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ABSTRACT

We give sufficient conditions for analytic coefficients A;. of

F Ay ()Y 4 AY2) f 4+ Ag(2)f = Anl(2)

such that all solutions or their derivatives belong to HZ>®. Here
HZ® consists of those analytic functions f in the unit disc ID for
which |f(z)|w(2) is uniformly bounded, and w : D — (0, 00) is
radial and measurable and satisfies certain regularity conditions.

INTRODUCTION

We study the growth of solutions of the differential equation

F A1 (@) 4 A2 f + Ag(2) f = An(z), n2 2, (1)

where Ag(z), A1(2), ..., An(z) are analytic in the unitdisc D = {z € C :
|z| < 1} of the complex plane C, denoted by Ag, Ay,..., A, € H(D)
for short. In particular, we are interested in the case where the solutions
or their derivatives belong to

H = {g € HD) : |lgll g = sup 9(2)|w(z) < OO} -

Here w is a (radial) weight, which means that w : D — (0,00) is
bounded, measurable and satisfies w(z) = w(|z|) for all z. The case
w(z) = (I — |2])F, p € (0,00) is denoted simply by H7°. We also con-
sider the derivatives of the solutions and denote B* = {f : f' € HS°}
with B = Bl being the classical Bloch space.

The growth of solutions of (1) depends almost entirely on the growth of
the coefficients A;.. Consider, for example, the differential equation

f"+A(2)f =0. (2)

Then all solutions are bounded when A € H3® _ for any ¢ € (0,2) [6,
Corollary 3.16].  On the other hand, if A € H5?_ \ Up<oHp° for
e € (0,00), then the order of growth of any nontrivial solution is £/2
[2, Theorem 1.4(c)]. To ensure that the growth of the solutions is some-
where between these two extremal cases, the growth condition for the

coefficient A(2) needs to be more delicate. For example, if [|A[| gz or

sup,epllA(2)|(1 — |2])?|log(1 — |2])|] is small enough, then all solutions
belong to H,;® or BB (respectively), see Example 5.

CONDITIONS ON WEIGHTS

We consider weights w and wy. that satisfy the conditions

lim sup w(r) <m (3)

r—1= w (%tﬁ;)

for some constants ¢ € (0, 00) and m = m(w, e) € (0, 00), and

" d
hmsup/ > wrp_1(r) < Mp <oo, k=1,2,...,n, (4)
r—1- Jo wi(s)

where M} = Mp(wp,wi_1) > 0. Regarding the constants M;. we also
write P, := [[;_; M. It should be noted that conditions (3) and (4)
are independent and have the following properties.

(i) It is possible that (3) holds for some ¢ but not for all. However, if (3)
holds for some ¢, then it holds for some arbitrarily small <.

(ii) If w is nonincreasing and (3) holds for some ¢, then it holds for all
e. Hence, in this case (3) is equivalent to the doubling condition

w(r) < mw (L) when r € 0,1) is large enough.
2

(iii) If p : [0,1) — (0,00) is nonincreasing and w satisfies (4), then
wip satisfies (4) with M’ < M;. Moreover, if wu” satisfies (4)
for k = 1, then it satisfies the condition for all £k € N with a
nonincreasing sequence of constants (M},)72 ;. The typical example

wi.(r) = w(r)(1 — r)¥ is obtained by the choice p(r) =1 —r.

(GENERAL CASE

In what follows, we will use the notation

2l ar
gl = sup |g(2)]w(z) / A
S LeD 0 /L(T)

where g € H(D) and w and 1 are weights.

The following theorem is a simplified version of our main result.

Theorem 1. Let f be a solution of (1) where A, = 0, and
suppose that w is a weight satisfying (3). Denote wy = w and
wi(z) = w(z)(1 — |2|)¥ for k € N. Then the following assertions
hold:

a) If w;. satisfies (4) for all k =1,2,...,n, and
k

n—1
E = P, <|AO|H30 +m Yy k(14 5)k|Ak|Hsok> <1,

k=1

where m is as in (3), then f € HZX.

b) If w;. satisties (4) for allk =1,2,....,n—1, and
k

+ || A1l g

Wn—1-W

Fo= Py <AOHC>O

n—2

k

+m Yy kl(1+e) |Ak+1|H§Ok1> <1,
k=1

where m is as in (3), then f' € HZC.

