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Abstract
For functions p(z) = 1 +

∑∞
n=1 pnz

n holomorphic in the unit disk, satisfying Re p(z) > 0, we generalize two inequalities
proved by Livingston [2, 3] and simplify their proofs. One of our results is |pn − wpkpn−k| ≤ 2 max{1, |1 − 2w|}, w ∈ C,
while the other involves certain determinants with entries the coefficients pn.
Next, we consider the functionals Φα,β(p) = p3 − α p1p2 − β p3

1 and study the problem of determining the set {(α, β) ∈ R2 :
|Φα,β(p)| ≤ 2, for all p ∈ P}.

Let P denote the class of functions p(z) = 1 +
∑∞
n=1 pnz

n which are holomorphic in the unit disk D and
satisfy Re p(z) > 0. For the Taylor coefficients of functions in P we have

Carathéodory (1911): |pn| ≤ 2, n ≥ 1,

Livingston (1969): |pn − pkpn−k| ≤ 2, 0 ≤ k ≤ n,

(1985): |Ak,n(1)| ≤ 2, k ≥ 0, n ≥ 1,

where Ak,n(w), w ∈ C is defined as the (k + 1)× (k + 1) determinant:

Ak,n(w) =

∣∣∣∣∣∣∣∣∣∣∣∣

pn+k pn+k−1 pn+k−2 . . . pn+1 pn
wp1 1 0 . . . 0 0
wp2 wp1 1 . . . 0 0

... ... ... . . . ... ...
wpk−1 wpk−2 wpk−3 . . . 1 0
wpk wpk−1 wpk−2 . . . wp1 1

∣∣∣∣∣∣∣∣∣∣∣∣
.

Some examples of initial Ak,n’s are:

A0,n = pn, A1,n = pn+1 − wp1pn, A2,1 = p3 − 2wp1p2 − w2p3
1, (1)

A2,2 = p4 − wp1p3 − wp2
2 + w2p2

1p2, A3,1 = p4 − 2wp1p3 − wp2
2 + 3w2p2

1p2 − w3p4
1.

Our main theorems are

Theorem 1. If p ∈ P and w ∈ C then |pn − wpkpn−k| ≤ 2 max{1, |1− 2w|}.

Theorem 2. If p ∈ P and w ∈ C then |Ak,n(w)| ≤ 2 max{1, |1− 2w|k}.

Both theorems are accompanied by discussions of the equality case: for Theorem 1 we provide a complete
characterization while for Theorem 2 we provide a characterization in case |1 − 2w| < 1 and a sufficient
condition when |1 − 2w| ≥ 1. Thinking that this would be too technical for a poster session, we avoid it,
and instead we simply consider the case w = 1 in Theorem 1. About this case, which is Livingston’s original
functional, it was mentioned in [2] that equality holds for rotations of the half plane function 1+z

1−z . We will see
that this condition is far from being necessary. We first need some notation.

Denote by Un = {e2kπi/n : k = 1, 2, . . . , n} the set of n-th roots of unity. For n = 0 we understand U0 as
T = ∂D. Also, for a set E ⊂ C and a number a ∈ C we write aE = {az : z ∈ E}.

Herglotz representation: For every p ∈ P there is a unique probability measure µ (the Herglotz measure)
supported on T, such that

p(z) =

∫
T

1 + λz

1− λz
dµ(λ), z ∈ D.

Theorem 1 (continuation). Let p ∈ P , µ be its Herglotz measure and 1 ≤ k ≤ n−1. Then |pn−pkpn−k| = 2
if and only if one of the following holds: either

(i) pk = 0 and supp(µ) ⊆ eiϕUn for some ϕ ∈ [0, 2π); or

(ii) pk 6= 0 and
supp(µ) ⊆ (eiϕUn−2k ∩ eiϑ1Uk) ∪ (eiϕUn−2k ∩ eiϑ2Uk)

for some ϕ, ϑ1 and ϑ2 in [0, 2π). Except for the degenerate case where the support of µ consists of only one
point, the total mass of the measure on each of the two sets of the union is equal to 1/2.

Proof of the inequality in Theorem 1. First we note that |1 − 2w| ≤ 1 if and only if |w|2 ≤ Rew. From the
Herglotz representation we easily deduce that pn = 2

∫
T λ

ndµ(λ). We compute

|pn − wpkpn−k| =
∣∣∣∣2 ∫T λndµ(λ)− 2wpk

∫
T
λn−kdµ(λ)

∣∣∣∣
≤ 2

∫
T
|λn − wpkλn−k|dµ(λ)

≤ 2

(∫
T
|λk − wpk|2dµ(λ)

)1/2

= 2

(∫
T

1− 2Re (wpkλ
−k) + |wpk|2dµ(λ)

)1/2

= 2
(

1− 2Re (wpkpk/2) + |wpk|2
)1/2

= 2
(

1 + (|w|2 − Rew)|pk|2
)1/2

≤ 2 max{1, |1− 2w|}.

