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Abstract

We study locally univalent functions f analytic in the unit disc D
of the complex plane such that
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(1− |z|2) ≤ 1 + C(1− |z|), z ∈ D,

holds for all z ∈ D, for some 0 < C < ∞. If C ≤ 1, then f
is univalent by Becker’s univalence criterion. We discover that for
1 < C < ∞ the function f remains to be univalent in certain
horodiscs. Sufficient conditions which imply that f is bounded,
belongs to the Bloch space or belongs to the class of normal func-
tions, are discussed. Moreover, we consider generalizations for
locally univalent harmonic functions.

Introduction

Let us recall some classical univalence criteria. From now on, for simplicity,
let f be analytic in the unit disc D = {z ∈ C : |z| < 1} of the complex
plane C. Moreover, assume that f is locally univalent, that is, f ′(z) 6= 0
for z ∈ D.

The Schwarzian derivative of f is defined by setting

S(f ) =

(
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f ′

)′
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)2

.

Since f ′ is nonvanishing, S(f ) is an analytic function.

According to the famous Nehari univalence criterion [10, Theorem 1], if

|S(f )(z)| (1− |z|2)2 ≤ 2, z ∈ D, (1)

then f is univalent. The result is sharp by an example by Hille [7, Theo-
rem 1].

Binyamin Schwarz [12] showed that if f (a) = f (b) for some a 6= b, then

max
ζ∈〈a,b〉

|S(f )(ζ)| (1− |ζ|2)2 > 2. (2)

Here 〈a, b〉 = {ϕa(ϕa(b)t) : 0 ≤ t ≤ 1} is the hyperbolic segment be-
tween a and b and

ϕa(z) =
a− z

1− az

is an automorphism of the unit disc. Condition (2) implies that if

|S(f )(z)| (1− |z|2)2 ≤ 2, r0 ≤ |z| < 1, (3)

for some 0 < r0 < 1, then f has finite valence [12, Corollary 1].

Chuaqui and Stowe [4, p. 564] asked whether

|S(f )(z)| (1− |z|2)2 ≤ 2 + C(1− |z|), z ∈ D, (4)

where 0 < C < ∞ is a constant, implies that f is of finite valence. The
question remains open despite of some progress achieved by Gröhn and
Rättyä in [6]. Steinmetz [13, p. 328] showed that if (4) holds, then f
is normal, that is, the family {f ◦ ϕa : a ∈ D} is normal in the sense of

Montel. Equivalently, supz∈D
|f ′(z)|

1+|f (z)|2
(1− |z|2) < ∞.

The pre-Schwarzian derivative of f is defined as P (f ) = f ′′/f ′.
Conditions (1)-(4) have analogues stated in terms of the pre-Schwarzian
derivative.

The famous Becker univalence criterion [1, Korollar 4.1], states that if

|zP (f )| (1− |z|2) ≤ ρ, z ∈ D, (5)

for ρ ≤ 1, then f is univalent in D. The right-hand-side constant 1 is
sharp, see [2, Satz 6] and [5].

Becker and Pommerenke proved recently that if
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(1− |z|2) < ρ, r0 ≤ |z| < 1, (6)

for ρ < 1 and some r0 ∈ (0, 1), then f has finite valence [3, Theorem 3.4].

It is an open problem, what happens in the case of equality ρ = 1 in (6).
Moreover, the sharp inequality corresponding to (2), in terms of the pre-
Schwarzian, has not been found yet.

In this paper, we consider the growth condition
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(1− |z|2) ≤ 1 + C(1− |z|), z ∈ D, (7)

where 0 < C < ∞ is an absolute constant. Analogously to the Chuaqui-
Stowe question, the most interesting question is whether (7) implies that
f is of finite valence. We have obtained some partial results.

