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ABSTRACT

We study locally univalent functions f analytic in the unit disc D
of the complex plane such that

f"(z)
f'(z)

holds for all z € D, for some 0 < C' < o0. If C' < 1, then f
is univalent by Becker's univalence criterion. We discover that for
1 < C < oo the function f remains to be univalent in certain
horodiscs. Sufficient conditions which imply that f is bounded,
belongs to the Bloch space or belongs to the class of normal func-
tions, are discussed. Moreover, we consider generalizations for
locally univalent harmonic functions.

INTRODUCTION

Let us recall some classical univalence criteria. From now on, for simplicity,
let f be analytic in the unit disc D = {z € C : |z| < 1} of the complex
plane C. Moreover, assume that f is locally univalent, that is, f’(2) # 0
for z € D.

(1=} <1+ C(1 = I2)),

z e D,

The Schwarzian derivative of f is defined by setting

f// / 1 f// 2
S(fi=(=) —=(=] .
=) -3(7)
Since f’ is nonvanishing, S(f) is an analytic function.

According to the famous Nehari univalence criterion [10, Theorem 1], if

SN (1= 21? <2, z€D, (1)

then f is univalent. The result is sharp by an example by Hille [7, Theo-
rem 1].

Binyamin Schwarz [12] showed that if f(a) = f(b) for some a # b, then

1 —|¢]%)?* > 2. 2
Cg@%\s(f)(@\( <17)7 > (2)
Here (a,b) = {pu(pa(b)t) : 0 <t < 1} is the hyperbolic segment be-

tween a and b and
a— 2

Palz) = l —az

is an automorphism of the unit disc. Condition (2) implies that if
SN =217 <2, n<le| <1, (3)
for some 0 < rg < 1, then f has finite valence [12, Corollary 1].

Chuaqui and Stowe [4, p. 564] asked whether

S(HE) A —1217)? <2+C(1—]2]), z€D, (4)
where 0 < ' < oo is a constant, implies that f is of finite valence. The
question remains open despite of some progress achieved by Grohn and
Rattya in [6]. Steinmetz [13, p. 328| showed that if (4) holds, then f
is normal, that is, the family {f o ¢, : a € D} is normal in the sense of

Montel. Equivalently, sup,cp 14‘;7(;8(@)”2(1 — |2]?) < oo0.

The pre-Schwarzian derivative of f is defined as P(f) = f"/f’.
Conditions (1)-(4) have analogues stated in terms of the pre-Schwarzian
derivative.

The famous Becker univalence criterion [1, Korollar 4.1], states that if

2P(f)| (1= |2") < p,

for p < 1, then f is univalent in D. The right-hand-side constant 1 is
sharp, see [2, Satz 6] and [5].

z €D, (5)

Becker and Pommerenke proved recently that if

Ja
e

for p < 1 and some g € (0, 1), then f has finite valence [3, Theorem 3.4].

(1=121) <p, ro<lzl <1, (6)

It is an open problem, what happens in the case of equality p = 1 in (6).
Moreover, the sharp inequality corresponding to (2), in terms of the pre-
Schwarzian, has not been found yet.

In this paper, we consider the growth condition

ot
f'(2)
where 0 < C' < oo is an absolute constant. Analogously to the Chuaqui-

Stowe question, the most interesting question is whether (7) implies that
f is of finite valence. We have obtained some partial results.

1—1]zP)<1+C(1—|z]), zeD, (7)
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Conversely to Becker's criterion, each analytic and univalent function f
in ID satisfies (5) for p = 6. This follows from the sharp inequality

"2 2P | 4l
) 1= | T T

z €D, (8)

see [11, p. 21]. Also condition (7) implies growth estimates for f. These
estimates may be calculated analogously to [3] and [9]. In particular,
condition (7) implies that f is bounded. Slightly relaxed versions of in-
equality (7) imply that

sup [f/(2)](1 — |2]?) < oo or sup /1) (1—|2]%) < oo.

2€D 2eD 1+ | f(2)]?

See [8] for details.

RESULTS

First, we state a local version of Becker's univalence criterion. By Becker's
criterion and its converse, the following result is sharp.

Theorem 1 Let f be analytic and locally univalent in D and
let ( € OD. |If there exists a sequence {wy} of points in D
tending to  such that

/ //(wn)
fHwn)

for some ¢ € (6,00|, then for each § > 0 there exists a point
w € f(ID) such that at least two of its distinct preimages belong
to D(¢,0) ND.

Conversely, if for each § > 0 there exists a point w € f(ID) such
that at least two of its distinct preimages belong to D((,6) N D,
then there exists a sequence {wy} of points in D tending to (
such that (9) holds for some ¢ € [1, 00].

(1= fwn|?) = ¢ (9)

Theorem 2 Let f be analytic and locally univalent in ID. Assume

that
ot
f'(z)
for some 0 < C < oo. If0 < C <1, then f is univalent in D. If
1 < C < oo, then f is univalent in all discs

1—|z2)<1+C(1—]z]), zeD, (10)

D(aew, 1—a), 0<60<2m,

wherea =1— (1+C)~2 € (0,1).

Theorem 3 Let f be analytic in D and univalent in all Euclidean

discs . |
D 10 10 oD
(1 L0 1y C) €S0

for some ) < (' < oo. Then

f"(z)
f'(z)

where K(z) =< (1 — |2|?) as |2] — 1.

(1—]2°) <2+4(1+ K(2)), zeD,

Example 4 Let f = fo - be alocally univalent analytic function
in D such that f(—1) =0 and

)

1'(2)
hence (7) holds and f is univalent in D if C' < 1 by Becker’s
univalence criterion. If f is univalent, then we obtain for ( =1,

/()]

2 F@)|

14+ Cz/2
l + 3z

e%(l — :13)5/2

oz — 0T,
(1+ z)1/2

where k(z) = z/(1 — 2)? is the Koebe function, see [11, p. 21].
Therefore, if C' > 6, then f is not univalent.

The boundary curve 9 f(ID) has a cusp at f(—1) = 0. When { =
—1, the cusp has its worst behavior, and by numerical calculations
the function f is not univalent if C' > 2.21.

Moreover, as C' increases, the valence of f increases. see Figures 1
and 2.

The curve {f(e") :t€ (0,7]} is a spiral unwinding from
f(=1). We may calculate the valence of f by counting how
many times h(t) = Re(f(e'!)) changes its sign on (0, 7]. Numer-
ical calculations suggest that the valence of f is approximately
equal to %C’ .
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Figure 1. Image domain f(DD) for C' = 2.21 and { = —i. Here 0f(D)

is a simple closed curve and f is univalent.
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Figure 2. Image domain f(ID)/10 for C' = 30 and ( = —i. Here 0 (D)
intersects itself multiple times. The valence of the simply connected do-
main D; under [ is j, for j = 1,2, 3, respectively.
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