We make the following remarks about Theorem 1.

(i) Theorem 1 generalizes to the non-homogenous equation (1):

(1) In Theorem 1(a) the condition A,, = 0 can be replaced by the
condition Ap € H.

(2) In Theorem 1(b) the condition A,
condition A,, € H°°

Wp—1°

0 can be replaced by the

(ii) If one of the following conditions holds, then the assumption that w
satisfies (3) is not necessary.

(1) In Theorem 1(a) A,,_1 = A, 9=...=A; =0.
(2) In Theorem 1(b) A,,_ 1= A, 2o=...= Ay =0.

SPECIAL CASES AND EXAMPLES

We denote by H 7 the space of functions g € H(DD) such that

lgll e = Sup 9(2)](1 = |2])PI4(2)] < oo,

where p, q € (0, 00) and

2l ds
fol2) = /o ST OB T [zp

q =1,
q € (1,00).

Note that H,% = Hgil—q when 1 < ¢ <p+1, and H; = H;” when
g € (0,1) and p € (0,00).

The following result is an important special case of Theorem 1.

Theorem 2. Let f be a solution of the differential equation (1)
where A,, = 0. Then the following assertions hold:

FO) + 0 TS 5= 1A 0)

HfHH]go <

(b) If, for a € (0, 00),

By Theorem 2 we easily obtain the following result regarding the important
special case (2) of (1), where the coefficient A is given by a power series.

Corollary 3. Let f be a solution of the differential equation (2),
where A(z) = Y 1o a.z" € H(D). Then the following asser-
tions hold:

(a) Ifa € (0,1) and |a| < a(l—a)

then f € B“.
1 [?T(k+x)
(b) If |a| < E/l ()
(¢) Ifa € (1,00) and |ap| < ala—1)(1+ k) for k € NU {0},
then f € B“.

Nk+a+1)
KT (o + 1)

for k € NU{0},

dx for k € NU {0}, then f € B.

Using [7, Theorem 14] we can also state the following consequence of
Theorem 2 which concerns the case where A(z) is a gap series.

Corollary 4. Let f be a solution of the differential equation (2),
where

and C' > 0 is a constant independent of z. Then the following

assertions hold:

: . 1
(a) If C' is small enough and limsupy_, |ag|n;, "

a € (0,1), then f € B“.

(b) If C' is small enough and lim supy._, |ak\nlzzlognk < 00,
then f € B.

(¢c) If C is small enough and lim supy._, \ak|n];2 < 00, then f €
B for o € (1, 00).

< oo for

We conclude with an example showing that Theorems 1 and 2 are sharp
In the sense that the assumptions £ < 1 and F' < 1 cannot be relaxed to
E <1l+c¢eand F <1+ ¢, respectively, for any ¢ € (0, 00).

Example 5. Let us consider the differential equation (2).

(a) If A(z) = —(p+a)(p+a+1)(1 —2)"2 for p € (0,00) and
a € |0,00), then (2) has a solution base { f{, fo}, where

filz) = (1= 2)7P7% and fo(z) = (1 — 2)PToHL

Hence, if a = 0, then ||Al|gg/p(p + 1) = 1 and all solutions
belong to Hgo space. On the other hand, for any € € (0, 00),
we find o = a(e) € (0,00) such that ||Allgg/p(p + 1) €
(1,1+¢) and f1 & Hp°.

) 1
(b) IfA(2) = —a(1—2) "2 ((oz — 1) (log %) + (log %) >
for a € [1,00), then (2) has a solution base { fi, fo}, where

: ) ind fo2) = 1) [

fiiz) = | log A6

Here |f5(2)] < (log§) ™ “|f{(2)] + (logg)_za for z € D.
Hence, for o = 1, we have ||A| g = 1 and that all so-

] — 2z

lutions belong to B. However, for any ¢ € (0,00), we find
a = a(e) € (1,00) such that | Al gy € (1,1+4¢) and f1 ¢ B.
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