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AbstratThis ourse was given in June-Deember 2013 in University of Eastern Finland inorder to omplete earlier ourses Complex Analysis I and Riemann mapping theoremand the Dirihlet problem (spring 2013) on omplex analysis.1. Maximum modulus priniple (one more)Reall several fats on maximum modulus of analyti funtions.Theorem 1.1 (Maximum modulus priniple for analyti funtions). Let
f : D → C be analyti in a domainD ⊂ C. If there exists z0 ∈ D suh that |f(z)| ≤ |f(z0)|for all z ∈ D, then f is onstant.There are several ways to prove this result. One of them is to rely on the open mappingtheorem.Theorem 1.2 (Open mapping theorem for analyti funtions). If f : D → C isa non-onstant analyti funtion in a domain D, then the set f(D) = {f(z) : z ∈ D} isopen.Theorem 1.1 has the following immediate onsequene (here we do not have to assumethe onnetedness).Corollary 1.3. Let f : U → C be analyti in a bounded open set U and ontinuous inits losure U . Then |f | attains its maximum on the boundary ∂U .A loal version of Theorem 1.1 is stated next. This result is dedued by onsideringa small open neighborhood of z0 and applying the theorem there. The onnetedness isessential here.Theorem 1.4. Let f : D → C be analyti in a domain D ⊂ C. If there exists z0 ∈ Dsuh that the funtion |f | has a loal maximum in z0, then f is onstant.It is worth notiing that the modulus of an analyti funtion may attain its globalminimum in an interior point of a domain; the funtion f(z) = z2 satis�es 0 = |f(0)| ≤
|f(z)| for all z in the unit dis. However, this example falls into the the only possiblelass of examples as the following proposition shows.Proposition 1.5. Let f : D → C\{0} be analyti in a domain D. If there exists z0 ∈ Dsuh that |f(z0)| ≤ |f(z)| for all z ∈ D, then f is onstant.We now prove one more version of the maximum modulus priniple. For this we needto �x notation.Let G ⊂ C, ϕ : G → R a funtion and z0 ∈ G or z0 = ∞ (the omplex in�nity). Thelimit superior of ϕ(z) as z approahes z0, denoted by lim supz→z0

ϕ(z), is de�ned by
lim sup
z→z0

ϕ(z) = lim
r→0+

sup{ϕ(z) : z ∈ G ∩D(z0, r)}.3



If z0 = ∞, then D(z0, r) is a dis in the standard metri of the extended omplex plane
Ĉ = C ∪ {∞} (on the Riemann sphere). Similarly, limit inferior of ϕ(z) as z approahes
z0, denoted by lim infz→z0 ϕ(z), is de�ned by

lim inf
z→z0

ϕ(z) = lim
r→0+

inf{ϕ(z) : z ∈ G ∩D(z0, r)}.It is easy to see that limz→z0 ϕ(z) exists and is equal to α if and only if lim infz→z0 ϕ(z) =
α = lim supz→z0

ϕ(z).If G ⊂ C, then the extended boundary ∂̂G of G is the boundary of G in Ĉ. Clearly,
∂̂G = ∂G if G is bounded in C, for otherwise ∂̂G = ∂G ∪ {∞}.Theorem 1.6. Let f : D → C be analyti in a domain D ⊂ C. If there exists M > 0suh that

lim sup
z→z0

|f(z)| ≤Mfor all z0 ∈ ∂̂D, then |f(z)| ≤M for all z ∈ D.Proof. It su�es to show that the set U = {z ∈ D : |f(z)| > M + δ} is empty for any�xed δ > 0. Sine |f | is ontinuous, U is open. Sine lim supz→z0
|f(z)| ≤ M for eah

z0 ∈ ∂̂D, there exists r = r(z0) > 0 suh that |f(z)| < M + δ for all z ∈ D ∩ D(z0, r).Hene U ⊂ D. Sine this holds also if D is unbounded and z0 = ∞, U must be bounded.Thus, U is ompat by the Heine-Borel theorem. Now Corollary 1.3 applies. But, for
z ∈ ∂U , we have |f(z)| = M + δ if f is not onstant, sine U ⊂ {z : |f(z)| ≥ M + δ}.Therefore U = ∅ or f is onstant. But the assumption implies U = ∅ if f is onstant. 2Exerises1. Let D be a bounded domain and suppose that f is ontinuous on D and analytion D. Show that if there exists a onstant c ≥ 0 suh that |f(z)| = c for all z ∈ ∂D,then either f is a onstant funtion or f has a zero.2. Let f be entire and non-onstant, and let c > 0. Show that the losure of {z :

|f(z)| < c} is the set {z : |f(z)| ≤ c}.3. Let p be a non-onstant polynomial and c > 0. Show that eah omponent of
{z : |p(z)| < c} ontains a zero of p.4. Let p be a non-onstant polynomial and c > 0. Show that {z : |p(z)| = c} is a �niteunion of losed paths. Disuss the behavior of these paths as c→ ∞.5. Let f and g be analyti on D(0, r) with |f(z)| = |g(z)| for |z| = r. Show that ifneither f nor g vanishes in D(0, r), then there exists a onstant λ ∈ T suh that
f = λg. 4



2. Shwarz lemma and Borel-Carathéodory inequalityReall the result known as the Shwarz lemma.Proposition 2.1 (Shwarz lemma). Let f : D → C be analyti suh that(i) |f(z)| ≤ 1 for all z ∈ D;(ii) f(0) = 0.Then |f(z)| ≤ |z| for all z ∈ D and |f ′(0)| ≤ 1.Moreover, if |f(z)| = |z| for some z ∈ D \ {0} or |f ′(0)| = 1, then f is a rotation:
f(z) = αz for all z ∈ D and for some α ∈ T.If f : D(0, R) → C is analyti suh that |f(z)| ≤ M for all z ∈ D(0, R) and f(0) = 0,then Shwarz lemma yields

|f(z)| ≤ M |z|
R

, z ∈ D(0, R). (2.1)Proposition 2.2 (Borel-Carathéodory inequality). Let f : D(0, R) → C be ana-lyti, and denote M(r, f) = max|z|=r |f(z)| and A(r, f) = max|z|=r Re f(z) for 0 < r ≤ R.Then
M(r, f) ≤ 2r

R− r
A(R, f) +

R + r

R− r
|f(0)|, 0 < r < R.Proof. If f is a onstant, then the assertion is trivially true. If f is non-onstant, assume�rst that f(0) = 0, and onsider the funtion

g(z) =
f(z)

2A(R, f)− f(z)
, z ∈ D(0, R).Now Re (2A(R, f)− f(z)) = 2A(R, f)− Re f(z) ≥ 2A(R, f)− A(|z|, f) ≥ A(R, f) > 0by the maximum modulus priniple of harmoni funtions. Hene g is analyti in D(0, R)with g(0) = 0. Moreover,

|g(z)|2 = u(z)2 + v(z)2

(2A(R, f)− u(z))2 + v(z)2
≤ 1,beause −2A(R, f)+u(z) ≤ u(z) ≤ 2A(R, f)−u(z) in D(0, R) by the maximum moduluspriniple of harmoni funtions. Therefore (2.1) applies and gives |g(z)| ≤ r/R. This isequivalent to

|f(z)| =
∣∣∣∣
2A(R, f)g(z)

1 + g(z)

∣∣∣∣ ≤
2A(R, f) r

R

1− r
R

=
2A(R, f)r

R− r
, 0 < r = |z| < R,and the stated result is proved in the ase f(0) = 0. If f(0) 6= 0, then apply the resultalready obtained to f − f(0). Then

|f(z)− f(0)| ≤ 2r

R− r
max
|z|=R

Re (f(z)− f(0)) ≤ 2r

R− r
(A(R, f) + |f(0)|) ,5



and we are done. 2If A(R, f) ≥ 0, then the Borel-Carathéodory inequality is usually written in the(weaker) form
M(r, f) ≤ R + r

R− r
(A(r, f) + |f(0)|) , 0 < r < R.Exerises1. Consider the funtions −f and ±if to obtain inequalities similar to Borel-Carathéo-dory inequality involving min|z|=R Re f(z), max|z|=R Im f(z) or min|z|=R Im f(z).2. Searh for other versions of the Borel-Carathéodory inequality.3. Show by an example that what ever inequality of the same type of the Borel-Carathéodory inequality you establish, in eah ase on the right hand side youwill obtain a fator, suh 1/(R − r). Hint: onsider f(z) = −i log(1 − z) and

0 < r < R < 1.3. Convex funtions and Hadamard's three irles theoremLet [a, b] be an interval in the real line. A funtion f : [a, b] → R is onvex if
f(tx2 + (1− t)x1) ≤ tf(x2) + (1− t)f(x1)for all x1, x2 ∈ [a, b] and 0 ≤ t ≤ 1. A subset A ⊂ C is onvex if whenever z and w are in

A, the point tz + (1 − t)w is in A for all 0 ≤ t ≤ 1. That is, A is onvex when for anyendpoints in A the line segment joining the two points is also in A.Proposition 3.1. A funtion f : [a, b] → R is onvex if and only if the set A = {(x, y) :
a ≤ x ≤ y, f(x) ≤ y} is onvex.Proof. Suppose f : [a, b] → R is onvex and let (x1, y1), (x2, y2) ∈ A. If 0 ≤ t ≤ 1, then,by the de�nition of onvex funtions and the set A,

f(tx2 + (1− t)x1) ≤ tf(x2) + (1− t)f(x1) ≤ ty2 + (1− t)y1.Thus t(x2, y2) + (1− t)(x1, y1) = (tx2 + (1− t)x1, ty2 + (1− t)y1) ∈ A, so A is onvex.Suppose A is a onvex set and let x1, x2 ∈ [a, b]. Then
(tx2 + (1− t)x1, tf(x2) + (1− t)f(x1)) ∈ Aif 0 ≤ t ≤ 1. But the de�nition of A gives
f(tx2 + (1− t)x1) ≤ tf(x2) + (1− t)f(x1),that is, f is onvex. 26



Proposition 3.2. (a) A funtion f : [a, b] → R is onvex if and only if for any points
x1, . . . , xn ∈ [a, b] and real numbers t1, . . . , tn ≥ 0 with ∑n

k=1 tk = 1,
f

(
n∑

k=1

tkxk

)
≤

n∑

k=1

tkf(xk).(b) A set A ⊂ C is onvex if and only if for any points z1, . . . , zn ∈ A and real numbers
t1, . . . , tn ≥ 0 with ∑n

k=1 tk = 1, ∑n
k=1 tkzk ∈ A.Proposition 3.3. A di�erentiable funtion f : [a, b] → R is onvex if and only if f ′ isinreasing.In this setion we are mostly onerned with funtions f whih are not onvex, butwhih are logarithmially onvex, that is, log f is onvex. Of ourse this assumes that fattains positive values only. It is easy to see that logarithmially onvex funtions areonvex, but not onversely.Theorem 3.4. Let −∞ < a < b < ∞ and G = {x + iy : a < x < b, y ∈ R}. Suppose

f : G→ C is ontinuous and f is analyti in G. De�ne M : [a, b] → R by
M(x) = sup

−∞<y<∞
|f(x+ iy)|.If |f(z)| < B for all z ∈ G, then logM is a onvex funtion.Before proving this theorem, note that to say that logM is onvex means that

(y − x) logM(u) ≤ (y − u) logM(x) + (u− x) logM(y) (3.1)for all a ≤ x < u < y ≤ b. To see this, let x = x2, y = x1 and u = tx2 + (1− t)x1. Now
u = tx+ y − ty = y + t(x− y)and thus y − u = t(y − x) and

u− x = y − x+ t(x− y) = (1− t)(y − x).By this hange of variables, (3.1) beomes
logM(tx2 + (1− t)x1) ≤ t logM(x2) + (1− t) logM(x1).Further, as u runs over the range (x, y), the quotient t = y−u

y−x
runs over the values in

(0, 1). Taking the exponential of both sides of (3.1) gives
M(u)y−x ≤M(x)y−uMu−x, a ≤ x < u < y ≤ b. (3.2)Also, sine logM is onvex by Theorem 3.4, we have that logM is bounded by

max{logM(a), logM(b)}.This gives the following: 7



Corollary 3.5. If f and G are as in Theorem 3.4 and f is not onstant, then |f(z)| <
supw∈∂G |f(w)| for all z ∈ G.To prove Theorem 3.4 the following lemma is used.Lemma 3.6. If f and G are as in Theorem 3.4, and further suppose that |f(z)| ≤ 1 forall z ∈ ∂G. Then |f(z)| ≤ 1 for all z ∈ G.Proof. For eah ε > 0, let

gε(z) =
1

1 + ε(z − a)
, z ∈ G.Then

|gε(z)| ≤
1Re (1 + ε(z − a))

=
1

1 + ε(x− a)
≤ 1, z = x+ iy ∈ G.So for z ∈ ∂G we have |f(z)gε(z)| ≤ 1 by the assumption. Also, sine |f | is bounded by

B in G,
|f(z)gε(z)| ≤

B

|1 + ε(z − a)| =
B

|1 + ε(x− a) + iεy| ≤
B

ε| Im z| , z = x+ iy ∈ G. (3.3)So if R = {x + iy : a ≤ x ≤ b, |y| ≤ B
ε
}, inequality (3.3) and the assumption |f(z)| ≤ 1,

z ∈ ∂G, give |f(z)gε(z)| ≤ 1 for z ∈ ∂R. The maximum modulus priniple (Corollary 1.3)implies |f(z)gε(z)| ≤ 1 for z ∈ R. But if | Im (z)| > B
ε
, then (3.3) gives |f(z)gε(z)| ≤ 1.Thus this holds for all z ∈ G:

|f(z)| ≤ |gε(z)|−1 = |1 + ε(z − a)|.By letting ε→ 0, we obtain the lemma. 2Proof of Theorem 3.4. First observe that to prove the theorem, we need only to establish
M(u)b−a ≤M(a)b−uM(b)u−a, a < u < b.This follows by (3.2) beause the assumptions are valid in any substrip {ζ + iη : x < ζ <

y, η ∈ R} with a < x < y < b. To prove the inequality, reall that for a onstant A > 0,
Az = exp(z logA) is an entire funtion of z with no zeros. So

g(z) =M(a)
b−z
b−aM(b)

z−a
b−ais entire, never vanishes, and

|g(z)| =M(a)
b−x
b−aM(b)

x−a
b−a , z = x+ iy, (3.4)provided that M(a) 6= 0 6= M(b). However, if either M(a) = 0 or M(b) = 0, then f ≡ 0.Sine the right hand side of (3.4) is a ontinuous funtion of x on [a, b] and never vanishes,

|g|−1 must be bounded in G. Also |g(a + iy)| = M(a) and |g(b + iy)| = M(b). Hene8



∣∣∣f(z)g(z)

∣∣∣ ≤ 1 for all z ∈ ∂G, and thus f/g satis�es the hypothesis of Lemma 3.6. It followsthat |f(z)| ≤ |g(z)| for all z ∈ G. This gives
|f(x+ iy)| ≤M(a)

b−x
b−a +M(b)

x−a
b−a , z = x+ iy.Therefore

M(x) ≤M(a)
b−x
b−a +M(b)

x−a
b−a , z = x+ iy,and we are done. 2Hadamard's Three Cirles Theorem is an analogue of Theorem 3.4 for an annulus.Consider A(0;R1, R2) where 0 < R1 < R2 < ∞. If G is the strip {x + iy : logR1 <

x < logR2}, then the exponential funtion maps G onto A(0;R1, R2) and ∂G onto
∂A(0;R1, R2). Using this fat we an prove the following from Theorem 3.4:Theorem 3.7 (Hadamard's three irles theorem). Lat 0 < R1 < R2 < ∞ andsuppose f is analyti in A(0;R1, R2). If R1 < r1 ≤ r ≤ r2 < R2, then

logM(r, f) ≤ log r2 − log r

log r2 − log r1
M(r1, f) +

log r − log r1
log r2 − log r1

M(r2, f).Hadamard's three irles theorem says that logM(r, f) is a onvex funtion on log r.Exerises1. Let f : [a, b] → R and suppose that f(x) > 0 for all x ∈ [a, b] and that f has aontinuous seond derivative. Show that f is logarithmially onvex if and only if
f ′′(x)f(x)− (f ′(x))2 ≥ 0 for all x ∈ [a, b].2. Show that if f : (a, b) → R is onvex, then f is ontinuous.3. Supply the details of the proof of Proposition 3.2.4. Supply the details of the proof of Proposition 3.3.5. Show that logarithmially onvex funtions are onvex, but not onversely.6. Supply the details of the proof of Hadamard's three irles theorem.4. Hardy's onvexity theoremFor 0 < p <∞ and f analyti in D, write

Mp(r, f) =

(
1

2π

∫ 2π

0

|f(reiθ)|p dθ
) 1

p

.Let U ⊂ C be open and f : U → R ontinuous. If for eah losed dis D(z0, r) ⊂ U andeah harmoni funtion h, de�ned in a neighborhood of D(z0, r), for whih f(z) ≤ h(z)in ∂D(z0, r) we have f(z) ≤ h(z) in D(z0, r), then f is alled subharmoni in U .9



Proposition 4.1 (Sub-Mean-Value Property). Let U ⊂ C be open and f : U → Rontinuous. Then f is subharmoni in U if and only if for eah losed dis D(z0, r) ⊂ U ,
f satis�es the sub-mean-value-property

f(z0) ≤
1

2π

∫ 2π

0

f(z0 + reiθ) dθ.In fat, a ontinuous real-valued funtion f on an open set U is subharmoni if itsatis�es the small irle sub-mean-value-property : for eah z there exists ε(z) > 0 suhthat D(z, ε(z)) ⊂ U and
f(z) ≤ 1

2π

∫ 2π

0

f(z + εeiθ) dθfor all ε ∈ (0, ε(z)). Therefore subharmoniity is a loal property.Lemma 4.2. Let 0 < p < ∞, and let f be analyti in an open set U ⊂ C. Then |f |p issubharmoni in U .Proof. In any neighborhood of any point where f is not zero, log |f | is harmoni andhene |f |p = exp(p log |f |) is subharmoni (beause the exponential funtion in inreasingand onvex). In a neighborhood of a zero of f , |f |p learly satis�es the small irlesub-mean-value-property and is thus subharmoni. 2Theorem 4.3 (Hardy's onvexity theorem). Let 0 < p < ∞ and f analyti in D.Then Mp(r, f) is a non-dereasing funtion of r on [0, 1), and logMp(r, f) is a onvexfuntion of log r.Proof. Let 0 < r1 < r2 < 1 (the ase r1 = 0 follows by the subharmoniity of |f |p). Let
g be the solution of the Dirihlet problem on D(0, r2) with boundary data |f |p|∂D(0,r2).Then, sine |f |p is subharmoni in D, it follows that |f(z)|p ≤ g(z) on D(0, r2). Hene,by the mean-value-property of harmoni funtions, we have

Mp(r1, f) ≤M1(r1, g) = g(0) =M1(r2, g) =Mp(r2, f),and the �rst part of the assertion is proved. The onvexity follows from the followingmore general result that we will not prove now. For a proof, see [3, Theorem 1.6℄. 2Theorem 4.4. Let g be subharmoni in D, and let
m(g, r) =

