A generalization of Livingston's coefficient inequalities for functions with positive real part

Iason Efraimidis, Universidad Autónoma de Madrid

Let \mathcal{P} denote the class of functions $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$ which are holomorphic in the unit disk \mathbb{D} and satisfy $\operatorname{Re} p(z) > 0$. For the Taylor coefficients of functions in \mathcal{P} we have

Carathéodory (1911): $|p_n| \le 2$, $n \ge 1$,

```
Livingston (1969): |p_n - p_k p_{n-k}| \le 2, 0 \le k \le n,
```

```
(1985): |A_{k,n}(1)| \le 2, k \ge 0, n \ge 1,
```

where $A_{k,n}(w)$, $w \in \mathbb{C}$ is defined as the $(k+1) \times (k+1)$ determinant:

	p_{n+k}	p_{n+k-1}	p_{n+k-2}	• • •	p_{n+1}	p_n	
	wp_1	1	0	•••	0	0	
$A_{k,n}(w) =$	wp_2	wp_1	1	•••	0	0	
	•	:	•	•••	:	:	

Abstract

For functions $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$ holomorphic in the unit disk, satisfying $\operatorname{Re} p(z) > 0$, we generalize two inequalities proved by Livingston [2, 3] and simplify their proofs. One of our results is $|p_n - wp_k p_{n-k}| \le 2 \max\{1, |1 - 2w|\}, w \in \mathbb{C}$, while the other involves certain determinants with entries the coefficients p_n . Next, we consider the functionals $\Phi_{\alpha,\beta}(p) = p_3 - \alpha p_1 p_2 - \beta p_1^3$ and study the problem of determining the set $\{(\alpha,\beta) \in \mathbb{R}^2 : \beta = \beta p_1 p_2 - \beta p_1^3 \}$ $|\Phi_{\alpha,\beta}(p)| \leq 2$, for all $p \in \mathcal{P}$.

Looking at Theorems 1 and 2 we are naturally led to the following

Problem. Characterize all minimal homogeneous coefficient functionals in \mathcal{P} .

Suppose Φ is a homogeneous functional of degree n. If n = 1 then $\Phi(p) = p_1$ and it is minimal by Carathéodory's inequality. If n = 2 then $\Phi(p) = p_2 - wp_1^2$ and Theorem 1 provides the answer to our problem:

 $\{w \in \mathbb{C} : |p_2 - wp_1^2| \le 2, \text{ for all } p \in \mathcal{P}\} = \{w \in \mathbb{C} : |1 - 2w| \le 1\}.$

For n = 3 we write $\Phi_{\alpha,\beta}(p) = p_3 - \alpha p_1 p_2 - \beta p_1^3$. As a first step we consider α, β in \mathbb{R} . Let

 $E = \{ (\alpha, \beta) \in \mathbb{R}^2 : |\Phi_{\alpha, \beta}(p)| \le 2, \text{ for all } p \in \mathcal{P} \}.$

Proposition. *The set E is convex and invariant under the affine map* $T(\alpha, \beta) = (2 - \alpha, \alpha + \beta - 1)$. It satisfies the inclusions $E_1 \subseteq E \subseteq E_2$, where

wp_{k-1}	wp_{k-2}	wp_{k-3}	•••	1	0	
wp_k	wp_{k-1}	wp_{k-2}	• • •	wp_1	1	

Some examples of initial $A_{k,n}$'s are:

$$A_{0,n} = p_n, \qquad A_{1,n} = p_{n+1} - wp_1 p_n, \qquad A_{2,1} = p_3 - 2wp_1 p_2 - w^2 p_1^3, \qquad (1)$$

$$A_{2,2} = p_4 - wp_1 p_3 - wp_2^2 + w^2 p_1^2 p_2, \qquad A_{3,1} = p_4 - 2wp_1 p_3 - wp_2^2 + 3w^2 p_1^2 p_2 - w^3 p_1^4.$$

Our main theorems are

Theorem 1. If $p \in \mathcal{P}$ and $w \in \mathbb{C}$ then $|p_n - wp_k p_{n-k}| \le 2 \max\{1, |1 - 2w|\}$.

