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Abstract

We give sufficient conditions for analytic coefficients Ak of

f (n) + An−1(z)f
(n−1) + · · · + A1(z)f

′ + A0(z)f = An(z)

such that all solutions or their derivatives belong to H∞
ω . Here

H∞
ω consists of those analytic functions f in the unit disc D for

which |f (z)|ω(z) is uniformly bounded, and ω : D → (0,∞) is
radial and measurable and satisfies certain regularity conditions.

Introduction

We study the growth of solutions of the differential equation

f (n)+An−1(z)f
(n−1)+ · · ·+A1(z)f

′+A0(z)f = An(z), n ≥ 2, (1)

where A0(z), A1(z), . . . , An(z) are analytic in the unit disc D = {z ∈ C :
|z| < 1} of the complex plane C, denoted by A0, A1, . . . , An ∈ H(D)
for short. In particular, we are interested in the case where the solutions
or their derivatives belong to

H∞
ω =

{

g ∈ H(D) : ‖g‖H∞
ω
:= sup

z∈D
|g(z)|ω(z) < ∞

}

.

Here ω is a (radial) weight, which means that ω : D → (0,∞) is
bounded, measurable and satisfies ω(z) = ω(|z|) for all z. The case
ω(z) = (1 − |z|)p, p ∈ (0,∞) is denoted simply by H∞

p . We also con-

sider the derivatives of the solutions and denote Bα = {f : f ′ ∈ H∞
α }

with B = B1 being the classical Bloch space.

The growth of solutions of (1) depends almost entirely on the growth of
the coefficients Ak. Consider, for example, the differential equation

f ′′ + A(z)f = 0. (2)

Then all solutions are bounded when A ∈ H∞
2−ε for any ε ∈ (0, 2) [6,

Corollary 3.16]. On the other hand, if A ∈ H∞
2+ε \ ∪p<2+εH

∞
p for

ε ∈ (0,∞), then the order of growth of any nontrivial solution is ε/2
[2, Theorem 1.4(c)]. To ensure that the growth of the solutions is some-
where between these two extremal cases, the growth condition for the
coefficient A(z) needs to be more delicate. For example, if ‖A‖H∞

2
or

supz∈D[|A(z)|(1− |z|)2| log(1− |z|)|] is small enough, then all solutions
belong to H∞

p or B (respectively), see Example 5.

Conditions on weights

We consider weights ω and ωk that satisfy the conditions

lim sup
r→1−

ω(r)

ω
(

1+εr
1+ε

) < m (3)

for some constants ε ∈ (0,∞) and m = m(ω, ε) ∈ (0,∞), and

lim sup
r→1−

∫ r

0

ds

ωk(s)
ωk−1(r) < Mk < ∞, k = 1, 2, . . . , n, (4)

where Mk = Mk(ωk, ωk−1) > 0. Regarding the constants Mk we also
write Pn :=

∏n
k=1Mk. It should be noted that conditions (3) and (4)

are independent and have the following properties.

(i) It is possible that (3) holds for some ε but not for all. However, if (3)
holds for some ε, then it holds for some arbitrarily small ε.

(ii) If ω is nonincreasing and (3) holds for some ε, then it holds for all
ε. Hence, in this case (3) is equivalent to the doubling condition

ω(r) ≤ mω
(

1+r
2

)

when r ∈ [0, 1) is large enough.

(iii) If µ : [0, 1) → (0,∞) is nonincreasing and ω satisfies (4), then
ωkµ satisfies (4) with M ′ ≤ Mk. Moreover, if ωµk satisfies (4)
for k = 1, then it satisfies the condition for all k ∈ N with a
nonincreasing sequence of constants (Mk)

∞
k=1. The typical example

ωk(r) = ω(r)(1− r)k is obtained by the choice µ(r) = 1− r.

General case

In what follows, we will use the notation

‖g‖H∞
ω,µ

= sup
z∈D

|g(z)|ω(z)

∫ |z|

0

dr

µ(r)
,

where g ∈ H(D) and ω and µ are weights.

The following theorem is a simplified version of our main result.

Theorem 1. Let f be a solution of (1) where An ≡ 0, and
suppose that ω is a weight satisfying (3). Denote ω0 = ω and

ωk(z) = ω(z)(1− |z|)k for k ∈ N. Then the following assertions

hold:

(a) If ωk satisfies (4) for all k = 1, 2, . . . , n, and

E := Pn

(

‖A0‖H∞
n
+m

n−1
∑

k=1

k!(1 + ε)k‖Ak‖H∞
n−k

)

< 1,

where m is as in (3), then f ∈ H∞
ω .

(b) If ωk satisfies (4) for all k = 1, 2, . . . , n− 1, and

F := Pn−1

(

‖A0‖H∞
ωn−1,ω

+ ‖A1‖H∞
n−1

+m
n−2
∑

k=1

k!(1 + ε)k‖Ak+1‖H∞
n−k−1

)

< 1,

where m is as in (3), then f ′ ∈ H∞
ω .

We make the following remarks about Theorem 1.

(i) Theorem 1 generalizes to the non-homogenous equation (1):

(1) In Theorem 1(a) the condition An ≡ 0 can be replaced by the
condition An ∈ H∞

ωn
.

(2) In Theorem 1(b) the condition An ≡ 0 can be replaced by the
condition An ∈ H∞

ωn−1
.

(ii) If one of the following conditions holds, then the assumption that ω
satisfies (3) is not necessary.