1

2π

∫ 2π

0

g(reiθ) dθ, 0 ≤ r < 1.Thenm(g, r) is a non-dereasing funtion of r on [0, 1), and logm(g, r) is a onvex funtionof log r. 10



5. Littlewood's subordination theoremLet F be analyti and univalent in D suh that F (0) = 0. Let f be analyti in D, with
f(0) = 0, and suppose that the range of f is ontained in that of F . Then ω = F−1 ◦ fis well-de�ned and analyti in D, ω(0) = 0 and |ω(z)| ≤ 1 for all z ∈ D. By Shwarz'slemma, then |ω(z)| ≤ |z| for all z ∈ D. This implies, in partiular, that the image under
f = F ◦ ω of eah dis D(0, r), r ∈ (0, 1), is ontained in the image of the same disunder F .De�nition 5.1. An analyti funtion f in D is said to be subordinate to an analytifuntion F if f = F ◦ ω for some ω analyti in D suh that |ω(z)| ≤ |z|.The following result has many appliations of whih one of them is disussed after thetheorem.Theorem 5.2 (Littlewood's subordination theorem). Let f and F be analyti in
D. If f is subordinate to F , then Mp(r, f) ≤Mp(r, F ) for all r ∈ [0, 1) and p ∈ (0,∞].Proof. We will dedue this from a more general result onerning subharmoni funtions.Let G be subharmoni in D, and let g = G ◦ ω, where ω is analyti in D and |ω(z)| ≤ |z|for all z ∈ D. We will prove

∫ 2π

0

g(reiθ) dθ ≤
∫ 2π

0

G(reiθ) dθ, (5.1)from whih the theorem follows by means of Lemma 4.2. To prove this inequality, let
U be the harmoni funtion in D(0, r) suh that U = G on ∂D(0, r). Then, as G issubharmoni, G(z) ≤ U(z) for all z ∈ D(0, r). By setting u = U ◦ ω, we dedue g(z) =
G(ω(z)) ≤ U(ω(z)) = u(z) for all z ∈ D(0, r) (beause |ω(z)| ≤ |z| for all z ∈ D). Now
u = U ◦ ω is harmoni, and hene the mean value property of harmoni funtions yields

1

2π

∫ 2π

0

g(reiθ) dθ ≤ 1

2π

∫ 2π

0

u(reiθ) dθ = u(0) = U(0)

=
1

2π

∫ 2π

0

U(reiθ) dθ =
1

2π

∫ 2π

0

G(reiθ) dθ,whih proves (5.1). 2Every analyti self-map ϕ of D indues a linear omposition operator de�ned by
Cϕ(f) = f ◦ ϕ. Littlewood's subordination theorem an be used to show that eahomposition operator is bounded from eah Hardy spae of D into itself. To make thisstatement preise, let us reall the neessary de�nitions. For 0 < p <∞, the Hardy spae
Hp onsists of those analyti funtions in D for whih

‖f‖Hp = sup
0<r<1

Mp(r, f) = lim
r→1−

Mp(r, f) <∞.If p ≥ 1, then Hp equipped with the norm ‖ · ‖Hp is a Banah spae. If 0 < p < 1,then Hp is a omplete metri spae with respet to the metri d(f, g) = ‖f − g‖pHp. This11



metri is p-homogeneous, d(λf, 0) = |λ|pd(f, 0), and hene Hp is a quasi-Banah spaewhen 0 < p < 1. The operator T : X → Y is said to be bounded if there exists a onstant
C > 0 suh that ‖T (x)‖Y ≤ C‖x‖X for all x ∈ X . The proof of the following lemma iseasy.Lemma 5.3. Let X and Y be normed linear spaes and let T : X → Y be a linearoperator. Then the following onditions are equivalent:(1) T is uniformly ontinuous;(2) T is ontinuous;(3) T is ontinuous at 0 ∈ X ;(4) there exists a onstant C > 0 suh that ‖T (x)‖Y ≤ C for all x ∈ X with ‖x‖X ≤ 1;(5) T is bounded.If X and Y are normed linear spaes, then the operator norm of a linear operator
T : X → Y is de�ned by

‖T‖(X,Y ) = sup
‖x‖X≤1

‖T (x)‖Y .Lemma 5.3 implies
‖T‖(X,Y ) = inf{C : ‖T (x)‖Y ≤ C‖x‖X}.With these preparations we are ready to prove the boundedness of Cϕ on Hp. If

0 < p < 1, we still all Cϕ : Hp → Hp bounded if there exists C > 0 suh that
‖Cϕ(f)‖Hp ≤ C‖f‖Hp for all f ∈ Hp even if Hp is not a normed spae (but just aquasi-Banah spae).Theorem 5.4. Let 0 < p <∞ and let ϕ be an analyti self-map of D. Then Cϕ : Hp →
Hp is bounded and

‖Cϕ‖(Hp.Hp) ≤
(
1 + |ϕ(0)|
1− |ϕ(0)|

) 1
p

.Proof. Let f ∈ Hp and ϕ(0) = a ∈ D. By Littlewood's subordination theorem,
Mp

p (r, f ◦ ϕ) =Mp
p (r, f ◦ ϕa ◦ ϕa ◦ ϕ) ≤Mp

p (r, f ◦ ϕa)

=
1

2π

∫

T

|(f ◦ ϕa)(rζ)|p|dζ |

=
1

2π

∫

ϕa(rT)

|f(w)|p|ϕ′
a(w)|r−1|dw|

≤
(
1 + |a|
1− |a|

)
1

2π

∫

ϕa(rT)

|f(w)|p |dw|
r

=

(
1 + |a|
1− |a|

)
1

2π

∫ 2π

0

|f(ϕa(re
iθ))|p|ϕ′

a(re
iθ)| dθ

=

(
1 + |a|
1− |a|

)
Mp

p (r, f ◦ ϕa · (ϕ′
a)

1
p ) dθ.

(5.2)
12



Sine f ◦ ϕa · (ϕ′
a)

1
p is analyti in D by the lemma of the analyti logarithm, Hardy'sonvexity theorem shows that the right hand side is inreasing in r and bounded by

‖f‖pHp, meanwhile the left hand side inreases to ‖f ◦ ϕa‖pHp, as r → 1−. The assertionfollows. 2Exerises1. Use Littlewood's subordination theorem to show that Mp(r, f) is a non-dereasingfuntion of r.6. Jensen's formula and Poisson-Jensen formulaIf f is analyti and non-zero in an open set ontaining D(0, r), then log |f | is harmonithere. Hene it has the mean-value-property, that is,
log |f(0)| = 1

2π

∫ 2π

0

log |f(reiθ)| dθ. (6.1)Suppose f has exatly one simple zero a = reit on the irle ∂D(0, r). If g(z) = f(z)(z −
a)−1, then (6.1) an be applied to g to obtain

log |g(0)| = 1

2π

∫ 2π

0

(
log |f(reiθ)| − log |reiθ − reit|

)
dθ.Sine log |g(0)| = log |f(0)| − log r and

∫ 2π

0

log |1− eiθ| dθ = 0,we dedue that (6.1) is valid if f has one simple zero on ∂D(0, r). By indution the sameremains valid as long as f has no zeros on D(0, r).The next step is to examine what happens if f has zeros inside D(0, r). In this ase
log |f(z)| is no longer harmoni so that the mean-value-property is not present.Theorem 6.1 (Jensen's formula). Let f be analyti in a domain ontaining D(0, r)and suppose that a1, . . . , an are the zeros of f inD(0, r) repeated aording to multipliity.If f(0) 6= 0, then

1

2π

∫ 2π

0

log |f(reiθ)| dθ = log |f(0)|+
n∑

k=1

log
r

|ak|
.Proof. If b ∈ D, then the funtion −ϕb(z) = (z− b)/(1− bz) takes D onto itself and mapsthe boundary T onto itself. Hene

r2(z − ak)

r2 − akz13



maps D(0, r) onto itself and takes the boundary ∂D(0, r) to the boundary. This beause,by denoting ak = rbk and z = rw, we have bk, w ∈ D and
r2(z − ak)

r2 − akz
= r

w − bk

1− bkw
.Therefore

F (z) = f(z)
n∏

k=1

r2 − akz

r(z − ak)
= f(z)rn

n∏

k=1

r2 − akz

r2(z − ak)is analyti in an open set ontaining D(0, r), has no zeros in D(0, r), and |F (z)| = |f(z)|on ∂D(0, r). So (6.1) applies to F to give
log |F (0)| = 1

2π

∫ 2π

0

log |F (reiθ)| dθ = 1

2π

∫ 2π

0

log |f(reiθ)| dθ.However,
F (0) = f(0)

n∏

k=1

(
− r

ak

)
,so that Jensen's formula results. 2Theorem 6.1 yields the following inequality whih is named by Jensen.Corollary 6.2 (Jensen's inequality). Let f be analyti in a domain ontaining

D(0, r). If f(0) 6= 0, then
log |f(0)| ≤ 1

2π

∫ 2π

0

log |f(reiθ)| dθ.If the method of proof of Theorem 6.1 is used but the mean-value-property (6.1) isreplaed by
f(z) =

1

2π

∫ 2π

0

f(Reit)
R2 − |z|2
|z − Reit|2 dt, z ∈ D(0, R),the value of log |f(z)| an be found for z 6= ak, 1 ≤ k ≤ n.Theorem 6.3 (Poisson-Jensen formula for analyti funtions). Let f be analytiin a domain ontaining D(0, r) and suppose that a1, . . . , an are the zeros of f in D(0, r)repeated aording to multipliity. If f(z) 6= 0, then

1

2π

∫ 2π

0

Re (reiθ + z

reiθ − z

)
log |f(reiθ)| dθ = log |f(z)|+

n∑

k=1

log

∣∣∣∣
r2 − akz

r(z − ak)

∣∣∣∣ .14



Exerises1. Show that ∫ 2π

0

log |1− eiθ| dθ = 0.2. Let f be analyti in a domain ontaining D(0, r) and suppose that a1, . . . , an arethe zeros of f in D(0, r) repeated aording to multipliity. Show that if f has azero at z = 0 of multipliity m ∈ N, then
1

2π

∫ 2π

0

log |f(reiθ)| dθ = log

∣∣∣∣
f (m)(0)

m!

∣∣∣∣ +m log r +

n∑

k=1

log
r

|ak|
.3. Supply the details of the proof of the Poisson-Jensen formula.4. Let f be meromorphi in a domain ontaining D(0, r) and suppose that a1, . . . , anand b1, . . . , bm are the zeros and poles of f in D(0, r) repeated aording to multi-pliity. State and prove the Poisson-Jensen formula in this ase.5. Let ν be a positive probability measure on X and f be a positive ν-integrablefuntion on X . Show that

exp

(∫

X

log f(x) dν(x)

)
≤
∫

X

f(x) dν(x).7. Jak's lemmaThe following result has appliations in the theory of sublasses of univalent funtions.Lemma 7.1 (Jak's lemma). Let f : D → C be analyti and non-onstant with f(0) =
0, and 0 < r < 1. If z0 ∈ ∂D(0, r) suh that |f(z0)| = max|z|=r |f(z)|, then

z0f
′(z0) = xf(z0)for some x = x(f, z0) ≥ n ≥ 1, where an is the �rst non-zero oe�ient in the Malaurinseries of f .Proof. Denote z = reiθ and f(z) = Reiφ = R(z)eiφ(z). Now for eah z ∈ ∂D(0, r) suhthat |f(z)| =M(r, f) we must learly have

∂R

∂θ
= 0, R = R(reiθ).Hene, for R > 0,

0 =
1

R

∂R

∂θ
=

∂

∂θ
logR =

∂

∂θ
Re (log f) = Re ( ∂

∂θ
log f

)

= Re (f ′(reiθ)

f(reiθ)
reiθi

)
= − Im (

reiθ
f ′(reiθ)

f(reiθ)

)
.15



So we must have
z0f

′(z0)

f(z0)
= k(|z0|),where k is real and z0 is any of the points on the irle ∂D(0, r) at whih f attains itsmaximum value.Let an be the �rst non-zero oe�ient in the Malaurin series of f . Then n ≥ 1,beause f vanishes at the origin by the assumption. Sine learly k(0) = n, the resultnow follows if we show that k is nondereasing.Let M(r, f) = max|z|=r |f(z)|. It is known that logM(r, f) is a ontinuous, onvex(by Hadamard's three irles theorem) and inreasing (sine f is non-onstant) funtionof log r. Hene

rM ′(r, f)

M(r, f)
= r(logM(r, f))′ = r

d logM(r, f)

dr
= r

d logM(r, f)

d log r

d log r

dr
=
d logM(r, f)

d log ris an inreasing funtion of log r, and so of r, at those points for whih d logM(r, f)/d log rexists. At those points for whih this derivative does not exist, we know (Exerise) thatat least the left and right derivatives exist, and that the left derivative does not exeedthe right derivative. So, in any ase, rM ′(r, f)/M(r, f) is an inreasing, though notneessarily ontinuous, funtion of r. But
k(r) =

z0f
′(z0)

f(z0)
= Re (z0f ′(z0)

f(z0)

)
= Re (r ∂

∂r
log f(reiθ)

∣∣∣∣
z=z0

)

= r
∂ logR

∂r

∣∣∣∣
z=z0

= r
∂R/∂r

R

∣∣∣∣
z=z0

=
rM ′(r, f)

M(r, f)
,beause R|z=z0 = R(z0) =M(r, f). The assertion follows. 2If an is the �rst non-zero oe�ient in the Malaurin series of f , then the proof aboveshows that the onstant x = x(f, z0) in the statement of Jak's lemma satis�es x ≥ n.Exerises1. Show that at those points for whih d logM(r, f)/d log r does not exist, the leftand right derivatives exist, and that the left derivative does not exeed the rightderivative. See [12, p. 21℄.8. Phragmen-Lindelöf theorem and Lindelöf's theoremIn this setion we disuss some result of E. Phragmen and E. Lindelöf (published in 1908)whih extend the Maximum modulus priniple by easing the requirement of boundednesson the boundary.Theorem 8.1 (Phragmen-Lindelöf theorem). Let D ⊂ C be a simply onneted do-main and f : D → C analyti. Suppose there exists a bounded non-vanishing analytifuntion g : D → C. If ∂̂D = A ∪ B and there exists a onstant M > 0 suh that:16



(a) lim supz→a |f(z)| ≤M for all a ∈ A;(b) lim supz→b |f(z)||g(z)|η ≤M for all b ∈ B and η > 0;then |f(z)| ≤M for all z ∈ D.Proof. Let K > 0 suh that |g(z)| ≤ K for all z ∈ D. Sine D is simply onneted,the lemma of the analyti logarithm (Lemma 2.6.2 in Riemann mapping theorem andthe Dirihlet problem (spring 2013)) shows that there exists an analyti branh of log gon D. Hene h = exp(η log g) is an analyti branh of gη for η > 0, and |h| = |g|ηon D. De�ne F : D → C by F (z) = f(z)h(z)K−η. Then F is analyti on D and
|F (z)| = |f(z)||h(z)|K−η = |f(z)||g(z)|ηK−η ≤ |f(z)| for all z ∈ D. But then, by theassumptions (a) and (b), F satis�es the hypothesis of Theorem 1.6 with max{M,MK−η}in plae of M :

lim sup
z→a

|F (z)| ≤ lim sup
z→a

|f(z)| ≤M, a ∈ A;

lim sup
z→b

|F (z)| = lim sup
z→b

|f(z)||g(z)|ηK−η ≤MK−η, b ∈ B.Hene
|f(z)| = |F (z)|

|g(z)|ηK−η
≤M

max{Kη, 1}
|g(z)|ηfor all z ∈ D. By �xing z ∈ D arbitrarily and letting η → 0+, we dedue |f(z)| ≤ M forall z ∈ D. 2Corollary 8.2. Let f be analyti in the setor

G =
{
z : | arg z| < π

2a

}
,where a ≥ 1

2
. If there exists M > 0 suh that lim supz→w |f(z)| ≤M for all w ∈ ∂G, andthere exist onstants P > 0 and b ∈ (0, a) suh that |f(z)| ≤ P exp(|z|b) for all z ∈ Gwith |z| su�iently large, then |f(z)| ≤M for all z ∈ G.Proof. Let c ∈ (b, a) and set g(z) = exp(−zc) for z ∈ G. If z = reiθ, |θ| < π/2a, thenRe zc = rc cos(cθ), and so

|g(z)| = exp(−rc cos(cθ)), z = reiθ ∈ G.Sine c ∈ (b, a), we have cos(cθ) ≥ cos cπ
2a

= δ > 0, and hene g is bounded on G. Also, if
η > 0 and z = reiθ ∈ G with |z| su�iently large,

|f(z)||g(z)|η ≤ P exp(rb − ηrc cos(cθ)) ≤ P exp(rb − ηrcδ) = P exp(rc(rb−c − ηδ))by the assumption. Sine b < c, rb−c → 0+, as r → ∞, so that rc(rb−c − ηδ) → −∞, as
r → ∞. Thus

lim sup
G∋z→∞

|f(z)||g(z)|η = 0.17



Hene f and g satisfy the hypothesis of the Phragmen-Lindelöf theorem, and therefore
|f(z)| ≤ M for all z ∈ G as laimed. 2Note that the size of the angle of the setor G is the only relevant fat in this orollary;its position is inonsequential. So if G is any setor of angle π/a the onlusion remainsvalid.Corollary 8.3. Let f be analyti in the setor

G =
{
z : | arg z| < π

2a

}
,where a ≥ 1

2
. If there exists M > 0 suh that lim supz→w |f(z)| ≤ M for all w ∈ ∂G andfor every δ > 0 there exists a onstant P = P (δ) > 0 suh that |f(z)| ≤ P exp(δ|z|a) forall z ∈ G with |z| su�iently large, then |f(z)| ≤ M for all z ∈ G.Proof. Consider the analyti funtion Fε : G → C, Fε(z) = f(z) exp(−εza), where

ε ∈ (0, 1]. If x > 0 and δ ∈ (0, ε), then, by the seond hypothesis on f , there exists
P = P (δ) > 0 suh that

|Fε(x)| = |f(x)| exp(−εxa) ≤ P exp((δ − ε)xa)for all x su�iently large. But then |Fε(x)| → 0, as x → ∞ in R. By using this and the�rst hypothesis on f , we dedue
M1 = sup