Here we used the triangle and Cauchy-Schwarz inequalities. At the last step, in case |1 − 2w| > 1, we made
use of Carathéodory’s inequality |pn| ≤ 2.

A related problem. By the term rotation of a function p we mean the function pλ(z) = p(λz), λ ∈ T. We
say that a functional Φ : P → C is homogeneous if Φ(pλ) = λnΦ(p) for some n ≥ 1. We call the number
n the degree of homogeneity of Φ. We consider homogeneous coefficient functionals of degree n in which pn
appears multiplied by 1. All examples in (1) are of this kind. In general they involve all combinations whose
indices sum up to n:

Φ(p) = pn − w1 p1 pn−1 − w2 p
2
1 pn−2 − w3 p2 pn−2 − . . .− wm pn1 .

We call minimal a functional Φ of this kind that satisfies |Φ(p)| ≤ 2 for all p in P . (No smaller bound is
possible since 1+zn

1−zn = 1 + 2zn + . . . belongs to P .)

Looking at Theorems 1 and 2 we are naturally led to the following

Problem. Characterize all minimal homogeneous coefficient functionals in P .

Suppose Φ is a homogeneous functional of degree n. If n = 1 then Φ(p) = p1 and it is minimal by
Carathéodory’s inequality. If n = 2 then Φ(p) = p2−wp2

1 and Theorem 1 provides the answer to our problem:

{w ∈ C : |p2 − wp2
1| ≤ 2, for all p ∈ P} = {w ∈ C : |1− 2w| ≤ 1}.

For n = 3 we write Φα,β(p) = p3 − α p1p2 − β p3
1. As a first step we consider α, β in R. Let

E = {(α, β) ∈ R2 : |Φα,β(p)| ≤ 2, for all p ∈ P}.

Proposition. The set E is convex and invariant under the affine map T (α, β) = (2− α, α + β − 1).
It satisfies the inclusions E1 ⊆ E ⊆ E2, where

E1 =

{
(α, β) ∈ R2 : α ∈ [0, 2], −α

2
≤ β ≤ α− α2

2

}
,

E2 =
{

(α, β) ∈ R2 : α ∈ [0, 2], −α
2
≤ β ≤ b(α)

}
and

b(α) =


1− α− (3− 2α)3/27, for α ∈ [0, 3/4],

(1− α)/2, for α ∈ [3/4, 5/4],

(1− 2α)3/27, for α ∈ [5/4, 2].
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Figure 1: solid (green): lower bound of E, thick dashing (orange): upper bound of E1,
thin dashing (blue): the curve b(α).

Sketch of the Proof. A typical rotation argument allows as to consider Re Φα,β, which is linear with respect to
α and β and thus E is convex.

That the setE is invariant under the transformation T comes from the fact that P is invariant under inversion:
p ∈ P if and only if 1/p ∈ P .

By Theorem 1 we have that [0, 1] × {0} ⊂ E. Also, T (0, 0) = (2,−1) must be in E. Hence, by convexity,
the triangle with vertices (0, 0), (1, 0), (2,−1) is contained in E. The fact that E1 ⊆ E follows from a rather
technical lemma.

To determine the set E2 we first see that E is contained in the strip
{

(α, β) ∈ R2 : −α2 ≤ β ≤ 1−α
2

}
,

simply by choosing the half-plane function 1+z
1−z . Next we prove that E is contained in the vertical strip

[0, 2] × R by making use of pζ(z) =
1+zϕζ(z)
1−zϕζ(z)

, ζ ∈ D, where ϕζ(z) = ζ−z
1−ζz is a disk automorphism. Finally,

we let t ∈ [0, 1/2) and consider the singular measure on T with point masses on 1 and −1, having weights
1− t and t respectively. The function having this as its Herglotz measure is

pt(z) = (1− t) 1 + z

1− z
+ t

1− z
1 + z

.

Now, for every t, the inequality |Φα,β(pt)| ≤ 2 shows that points (α, β) in E must lie bellow a certain straight
line. The envelope of this family of lines yields the remaining of the boundary of E2, that is, the cubic
polynomials in b(α).

Conjecture.E = E2
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