(1) In Theorem 1(a) An−1 ≡ An−2 ≡ . . . ≡ A1 ≡ 0.

(2) In Theorem 1(b) An−1 ≡ An−2 ≡ . . . ≡ A2 ≡ 0.

Special cases and examples

We denote by H∞
p,q the space of functions g ∈ H(D) such that

‖g‖H∞
p,q

= sup
z∈D

[

|g(z)|(1− |z|)pIq(z)
]

< ∞,

where p, q ∈ (0,∞) and

Iq(z) =

∫ |z|

0

ds

(1− s)q
=















1
1−q

[

1− (1− |z|)1−q
]

, q ∈ (−∞, 1),

log 1
1−|z|

, q = 1,

1
q−1

[

1
(1−|z|)q−1 − 1

]

, q ∈ (1,∞).

Note that H∞
p,q = H∞

p+1−q when 1 < q < p + 1, and H∞
p,q = H∞

p when

q ∈ (0, 1) and p ∈ (0,∞).

The following result is an important special case of Theorem 1.

Theorem 2. Let f be a solution of the differential equation (1)
where An ≡ 0. Then the following assertions hold:

(a) If, for p ∈ (0,∞),

E :=

n
∏

j=1

1

p + j − 1

(

‖A0‖H∞
n
+

n−1
∑

k=1

k!
(k + p)k+p

kkpp
‖Ak‖H∞

n−k

)

< 1,

then

‖f‖H∞
p
≤

|f (0)| +
∑n−1

k=1

∏k−1
j=1

1
p+j−1|f

(k)(0)|

1− E
.

(b) If, for α ∈ (0,∞),

F :=

n−1
∏

j=1

1

α + j − 1

(

‖A0‖H∞
α+n−1,α

+ ‖A1‖H∞
n−1

+

n−2
∑

k=1

k!
(k + α)k+α

kkαα
‖Ak+1‖H∞

n−k−1

)

< 1,

then

‖f‖Bα ≤

∏n−1
j=1

1
α+j−1‖A0‖H∞

α+n−1
|f (0)| + |f ′(0)|

1− F

+

∑n−1
k=2

∏k−1
j=1

1
α+j−1|f

(k)(0)|

1− F
.

By Theorem 2 we easily obtain the following result regarding the important
special case (2) of (1), where the coefficient A is given by a power series.

Corollary 3. Let f be a solution of the differential equation (2),
where A(z) =

∑∞
k=0 akz

k ∈ H(D). Then the following asser-

tions hold:

(a) If α ∈ (0, 1) and |ak| < α(1−α)
Γ(k + α + 1)

k! Γ(α + 1)
for k ∈ N∪{0},

then f ∈ Bα.

(b) If |ak| <
1

k!

∫ 2

1

Γ(k + x)

Γ(x)
dx for k ∈ N ∪ {0}, then f ∈ B.

(c) If α ∈ (1,∞) and |ak| < α(α − 1)(1 + k) for k ∈ N ∪ {0},
then f ∈ Bα.

Using [7, Theorem 14] we can also state the following consequence of
Theorem 2 which concerns the case where A(z) is a gap series.

Corollary 4. Let f be a solution of the differential equation (2),
where

A(z) = C
∞
∑

k=0

akz
nk, 1 < q ≤

nk+1
nk

, k, nk ∈ N,

and C > 0 is a constant independent of z. Then the following

assertions hold:

(a) If C is small enough and lim supk→∞ |ak|n
−1−α
k < ∞ for

α ∈ (0, 1), then f ∈ Bα.

(b) If C is small enough and lim supk→∞ |ak|n
−2
k log nk < ∞,

then f ∈ B.

(c) If C is small enough and lim supk→∞ |ak|n
−2
k < ∞, then f ∈

Bα for α ∈ (1,∞).

We conclude with an example showing that Theorems 1 and 2 are sharp
in the sense that the assumptions E < 1 and F < 1 cannot be relaxed to
E < 1 + ε and F < 1 + ε, respectively, for any ε ∈ (0,∞).

Example 5. Let us consider the differential equation (2).

(a) If A(z) = −(p + α)(p + α + 1)(1 − z)−2 for p ∈ (0,∞) and
α ∈ [0,∞), then (2) has a solution base {f1, f2}, where

f1(z) = (1− z)−p−α
and f2(z) = (1− z)p+α+1.

Hence, if α = 0, then ‖A‖H∞
2
/p(p + 1) = 1 and all solutions

belong to H∞
p space. On the other hand, for any ε ∈ (0,∞),

we find α = α(ε) ∈ (0,∞) such that ‖A‖H∞
2
/p(p + 1) ∈

(1, 1 + ε) and f1 /∈ H∞
p .

(b) IfA(z) = −α(1−z)−2

(

(α− 1)
(

log e
1−z

)−2
+
(

log e
1−z

)−1
)

for α ∈ [1,∞), then (2) has a solution base {f1, f2}, where

f1(z) =

(

log
e

1− z

)α

and f2(z) = f1(z)

∫ z

0

dζ

f1(ζ)2
.

Here |f ′2(z)| ≤
(

log e
2

)−α
|f ′1(z)| +

(

log e
2

)−2α
for z ∈ D.

Hence, for α = 1, we have ‖A‖H∞
2,1

= 1 and that all so-

lutions belong to B. However, for any ε ∈ (0,∞), we find

α = α(ε) ∈ (1,∞) such that ‖A‖H∞
2,1

∈ (1, 1+ ε) and f1 /∈ B.
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