0<x<∞
|Fε(x)| <∞. (8.1)De�ne M2 = max{M1,M} and

H+ = {z ∈ G : 0 < arg z < π/2a}
H− = {z ∈ G : −π/2a < arg z < 0}.Then lim supz→w |f(z)| ≤ M2 for all w ∈ ∂H+ ∪ ∂H− by (8.1), the �rst hypothesis on fand the ontinuity of f on G. We may apply Corollary 8.2 (see the remark after theorollary) to dedue |Fε(z)| ≤ M2 for all z ∈ H+ ∪ H−, and hene, |Fε(z)| ≤ M2 for all

z ∈ G.To omplete the proof, it remains to show that M2 =M . If M2 =M1 > M , then |F |assumes its maximum value in G at some point x ∈ (0,∞) beause we have already shownthat |Fε(x)| → 0, as x → ∞ in R, and lim supx→0+ |f(x)| = lim supx→0+ |Fε(x)| ≤ M <
M1. This would give that Fε is a onstant funtion by the maximum modulus prinipleand so M =M1. Thus M2 =M and |Fε(z)| ≤M for all z ∈ G, that is,

|f(z)| ≤M exp(εRe za), z ∈ G.Sine M is independent of ε ∈ (0, 1], we an let ε → 0+. It follows that |f(z)| ≤ M forall z ∈ G. 2Let G = {z ∈ C \ {0} : | arg z| < π/2a}, where a ≥ 1/2, and let f(z) = exp(za) for
z ∈ G. Then |f(z)| = exp(|z|a cos(a arg z)). So for z ∈ ∂G we have |f(z)| = 1, but f18



is learly unbounded in G. In fat, on any ray in G we have that |f(z)| → ∞. Thisshows that the growth restrition |f(z)| ≤ P exp(δ|z|a) in Corollary 8.3 is very deliateand annot be improved.We disuss two more onsequenes of the Phragmen-Lindelöf theorem.Corollary 8.4. Suppose f(z) → α ∈ C, as z → ∞, along two rays emanating from theorigin, and assume that f is analyti and bounded in one of the setors between thesetwo rays. Then f(z) → α uniformly, as z → ∞, in that setor.Proof. We may assume that α = 0 and that the setor in question is Gτ = {z : | arg z| <
τ < π/2}. If this is not the ase, onsider g(z) = f(ωz2) − α, where ω ∈ T is suitablyhosen.Let ε > 0 and |f(z)| ≤ M for all z ∈ Gτ . By the assumption, there exists r0 = r0(ε) >
0 suh that |f(z)| < ε for all z ∈ ∂Gτ with |z| ≥ r0. Let

F (z) =
z

z + λ
f(z), λ =

r0M

ε
, z ∈ Gτ .Then

|F (z)| = |z|
(|z|2 + 2|z|λRe z + λ2)

1
2

|f(z)| < |z|
(|z|2 + λ2)

1
2

|f(z)|, z ∈ Gτ ,and hene
|F (z)| < |z|

(|z|2 + λ2)
1
2

|f(z)| ≤ |z|M
λ

<
r0M

λ
= ε, z ∈ Gτ ∩D(0, r0),and

|F (z)| < |f(z)| < ε, z ∈ ∂Gτ \D(0, r0).It follows that lim supz→w |f(z)| ≤ ε for all w ∈ ∂Gτ . Moreover, for any 1 < b < a <∞,
|F (z)| < |f(z)| ≤ M ≤Me|z| ≤Me|z|

β ≤Me|z|
α

, z ∈ Gτ \ D.Choose a > 1 suh that τ = π/2a < π/2. Then Corollary 8.2 yields |F (z)| ≤ ε for all
z ∈ Gτ . Therefore,

|f(z)| =
∣∣∣∣1 +

λ

z

∣∣∣∣ |F (z)| ≤
(
1 +

λ

|z|

)
|F (z)| ≤ 2ε, z ∈ Gτ \D(0, r0).It follows that f(z) → 0 uniformly as z → ∞ in the setor Gτ . 2Corollary 8.5. Suppose f(z) → α ∈ C along a ray emanating from the origin and

f(z) → β ∈ C along another ray also emanating from the origin. Moreover, suppose that
f is analyti and bounded in one of the two setors between these rays. Then α = β and
f(z) → α uniformly, as z → ∞, in that setor.19



Proof. Let θ1 < θ2, and suppose f(z) → α ∈ C along the ray R1 = {reiθ : r > 0, θ = θ1},and f(z) → β ∈ C along the ray R2 = {reiθ : r > 0, θ = θ2}. Consider the funtion
g(z) =

(
f(z)− α + β

2

)2in the setor G between these rays in whih f is analyti and bounded. Clearly,
g(z) →

(
α− α+ β

2

)2

=
1

4
(α− β)2along R1, and

g(z) →
(
β − α + β

2

)2

=
1

4
(β − α)2 =

1

4
(α− β)2along R2. Therefore Corollary 8.4 yields g(z) → 1

4
(α − β)2 uniformly in the setor G, as

z → ∞. Therefore,
g(z)− 1

4
(α−β)2 =

(
f(z) +

α + β

2

)2

− 1

4
(α−β)2 = (f(z)−α)(f(z)−β) → 0, z → ∞,uniformly in the setor G.Let ε > 0, and onsider Hr = G ∩ ∂D(0, r). Then

|f(z)− α||f(z)− β| ≤
(ε
2

)2
, z ∈ Hr,for all su�iently large r. For eah z ∈ Hr we now have either |f(z) − α| ≤ ε/2 or

|f(z)− β| ≤ ε/2 (or both). If one of these inequalities, say |f(z)− α| ≤ ε/2, is satis�edfor all z ∈ Hr, then, by the hypothesis, for all z ∈ R2 with |z| su�iently large, we have
|α− β| ≤ |f(z)− α|+ |f(z)− β| ≤ ε.If this is not the ase, denote Hr,α = {z ∈ Hr : |f(z) − α| ≤ ε/2} and Hr,β = {z ∈ Hr :

|f(z) − β| ≤ ε/2}. Sine Hr is losed and f is ontinuous, the sets Hr,α and Hr,β arelosed for all r large enough. Further, Hr,α ∪ Hr,β = Hr, and hene either one of thesesets is empty or their intersetion is not. The former ase allows us to argue as earlier,and in the latter one we �nd z0 ∈ Hr,α ∩Hr,β, so that
|α− β| ≤ |f(z0)− α|+ |f(z0)− β| ≤ ε.Sine ε > 0 was arbitrary, we dedue α = β. Thus g(z) → 0 uniformly in the setor G,as z → ∞, and so f(z) → α = β uniformly in the setor G, as z → ∞. 2We �nish the setion by Lindelöf's theorem on non-tangential limits of analyti fun-tions in the unit dis. For this purpose, we will introdue some notation. For 0 < α < π/2,onstrut a setor with vertex ζ ∈ T, of angle 2α, symmetri with respet to the ray em-anating from ζ and passing through the origin. Draw the two line segments from theorigin perpendiular to the boundaries of this setor, and let Sα(ζ) denote the domainin D onstruted. An analyti funtion f : D → C is said to have a non-tangential limit

L at ζ ∈ T, if f(z) → L, as z → ζ inside eah domain Sα(ζ) with α ∈ (0, π/2).20



Theorem 8.6 (Lindelöf's theorem). Let f be an analyti funtion in D, and assumethat the radial limit limr→1− f(rζ) = L(ζ) exists for ζ ∈ T. If f is bounded in Sα(ζ)for α ∈ (0, π/2), then f(z) → L(ζ), as z → ζ inside Sα(ζ). In partiular, if f is abounded analyti funtion in D and limr→1− f(rζ) = L(ζ) exists for ζ ∈ T, then f have anon-tangential limit L(ζ) at ζ ∈ T.Proof. By onsidering f(ω(1 − z)) for ω = ei arg ζ ∈ T , we may translate the situationto the dis D(1, 1), and assume that f is analyti and bounded in the domain Gα(0) =
{1 − ζ/ω : ζ ∈ Sα(ζ)} and f(z) → L = L(ζ) ∈ C, as z → 0 along the positive real axis.Let fn(z) = f(z/n) for n ∈ N. The funtions fn are uniformly bounded in Gα(0), sothey onstitute a normal family there by Montel's theorem (the loal boundedness wouldsu�e here). Therefore, by passing to a subsequene if neessary, we may assume that
fn onverges uniformly to an analyti funtion g in ompat subsets of Gα(0) as n→ ∞,hene in the set Υ = {z : | arg z| ≤ α/2, (cosα)/2 ≤ |z| ≤ cosα}. But for all real z in theinterval (0, 1), fn(z) → L, as n → ∞ by the hypothesis. It follows that g ≡ L, and thus
fn(z) → L uniformly in Υ. This implies that f(z) → L, as z → 0 inside Gα(0), and thetheorem is proved. 2Exerises1. Let D ⊂ C be a simply onneted domain and f : D → C analyti. Suppose thereexists bounded non-vanishing analyti funtions gk : D → C, k = 1, . . . , n, and

∂̂D = A ∪ B1 ∪ · · · ∪ Bn suh that:(a) lim supz→a |f(z)| ≤M for all a ∈ A;(b) lim supz→b |f(z)||gk(z)|η ≤M for all b ∈ Bk and η > 0.Show that |f(z)| ≤M for all z ∈ D.2. Let G = {z ∈ C : | Im z| < π/2} and suppose f : G → C is analyti and
lim supz→w |f(z)| ≤ M for all w ∈ ∂G. Also, suppose that there exist A > 0and a ∈ (0, 1) suh that

|f(z)| < exp(A exp(a|Re z|)), z ∈ G.Show that |f(z)| ≤M for all z ∈ G. Examine exp(exp z) to see that this is the bestpossible growth ondition. Can we make a = 1 above?3. Let G = {z ∈ C : Re z > 0} and let f : G → C be analyti suh that f(1) = 0and suh that lim supz→w |f(z)| ≤ M for all w ∈ ∂G. Also, suppose that for some
δ ∈ (0, 1) there exists P = P (δ) > 0 suh that

|f(z)| ≤ P exp
(
|z|1−δ

)
.Show that

|f(z)| ≤M

(
(1− x)2 + y2

(1 + x)2 + y2

) 1
2

, z = x+ iy.Hint: Consider f(z) = (1 + z)(1 − z)−1.21



4. Prove Liouville's theorem: If f is an entire funtion suh that |f(z)| ≤ C|z|m forall |z| > R ∈ (0,∞) and for some onstants C,R ∈ (0,∞), then f is a polynomialwith deg(f) ≤ m.5. Let 0 < r,R <∞ and f : D(a, r) → D(f(a), R) analyti. Show that
|f(a+ z)− f(a)| ≤ R

r
|z|, z ∈ D(0, r).Derive Liouville's theorem from this inequality. Have you seen this kind inequalitiesbefore?6. For 0 < α < 1, de�ne

ηα(z) =

(
1+z
1−z

)α − 1(
1+z
1−z

)α
+ 1

, z ∈ D.Desribe ηα(D) geometrially and show that ηα is a onformal map of D onto ηα(D).By using this funtion derive a version of Corollary 8.4 for the unit dis.9. Gronwall-Bellman inequality with appliations to omplexODEsLemma 9.1 (Gronwall-Bellman inequality). Let −∞ < a < b ≤ ∞, and let u, v :
(a, b) → [0,∞) be integrable funtions. If there exists c > 0 suh that

u(x) ≤ c+

∫ x

a

u(s)v(s) ds, x ∈ (a, b),then
u(x) ≤ c exp

(∫ x

a

v(t) dt

)
, x ∈ (a, b).Proof. By the assumptions,

u(t)v(t)

c+
∫ t

a
u(s)v(s) ds

≤ v(t), t ∈ (a, b),from whih an integration with respet to t from a to x results
log

(
c+

∫ x

a

u(s)v(s) ds

)
− log c ≤

∫ x

a

v(t) dt.The assertion follows by ombining this inequality with the assumption. 2Consider the omplex linear di�erential equation
f ′′ + Af = 0, (9.1)where A is an analyti funtion in D(0, R). It is well known that in this ase all solutions

f are analyti in D(0, R). We now apply Lemma 9.1 to obtain a growth estimate forsolutions of (9.1). See for example [5, 6℄. 22



Theorem 9.2. If A is analyti in D(0, R), then all non-trivial solutions of (9.1) satisfythe pointwise estimate
|f(reiθ)| ≤ (|f ′(0)|R + |f(0)|) exp

(∫ r

0

|A(teiθ)|(r − t) dt

)
, θ ∈ [0, 2π), r ∈ (0, R).Proof. Two integrations show that

f(z) =

∫ z

0

∫ ζ

0

f ′′(w) dw dζ + f ′(0)z + f(0),and hene (9.1) yields
|f(z)| ≤

∫ z

0

∫ ζ

0

|f(w)||A(w)| |dw| |dζ|+ |f ′(0)|R+ |f(0)|.By setting z = reiθ and using Fubini's theorem we dedue
|f(reiθ)| ≤

∫ r

0

∫ s

0

|f(teiθ)||A(teiθ)| dt ds+ |f ′(0)|R + |f(0)|

=

∫ r

0

|f(teiθ)||A(teiθ)|(r − t) dt+ |f ′(0)|R+ |f(0)|.The assertion now follows by Lemma 9.1. 2Exerises1. Show that all zeros of solutions of (9.1) with analyti oe�ient A in D(0, R) aresimple. What an you say about the zeros of solutions of f (k)+Af = 0? Searh foronrete examples.2. Generalize the assertion in Theorem 9.2 for the equation
f (k) + Ak−1f

(k−1) + · · ·+ A1f
′ + A0f = 0with analyti oe�ients in D(0, R). Can you use the reasoning also in the non-homogeneous ase (in whih the right hand side equals to an analyti funtion

Ak 6≡ 0 in D(0, R))?3. Prove a generalization of the Gronwall-Bellman inequality in the ase when theassumption reads
u(x) ≤ c(x) +

∫ x

a

u(s)v(s) ds, x ∈ (a, b),where u, v, c : (a, b) → [0,∞) are integrable funtions. Can you simplify the asser-tion if c is non-dereasing?4. Disuss the sharpness of the growth estimate established in Theorem 9.2 by exam-ples. 23



10. Pseudohyperboli and hyperboli metris (brie�y)Reall that the pseudohyperboli distane between two points z and w in D is
dph(z, w) = |ϕz(w)| =

∣∣∣∣
z − w

1− zw

∣∣∣∣ , ϕz(w) =
z − w

1− zw
.The hyperboli distane between two points z and w in D is de�ned as

dh(z, w) = inf

{∫

γ

2|dζ |
1− |ζ |2 =

∫ 1

0

2|γ′(t)|dt
1− |γ(t)|2 : γ pieewise C1 joining z and w}

= min

{∫

γ

2|dζ |
1− |ζ |2 =

∫ 1

0

2|γ′(t)|dt
1− |γ(t)|2 : γ pieewise C1 joining z and w}

= log
1 + dph(z, w)

1− dph(z, w)
= log

1 + |ϕz(w)|
1− |ϕz(w)|

.

(10.1)
The hyperboli metri is one of the most natural and important metris in D and deservesto be studied in detail at some point, but in this oasion we do not onentrate on thatand, in partiular, we skip the proofs of the above two fundamental equalities.It is lear by the de�nition that ρh(z, w) ∈ [0,∞). Moreover, for any �xed w ∈ D,
|ϕz(w)| → 1−, as |z| → 1−, and hene ρh(z, w) → ∞. This means that T is "in�nitely faraway" from eah point of D.It is immediate from (10.1) that both metris dh and dph are onformally invariant;for eah automorphism ψ of D,

dh(ψ(z), ψ(w)) = dh(z, w) and dph(ψ(z), ψ(w)) = dph(z, w).Moreover, the topologies indued by dh, dph and the Eulidean metri de(·, ·) = | · − · |oinide; the orresponding olletions of open sets are the same. We will use the followingnotations for Eulidean, hyperboli and pseudohyperboli diss, respetively:
D(a, r) = {z ∈ C : |a− z| < r}, a ∈ C, r ∈ (0,∞);

∆h(a, r) = {z ∈ D : dh(a, z) < r}, a ∈ D, r ∈ (0,∞);

∆ph(a, r) = {z ∈ D : dph(a, z) < r}, a ∈ D, r ∈ (0, 1).We will prove two basi lemmas that show that eah pseudohyperboli dis is anEulidean dis and, of ourse, vie versa.Lemma 10.1. Let a ∈ D and r ∈ (0, 1). Then ∆ph(a, r) is the Eulidean dis D(C,R),where
C =

1− r2

1− r2|a|2 a and R =
1− |a|2
1− r2|a|2 r.Proof. We start by deriving two equations, namely (10.2) and (10.3). Let α, β ∈ C. Now

|α− β|2 = (α− β)(α− β) = |α|2 − (αβ + βα) + |β|2.24



Sine z + z = 2Re (z) = 2Re (z) for all z ∈ C, we get
|α|2 + |β|2 − |α− β|2 = 2Re (αβ) = 2Re (αβ). (10.2)This is atually the law of osines. Namely, if α = aeit ja β = beis, where a, b > 0and t, s ∈ R, and we denote γ = s − t and c = |α − β| we get the familiar equation

c2 = a2 + b2 − 2ab cos γ.Let z ∈ C be arbitrary. By substituting α = 1 and β = az to (10.2) we get
1 + |a|2|z|2 − |1− az|2 = 2Re (az).On the other hand, by substituting α = z and β = a to (10.2) we get
|z|2 + |a|2 − |z − a|2 = 2Re (az).By substrating last two equations we get

1− |z|2 − |a|2 + |a|2|z|2 − |1− az|2 + |z − a|2 = 0,whih simpli�es to
|1− az|2 = |z − a|2 + (1− |a|2)(1− |z|2). (10.3)Let z ∈ D be arbitrary. Now by equation (10.3) we have

|ϕa(z)|2 =
|z − a|2
|1− az|2 =

|z − a|2
(1− |a|2)(1− |z|2) + |z − a|2 = r2.This is equivalent to

|z − a|2(1− r2) = (r2 − |a|2r2)(1− |z|2),and hene
|z − a|2 = r2 − |a|2r2

1− r2
− r2 − |a|2r2

1− r2
|z|2.Now by equation (10.2) we have

|z|2 + |a|2 − 2Re (az) = r2 − |a|2r2
1− r2

− r2 − |a|2r2
1− r2

|z|2,whih gives
|z|2

(
1 +

r2 − |a|2r2
1− r2

)
− 2Re (az) = r2 − |a|2r2

1− r2
− |a|2,whih simpli�es to

|z|2
(
1− |a|2r2
1− r2

)
− 2Re (az) = r2 − |a|2

1− r2
.Multipliation by fator

A =
1− r2

1− |a|2r2 > 025



gives
|z|2 − 2Re (Aaz) = r2 − |a|2

1− |a|2r2 .Therefore
|z|2 − 2Re (Aaz) + |Aa|2 = r2 − |a|2

1− |a|2r2 + A2|a|2.and by equation (10.2) we obtain
|z − Aa|2 = r2 − |a|2

1− |a|2r2 + A2|a|2.That is,
|z −Aa|2 = (r2 − |a|2)(1− |a|2r2) + (1− r2)2|a|2

(1− |a|2r2)2 ,hene
|z − Aa|2 = r2 − |a|2r4 − |a|2 + |a|4r2 + |a|2 − 2|a|2r2 + r4|a|2

(1− |a|2r2)2 ,whih simpli�es to
|z − Aa|2 = r2(1− |a|2)2

(1− |a|2r2)2 .Now C = Aa, the right hand side is R2 and the proof is omplete. 2Lemma 10.2. Let C ∈ D \ {0} and R ∈ (0, 1 − |C|). Then the Eulidean dis D(C,R)is the pseudohyperboli dis ∆ph(a, r), where
a =

(1 +R2 − |C|2)−
√
(1 +R2 − |C|2)2 − 4|C|2
2|C|2 Cand

r =
(1 +R2 − |C|2)−

√
(1 +R2 − |C|2)2 − 4R2

2R
.Proof. Let �rst C ∈ [0, 1) so that a ∈ [0, 1). By Lemma 10.1,

C =
1− r2

1− r2a2
a and R =

1− a2

1− r2a2
r,and hene

C +R =
a− r2a + r − ra2

1− r2a2
=

(a+ r)(1− ra)

(1− ra)(1 + ra)
=

a + r

1 + raand
C − R =

a− r2a− r + ra2

1− r2a2
=

(a− r)(1 + ra)

(1− ra)(1 + ra)
=

a− r

1− ra
.Therefore

a+ r = C +R + raC + raR26



and
a− r = C − R− raC + raR.By adding these equations and dividing by 2 we get

a = C + raR. (10.4)By subtrating the equations and dividing by 2 we get
r = R + raC. (10.5)Equations (10.4) and (10.5) are in some sene symmetrial. Namely, let P (x1, x2, x3, x4) =

x2+x3x1x4−x1. Now (10.4) is P (a, C, r, R) = 0 and equation (10.5) is P (r, R, a, C) = 0.By solving r from equation (10.5) we get
r =

R

1− aC
.Substituting this to (10.4) we have

a = C +
R2a

1− aC
.Multiplying both sides with 1− aC we get

a− a2C = C − aC2 +R2a,whih gives a quadrati equation for the enter a, that is,
0 = Ca2 − (1 +R2 − C2)a + C.Quadrati formula gives

a = a± =
(1 +R2 − C2)±

√
(1 +R2 − C2)2 − 4C2

2C
.A diret alulation shows that a+ > 1, and hene

a =
(1 +R2 − C2)−

√
(1 +R2 − C2)2 − 4C2

2C
.Solving for a in equation (10.4) gives

a =
C

1− rR
.Susbstituting this to (10.5) we have

r = R +
C2r

1− rR
.27



Multiplying both sides with 1− rR we get
r − r2R = R− rR2 + C2r,whih gives a quadrati equation for the radius r, that is,

0 = Rr2 − (1 +R2 − C2)r +R.Quadrati formula gives
r± =

(1 +R2 − C2)±
√
(1 +R2 − C2)2 − 4R2

2R
,of whih the aeptable one is r−, and thus

r =
(1 +R2 − C2)−

√
(1 +R2 − C2)2 − 4R2

2R
.The general ase follows by rotating the enter of the Eulidean dis to the segment [0, 1).