Theorem 2. If $p \in \mathcal{P}$ and $w \in \mathbb{C}$ then $|A_{k,n}(w)| \leq 2 \max\{1, |1-2w|^k\}$.

Both theorems are accompanied by discussions of the equality case: for Theorem 1 we provide a complete characterization while for Theorem 2 we provide a characterization in case |1 - 2w| < 1 and a sufficient condition when $|1 - 2w| \ge 1$. Thinking that this would be too technical for a poster session, we avoid it, and instead we simply consider the case w = 1 in Theorem 1. About this case, which is Livingston's original functional, it was mentioned in [2] that equality holds for rotations of the half plane function $\frac{1+z}{1-z}$. We will see that this condition is far from being necessary. We first need some notation.

Denote by $U_n = \{e^{2k\pi i/n} : k = 1, 2, ..., n\}$ the set of *n*-th roots of unity. For n = 0 we understand U_0 as $\mathbb{T} = \partial \mathbb{D}$. Also, for a set $E \subset \mathbb{C}$ and a number $a \in \mathbb{C}$ we write $aE = \{az : z \in E\}$.

Herglotz representation: For every $p \in \mathcal{P}$ there is a unique probability measure μ (the *Herglotz measure*) supported on \mathbb{T} , such that

$$p(z) = \int_{\mathbb{T}} \frac{1 + \lambda z}{1 - \lambda z} d\mu(\lambda), \quad z \in \mathbb{D}$$

Theorem 1 (continuation). Let $p \in \mathcal{P}$, μ be its Herglotz measure and $1 \le k \le n-1$. Then $|p_n - p_k p_{n-k}| = 2$ if and only if one of the following holds: either

(i) $p_k = 0$ and $supp(\mu) \subseteq e^{i\varphi}U_n$ for some $\varphi \in [0, 2\pi)$; or

$$E_1 = \left\{ (\alpha, \beta) \in \mathbb{R}^2 : \alpha \in [0, 2], -\frac{\alpha}{2} \le \beta \le \frac{\alpha - \alpha^2}{2} \right\},$$
$$E_2 = \left\{ (\alpha, \beta) \in \mathbb{R}^2 : \alpha \in [0, 2], -\frac{\alpha}{2} \le \beta \le b(\alpha) \right\}$$

and

$$b(\alpha) = \begin{cases} 1 - \alpha - (3 - 2\alpha)^3 / 27, & \text{for } \alpha \in [0, 3/4], \\ (1 - \alpha) / 2, & \text{for } \alpha \in [3/4, 5/4], \\ (1 - 2\alpha)^3 / 27, & \text{for } \alpha \in [5/4, 2]. \end{cases}$$

(ii) $p_k \neq 0$ and

 $supp(\mu) \subseteq (e^{i\varphi}U_{n-2k} \cap e^{i\vartheta_1}U_k) \cup (e^{i\varphi}U_{n-2k} \cap e^{i\vartheta_2}U_k)$

for some φ , ϑ_1 and ϑ_2 in $[0, 2\pi)$. Except for the degenerate case where the support of μ consists of only one point, the total mass of the measure on each of the two sets of the union is equal to 1/2.

Proof of the inequality in Theorem 1. First we note that $|1 - 2w| \le 1$ if and only if $|w|^2 \le \text{Re } w$. From the Herglotz representation we easily deduce that $p_n = 2 \int_{\mathbb{T}} \lambda^n d\mu(\lambda)$. We compute

$$\begin{aligned} |p_n - wp_k p_{n-k}| &= \left| 2 \int_{\mathbb{T}} \lambda^n d\mu(\lambda) - 2wp_k \int_{\mathbb{T}} \lambda^{n-k} d\mu(\lambda) \right| \\ &\leq 2 \int_{\mathbb{T}} |\lambda^n - wp_k \lambda^{n-k}| d\mu(\lambda) \\ &\leq 2 \left(\int_{\mathbb{T}} |\lambda^k - wp_k|^2 d\mu(\lambda) \right)^{1/2} \\ &= 2 \left(\int_{\mathbb{T}} 1 - 2\operatorname{Re} \left(wp_k \lambda^{-k} \right) + |wp_k|^2 d\mu(\lambda) \right)^{1/2} \\ &= 2 \left(1 - 2\operatorname{Re} \left(wp_k \overline{p_k}/2 \right) + |wp_k|^2 \right)^{1/2} \\ &= 2 \left(1 + (|w|^2 - \operatorname{Re} w)|p_k|^2 \right)^{1/2} \\ &\leq 2 \max\{1, |1 - 2w|\}. \end{aligned}$$

Here we used the triangle and Cauchy-Schwarz inequalities. At the last step, in case |1 - 2w| > 1, we made use of Carathéodory's inequality $|p_n| \leq 2$.

