose, that ϕ(z) has q �nite poles CM. Then ϕ(z) has a pole of order dn − dn−k at
∞, and ϕ(z) has dn− dn−k + q poles and so 2(dn− dn−k + q) zeros and ones altogether in
the closed plane CM. Also ϕ′(z) has a pole of order dn − dn−k − 1 at ∞ and at most 2q
�nite poles. Thus

N ≤ dn − dn−k + 2q − 1.

Hence

2(dn − dn−k + q) ≤ N + dn−1 + dn−2 ≤ dn − dn−k + dn−1 + dn−2 + 2q − 1.
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Thus
dn ≤ dn−1 + dn−2 + dn−k − 1 ≤ 2dn−1 − 1 ≤ dn − 1.

This is a contradiction. 2

Theorem 5.3 can be modi�ed for rational functions. We obtain Theorem 5.4. The
exceptions mentioned in Theorem 5.4 can occur, as Example 5.5 shows.

Theorem 5.4 (Baker 1964) [2, p. 620] Except in the cases

n = 2, d ∈ {2, 3, 4}
n = 3, d = 2

a rational function f of order d > 1 has �xed points of exact order n for all n > 1.

Example 5.5 (Baker 1965) [2, p. 621] The exceptions mentioned in Theorem 5.4 can
occur.
n = 2, d = 2. Let f(z) = z2 − z as in Example 5.2.
n = 2, d = 3. Let

f(z) =
2

3z2
+
z

3
= z − 2(z3 − 1)

3z2
.

n = 2, d = 4. Let

f(z) = −z 1 + 2z3

1− 3z3

n = 3, d = 2. Let

f(z) = z + (η − 1)
z2 − 1

2z
, where η = exp

2πi

3
.

5.2 Transcendental entire functions

For this section, let f ∈ E and n ∈ N. We study, when f has �xed points of order n.
First we consider an exceptional function in Example 5.6. Then we follow Fatou [8]

and prove Theorems 5.7 and 5.9 by using Picard's theorem. With Nevanlinna theory, we
can prove Theorem 5.11. In the end, we state Theorems 5.14 and 5.15, which are out of
our scope.

Example 5.6 Let f(z) = ez + z. Now f has no �xed points.

Theorem 5.7 (Fatou 1926) Let f ∈ E with

# {z ∈ C : Fix (f, z) = 1} = 0.

Now
# {z ∈ C : Fix (f2, z) = 1} =∞.

8



Proof. Consider

ϕ(z) =
f2(z)− z
f(z)− z

,

which is entire. Now ϕ omits 1, since ϕ(z) = 1 implies f(f(z)) = f(z), which is f(w) = w
for w = f(z). Hence, by Picard's theorem, ϕ(z) = 0 has in�nitely many solutions. 2

Corollary 5.8 Let f ∈ E. Now f2 has a �xed point.

Theorem 5.9 (Fatou 1926) [8, p. 345] Let f ∈ E, p ∈ N and suppose

# {z ∈ C : Fix (fp, z) = 1} = 0.

Now
# {z ∈ C : Fix (fp+1, z) = 1} =∞.

Proof. Consider

ϕ(z) =
fp+1(z)− z
f(z)− z

,

which is entire. As in the proof of Theorem 5.7, ϕ omits 1 and Picard's theorem yields
the claim. 2

Corollary 5.10 Let f ∈ E and p ∈ N. Now

# {z ∈ C : Fix (f, z) | p or Fix (f, z) | p+ 1} ≥ 1.

Theorem 5.11 (Baker 1960) [1] Let f ∈ E and n, k ∈ N. Now

# {z ∈ C : Fix (f, z) ∈ {n, k}} =∞.

Theorem 5.11 was preceded by Theorem 5.12, which we state here to obtain historical
perspective. We prove Theorem 5.11 by following [7, p. 146]. First we need Lemma 5.13.