2Lemma 10.3. Let a ∈ D and r ∈ (0, 1). Then there exists a onstant K = K(r) > 0suh that
1

K
≤ 1− |z2|

1− |z1|
≤ Kfor all z1, z2 ∈ ∆ph(a, r).Proof. By the strong form of the triangle inequality (for proof, see (16.8)),

dph(z1, z2) =
dph(z1, a) + dph(z2, a)

1 + dph(z1, a)dph(z2, a)
<

2r

1 + r2
:= A(r).On the other hand, we an easily prove that

1− dph(z1, z2)
2 =

(1− |z1|2)(1− |z2|2)
|1− z1z2|2

, (10.6)and so
1− |z2|2
1− |z1|2

=
|1− z1z2|2

(1− |z1|2)(1− |z2|2)
· (1− |z2|2)2
|1− z1z2|2

<
1

1−A2

( 1− |z2|2
|1− z1z2|

)2
.However, |1− z1z2| > 1− |z2| > (1− |z2|2)/2, thus

1− |z2|
1− |z1|

< 2
1− |z2|2
1− |z1|2

<
8

1− A2
:= K(r).Sine z1, z2 ∈ ∆ph(a, r) are arbitrary, the assertion follows. 228



Exerises1. Show that (D, dh) is a omplete metri spae.2. Show that there exists C = C(r) > 0 suh that C−1(1− |a|) ≤ |1− az| ≤ C(1− |a|)for all z ∈ ∆ph(a, r) and a ∈ D.3. Let 0 < p <∞, n ∈ N∪{0} and r ∈ (0, 1). Show that there exists C = C(p, n, r) > 0suh that
|f (n)(z)|p ≤ C

(1− |z|)2+np

∫

∆ph(z,r)

|f(w)|p dA(w), z ∈ D.for all z ∈ D for all f ∈ H(D).11. Julia's lemma and Julia-Carathéodory theoremWe begin with realling the Shwarz-Pik Theorem.Theorem 11.1 (Shwarz-Pik Theorem). Let ϕ : D → C be analyti suh that
|ϕ(z)| ≤ 1 for all z ∈ D. Then

|ϕ′(z)|(1− |z|2) ≤ 1− |ϕ(z)|2, z ∈ D.and ∣∣∣∣∣
ϕ(z)− ϕ(w)

1− ϕ(z)ϕ(w)

∣∣∣∣∣ ≤
∣∣∣∣
z − w

1− zw

∣∣∣∣ .Moreover, if either
|ϕ′(z)|(1− |z|2) = 1− |ϕ(z)|2for some z ∈ D or ∣∣∣∣∣
ϕ(z)− ϕ(w)

1− ϕ(z)ϕ(w)

∣∣∣∣∣ =
∣∣∣∣
z − w

1− zw

∣∣∣∣for some distint z, w ∈ D, then ϕ is a onformal self-map (an automorphism) of D.Geometrially, the Shwarz-Pik Theorem says that the image of ∆ph(a, r) under ϕ isontained in ∆ph(ϕ(a), r). We an also interpret the Shwarz-Pik Theorem in the waythat eah analyti self-map ϕ of D is a ontration (not neessarily a strit) with respetto the pseudohyperboli metri: dph(ϕ(z), ϕ(w)) = |ϕϕ(w)(ϕ(z))| ≤ |ϕw(z)| = dph(z, w)for all z, w ∈ D. This onlusion is valid for the hyperboli metri as well, beause log 1+x
1−xis inreasing on [0, 1), thus dh(ϕ(z), ϕ(w)) ≤ dh(z, w) for all z, w ∈ D.As a onsequene of the Shwarz-Pik Theorem we get an upper bound for the modulusof ϕ.Corollary 11.2. If ϕ is an analyti self-map of the unit dis D, then

|ϕ(z)| ≤ |z|+ |ϕ(0)|
1 + |z||ϕ(0)| , z ∈ D.29



Proof. The fundamental identity of automorphisms imply
1−

∣∣∣∣∣
ϕ(0)− ϕ(z)

1− ϕ(0)ϕ(z)

∣∣∣∣∣

2

=
(1− |ϕ(0)|2)(1− |ϕ(z)|2)

|1− ϕ(0)ϕ(z)|2
,and hene

∣∣∣∣∣
ϕ(0)− ϕ(z)

1− ϕ(0)ϕ(z)

∣∣∣∣∣

2

≥ 1− (1− |ϕ(0)|2)(1− |ϕ(z)|2)
(1− |ϕ(0)||ϕ(z)|)2

=
(|ϕ(z)| − |ϕ(0)|)2
(1− |ϕ(0)||ϕ(z)|)2 .The Shwarz-Pik Theorem implies

∣∣∣∣∣
ϕ(0)− ϕ(z)

1− ϕ(0)ϕ(z)

∣∣∣∣∣ ≤
∣∣∣∣
0− z

1− 0z

∣∣∣∣ = |z|,and thus
|ϕ(z)| − |ϕ(0)|
1− |ϕ(0)||ϕ(z)| ≤

||ϕ(z)| − |ϕ(0)||
1− |ϕ(0)||ϕ(z)| ≤

∣∣∣∣∣
ϕ(0)− ϕ(z)

1− ϕ(0)ϕ(z)

∣∣∣∣∣ ≤ |z|, z ∈ D.The assertion follows from this inequality. 2Corollary 11.2 shows, in partiular, that
1− |ϕ(z)|
1− |z| ≥ 1− |ϕ(0)|

1 + |z||ϕ(0)| ≥
1− |ϕ(0)|
1 + |ϕ(0)| > 0, z ∈ D,for eah analyti self-map ϕ of D. This observation is relevant to Julia's lemma below.For ζ ∈ T and k > 0, let

E(k, ζ) = {z ∈ D : |ζ − z|2 ≤ k(1− |z|2)}.A omputation shows that E(k, ζ) is a losed dis internally tangent to the unit irle Tat ζ with enter ζ

1+k
and radius k

k+1
. The boundary irle is alled an oriirle (in somereferenes a horoirle).Lemma 11.3 (Julia's Lemma). Let ϕ : D → D be analyti, ζ ∈ T and

d(ζ) = lim inf
z→ζ

1− |ϕ(z)|
1− |z| <∞,where the lower limit is taken as z approahes ζ unrestritedly in D. Let {an} be asequene along whih this lower limit is ahieved and for whih ϕ(an) onverges to some

η. Then η ∈ T and
|η − ϕ(z)|2
1− |ϕ(z)|2 ≤ d(ζ)

|ζ − z|2
1− |z|2 , z ∈ D.Moreover, if equality holds for some z ∈ D, then ϕ is an automorphism of the dis D.30



Julia's Lemma shows that ϕ maps eah dis E(k, ζ) into the orresponding dis
E(kd(ζ), η).Proof. By the assumptions, an → ζ ∈ T and ϕ(an) → η ∈ D with

d(ζ) = lim
n→∞

1− |ϕ(an)|
1− |an|

<∞.We must have η ∈ T, for otherwise the limit above would not be �nite beause |an| → 1−,as n→ ∞. The Shwarz-Pik Theorem gives
1−

∣∣∣∣∣
ϕ(z)− ϕ(an)

1− ϕ(z)ϕ(an)

∣∣∣∣∣

2

≥ 1−
∣∣∣∣
z − an
1− anz

∣∣∣∣
2

⇔ (1− |ϕ(z)|2)(1− |ϕ(an)|2)
|1− ϕ(an)ϕ(z)|2

≥ (1− |z|2)(1− |an|2)
|1− anz|2

⇔ |1− ϕ(an)ϕ(z)|2
1− |ϕ(z)|2 ≤ (1− |ϕ(an)|2)|1− anz|2

(1− |an|2)(1− |z|2)

(11.1)
for all z ∈ D. By letting n→ ∞ and using the fats η, ζ ∈ T, we obtain

|η − ϕ(z)|2
1− |ϕ(z)|2 =

|1− ηϕ(z)|2
1− |ϕ(z)|2 ≤ d(ζ)

|1− ζz|2
1− |z|2 = d(ζ)

|ζ − z|2
1− |z|2 .This is the assertion. 2The quantity d(ζ) plays an important role in the study of the geometry of analytiself-maps of D. While d(ζ) may be ∞, it must always always satisfy d(ζ) > 0.The geometri interpretation of Julia's Lemma is partiularly satisfying when ζ = η.In this ase the point ζ deserves to be alled a �xed point, but sine we do not assumeontinuity on the boundary T we must extend the notation of �xed points to points on T.De�nition 11.4. Let ϕ : D → D be analyti and ζ ∈ T. Then ζ is a �xed point of ϕ if

limr→1− ϕ(rζ) = ζ .The Shwarz-Pik Theorem implies that eah analyti ϕ : D → D has at most one�xed point in D. Namely, for otherwise there were two distint points z and w in D suhthat ϕ(z) = z and ϕ(w) = w, and the Shwarz-Pik Theorem would show that ϕ is anautomorphism - a ontradition. Analyti funtions may have many �xed points on T.The Shwarz-Pik Theorem tells us about the behavior of an analyti funtion ϕ neara �xed point in D: ϕ maps pseudohyperboli diss entered at the �xed point into other(smaller) pseudohyperboli diss entered at the �xed point. Julia's Lemma gives a similarstatement for a �xed point ζ ∈ T when d(ζ) is �nite: ϕ maps internally tangent diss at
ζ into (other) internally tangent diss at ζ .De�nition 11.5. For ζ ∈ T and α > 1 we de�ne a nontangential approah region at ζby

Γ(ζ, α) = {z ∈ D : |z − ζ | < α(1− |z|)}.31



A funtion f is said to have a nontangential limit at ζ ∈ T if
lim

z→ζ, z∈Γ(ζ,α)
f(z)exists for eah α > 1.Of ourse, the term nontangential refers to the fat that the boundary urves of Γ(ζ, α)have a orner at ζ , with angle less than π.De�nition 11.6. We say that an analyti funtion ϕ : D → D has a �nite angularderivative at ζ ∈ T if there is η ∈ T suh that the analyti funtion

ϕ(z)− η

z − ζ
, z ∈ D,has a �nite nontangential limit as z → ζ . When it exists as �nite omplex number, thislimit is denoted by ϕ′(ζ).Julia-Carathéodory Theorem is a irle of ideas whih makes preise the relationshipbetween the angular derivative ϕ′(ζ), the limit of ϕ′(z) at ζ , and the quantity d(ζ) fromJulia's Lemma.Theorem 11.7 (Julia-Carathéodory Theorem). Let ϕ : D → D be analyti and

ζ ∈ T. Then the following assertions are equivalent:(1) d(ζ) = lim inf
z→ζ

1− |ϕ(z)|
1− |z| < ∞, where the limit is taken as z approahes ζ unre-stritedly in D;(2) ϕ has a �nite angular derivative ϕ′(ζ) at ζ ;(3) Both ϕ and ϕ′ have �nite nontangential limits at ζ , with η ∈ T for η = limr→1− ϕ(rζ).Moreover, when these onditions hold, we have

lim
r→1−

ϕ′(rζ) = ϕ′(ζ) = d(ζ)ζηand d(ζ) is the nontangential limit of (1− |ϕ(z)|)/(1− |z|) as z → ζ , that is,
d(ζ) = lim

z→ζ, z∈Γ(ζ,α)

1− |ϕ(z)|
1− |z| , α > 1.The proof uses the following simple lemma.Lemma 11.8. Let 1 < α < β < ∞ and δ = (β − α)/(α + αβ). If z ∈ Γ(ζ, α) and

|λ| ≤ δ|ζ − z|, then z + λ ∈ Γ(ζ, β). 32



Proof. We have |z − ζ | < α(1 − |z|) for z ∈ Γ(ζ, α), and |λ| ≤ δ|ζ − z| by the otherassumption, so
|z + λ− ζ | ≤ |z − ζ |+ |λ| < α(1− |z|) + δ|ζ − z|

≤ α(1− |z|) + δα(1− |z|) = (α + δα)(1− |z|).On the other hand, |λ| ≤ δ|ζ − z| ≤ δα(1− |z|), so
1− |z + λ| ≥ 1− |z| − |λ| ≥ 1− |z| − δα(1− |z|) = (1− |z|)(1− δα).Therefore,
|z + λ− ζ | < (α + δα)(1− |z|) ≤ α + δα

1 − δα
(1− |z + λ|) = β(1− |z + λ|),and thus z + λ ∈ Γ(ζ, β) by the de�nition. 2Proof of Julia-Carathéodory Theorem. We will show that (1)⇒(2)⇒(3)⇒(1). For (1)⇒(2)reall that by Julia's Lemma (Lemma 11.3) there exists η ∈ T suh that

|η − ϕ(z)|2
1− |ϕ(z)|2 ≤ d(ζ)

|ζ − z|2
1− |z|2 , z ∈ D. (11.2)We �rst onsider the radial limit of (ϕ(z)− η)/(z − ζ) at ζ ∈ T. Now (11.2) yields

1− |ϕ(rζ)|
1− r

1 + r

1 + |ϕ(rζ)| =
(1− |ϕ(rζ)|)2
1− |ϕ(rζ)|2

1− r2

(1− r)2

≤ |η − ϕ(rζ)|2
1− |ϕ(rζ)|2

1− r2

(1− r)2

≤ d(ζ)
|ζ − rζ |2
1− r2

1− r2

(1− r)2
= d(ζ)

= lim inf
z→ζ

1− |ϕ(z)|
1− |z| ≤ lim inf

r→1−

1− |ϕ(rζ)|
1− r

.Sine 1 + r → 2 ≥ 1 + |ϕ(rζ)|, we have
lim inf
r→1−

1− |ϕ(rζ)|
1− r

≤ lim inf
r→1−

1− |ϕ(rζ)|
1− r

1 + r

1 + |ϕ(rζ)|

≤ d(ζ) ≤ lim inf
r→1−

1− |ϕ(rζ)|
1− rand

lim sup
r→1−

1− |ϕ(rζ)|
1− r

≤ lim sup
r→1−

1− |ϕ(rζ)|
1− r

1 + r

1 + |ϕ(rζ)|

≤ d(ζ) ≤ lim inf
r→1−

1− |ϕ(rζ)|
1− r

.33



It follows that
lim
r→1−

1− |ϕ(rζ)|
1− r

= d(ζ) (11.3)and limr→1− |ϕ(rζ)| = 1. Furthermore, sine (11.2) yields
(1− |ϕ(rζ)|)2

(1− r)2
≤ |η − ϕ(rζ)|2

(1− r)2
≤ d(ζ)

|ζ − rζ |2(1− |ϕ(rζ)|2)
(1− r)2(1− r2)

= d(ζ)
(1− |ϕ(rζ)|2)

1− r2
,we have

lim
r→1−

|η − ϕ(rζ)|
1− r

= d(ζ). (11.4)By omparing (11.3) and (11.4) we dedue
lim
r→1−

1− |ϕ(rζ)|
|1− ηϕ(rζ)| = lim

r→1−

1− |ϕ(rζ)|
|η − ϕ(rζ)| = 1,and so arg(ηϕ(rζ)) → 0, as r → 1−, beause limr→1− |ϕ(rζ)| = 1. Atually more is true,namely one an show that arg(1− ηϕ(rζ)) → 0, as r → 1− (Exerise 4!). Now this and(11.4) imply

lim
r→1−

η − ϕ(rζ)

ζ − rζ
= ζη lim

r→1−

1− ηϕ(rζ)

1− r
= ζηd(ζ).To �nish this part of the proof, we must extend this from radial onvergene to nontan-gential onvergene. To this end, �x an arbitrary nontangential approah region Γ(ζ, α).For z ∈ Γ(ζ, α), we have |ζ − z| < α(1− |z|) ≤ α(1− |z|2), so Julia's Lemma gives

|η − ϕ(z)|2
1− |ϕ(z)|2 ≤ d(ζ)

|ζ − z|2
1− |z|2 ≤ α|ζ − z|d(ζ), z ∈ Γ(ζ, α).This implies

|η − ϕ(z)|
|ζ − z| ≤ α(1 + |ϕ(z)|)1− |ϕ(z)|

|η − ϕ(z)| ≤ 2αd(ζ),and thus (η−ϕ(z))/(ζ−z) is bounded in Γ(ζ, α). Now, sine we have already shown that
(η− ϕ(z))/(ζ − z) has radial limit d(ζ)ηζ at ζ , Lindelöf's theorem shows that it tends tothe same limit in Γ(ζ, β) for any 1 < β < α. Sine α, and hene β, is arbitrary, we aredone.(2)⇒(3). Suppose that ϕ has �nite angular derivative at ζ . Then ϕ(z) → η as z → ζnontangentially. In partiular, η = limr→1− ϕ(rζ). Fix a nontangential approah region
Γ(ζ, α) and �x w ∈ Γ(ζ, α). Let r > 0 be small enough so that w + reiθ ∈ D for all
0 ≤ θ ≤ 2π. Then the Cauhy Integral Formula applied to ϕ− η implies