A related problem. By the term *rotation* of a function p we mean the function $p_{\lambda}(z) = p(\lambda z), \lambda \in \mathbb{T}$. We say that a functional $\Phi: \mathcal{P} \to \mathbb{C}$ is homogeneous if $\Phi(p_{\lambda}) = \lambda^n \Phi(p)$ for some $n \geq 1$. We call the number *n* the *degree of homogeneity* of Φ . We consider homogeneous coefficient functionals of degree *n* in which p_n appears multiplied by 1. All examples in (1) are of this kind. In general they involve all combinations whose indices sum up to *n*:

Figure 1: solid (green): lower bound of E, thick dashing (orange): upper bound of E_1 , thin dashing (blue): the curve $b(\alpha)$.

Sketch of the Proof. A typical rotation argument allows as to consider $\operatorname{Re} \Phi_{\alpha,\beta}$, which is linear with respect to α and β and thus E is convex.

That the set E is invariant under the transformation T comes from the fact that \mathcal{P} is invariant under inversion: $p \in \mathcal{P}$ if and only if $1/p \in \mathcal{P}$.

By Theorem 1 we have that $[0,1] \times \{0\} \subset E$. Also, T(0,0) = (2,-1) must be in E. Hence, by convexity, the triangle with vertices (0,0), (1,0), (2,-1) is contained in E. The fact that $E_1 \subseteq E$ follows from a rather technical lemma.

To determine the set E_2 we first see that E is contained in the strip $\left\{ (\alpha, \beta) \in \mathbb{R}^2 : -\frac{\alpha}{2} \leq \beta \leq \frac{1-\alpha}{2} \right\}$, simply by choosing the half-plane function $\frac{1+z}{1-z}$. Next we prove that E is contained in the vertical strip $[0,2] \times \mathbb{R}$ by making use of $p_{\zeta}(z) = \frac{1+z\varphi_{\zeta}(z)}{1-z\varphi_{\zeta}(z)}, \zeta \in \mathbb{D}$, where $\varphi_{\zeta}(z) = \frac{\zeta-z}{1-\overline{\zeta}z}$ is a disk automorphism. Finally, we let $t \in [0, 1/2)$ and consider the singular measure on \mathbb{T} with point masses on 1 and -1, having weights 1 - t and t respectively. The function having this as its Herglotz measure is

$$p_t(z) = (1-t)\frac{1+z}{1-z} + t\frac{1-z}{1+z}$$

Now, for every t, the inequality $|\Phi_{\alpha,\beta}(p_t)| \le 2$ shows that points (α,β) in E must lie bellow a certain straight line. The envelope of this family of lines yields the remaining of the boundary of E_2 , that is, the cubic polynomials in $b(\alpha)$.

Conjecture. $E = E_2$

References

$$\Phi(p) = p_n - w_1 p_1 p_{n-1} - w_2 p_1^2 p_{n-2} - w_3 p_2 p_{n-2} - \dots - w_m p_1^n.$$

We call *minimal* a functional Φ of this kind that satisfies $|\Phi(p)| \leq 2$ for all p in \mathcal{P} . (No smaller bound is possible since $\frac{1+z^n}{1-z^n} = 1 + 2z^n + \dots$ belongs to \mathcal{P} .)

- [1] I. Efraimidis, A generalization of Livingston's coefficient inequalities for functions with positive real part, (preprint).
- [2] A.E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc. 21 (1969), 545-552.
- [3] A.E. Livingston, A coefficient inequality for functions of positive real part with an application to multivalent functions, Pacific J. Math. 120 (1985), no. 1, 139-151.