Theorem 5.12 (Rosenbloom 1948) [13] Let f ∈ E and n ≥ 2. Now

# {z ∈ C : Fix (f, z) | n} =∞.

Lemma 5.13 [7, p. 150, Lemma 5.10.4.] Let g, h ∈ E and f = g ◦ h. Then, there exists
an exceptional set E of �nite Lebesgue measure such that

lim
r→∞
r/∈E

T (h, r)

T (f, r)
= 0.
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The claim of Lemma 5.13 holds even without the exceptional set E, but in this case
the proof is harder, see [7, p. 147, Lemma 5.10.3.].
Proof. Because g ∈ E , there exists a point b ∈ C such that g(z) = b has in�nitely many
solutions, a1, a2, . . .. If no such would b exist, every value b ∈ C were de�cient for g, a
contradiction with Theorem 3.10. Now, let q ∈ N, q ≥ 3. From the First Main Theorem
we get

T (r, f) +O(1) ≥ N(r, f, b) ≥
q∑

j=1

N(h, aj, r).

For each q we can use the Second Main Theorem to �nd a radius rq > 0 and an exceptional
set Eq with Lebesgue measure ≤ 2−q such that

q∑
j=1

N(h, aj, r) ≥ (q − 2)T (h, r)− o(T (h, r))

for all r ≥ rq outside Eq. Thus

lim
r→∞
r/∈Eq

T (h, r)

T (f, r)
≤ 1

q − 2
.

Let

E =
∞⋃
q=3

Eq.

Let ε > 0. Now there exists q ∈ N such that

1

q − 2
< ε.

Now, for all r ≥ rq, r /∈ E, we have

T (h, r)

T (f, r)
=

1

q − 2
< ε.

The assertion follows. 2

Proof of Theorem 5.11.[7, p. 149] Suppose that f has only a �nite number of �xed points
of exact order n, and call them ζ1, . . . , ζq. It su�ces to prove that f has in�nitely many
�xed points of exact order k for all k > n. So, let k > n, and let z0 be a solution of the
equation fk(z) = fk−n(z). Then

fn(fk−n(z0)) = fk−n(z0)

and so ζ = fk−n(z0) is a �xed point of order n. Thus, either ζ is one of the ζj, or else ζ is
a �xed point of exact order strictly less than n.

If ζ is not among the ζj, then note that

fk−n+m(z0) = fk−n(z0),
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where m ≤ n − 1 is the exact order of the �xed point ζ. Thus, any solution to fk(z) =
fk−n(z) is either a solution to fk−n(z) = ζj for some j, or a solution to fk−n+m(z) = fk−n(z)
for some 1 ≤ m ≤ n− 1. Thus,

N(fk − fk−n, 0, r) ≤
n−1∑
m=1

N(fk−n+m − fk−n, 0, r) +

q∑
j=1

N(fk−n, ζj, r)

≤ O

(
k−1∑
l=1

T (fl, r)

)
,

where the last inequality follows from the First Main Theorem. Clearly

fk = fl ◦ fk−l, 1 ≤ l ≤ k − 1,

and fl and fk−l are transcendental. Hence, we know that

lim
r→∞
r/∈E

T (fl, r)

T (fk, r)
= 0

for an exceptional set E of �nite Lebesgue measure. The set E can be taken as common
for all values 1 ≤ l ≤ k − 1, by taking an union. Thus the functions

a1(z) = z, a2(z) = fk−n(z), and a3(z) =∞

are all slowly moving with respect to fk. By Theorem 3.11 we have a sequence of radii
ri →∞ such that

T (fk, ri) ≤
3∑

j=1

N(fk, aj, ri) + o(T (fk, ri)).

However, fk has no poles since it is entire, and we just saw that

N(fk, fk−n, r) = o(T (fk, r)).

Thus, T (fk, ri) ≤ N(fk, a1, ri) + o(T (fk, ri)). Now, again by the First Main Theorem and
Lemma 5.13, the number of �xed points of order strictly less than k is o(T (fk, r)), and so
f has in�nitely many �xed points of exact order k for all k > n. 2

Theorem 5.14 improves Theorem 5.11, but is out of our scope. Theorem 5.15 is an
example about the case, when two transcendental entire functions are composed. Theo-
rem 5.15 is discussed for example in [3, 4, 9].

Theorem 5.14 (Bergweiler 1991/Baker 1967) [5, p. 3, Theorem 1] Let f ∈ E and
n ≥ 2. Now

# {z ∈ C : Fix (f, z) = n} =∞.

Theorem 5.15 (Bergweiler 1990/Gross 1966) [3, 4] Let h, g ∈ E. Now

# {z ∈ C : Fix (h ◦ g, z) = 1} =∞.
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