ϕ′(w) = (ϕ− η)′(w) =
1

2π

∫ 2π

0

ϕ(w + reiθ)− η

reiθ
dθ

=
1

2π

∫ 2π

0

ϕ(w + reiθ)− η

w + reiθ − ζ
· w + reiθ − ζ

reiθ
dθ.34



Choose now r = δ|w − ζ |, where δ = (1 + 2α)−1. Then Lemma 11.8 guarantees that
w + reiθ ∈ Γ(ζ, β) for all 0 ≤ θ ≤ 2π, where

β = α
1 + δ

1− δα
= α

1 + 1
1+2α

1− α
1+2α

= 2α.Therefore, by the assumption (2), the quantity
ϕ(w + reiθ)− η

w + reiθ − ζis bounded for all w ∈ Γ(ζ, α) and 0 ≤ θ ≤ 2π. Sine
∣∣∣∣
w + reiθ − ζ

reiθ

∣∣∣∣ =
∣∣∣∣1 +

w − ζ

reiθ

∣∣∣∣ ≤ 1 +
1

δ
,we have ϕ′ bounded in Γ(ζ, α). Moreover, by setting w = tζ for 0 < t < 1, we dedue bythe bounded onvergene theorem and the assumption that

lim
t→1−

ϕ′(tζ) =
1

2π

∫ 2π

0

lim
t→1−

ϕ(tζ + reiθ)− η

tζ + reiθ − ζ
· tζ + reiθ − ζ

reiθ
dθ = ϕ′(ζ).Sine ϕ′ is bounded in Γ(ζ, α) and limt→1− ϕ

′(tζ) = ϕ′(ζ), Lindelöf's theorem shows that
ϕ′ has nontangential limit ϕ′(ζ) at ζ . Sine α is arbitrary we are done.(3)⇒(1). Let M <∞ be suh that |ϕ′(rζ)| ≤ M for all r ∈ [0, 1). Then

|η − ϕ(rζ)| =
∣∣∣∣
∫ 1

r

ϕ′(tζ)ζ dt

∣∣∣∣ ≤ M(1− r),and hene
1− |ϕ(rζ)|
1− |rζ | ≤ |η − ϕ(rζ)|

1− r
≤M.Therefore d(ζ), being the lower limit, is �nite.In the proof of (1)⇒(2) we saw that

η − ϕ(z)

ζ − z
→ ζηd(ζ)as z → ζ nontangentially. This is the same as saying that

1− ηϕ(z)

1− ζz
→ d(ζ)as z → ζ nontangentially. In partiular, sine d(ζ) is positive by Corollary 11.2, also

|1− ηϕ(z)|
|1− ζz|

→ d(ζ)35



and
1−ηϕ(z)
|1−ηϕ(z)|

1−ζz

|1−ζz|

→ 1as z → ζ nontangentially. As a onsequene, we see that when z approahes ζ nontan-gentially, ϕ(z) approahes η nontangentially also. Nontangential onvergene of z to ζimplies | Im (1− ζz)| ≤ CRe (1− ζz) for some onstant C > 0, and hene
∣∣∣∣ Im 1− ζz

|1− ζz|

∣∣∣∣ ≤ CRe 1− ζz

|1− ζz|for all z lose enough to ζ . Therefore, by denoting
1− ηϕ(z)

|1− ηϕ(z)| = X1 + iY1 = Z1 and 1− ζz

|1− ζz|
= X2 + iY2 = Z2,we dedue

∣∣∣∣
X1

X2
− 1

∣∣∣∣ =
∣∣∣∣
Z1

Z2
− 1

∣∣∣∣

∣∣∣X1

X2
− 1
∣∣∣

∣∣∣Z1

Z2
− 1
∣∣∣
=

∣∣∣∣
Z1

Z2
− 1

∣∣∣∣
∣∣∣∣
X1 −X2

Z1 − Z2

∣∣∣∣
∣∣∣∣
Z2

X2

∣∣∣∣ ≤
∣∣∣∣
Z1

Z2
− 1

∣∣∣∣ (1 + C).Thus
lim
z→ζ

Re (1−ηϕ(z))
|1−ηϕ(z)|Re (1−ζz)

|1−ζz|

→ 1,so sine Re (1− ηϕ(z))Re (1− ζz)
=

Re (1− ηϕ(z))

|1− ηϕ(z)|
|1− ηϕ(z)|
|1− ζz|

|1− ζz|Re (1− ζz)

=
|1− ηϕ(z)|
|1− ζz|

· Re (1− ηϕ(z))

|1− ηϕ(z)|

/ Re (1− ζz)

|1− ζz|
,we have

lim
z→ζ

Re (1− ηϕ(z))Re (1− ζz)
= lim

z→ζ

|1− ηϕ(z)|
|1− ζz|

· 1 = d(ζ).Finally, the nontangential onvergene implies
lim
z→ζ

Re (1− ζz)

1− |z| = 1 = lim
z→ζ

Re (1− ηϕ(z))

1− |ϕ(z)| ,so sine
1− |ϕ(z)|
1− |z| =

1− |ϕ(z)|Re (1− ηϕ(z))

Re (1− ηϕ(z))Re (1− ζz)

Re (1− ζz)

1− |z| ,we have
lim
z→ζ

1− |ϕ(z)|
1− |z| = 1 · lim

z→ζ

Re (1− ηϕ(z))Re (1− ζz)
· 1 = d(ζ),as z approahes ζ nontangentially. This is what we wished to prove. 236



Exerises1. Show that E(k, ζ) = {z ∈ D : |ζ − z|2 ≤ k(1 − |z|2)} is a losed dis internallytangent to the unit irle T at ζ with enter ζ

1+k
and radius k

k+1
.2. Prove the statement related to the equality in Julia's Lemma.3. For 1 < p, α < ∞ and ζ ∈ T, denote Γp(ζ, α) = {z ∈ D : |z − ζ |p < α(1 − |z|)}.How the set Γp(ζ, α) hanges when p and α hange? Show that if 0 < δ < α−1 and

|λ| ≤ δ|ζ − z|p, then
z + λ ∈ Γp(ζ, β), β =

2p−1(α + δpαp)

1− δα
.Hint: Show �rst that (x+ y)p ≤ 2p−1(xp + yp) for all p > 1 and x, y ≥ 0, and thenimitate the proof of Lemma 11.8 to ahieve the statement.4. Let zn ∈ D suh that |zn| → 1−, as n → ∞, and limn→∞
1−|zn|
|1−zn| = 1. Show that

arg(1− zn) → 0, as n→ ∞.5. Let ν be a probability measure and 0 < p, q < ∞. Use Hölder's inequality to showthat (∫
dν

f p

)− 1
p

≤
(∫

f q dν

) 1
q

.12. Shwarz-Pik theorem for hyperboli derivativeIn this setion we establish an analogue of Shwarz-Pik theorem for hyperboli derivative.De�nition 12.1. The hyperboli derivative of an analyti self-map ϕ of D is
ϕ⋆(z) = ϕ′(z)

1− |z|2
1 − |ϕ(z)|2 , z ∈ D.First note the obvious fat that ϕ⋆ is not an analyti funtion in D. By Shwarz-Piktheorem, |ϕ⋆(z)| ≤ 1 and if ϕ⋆(z) ∈ T for some z ∈ D, then ϕ is a Möbius transformation.In other words, if ϕ is an analyti self-map of D, but not a Möbius transformation, then

ϕ⋆(z) ∈ D for all z ∈ D. Therefore we an measure the hyperboli distane betweenimages two points under the hyperboli derivative. This leads to the following Shwarz-Pik theorem for hyperboli derivative.Theorem 12.2 (Beardon 1997). Let ϕ be an analyti self-map of D, but not an auto-morphism, suh that ϕ(0) = 0. Then
dh(ϕ

⋆(0), ϕ⋆(z)) ≤ 2dh(0, z), z ∈ D. (12.1)Further, equality holds for eah z ∈ D when ϕ(z) = z2.To prove this result we will need the following lemma.37



Lemma 12.3. Let ϕ be an analyti self-map of D suh that ϕ(0) = 0. If |ϕ(z0)| < |z0|,then both ϕ⋆(0) and ϕ⋆(z0) belong to ∆h

(
ϕ(z0)
z0

, dh(0, z0)
).Proof. Note �rst that z0 6= 0 by the assumptions ϕ(0) = 0 and |ϕ(z0)| < |z0|. Set

w0 = ϕ(z0) and de�ne
h(z) =

{
ϕ(z)
z
, z ∈ D \ {0}

ϕ′(0), z = 0.
.Then h is an analyti self-map of D by the Shwarz lemma (beause ϕ(0) = 0). Moreover,

ϕ⋆(0) = ϕ′(0)
1− |0|2

1− |ϕ(0)|2 = ϕ′(0) = h(0) and h(z0) =
ϕ(z0)

z0
=
w0

z0
.The Shwarz-Pik theorem implies

dh

(
ϕ⋆(0),

w0

z0

)
= dh(h(0), h(z0)) ≤ dh(0, z0),and hene

ϕ⋆(0) ∈ ∆h

(
w0

z0
, dh(0, z0)

)
= ∆h

(
f(z0)

z0
, dh(0, z0)

)
.De�ne now

g(z) =

{
ϕϕ(z0)

(ϕ(z))

ϕz0 (z)
, z ∈ D \ {z0}

ϕ⋆(z0), z = z0.
.Then

lim
z→z0

g(z) = lim
z→z0

ϕ(z0)−ϕ(z)

1−ϕ(z0)ϕ(z)

z0−z
1−z0z

= lim
z→z0

(
ϕ(z0)− ϕ(z)

z − z0

1− z0z

1− ϕ(z0)ϕ(z)

)

= ϕ′(z0)
1− |z0|2

1− |ϕ(z0)|2
= ϕ⋆(z0),and hene g is analyti in D. Further, by the Shwarz-Pik theorem,

|g(z)| = dph(ϕ(z0), ϕ(z))

dph(z0, z)
≤ 1,and hene g is an analyti self-map of D. Moreover,

g(0) =
ϕϕ(z0)(ϕ(0))

ϕz0(0)
=
ϕ(z0)

z0
=
w0

z0
and g(z0) = ϕ⋆(z0),and the Shwarz-Pik theorem yields

dh

(
w0

z0
, ϕ⋆(z0)

)
= dh(g(0), g(z0)) ≤ dh(0, z0).38



Thus
ϕ⋆(z0) ∈ ∆h

(
w0

z0
, dh(0, z0)

)
= ∆h

(
ϕ(z0)

z0
, dh(0, z0)

)
,and the proof is omplete. 2Proof of Theorem 12.2. The inequality (12.1) (for z 6= 0) follows by Lemma 12.3 and thetriangle inequality:

dh(ϕ
⋆(0), ϕ⋆(z)) ≤ dh

(
ϕ⋆(0),

ϕ(z)

z

)
+ dh

(
ϕ(z)

z
, ϕ⋆(z)

)
= 2dh(0, z), z ∈ D \ {0}.If ϕ(z) = z2, then ϕ′(z) = 2z and

ϕ⋆(z) = 2z
1− |z|2
1− |z|4 =

2z

1 + |z|2 , z ∈ D.Moreover,
dh(ϕ

⋆(0), ϕ⋆(z)) = dh(0, ϕ
⋆(z)) = log

1 + 2|z|
1+|z|2

1− 2|z|
1+|z|2

= log
(1 + |z|)2
(1− |z|)2 = 2dh(0, z), (12.2)so we have equality in (12.1) for eah z ∈ D. 2Exerises1. Disuss the general question of when equality in (12.1) holds for some �xed z ∈ D.Is it true that equality holds for eah z ∈ D if and only if ϕ(z) = z2?13. Bloh-Landau theorem and Bloh's theoremOne way to ahieve Piard's big theorem is to use the following remarkable result on therange of analyti funtions in D.Theorem 13.1 (Bloh-Landau theorem). There exists a onstant R > 0 suh thatthe range of eah analyti funtion f : D → C suh that |f ′(0)| ≥ 1 ontains a dis ofradius R.Proof. We may assume without loss of generality that |f ′(0)| = 1, for otherwise onsider

f/f ′(0). We will �rst treat the speial ase where f is analyti in D.The funtion h : [0, 1] → [0,∞),

h(r) = (1− r)M(r, f ′) = sup
|z|=r

|f ′(z)|is ontinuous beause f is analyti in D. Moreover h(0) = (1 − 0)|f ′(0)| = 1 and h(1) =
(1−1)M(r, f ′) = 0 beause f ′ is analyti in D. Therefore there exists the largest s ∈ [0, 1)suh that h(s) = 1. Let ξ ∈ D be one of the points suh that |ξ| = s and

|f ′(ξ)| = max
|z|=s

|f ′(z)|.39



Consider for R = (1− s)/2 the funtion F : D → C,
F (z) = 2(f(Rz + ξ)− f(ξ)).This funtion is well-de�ned analyti funtion in D beause

|Rz + ξ| ≤ R|z|+ |ξ| ≤ 1− s

2
+ s =

1− s+ 2s

2
=

1 + s

2
< 1.Further

F (0) = 2(f(0 + ξ)− f(ξ)) = 0and
F ′(0) = 2R|f ′(ξ)| = 2RM(s, f ′) =

2Rh(s)

1− s
= 1.Furthermore, sine h(r) < 1 when r ∈ (s, 1) we have

|F ′(z)|
2

= R|f ′(Rz + ξ)| ≤ R sup{|f ′(w)| : |w| ≤ R + s}
= R sup{|f ′(w) : |w| = s+R}

=
R

1− (s+R)
h(s+R)

<
R

1− s+R
=

1−s
2

1− s− 1−s
2

=
1− s

2− 2s− 1 + s
=

1− s

1− s
= 1, (13.1)for all z ∈ D and thus |F ′(z)| ≤ 2 for all z ∈ D. Lemma 13.2 now implies that the rangeof F ontains the dis D(0, 1/6). From the de�nition of F we see that the range of fthen ontains the dis D(f(ξ), 1

12
). This ompletes the proof in the speial ase when fis analyti in D.In the general ase, onsider the funtion

g(z) =
f(ρz)

ρ
,where ρ ∈ (0, 1). Then g is analyti in D, g′(z) = f ′(ρz) and hene g′(0) = f ′(0). Byreplaing f by ξ for a suitably hosen ξ ∈ T, we may assume without loss of generality,that f ′(0) = 1. Thus g satis�es the onditions of the speial ase we just treated, so itsrange ontains a dis of radius ρ/12. By hoosing ρ = 12/13 we see that the range of fontains a dis of radius 1/13. 2Lemma 13.2. Let f be analyti in D suh that f(0) = 0, f ′(0) = 1 and |f ′(z)| ≤ M ∈

(0,∞) for all z ∈ D. Then
D

(
0,

1

2(M + 1)

)
⊂ f(D).40



Proof. Consider the funtion
g(z) =

f ′(z)− 1

M + 1
.This funtion is analyti in D, g(0) = 0 and |g(z)| ≤ 1 for all z ∈ D. Therefore theShwarz lemma applies and gives

|g(z)| = |f ′(z)− 1|
M + 1

≤ |z|, z ∈ D,or equivalently
|f ′(z)− 1| ≤ (M + 1)|z|, z ∈ D.Sine f(0) = 0, we may use this inequality to dedue

|f(z)− z| =
∣∣∣∣
∫ z

0

f ′(ζ)− 1dζ

∣∣∣∣ ≤
∫ z

0

|f ′(z)− 1||dζ | ≤ (M + 1)

∫ z

0

|ζ ||dζ |

= (M + 1)
|z|2
2
, z ∈ D.This says in partiular, that for z ∈ ∂D(0, (M + 1)−1) we have

|f(z)− z| ≤ M + 1

2

1

(M + 1)2
=

1

2(M + 1)
.If now z ∈ ∂D(0, (M + 1)−1) and w ∈ D(0, (2(M + 1))−1), then

|f(z)− w − (z − w)| = |f(z)− z| ≤ 1

2(M + 1)
< |z − w|,and hene the funtions f(z)−w and z −w have exatly same number of zeros ountingmultipliities in D(0, (M + 1)−1) by Rouhé's theorem. In partiular, f attains the value

w ∈ D(0, (2(m+ 1))−1) in D(0, (M + 1)−1) exatly one. Therefore we have shown that
D

(
0,

1

2(M + 1)

)
⊂ f

(
D

(
0,

1

M + 1

))
,whih is more than required. 2The surprising feature of Theorem 13.1 is of ourse the existene of the universal onstant

R > 0 in spite of the vast lass of funtions involved.Let f : D → C be analyti suh that |f ′(0)| ≥ 1, and de�ne
L(f) = sup{r > 0 : f(D) ontains a dis of radius r}.If Φ denotes the set of those analyti funtions f : D → C suh that |f ′(0)| ≥ 1, thenBloh-Landau theorem shows that the Landau's onstant

L = inf
f∈Φ

L(f)is positive. The proof we presented reveals that L ≥ 1/13. The exat value of Landau'sonstant is not known, but it has been asertained that 0.5 ≤ L ≤ 0.544.Theorem 13.1 is an immediate onsequene of an even more surprising quantitativedisovery on the range of analyti funtions.41



Theorem 13.3 (Bloh's theorem). Let f : D → C be analyti suh that |f ′(0)| ≥ 1.Then there exists a dis D = D(f) ⊂ D suh that f(D) ontains a dis of radius 0.43 and
f is univalent in D.Let B(f) be the supremum of all r > 0 for whih there exists a domain G ⊂ D onwhih f is univalent and f(G) ontains a dis of radius r. Then Bloh's theorem showsthat the Bloh's onstant

B = inf
f∈Φ

B(f)is larger than 0.43. The exat value of Bloh's onstant is unknown, although Ahlfors andGrunsky (1937) showed that
0.433 ≈

√
3

4
≤ B ≤ 1√

1 +
√
3

Γ(1
3
)Γ(11

12
)

Γ(1
4
)

≈ 0.472,and onjetured that the upper bound is atually the value of B.We will prove a weaker result. To do this we will need the following lemma.Lemma 13.4. Let g ∈ H(D(0, R)) suh that g(0) = 0, |g′(0)| = µ > 0. If there exists
M ∈ (0,∞) suh that |g(z)| ≤M for all z ∈ D(0, R), then

g(D(0, R)) ⊃ D

(
0,
R2µ2

6M

)
.Proof. By onsidering the funtion

f(z) =
g(Rz)

Rg′(0)
,it su�es to show that: if f ∈ H(D), f(0) = 0, f ′(0) = 1 and |f(z)| ≤ M for all z ∈ D,then M ≥ 1 and