Conversely to Becker’s criterion, each analytic and univalent function f
in D satisfies (5) for ρ = 6. This follows from the sharp inequality
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≤
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1− |z|2
, z ∈ D, (8)

see [11, p. 21]. Also condition (7) implies growth estimates for f . These
estimates may be calculated analogously to [3] and [9]. In particular,
condition (7) implies that f is bounded. Slightly relaxed versions of in-
equality (7) imply that

sup
z∈D

|f ′(z)|(1− |z|2) < ∞ or sup
z∈D

|f ′(z)|

1 + |f (z)|2
(1− |z|2) < ∞.

See [8] for details.

Results

First, we state a local version of Becker’s univalence criterion. By Becker’s
criterion and its converse, the following result is sharp.

Theorem 1 Let f be analytic and locally univalent in D and

let ζ ∈ ∂D. If there exists a sequence {wn} of points in D

tending to ζ such that
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2) → c (9)

for some c ∈ (6,∞], then for each δ > 0 there exists a point

w ∈ f (D) such that at least two of its distinct preimages belong

to D(ζ, δ) ∩ D.

Conversely, if for each δ > 0 there exists a point w ∈ f (D) such
that at least two of its distinct preimages belong to D(ζ, δ) ∩ D,

then there exists a sequence {wn} of points in D tending to ζ
such that (9) holds for some c ∈ [1,∞].

Theorem 2 Let f be analytic and locally univalent in D. Assume

that
∣

∣

∣

∣

f ′′(z)

f ′(z)

∣

∣

∣

∣

(1− |z|2) ≤ 1 + C(1− |z|), z ∈ D, (10)

for some 0 < C < ∞. If 0 < C ≤ 1, then f is univalent in D. If

1 < C < ∞, then f is univalent in all discs

D(aeiθ, 1− a), 0 ≤ θ < 2π,

where a = 1− (1 + C)−2 ∈ (0, 1).

Theorem 3 Let f be analytic in D and univalent in all Euclidean

discs

D

(

C

1 + C
eiθ,

1

1 + C

)

, eiθ ∈ ∂D,

for some 0 < C < ∞. Then
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(1− |z|2) ≤ 2 + 4(1 +K(z)), z ∈ D,

where K(z) ≍ (1− |z|2) as |z| → 1−.

Example 4 Let f = fC,ζ be a locally univalent analytic function
in D such that f (−1) = 0 and

f ′(z) = −i

(

1 + z

1− z

)
1

2

e
Cζz
2 , ζ ∈ ∂D, z ∈ D.

Then
f ′′(z)

f ′(z)
=

1

1− z2
+
Cζ

2
,

hence (7) holds and f is univalent in D if C ≤ 1 by Becker’s
univalence criterion. If f is univalent, then we obtain for ζ = 1,

1 ≥
|f ′(x)|

|k′(x)|
=

e
Cx
2 (1− x)5/2

(1 + x)1/2
∼

1 + Cx/2

1 + 3x
, x → 0+,

where k(z) = z/(1 − z)2 is the Koebe function, see [11, p. 21].
Therefore, if C > 6, then f is not univalent.
The boundary curve ∂f (D) has a cusp at f (−1) = 0. When ζ =
−i, the cusp has its worst behavior, and by numerical calculations
the function f is not univalent if C > 2.21.
Moreover, as C increases, the valence of f increases. see Figures 1
and 2.
The curve

{

f (eit) : t ∈ (0, π]
}

is a spiral unwinding from
f (−1). We may calculate the valence of f by counting how
many times h(t) = Re(f (eit)) changes its sign on (0, π]. Numer-
ical calculations suggest that the valence of f is approximately
equal to 100

63 C.

Figure 1. Image domain f (D) for C = 2.21 and ζ = −i. Here ∂f (D)
is a simple closed curve and f is univalent.

Figure 2. Image domain f (D)/1012 for C = 30 and ζ = −i. Here ∂f (D)
intersects itself multiple times. The valence of the simply connected do-
main Dj under f is j, for j = 1, 2, 3, respectively.
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