D

(
0,

1

6M

)
⊆ f(D).Let 0 < r < 1 and

f(z) = z + a2z
2 + . . . .Aording to Cauhy's estimate

|an| ≤
M

rnfor all n ∈ N. So 1 ≤ a1 ≤M . If |z| = (4M)−1, then
|f(z)| ≥ |z| −

∞∑

n=2

|an||z|n

≥ (4M)−1 −
∞∑

n=2

M

rn

(
1

4M

)n

= (4M)−1 − 1

16M − 4
= α.42



Here α ≥ 1/(6M). This is beause
1

4M
− 1

16M − 4
=

1

4

(
1

M
− 1

4M − 1

)
=

1

4

(
4M − 1−M

M(4M − 1)

)
=

1

4M

3M − 1

4M − 1
≥ 1

6Mis equivalent to
3M − 1

4M − 1
≥ 2

3
,whih is equivalent to

9M − 3 ≥ 8M − 2,that is, M ≥ 1. Suppose |w| < 1
6M

. It will be shown that g(z) = f(z)− w has a zero. Infat, for |z| = (4M)−1,
|f(z)− g(z)| = |w| < (6M)−1 ≤ |f(z)|.So by Rouhé's theorem, f and g have the same amount of zeros in D(0, 1

4M
). Sine

f(0) = 0, g(z0) = 0 for some z0, we have
D

(
0,

1

6M

)
⊂ f(D)as desired. 2Theorem 13.5 (Bloh's theorem). Let f be analyti in D suh that f(0) = 0 and

f ′(0) = 1. Then there exists a dis D ⊆ D on whih f is univalent and suh that f(D)ontains a dis of radius 1/72.Proof. Let h(r) = (1 − r)M(r, f ′). Then h : [0, 1) → [0,∞) is ontinuous, h(0) = 1,
h(1) = 0. Let r0 = sup{r : h(r) = 1}, then h(r0) = 1, r0 < 1, and h(r) < 1 if r ∈ (r0, 1].Let a ∈ D be hosen with |a| = r0 and |f ′(a)| =M(r0, f

′). Then
|f ′(a)| = M(r, f ′)(1− r0)

1− r0
=

h(r0)

1− r0
=

1

1− r0
. (13.2)Now if

|z − a| < 1

2
(1− r0) = ρ0,then

|z| ≤ |z − a|+ |a| < 1

2
(1− r0) + r0 =

1 + r0
2

.Sine r0 < (r0 + 1)/2, the de�nition of r0 gives
|f ′(z)| ≤M

(
1 + r0

2
, f ′
)

= h

(
1

2
(1 + r0)

)(
1− 1

2
(1 + r0)

)−1

<

(
1− 1

2
(1 + r0)

)−1

=
1

1− 1
2
(1 + r0)

=
2

2− 1− r0

=
2

1− r0
=

1

ρ0
,

(13.3)
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when |z − a ∗ | < ρ0. Combining (13.2) and (13.3) gives
|f ′(z)− f ′(a)| ≤ |f ′(z)|+ |f ′(a)| < 1

ρ0
+

1

1− r0
=

1

ρ0
+

1

2ρ0
=

3

2ρ0
. (13.4)Aording to Shwarz lemma, this implies

|f ′(z)− f ′(a)| < 3|z − a|
2ρ2

, z ∈ D(a, ρ0).Hene, if z ∈ D = D(0, ρ0/3), then
|f ′(z)− f ′(a)| < 1

2ρ0
= |f ′(a)| = 1

1− r0
.By Exerise 3 f is univalent on D.It remains to be proved that f(D) ontains a dis of radius 1/72. For this, de�ne

g : D
(
0,
ρ0
3

)
→ C,by setting

g(z) = f(z + a)− f(a).Then g(0) = 0, g′(z) = f ′(z + a), g′(0) = f ′(a) and |g′(a)| = |f ′(a)| = (2ρ0)
−1. If

z ∈ D(0, ρ0/3), then the line segment γ = [a, z + a] lies in D ⊂ D(a, ρ0). So by (13.3)
|g(z)| =

∣∣∣∣
∫

γ

f ′(w)dw

∣∣∣∣ ≤
1

ρ0
|z| < 1

3
.Applying Lemma 13.4

D(0, σ) ⊂ g(D(0, ρ0/3)),where
σ =

(
ρ0
3

)2 ( 1
2ρ0

)2

6 · 1
3

=
1
9
· 1
4

2
=

1

9 · 8 =
1

72
.If this is translated into a statement about f , we get

f(D) ⊃ D

(
f(a),

1

72

)
,and the proof if omplete. 2Exerises1. Let f be analyti in D suh that f(0) = 0, f ′(0) = 1 and |f(z)| ≤ M ∈ (0,∞) forall z ∈ D. Prove that M ≥ 1. This shows that the dis D (0, 1

2(M+1)

) appearingin the statement of Lemma 13.2 is ontained in D(0, 1/4). Hint: pik the solutionfrom the proof of Lemma 13.4.2. Transform the statement of Lemma 13.2 to the ase in whih f is analyti in D suhthat f(0) = 0, f ′(0) = a ∈ C \ {0} and |f ′(z)| ≤M ∈ (0,∞) for all z ∈ D.3. Let f : D(a, r) → C be analyti suh that |f ′(z) − f ′(a)| < |f ′(a)| for all z ∈
D(a, r) \ {a}. Show that f is univalent in D(a, r).44



14. Shottky's theoremAnother tool we will need to prove Piard's big theorem is Shottky's theorem.Theorem 14.1 (Shottky's theorem). Let M > 0 and r ∈ (0, 1). If f : D → C isanalyti, omits 0 and 1 in its range, and if |f(0)| ≤ M , then there exists a onstant
C = C(M, r) > 0 suh that |f(z)| ≤ C for all z ∈ D(0, r).Proof. By the lemma of the analyti logarithm, there exists an analyti branh of log fon D, whih we hoose suh that | Im (log f(0))| ≤ π. Now

log f(z)

2πi
= n ∈ Z,that is,

log f(z) = 2πin, n ∈ Z,that is,
log |f(z)|+ i arg f(z) = 2πin, n ∈ Z,that is,

f(z) = 1and hene g = log f/2πi does not attain integer values beause f(z) 6= 1 for all z ∈ D bythe hypothesis. Let √g and √
g − 1 be analyti square roots of g and g − 1 in D. Then

h =
√
g −√

g − 1 is analyti in D, vanishes nowhere in D and does not attain the values√
n±

√
n− 1 for n ∈ N: Indeed, if

√
g(z) +

√
g(z)− 1 =

√
n±

√
n− 1for some z ∈ D, n ∈ N, then

√
g(z) +

√
g(z)− 1 =

1√
g(z)−

√
g(z)− 1

=
1√

n±
√
n− 1

=

√
n∓

√
n− 1

n− (n− 1)
=

√
n∓

√
n− 1, (14.1)and by adding these identities, we get

2
√
g(z) = 2

√
nimplying g(z) = n; a ase that was exluded.Sine h is non-vanishing, there exists an analyti branh H = log h, and H does notattain the values

an,m = log(
√
n±

√
n− 1) + 2πim, n ∈ N, m ∈ Z.45



But every dis of radius 10 ontains at least one of the points an,m (Exerise 1!) so therange of H does not over any dis of radius 10. If z ∈ D and H ′(z) 6= 0, then the rangeof the funtion
ξ 7→ H(ξ)−H(z)

H ′(z)
, ξ ∈ D(z, 1− |z|),overs a dis of radius (1− |z|)/13 by the proof of Bloh-Landau theorem (Exerise 2!),so the values of H �ll a dis of radius H ′(z)(1 − |z|)/13 (enter H(z)). This quantityannot exeed 10, so

|H ′(z)|(1− |z|) ≤ 130. (14.2)Although (14.2) was derived under the assumption H ′(z) 6= 0, it is learly also valid when
H ′(z) = 0. Now

|H(z)| ≤ |H(0)|+ |H(z)−H(0)|

= |H(0)|+
∣∣∣∣
∫ z

0

H ′(ζ)dζ

∣∣∣∣

≤ |H(0)|+ 130

∫ z

0

dζ

1− |ζ |
= |H(0)|+ 130 log

1

1− |z|
≤ |H(0)|+ 130 log

1

1− r
, |z| ≤ r. (14.3)By the de�nition of H

exp(H) = h =
√
g −

√
g − 1 =

√
log f

2πi
−
√

log f

2πi
− 1,so

eH + e−H =
√
g −

√
g − 1 +

1√
g −√

g − 1

=
(
√
g −√

g − 1)2(
√
g +

√
g − 1) +

√
g +

√
g − 1

g − (g − 1)

=
(
√
g −√

g − 1) · 1 +√
g +

√
g − 1

1
= 2

√
g. (14.4)Thus we have √

log f

2πi
=
eH + e−H

2
. (14.5)Hene,

log f = 2πi
e2H + 2 + e−2H

4
=
πi

2
(e2H + 2 + e−2H)and thus

|f(z)| =
∣∣∣∣exp

(
πi

1

(
e2H(z) + 2 + e−2H(z)

))∣∣∣∣ ≤ exp
(
π
(
e2|H(z)| + 1

))
.46



In view of (14.3) the theorem follows one we establish H(0) ≤ C1, where C1 is a onstantdepending only on the bound M on f(0).Assume for a moment that |f(0)| ≥ 1
2
. For suh f equation (14.5) implies the existeneof C2 = C2(M) suh that

C2 ≥
∣∣∣∣
eH(0) + e−H(0)

2

∣∣∣∣ ≥
∣∣∣∣
eRe H(0) − e−Re H(0)

2

∣∣∣∣ = sinh Re H(0)whih gives us an upper bound of the desired type on Re H(0). Similarly we will get alower bound on Re H(0) by using the triangle inequality in the other way.The imaginary part poses no problem sine we always hoose H = log h suh that
| Im (H(0))| ≤ π. We have now proved the theorem under the assumption |f(0)| ≥ 1

2
. If

|f(0)| ≤ 1
2
we may apply the just obtained result to 1− f instead of f . 2Exerises1. Show that every dis of radius 10 ontains at least one of the points

an,m = log(
√
n±

√
n− 1) + 2πim, n ∈ N, m ∈ Z.2. Let z ∈ D and let H be an analyti funtion in D suh that H ′(z) 6= 0 for all z ∈ D.Show that the range of the funtion

h(ξ) =
H(ξ)−H(z)

H ′(z)
, ξ ∈ D(z, 1− |z|),overs a dis of radius 1−|z|

13
for all z ∈ D.15. Piard's theoremsPiard's big theorem is a remarkable generalization of the Casorati-Weiertrass theorem.Theorem 15.1 (Piard's big theorem). If f has an essential singularity at z0 ∈ C,then in eah open neighborhood of z0 the range of f omits at most one omplex value.Proof. By translation in C, we may assume that the singularity is situated in the origin,and by dilatation, that f is analyti in D(0, e2π) \ {0}. We will show that if f omits twoomplex numbers, say a and b 6= a, then 0 is either a pole or a removable singularity. Wemay assume that f omits 0 and 1, for otherwise onsider the funtion

f(z)− a

b− a
.Case I If |f(z)| → ∞ as z → 0, then 0 is a pole of f .Case II There exists a sequene zn for whih zn → 0 as n → ∞ and |f(zn)| ≤ M forall n ∈ N for some M > 0. Passing to a subsequene if neessary we may assume that47



1 > |z1| > . . . > |zn| > |zn+1| > . . . and zn → 0, n → ∞. For a �xed n ∈ N, onsider thefuntion
ξ 7→ f(zne

2πiξ)whih is analyti in D, omits the values 0 and 1, and |f(zne2πi0)| ≤ M for all n ∈ N. ByShottky's theorem there exists a onstant C, depending only on the bound M , suh that
|f(zne2πiζ)| ≤ C, ζ ∈ D

(
0,

1

2

)
.In partiular

|f(zne2πit)| ≤ C, t ∈
(
−1

2
,
1

2

)
,so that |f | is bounded by C on the irle |z| = |zn|. Sine the onstant C is independentof n we get by the maximum modulus priniple that |f | ≤ C on D(0, |z|) \ {0}. But then

0 is a removable singularity of f . 2An alternate phrasing of Theorem 15.1 is the following: If an analyti funtion f hasan essential singularity at a ∈ C, then in eah neighborhood of a f assumes eah omplexnumber, with one possible exeption, an in�nite number of times.Piard's little theorem extends the fundamental theorem of algebra and Liouville'stheorem.Theorem 15.2 (Piard's little theorem). If f is a non-onstant entire funtion, thenthe range of f omits at most one omplex value.Proof. Consider the funtion g(z) = f(1/z) that is analyti outside of the origin. If z = 0is an essential singularity of g, then we are done by Piard's big theorem. If z = 0 is apole of order m ∈ N or a removable singularity of g (say a pole of order m = 0), then
g an be written in the form g(z) = z−mh(z), where h is entire and m ∈ N ∪ {0}. Now
f(z) = zmh(1/z) for z ∈ C \ {z} so that

|f(z)| ≤ (|h(0)|+ 1)|z|mfor all z ∈ C with |z| su�iently large. By Liouville's theorem (see Exerise 5 in Setion 8)
f is a polynomial and not a onstant by the hypothesis, so its range ontains C by thefundamental theorem of algebra. 2Corollary 15.3. Meromorphi nononstant funtion in the omplex plane attains everyomplex value with atmost two exeptions.Proof. Let f be meromorphi in the omplex plane suh that f never attains the values
a, b, c ∈ C. We laim that f is a onstant.Consider the funtion

g(z) =
(f(z)− a)(c− b)

(f(z)− b)(c− a)
.48



Sine c 6= b and f−a vanishes nowhere, the numerator has no zeros. Likewise, sine c 6= aand f − b vanishes nowhere, the denominator has no zeros. Suppose that z0 is a pole of f .Now
lim
z→z0

(f(z)− a)(c− b)

(f(z)− b)(c− a)
= lim

z→z0

(1− a
f(z)

)(c− b)

(1− b
f(z)

)(c− a)
=
c− b

c− a
6= 0.Therefore z0 is a removable singularity for g. By de�ning g(z0) = c−b

c−a
the funtion g willbe analyti and nonzero at z0. Thus the possible poles of the numerator and denominatoranel, g is entire and vanishes nowhere.Moreover, g− 1 vanishes nowhere. Suppose that g(z0) = 1 for some z0 ∈ C. We laimthat this leads to a ontraditionSuppose that z0 is not a pole of f . Now

f(z0)c− f(z0)b− ac+ ab = f(z0)c− f(z0)a− bc + ab.By subtrating the �nite omplex number f(z0)c+ ab, we get
−f(z0)b− ac = −f(z0)a− bc,whih gives

(a− b)(f(z0)− c) = 0.This is a ontradition beause a 6= b ja f − c vanishes nowhere.Suppose that z0 is a pole of f . Now
1 = g(z0) = lim

z→z0

(f(z)− a)(c− b)

(f(z)− b)(c− a)
= lim

z→z0

(1− a
f(z)

)(c− b)

(1− b
f(z)

)(c− a)
=
c− b

c− a
.This is a ontradition beause a 6= b.Therefore g is an analyti funtion whih never attains the values 0 and 1. By Piard'slittle theorem g is a onstant. Now

f(z)− a

f(z)− b
= dfor all z ∈ C, for some d ∈ C, d 6= 0. Thus

(1− d)f(z) = a− dbfor all z ∈ C. If d = 1, then 0 = a− b, whih is a ontradition. It follows that d 6= 1 and
f is a onstant. 2An entire funtion is a meromorphi funtion whih never attains the value ∞. There-fore Piard's little theorem and Corollary 15.3 an be ombined as Corollary 15.4.Corollary 15.4. Meromorphi nononstant funtion attains all the values in the set Ĉwith atmost two exeptions. 49



Example 15.5. The funtion
ez

ez − 1is meromorphi and omits the values 0 and 1.Nevanlinna theory onerns the value distribution of meromorphi funtions. Corol-lary 15.3 gives a glimpse of the defet relation whih is a orollary of the seond funda-mental theorem of Nevanlinna theory.Exerises1. Let D be a simply onneted domain and suppose that f is an analyti funtionon D whih does not attain the values 0 or 1. Show that there exists ana analytifuntion g on D suh that f = − exp(iπ cosh(2g)) in D. Hint: Chek the proof ofShottky's theorem.16. Solutions for exerises1. Maximum modulus priniple (one more)1. Let D be a bounded domain and suppose that f is ontinuous on D and analytion D. Show that if there exists a onstant c ≥ 0 suh that |f(z)| = c for all z ∈ ∂D,then either f is a onstant funtion or f has a zero.Solution. If c = 0, then f ≡ 0 by the Maximum modulus priniple, and thus theassertion is proved in the ase c = 0. Let c > 0, and assume that f(z) 6= 0 for all
z ∈ D (for otherwise the assertion is again valid). Then |f | attains its maximumand minimum in ∂D by the Maximum and the Minimum modulus priniples. Hene
|f(z)| = c for all z ∈ D by the hypothesis |f(z)| = c for all z ∈ ∂D. Cauhy-Riemannequations (or Theorem 1.2 or the Maximum modulus priniple) now show that fmust be onstant.2. Let f be entire and non-onstant, and let c > 0. Show that the losure of {z :
|f(z)| < c} is the set {z : |f(z)| ≤ c}.Proof. Let c > 0 and denote Ac(f) = {z ∈ C : |f(z)| < c} and Bc(f) = {z ∈ C :
|f(z)| ≤ c} so that the laim reads Ac(f) = Bc(f). If z0 ∈ Ac(f), then there exists
{zn} suh that |f(zn)| < c for all n ∈ N and zn → z0, as n→ ∞. By the ontinuityof |f |, it follows that |f(z0)| ≤ c, and thus z0 ∈ Bc(f). Conversely, let z0 ∈ Bc(f),that is, |f(z0)| ≤ c. If |f(z0)| < c, then z0 ∈ Ac(f) ⊂ Ac(f). If |f(z0)| = c, then,by Theorem 1.2, f(D(z0, r)) is open and thus f(z0) is an interior point of this set.Therefore there exists {zn} suh that zn ∈ Ac(f) for all n ∈ N and zn → z0, as
n→ ∞. Thus z0 ∈ Ac(f). 23. Let p be a non-onstant polynomial and c > 0. Show that eah omponent of
{z : |p(z)| < c} ontains a zero of p. 50



Proof. Let p be a non-onstant polynomial and denote A = {z : |p(z)| < c}.Sine lim|z|→∞ |p(z)| = ∞, A is bounded. A may be disonneted. In that ase,
A = ∪{Aj}, where the omponents Aj are disjoint bounded domains and ∂Aj =
{z ∈ Aj : |p(z)| = c} for eah j as is seen by a reasoning similar to that in Exerise 2.Let Aj be arbitrary. If Aj does not ontain a zero of p, then p is a onstant in
Aj by Exerise 1. Then, as a polynomial, p is a onstant everywhere. This is aontradition and the assertion follows. 24. Let p be a non-onstant polynomial and c > 0. Show that {z : |p(z)| = c} is a �niteunion of losed paths. Disuss the behavior of these paths as c→ ∞.Proof. Let Ac(p) = {z : |p(z)| < c}. By the solution of Exerises 2 and 3, it is learthat Ac(p) is a union of disjoint bounded domains (the omponents of Ac(p)) and
∂Ac(p) = {z : |p(z)| = c}. Thus ∂Ac(p) is a union of losed (but not neessarilydisjoint) paths. By Exerise 3 every omponent of Ac(p) ontains at least one zeroof p. Polynomial p has �nitely many zeros, thus Ac(p) onsists of at most thesame number of omponents as is the degree of p, and this maximum number isattained for all c > 0 su�iently small. When c inreases, the paths unite andfor all su�iently large c we have only one path. The size of this path inreasesunboundedly in the sense that for eah R > 0, there exists c0 = c0(R) > 0 suh that
D(0, R) ⊂ Ac(p) for all c ≥ c0. 25. Let f and g be analyti on D(0, r) with |f(z)| = |g(z)| for |z| = r. Show that ifneither f nor g vanishes in D(0, r), then there exists a onstant λ ∈ T suh that
f = λg.Proof. If neither f nor g vanishes in D(0, r), the funtion f/g is analyti in D(0, r),and, by the hypothesis, |f(z)/g(z)| = 1 for all z ∈ ∂D(0, r). Exerise 1 yields f/g ≡
λ, where λ is a onstant. Clearly, this onstant satis�es |λ| = 1, and the assertionis proved. In the general ase f/g might have �nitely many isolated singularities on
∂D(0, r) that are the zeros of g. However, it is easy to see that these singularitiesare removable beause of the hypothesis, thus the preeding reasoning applies, andthe assertion follows. 22. Shwarz lemma and Borel-Carathéodory inequality1. Consider the funtions −f and ±if to obtain inequalities similar to the Borel-Carathéodory inequality involving min|z|=R Re f(z), max|z|=R Im f(z) or
min|z|=R Im f(z).Solution. By replaing f by −f in the Borel-Carathéodory inequality, we obtain

M(r, f) ≤ − 2r

R − r
min
|z|=R

Re f(z) + R + r

R − r
|f(0)|. (16.1)51



In a similar manner, by replaing f by ±if , we dedue
M(r, f) ≤ − 2r

R − r
min
|z|=R

Im f(z) +
R + r

R− r
|f(0)|,

M(r, f) ≤ 2r

R− r
max
|z|=R

Im f(z) +
R + r

R− r
|f(0)|,respetively.2. Searh for other versions of the Borel-Carathéodory inequality.Solution. By using

g2(z) =
f 2(z)

2A2(R, f)− f 2(z)instead of g in the proof of the Borel-Carathéodory inequality, we obtain
M(r, f) ≤

√
2r

R− r

(
A(R, f) + |f(0)|

)
+ |f(0)|.See also [9℄.3. Show by an example that what ever inequality of the same type of the Borel-Carathéodory inequality you establish, in eah ase on the right hand side youwill obtain a fator, suh 1/(R − r). Hint: onsider f(z) = −i log(1 − z) and

0 < r < R < 1.Solution. Let f(z) = −i log(1 − z) and 0 < r < R < 1. Then f(0) = 0, A(R, f) =
max|z|=R Arg (1− z) = C(R) ∈ (0, π

2
) with C(R) → π/2, as R → 1−. Hene

M(r, f) ≥ log
1

1− r
=
A(R, f)

C(R)
log

1

1− r
.The Borel-Carathéodory inequality states that

M(r, f) ≤ 2r

R − r
A(R, f) +

R + r

R− r
|f(0)|, 0 < r < R < 1,whih in this ase reads as

log
1

1− r
≤ 2rC

R − r
≤ π

R− r
, 0 < r < R < 1.This example shows that in the Borel-Carathéodory type inequalities one mustalways have an unbounded fator multiplying A(R, f) on the right hand side.For another example, onsider the funtion f(z) = −z(1 − z)−1 that maps D on-formally onto {z : Re z < 1/2}. Clearly, f(0) = 0, M(r, f) = r/(1 − r) and

max|z|=R Re f(z) < 1
2
. Therefore, Borel-Carathéodory inequality yields

r

1− r
≤ r

R − r
, 0 < r < R < 1.52



3. Convex funtions and Hadamard's three irles theoremExerises1. Let f : [a, b] → R and suppose that f(x) > 0 for all x ∈ [a, b] and that f has aontinuous seond derivative. Show that f is logarithmially onvex if and only if
f ′′(x)f(x)− (f ′(x))2 ≥ 0 for all x ∈ [a, b].Solution. Let g(x) = log f(x). Beaue g′′(x) = f ′′(x)f(x)−(f ′(x))2

f(x)2
, g′ is non-dereasingif and only if f ′′(x)f(x)− (f ′(x))2 ≥ 0. Thus f is logarithmially onvex if and onlyif f ′′(x)f(x)− (f ′(x))2 ≥ 0 by the Proposition 3.3.2. Show that if f : (a, b) → R is onvex, then f is ontinuous.Solution. Suppose that f : (a, b) → R is onvex funtion, that is,

f(tx2 + (1− t)x1) ≤ tf(x2) + (1− t)f(x1)for all a < x1 < x2 < b, and 0 < t < 1. Let x3 ∈ (x2, b), and hoose t = x2−x1

x3−x1
∈

(0, 1). Then 1− t = x3−x2

x3−x1
and x2 = tx3 + (1− t)x1, and thus

(x3 − x1)f(x2) ≤ (x2 − x1)f(x3) + (x3 − x2)f(x1) + x2f(x2)− x2f(x2),from whih we have
f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x2)

x3 − x2
.On the other hand,

f(x2) ≤
x2 − x1
x3 − x1

f(x3) +
(x3 − x1)− (x2 − x1)

x3 − x1
f(x1),and thus

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x1)

x3 − x1
.By applying these inequalities to points a < x1 < x2 < x < x+ h1 < x+ h2 < b weobtain

f(x2)− f(x1)

x2 − x1
≤ f(x+ h1)− f(x)

h1
≤ f(x+ h2)− f(x)

h2
.Hene the funtion F1(h) =

f(x+h)−f(x)
h

is bounded bellow and inreasing in (0, b−x)and thus the limit limh→0+ F1(h) = f ′
+(x) exists. Similarly, by writing the onvexityondition as

f(x2) ≤
(x3 − x1)− (x3 − x2)

x3 − x1
f(x3) +

x3 − x2
x3 − x1

f(x1),we obtain
f(x3)− f(x2)

x3 − x2
≤ f(x3)− f(x1)

x3 − x1
.53



Hene, if a < x− h2 < x− h1 < x < x1 < x2 < b, we have
f(x)− f(x− h2)

h2
≤ f(x)− f(x− h1)

h1
≤ f(x2)− f(x1)

x2 − x1
.Thus the funtion F2(h) = f(x)−f(x−h)

h
is bounded above and dereasing in someinterval (0, δ) and hene the limit limh→0+ F2(h) = f ′

−(x) exists.Now let x ∈ (a, b). Sine we know that f ′
+(x) and f ′

−(x) exist, we may write
lim
h→0+

f(x+ h)− f(x) =

(
lim
h→0+

f(x+ h)− f(x)

h

)(
lim
h→0+

h

)
= 0and

lim
h→0−

f(x+ h)− f(x) =

(
lim
h→0−

f(x+ h)− f(x)

h

)(
lim
h→0−

h

)
= 0.Hene f is ontinuous at x. If f is onvex in a losed interval [a, b], it is notnessessarily ontinuous at the endpoints a and b. An easy ounterexample is thefuntion f : [0, 1] → R suh that f(0) = f(1) = 1 and f(x) = 0 for all 0 < x < 1.3. Supply the details of the proof of Proposition 3.2.Solution. (a) Let f : [a, b] → R be onvex, x1, . . . , xn ∈ [a, b] and t1, . . . , tn ≥ 0 suhthat ∑n

i=1 ti = 1. Obviously ti ∈ [0, 1] for all i = 1, . . . , n. If n = 1, the assertion istrivially true and if n = 2 the assertion is true by the de�nition of onvex funtions.Suppose f(∑n

i=1 tixi) ≤
∑n

i=1 tif(xi) for all x1, . . . , xn ∈ [a, b] and t1, . . . , tn ∈ [0, 1]suh that ∑n
i=1 ti = 1 for some n ∈ N. Suppose that t1, . . . , tn+1 ∈ [0, 1] suh that∑n+1

i=1 ti = 1. Now
f

(
n+1∑

i=1

tixi

)
= f

(
tn+1xn+1 + (1− tn+1)

n∑

i=1

tixi
1− tn+1

)

≤ tn+1f(xn+1) + (1− tn+1)f

(
n∑

i=1

tixi
1− tn+1

)

≤ tn+1f(xn+1) + (1− tn+1)
n∑

i=1

ti
1− tn+1

f(xi)

=
n+1∑

i=1

tif(xi),sine t1+...+tn
1−tn+1

= 1.Conversely suppose f(∑n

i=1 tixi) ≤ ∑n

i=1 tif(xi) for any points x1, . . . , xn ∈ [a, b]and the real numbers t1, . . . , tn with ∑n
i=1 t1 = 1. Then f(tx2 + (1 − t)x1) ≤

tf(x2) + (1− t)f(x1) for all x1, x2 ∈ [a, b] and 0 ≤ t ≤ 1 sine t+ (1− t) = 1. So fis onvex.(b) Suppose that A ⊂ C is onvex. Again, the assertion is true for n = 1 triviallyand for n = 2 by the de�nition of onvexity, so suppose that, for some n ∈ N,54



∑n
i=1 tizi ∈ A holds for all z1, . . . , zn ∈ A and tz, . . . , tn ≥ 0 suh that ∑n

i=1 ti = 1.Then, if z1, . . . , zn+1 ∈ A and tz, . . . , tn+1 ≥ 0 suh that ∑n+1
i=1 ti = 1, we have

n+1∑

i=1

tizi = tn+1zn+1 + (1− tn+1)
n∑

i=1

ti
1− tn+1

zi ∈ A,beause ∑n
i=1

ti
1−tn+1

= 1 and thus ∑n
i=1

ti
1−tn+1

zi ∈ A.Conversely, suppose that∑n

i=1 tizi ∈ A for all z1, . . . , zn ∈ A and tz, . . . , tn ≥ 0 suhthat ∑n

i=1 ti = 1. Then, by hoosing n = 2 and t2 = t we have tz2 + (1− t)z1 ∈ A,and thus A is onvex.4. Supply the details of the proof of Proposition 3.3.Solution. Let f : [a, b] → R be di�erentiable onvex funtion and a ≤ x1 < x2 ≤ b.Let t1, t2 ∈ (0, 1), and de�ne h1 = t1(x2 − x1) > 0 and h2 = t2(x2 − x1) > 0. Then
f(x1 + h1)− f(x1)

h1
=
f(t1x2 + (1− t1)x1)− f(x1)

h1

≤ t1f(x2) + (1− t1)f(x1)− f(x1)

h1

=
f(x2)− f(x1)

h1/t1
=
f(x2)− f(x1)

x2 − x1
=
f(x2)− f(x1)

h2/t2

=
f(x2)− (t2f(x1) + (1− t2)f(x2)

h2

≤ f(x2)− f(t2x1 + (1− t2)x2)

h2

=
f(x2)− f(x2 − h2)

h2
.By letting h1 → 0 we have

f ′(x1) = f ′
+(x1) ≤

f(x2)− f(x2 − h2)

h2
,and by then letting h2 → 0, we obtain f ′(x1) ≤ f ′

−(x2) = f ′(x2).Suppose then that f : [a, b] → R is di�erentiable suh that f ′ is inreasing, and let
a ≤ x1 < x2 < x3 ≤ b. By the mean value theorem, there exist y1 ∈ (x1, x2) and
y2 ∈ (x2, x3) suh that

f ′(y1) =
f(x2)− f(x1)

x2 − x1
and f ′(y2) =

f(x3)− f(x2)

x3 − x2
.Hene

f(x2)− f(x1)

x2 − x1
≤ f(x2)− f(x1)

x2 − x1
+

(
f(x3)− f(x2)

x3 − x2
− f(x2)− f(x1)

x2 − x1

)
x3 − x2
x3 − x1

=
f(x2)− f(x1)

x2 − x1
+

(x2 − x1)f(x3)− (x3 − x1)f(x2) + (x3 − x2)f(x1)

(x2 − x1)(x3 − x1)

=
f(x3)− f(x1)

x3 − x1
. 55



By de�ning t = x2−x1

x3−x1
, we obtain x2 = tx3 + (1− t)x1 and
f(tx3 + (1− t)x1) ≤ tf(x3) + (1− t)f(x1),and hene f is onvex.5. Show that logarithmially onvex funtions are onvex, but not onversely.Solution. Let f : [a, b] → R+ be logarithmially onvex. Beaue g(x) = ex isinreasing and onvex (g′ is inreasing), we have

f(tx2 + (1− t)x1) = elog f(tx2+(1−t)x1) ≤ et log f(x2)+(1−t) log f(x1) = tf(x2) + (1− t)f(x1)for all x1, x2 ∈ [a, b], and t ∈ [0, 1]. So f is onvex. On the other hand, f : R+ → R+,
f(x) = x2 is onvex (f ′ is inreasing), but log x2 is not (f ′′(x)f(x) − (f ′(x))2 =
4x− 4x2 < 0 when x /∈ (0, 1]).6. Supply the details of the proof of Hadamard's three irles theorem.Solution. Let 0 < R1 < R2 <∞ and suppose that f is analyti in A(0;R1, R2). Let
G = {x + iy : logR1 < x < logR2} and R1 < r1 ≤ r ≤ r2 < R2. Now the funtion
ez maps G onto A(0;R1, R2) (not injetive) and ∂G onto ∂A(0;R1, R2), and f isontinuous in A(0; r1, r2). Consider the funtion g(z) = f(ez), whih is now analytiin G, ontinuous in Gr1,r2 ⊂ G, where Gr1,r2 = {x + iy : log r1 < x < log r2}, andthus also bounded in Gr1,r2 .De�ne the funtion M : [log r1, log r2] → R by

M(x) = sup
−∞<y<∞

|g(x+ iy)|.By Theorem 3.4 we know that logM is a onvex funtion, and hene
logM(log r) ≤ t logM(log r1) + (1− t) logM(log r2),where t = log r2−log r

log r2−log r1
and therefore 1− t = log r−log r1

log r2−log r1
. Now, by the de�nitions of Mand g, we have

M(log r) = sup
−∞<y<∞

|f(elog r+iy)| = sup
−∞<y<∞

|f(reiy)| = max
z∈∂D(0,r)

|f(z)| =M(r, f),and the assertion follows.4. Hardy's onvexity theoremIn this setion there were no exerises. 56



5. Littlewood's subordination theorem1. Use Littlewood's subordination theorem to show that Mp(r, f) is a non-dereasingfuntion of r.Solution. Let 0 < r1 < r2 < 1 be arbitrary. Let s = r1/r2 ∈ (0, 1). Take
f(z) = f

(s
s
z
)
= f 1

s
(sz) = F (ω(z)).Now,

F (z) = f 1
s
(z) and ω(z) = sz.so that f is subordinate to F and r1 ∈ (0, 1). Littlewood's subordination theoremimplies

Mp(r1, f) ≤Mp(r1, F ) =Mp(r2, f).6. Jensen's formula and Poisson-Jensen formula1. Show that ∫ 2π

0

log |1− eiθ| dθ = 0.Solution. First note that 1− ei2θ = −eiθ
(
eiθ − e−iθ

)
= −2ieiθ sin θ, so by hange ofvariable we have

∫ 2π

0

log
∣∣1− eiθ

∣∣ dθ = 2

∫ π

0

log
∣∣1− ei2θ

∣∣ dθ

= 2

∫ π

0

(log 2 + log |sin θ|) dθ

= 2π log 2 + 2

∫ π

0

log (sin θ) dθ.Now the assertion follows, if we an show that ∫ π

0
log sin θdθ = −π log 2. There areat least two ways to do this.Way 1. By hange of variable and known properties of the sine and osine funtions,we have

∫ π

0

log sin θdθ = 2

∫ π
2

0

log sin(2θ)dθ

= 2

∫ π
2

0

log 2 + log sin θ + log cos θdθ

= π log 2 + 2

∫ π
2

0

log sin θdθ + 2

∫ π
2

0

log sin θdθ

= π log 2 + 4

∫ π
2

0

log sin θdθ

= π log 2 + 2

∫ π

0

log sin θdθ.57



Hene ∫ π
2

0

log sin θdθ = −π log 2.Way 2. Consider the omplex variable funtion 1 − ei2z = −2ieiz sin z. Sine
1− ei2z = 1− e−2y(cos(2x) + i sin(2x)), z = x+ iy, we see that the prinipal branhof log (1− ei2z) is analyti in a region C \⋃n∈Z{z = x+ iy : x = nπ, y ≤ 0}.Let 0 < ε < π

2
, ρ > ε and Γ be a losed positively oriented path onsisting ofsegments [ε, π − ε], [π + iε, π + iρ], [π + iρ, iρ], and [iρ, iε], and irular quadrants

C1(ε) and C2(ε) entered at 0 and π and joined to segments at points iε and ε, and
π − ε and π + iε. Sine log (1− ei2z) is analyti on Γ and inside it, we have

∫

Γ

log
(
1− ei2z

)
= 0.

6

-

iR

R
ε π − ε

iρ

iε π + iε

π + iρ�

Γ

r

r

r

r

rr

Firstly, beause the funtion ei2z = ei2xe−2y, is π-periodi with respet to x, the inte-grals over the vertial sides of Γ anel eah other. Seondly, ei2(x+iρ) = ei2xe−2ρ → 0,when ρ→ ∞, so the integral over the segment [π+iρ, iρ] tends to zero when ρ→ ∞.Thirdly,
lim
z→0

∣∣∣∣
1− ei2z

z

∣∣∣∣ = 2,so log |1− ei2z| grows like log |z| when z → 0, and hene
∣∣∣∣
∫

C1(ε)

log
(
1− ei2z

)
dz

∣∣∣∣ ≤
∫

C1(ε)

∣∣log
(
1− ei2z

)∣∣ |dz| ≤ π

2
ε max
z∈C1(ε)

∣∣log
(
1− ei2z

)∣∣→ 0,58



when ε → 0, beause limε→0 ε| log ε| = 0. Similar proof shows that the integral overthe quadrant C2(ε) entered at π tends to zero as ε→ 0. Hene we have
0 =

∫ π

0

log
(
1− ei2z

)
dz =

∫ π

0

(log 2 + log(−i) + iz + log sin z)dz

= π log 2 + π

(
−iπ

2

)
+ i

π2

2
+

∫ π

0

log sin zdz

= π log 2 +

∫ π

0

log sin zdz,whih is what we needed.2. Let f be analyti in a domain ontaining D(0, r) and suppose that a1, . . . , an arethe zeros of f in D(0, r) repeated aording to multipliity. Show that if f has azero at z = 0 of multipliity m ∈ N, then
1

2π

∫ 2π

0

log |f(reiθ)| dθ = log

∣∣∣∣
f (m)(0)

m!

∣∣∣∣ +m log r +
n∑

k=1

log
r

|ak|
.Solution. Now g(z) = f(z)

zm
is analyti in same domain as f and has same zerosexluding the zero at the origin. Thus, by Jensen formula, we have

1

2π

∫ 2π

0

log

∣∣∣∣
f(reiθ)

(reiθ)m

∣∣∣∣ dθ = log

∣∣∣∣
f (m)(0)

m!

∣∣∣∣+
n∑

k=1

log
r

|ak|
,beause g(0) = f(m)(0)

m!
. The assertion follows by writing the left side as

1

2π

∫ 2π

0

log

∣∣∣∣
f(reiθ)

(reiθ)m

∣∣∣∣ dθ =
1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣ dθ − 1

2π

∫ 2π

0

log rmdθ

=
1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣ dθ −m log r.3. Supply the details of the proof of the Poisson-Jensen formula.Solution. If f is analyti and never vanishes in a domain ontaining D(0, r), then
log |f | is harmoni there and Poisson formula implies
log |f(z)| = 1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣ r
2 − |z|2

|z − reiθ|2dθ =
1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣ Re (reiθ + z

reiθ − z

)
dθfor all z ∈ D(0, r). Now r2(z−ak)

r2−akz
maps D(0, r) onto itself and ∂D(0, r) onto itself.Therefore

F (z) = f(z)

n∏

k=1

r2 − akz

r(z − ak)
= f(z)rn

n∏

k=1

r2 − akz

r2(z − ak)59



is analyti in a domain ontaining D(0, r), has no zeros in D(0, r), and |F (z)| =
|f(z)| on ∂D(0, r). Hene

log |F (z)| = 1

2π

∫ 2π

0

log
∣∣F (reiθ)

∣∣ Re (reiθ + z

reiθ − z

)
dθ

=
1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣ Re (reiθ + z

reiθ − z

)
dθfor all z ∈ D(0, r) \ {ak : 1 ≤ k ≤ n}. But

log |F (z)| = log |f(z)|+
n∑

k=1

log

∣∣∣∣
r2 − akz

r(z − ak)

∣∣∣∣ ,so
1

2π

∫ 2π

0

Re (reiθ + z

reiθ − z

)
log
∣∣f(reiθ)

∣∣ dθ = log |f(z)|+
n∑

k=1

log

∣∣∣∣
r2 − akz

r(z − ak)

∣∣∣∣ .4. Let f be meromorphi in a domain ontaining D(0, r) and suppose that a1, . . . , anand b1, . . . , bm are the zeros and poles of f in D(0, r) repeated aording to multi-pliity. State and prove the Poisson-Jensen formula in this ase.Solution. Let f be meromorphi in a domain ontaining D(0, r) and suppose that
a1, . . . , an and b1, . . . , bm are the zeros and poles of f in D(0, r) repeated aordingto multipliity. If f has no zero nor pole at z ∈ D(0, r), then

1

2π

∫ 2π

0

Re (reiθ + z

reiθ − z

)
log
∣∣f(reiθ)

∣∣ dθ = log |f(z)|+
n∑

k=1

log

∣∣∣∣
r2 − akz

r(z − ak)

∣∣∣∣

+

m∑

k=1

log

∣∣∣∣
r(z − bk)

r2 − bkz

∣∣∣∣ .Proof. As in proof of Jensen formula and in exerise 3, we �nd that
F (z) = f(z)

n∏

k=1

r2 − akz

r(z − ak)

m∏

k=1

r(z − bk)

r2 − bkzis analyti in an open set ontaining D(0, r), has no zeros in D(0, r), and |F (z)| =
|f(z)| on ∂D(0, r). Thus log |F | is harmoni, and Poisson formula gives

log |F (z)| = 1

2π

∫ 2π

0

Re (reiθ + z

reiθ − z

)
log
∣∣F (reiθ)

∣∣ dθ

=
1

2π

∫ 2π

0

Re (reiθ + z

reiθ − z

)
log
∣∣f(reiθ)

∣∣ dθ.for all z ∈ D(0, r) \ ({ak : 1 ≤ k ≤ n} ∪ {bk : 1 ≤ k ≤ m}). Sine
log |F (z)| = log |f(z)|+

n∑

k=1

log

∣∣∣∣
r2 − akz

r(z − ak)

∣∣∣∣ +
m∑

k=1

log

∣∣∣∣
r(z − bk)

r2 − bkz

∣∣∣∣ ,the assertion follows. 60



5. Let ν be a positive probability measure on X and f be a positive ν-integrablefuntion on X . Show that
exp

(∫

X

log f(x) dν(x)

)
≤
∫

X

f(x) dν(x).Solution. De�ne a real number y0 = ∫X f(x)dν(x), and hoose a = 1
y0

= ∂ log y
∂y

|y=y0and b = log y0. Then, beause log y is a onave funtion on the postitive real line,we have a(y − y0) + b ≥ log y for all y > 0 and a(y − y0) = log y0. Hene
exp

[∫

X

log f(x)dν(x)

]
≤ exp

[∫

X

a(f(x)− y0) + bdν(x)

]

= exp

[
a

(∫

X

f(x)dν(x)−
∫

X

y0dν(x)

)
+

∫

X

bdν(x)

]

= exp [a(y0 − y0 · 1) + b · 1]

= exp [log y0] = y0 =

∫

X

f(x)dν(x),beause ∫
X
dν(x) = 1 (ν is a propability measure).7. Jak's lemma1. Show that at those points for whih d logM(r, f)/d log r does not exist, the leftand right derivatives exist, and that the left derivative does not exeed the rightderivative. See [12, p. 21℄. Give a onrete example of an analyti funtion f in Dsuh that M(r, f) is not di�erentiable in the whole interval (0, 1).Solution. Let f : D → C be analyti and 0 < R1 < r1 < r < r2 < R2 < 1. Then

logM(r, f) ≤ log r2 − log r

log r2 − log r1
logM(r1, f) +

log r − log r1
log r2 − log r1

logM(r2, f)by Hadamard's three irles theorem. From this we have
logM(r, f) ≤ (log r2 − log r1)− (log r − log r1)

log r2 − log r1
logM(r1, f) +

log r − log r1
log r2 − log r1

logM(r2, f)

= (log r − log r1)
logM(r2, f)− logM(r1, f)

log r2 − log r1
+ logM(r1, f),and thus

logM(r, f)− logM(r1, f)

log r − log r1
≤ logM(r2, f)− logM(r1, f)

log r2 − log r1
.Similar alulation (write the oe�ient of logM(r2, f) as (log r2−log r1)−(log r2−log r)

log r2−log r1
)shows that

logM(r2, f)− logM(r1, f)

log r2 − log r1
≤ logM(r2, f)− logM(r, f)

log r2 − log r
.61



Now, in a similar way as in Exerise 2 in Chapter 3, we see that the funtion
F1(r) =

logM(r,f)−logM(r1,f)
log r−log r1

is bounded below and inreasing in some (r1, r1+ δ), andthe funtion F2(r) = logM(r2,f)−logM(r,f)
log r2−log r

is bounded above and inreasing in some
(r2 − δ, r2). Therefore the limits

lim
r→r+1

F1(r) =

(
d logM(r, f)

d log r

)

+

∣∣∣∣
r=r1

and lim
r→r−2

F2(r) =

(
d logM(r, f)

d log r

)

−

∣∣∣∣
r=r2both exist. Now we need to show that (d logM(r,f)

d log r

)
−

≤
(

d logM(r,f)
d log r

)
+
. But thisfollows by letting r1 → r− and r2 → r+, and we are done.We don't have a onrete example of an analyti funtion f in D suh that M(r, f)is not di�erentiable in the whole interval (0, 1).8. Phragmen-Lindelöf theorem and Lindelöf's theorem1. Let D ⊂ C be a simply onneted domain and f : D → C analyti. Supposethere exist bounded non-vanishing analyti funtions gk : D → C, k = 1, . . . , n, and

∂̂D = A ∪ B1 ∪ · · · ∪ Bn suh that:(a) lim supz→a |f(z)| ≤M for all a ∈ A;(b) lim supz→b |f(z)||gk(z)|η ≤M for all b ∈ Bk and η > 0.Show that |f(z)| ≤M for all z ∈ D.Solution. Let K > 0 suh that |gk(z)| ≤ K for all z ∈ D and k = 1, . . . , n. Sine Dis simply onneted, the lemma of the analyti logarithm shows that there exists ananalyti branh of log(gk) on D for every k = 1, . . . , n. Hene hk = exp(η log(gk))is an analyti branh of gηk for η > 0 and |hk| = |gk|η on D. De�ne F : D → C by
F (z) = f(z)

∏n
k=1 hk(z)K

−ηn. Then F is analyti on D and
|F (z) = |f(z)|

n∏

k=1

|gk(z)|ηK−ηn ≤ |f(z)|for all z ∈ D. But then, by the assumptions a) and b), F satis�es the hypothesis ofTheorem 1.6 with max{M,MK−η} in the plae of M :
lim sup

z→a

|F (z)| ≤ lim sup
z→a

|f(z)| ≤M, a ∈ A;and
lim sup

z→b

|F (z)| = lim sup
z→b

|f(z)|
n∏

k=1

|gk(z)|ηK−ηn

≤ lim sup
z→b

|f(z)|
n∏

k=1

|gk(z)|ηK−η

≤MK(n−1)ηK−η

=MK−η b ∈ Bk.62



when b ∈ ⋃n
k=1Bk. Hene

|f(z)| = |F (z)|∏n
k=1 |gk(z)|ηK−ηn

≤ max{M,MK−η}∏n
k=1 |gk(z)|ηK−ηnfor all z ∈ D. By �xing z ∈ D arbitrarily and letting η → 0+, we dedue |f(z)| ≤Mfor all z ∈ D.2. Let G = {z ∈ C : | Im z| < π/2} and suppose f : G → C is analyti and

lim supz→w |f(z)| ≤ M for all w ∈ ∂G. Also, suppose that there exist A > 0and a ∈ (0, 1) suh that
|f(z)| < exp(A exp(a|Re z|)), z ∈ G.Show that |f(z)| ≤M for all z ∈ G. Examine exp(exp z) to see that this is the bestpossible growth ondition. Can we make a = 1 above?Solution. 1. Let T = {z : | arg(z)| < π

2
} and g(z) = f(log z). Then g is analyti in

T , log(T ) = G and log(∂T \ {0}) = ∂G. Thus
lim sup
z→ω∈∂T

|g(z)| = lim sup
z→w∈∂G

|f(z)| ≤M ∀ω ∈ ∂T.Also there exists A > 0 and a ∈ (0, 1) suh that
|g(z)| = |f(log(z))| < exp(A exp[a|Re(log(z))|]) = expA|z|a < expA|z| ∀|z| ≥ 1.Corollary 8.3 implies f(z) ≤M ∀z ∈ G.Solution. 2. The result an also be dedued by using the Phragmen-Lindelöf the-orem: Let b ∈ (a, 1) and B = (cos

(
bπ
2

)
)−1 ∈ (0,∞), and onsider the funtion

g(z) = exp
(
−B

(
ebz + e−bz

)). Sine Re (ez + e−z) =
(
eRe z + e−Re z

)
cos Im z and

ex + e−x ≥ e|x| for all x ∈ R, we have
|g(z)| = exp

(
−B

(
ebRe z + e−bRe z

)
cos(b Im z)

)

≤ exp
(
−Beb|Re z| cos

(
b
π

2

))

= exp (− exp(b|Re z|))for all z ∈ G. Hene g is bounded in G, and
|f(z)||g(z)|η ≤ exp [A exp(a|Re z|)− η exp(b|Re z|)] → 0,as z → ∞, z ∈ G, for all η > 0. The assertion follows by Phragmen-Lindelöftheorem.Let f(z) = exp(exp z). Then |f(z)| = exp

(
eRe z cos Im z

)
= 1 for all z ∈ ∂G and

|f(z)| ≤ exp(exp(Re z)) ≤ exp(exp(|Re z|)) for all z ∈ G, but limz→∞,z∈R+ |f(z)| =
limx→∞ exp(ex) = ∞, so the result of the exerise does't hold. Hene the growthondition given is the best possible, and we an not make a = 1.63



3. Let G = {z ∈ C : Re z > 0} and let f : G → C be analyti suh that f(1) = 0and suh that lim supz→w |f(z)| ≤ M for all w ∈ ∂G. Also, suppose that for some
δ ∈ (0, 1) there exists P = P (δ) > 0 suh that

|f(z)| ≤ P exp
(
|z|1−δ

)
.Show that

|f(z)| ≤M

(
(1− x)2 + y2

(1 + x)2 + y2

) 1
2

, z = x+ iy.Hint: Consider f(z) = (1 + z)(1 − z)−1.Solution. Let
F (z) = f(z)

1 + z

1− z
.Then lim supz→w∈∂G |F (z)| ≤ M , beause lim supz→w∈∂G |f(z)| ≤ M . On the otherhand, |f(z)| ≤ P exp(|z|1−δ) for some δ ∈ (0, 1) by the hypothesis. Thus we obtain

|F (z)| ≤
∣∣∣1 + z

1− z

∣∣∣P exp(|z|1−δ) ≤ 1 + |z|
|1− |z||P exp(|z|1−δ) ≤ 3P exp(|z|1−δ),if z ∈ G and |z| > 2. Hene |F (z)| ≤ M in G by Corollary 8.2 and the assertionfollows.4. Prove Liouville's theorem: If f is an entire funtion suh that |f(z)| ≤ C|z|m forall |z| > R ∈ (0,∞) and for some onstants C,R ∈ (0,∞), then f is a polynomialwith deg(f) ≤ m.Solution. 1. Assume that the laim is true in ase m = 1. This is the traditionalLiouville's theorem. Let

g(z) =

{
f(z)−f(0)

z
, z 6= 0;

f ′(0), z = 0.If we an show that g is a polynomial and deg(g) ≤ m−1, we obtain the laim. Weknow that f(z) ≤ C|z|m, where C,R ∈ (0,∞) are onstants and |z| > R. Hene if
|z| is su�iently large, we obtain the inequality

|g(z)| ≤ A+B|z|m−1 < D|z|m−1,where A,B,D ∈ (0,∞) are onstants. Now g satis�es the assumptions of f with mreplaed by m− 1. By forming new funtions in analogous way, we an redue thelaim to the ase m = 1 where it is true. Thus f is a polynomial with deg(f) ≤ m.Solution. 2. Sine f is entire, its Malaurin series f(z) =
∑∞

k=0 akz
k, ak = f(k)(0)

k!
,onverges for all z ∈ C. Now, Cauhy's integral formula gives

|ak| =
∣∣∣∣
1

2π

∫

∂D(0,r)

f(ξ)

ξk+1
dξ

∣∣∣∣ ≤
1

2π

∫

∂D(0,r)

|f(ξ)|
|ξ|k+1

|dξ|

≤ 1

2π

∫

∂D(0,r)

C|ξ|m
|ξ|k+1

|dξ| = C

2π

∫

∂D(0,r)

rm−(k+1)|dξ| = Crm−k64



for all k ∈ N and r > R > 0. Hene, if k > m, we have |ak| ≤ limr→∞Crm−k = 0,and thus f is a polynomial of degree at most m.Solution. 3. Sine |f(z)| ≤ C|z|m for all |z| > R, we have |f(z)z−m| ≤ C for all
|z| > R. By substituting z = w−1 we get |f( 1

w
)wm| ≤ C for all w < 1

R
. Hene f( 1

w
)is analyti at w = 0 or has a pole of order n, n ≤ m, at w = 0. It follows that f isa polynomial with deg(f) ≤ m.5. Let 0 < r,R <∞ and f : D(a, r) → D(f(a), R) analyti. Show that

|f(a+ z)− f(a)| ≤ R

r
|z|, z ∈ D(0, r).Derive Liouville's theorem from this inequality. Have you seen this kind inequalitiesbefore?Solution. Sine f(D(a, r)) ⊂ D(f(a), R), |f(a+ z) − f(a)| ≤ R for all z ∈ D(0, r).Consider the funtion g : D → C,

g(z) =
f(a+ rz)− f(a)

R
.We see that g(0) = 0 and |g(z)| ≤ R

R
= 1 for all z ∈ D. Thus Shwarz lemma yields

|g(z)| ≤ |z| for all z ∈ D. Hene
|f(a+ z)− f(a)| ≤ R

r
|z|for all z ∈ D(0, r).To prove Liouville's theorem (every bounded entire funtion is onstant), supposethat f : C → C is entire and bounded. Then there exists R ∈ (0,∞) suh that

f(z) ∈ D(f(0), R) for all z ∈ C. Hene
|f(z)− f(0)| ≤ R

r
|z|, z ∈ D(0, r),for all r ∈ (0,∞). By letting r → ∞, we obtain f(z) = f(0) for all z ∈ C.6. For 0 < α < 1, de�ne

ηα(z) =

(
1+z
1−z

)α − 1(
1+z
1−z

)α
+ 1

, z ∈ D.Desribe ηα(D) geometrially and show that ηα is a onformal map of D onto ηα(D).By using this funtion derive a version of Corollary 8.4 for the unit dis.Solution. ηα(D) is a �lens� inside D with its verties at ηα(1) = 1 and ηα(−1) = −1,and with an angle of απ at them.Clearly 1+z
1−z

is a onformal map of D onto D1 = {z ∈ C : Re z > 0}, zα is aonformal map of D1 onto D2 = {z ∈ C \ {0} : | arg z| < απ
2
} ⊂ D1 (zα = eα log zhas an analyti branh by the lemma of analyti logarithm), and z−1

z+1
is a onformalmap of D1 onto D. Thus ηα is a onformal map of D onto ηα(D) ⊂ D.65



Version of Corollary 8.4 Suppose that f(z) → c ∈ C as z → ω ∈ T, z ∈ D, alongtwo irular ars entered at w ∈ C \ D and −w ∈ C (and interseting at ω). Let
D ⊂ D be the domain bounded by these ars. If f is analyti and bounded in D or
C \D, then f(z) → c uniformly as z → ω in D or C \D respetively.Proof. Let α ∈ (0, 1) suh that απ is the angle at ω formed by the irular arsbounding D. Then the funtion g(z) = 1+ωz

1−ωz
maps D onto the setor S+ = {z ∈

C\{0} : | arg z| < απ
2
} and C\D onto S− = C\S+. Hene h = f ◦g is bounded andanalyti in S+ or S− and h(z) → c as z → ∞ along the rays {z ∈ C : arg z = απ

2
}and {z ∈ C : arg z = −απ

2
}. Thus Corollary 8.4 implies h(z) → c uniformly as

z → ∞ in S+ or S− respetively, and hene f(z) → c uniformly as z → ∞ in D or
C \D.9. Gronwall-Bellman inequality with appliations to omplex ODEs1. Show that all zeros of solutions of (9.1) with analyti oe�ient A in D(0, R) aresimple. What an you say about the zeros of solutions of f (k)+Af = 0? Searh foronrete examples.Solution. Our observations are stated as Theorems 16.1 and 16.2 and as an example.Theorem 16.1. Consider the omplex linear di�erential equation

f ′′ + Af = 0. (16.2)where A is analyti in D(0, R). Let f be non-trivial solution of (16.2) in D(0, R).Now, all zeros of f are simple.Proof. By Theorem 9.2, if A is analyti in D(0, R), then all non-trivial solutions of(16.2) satisfy the pointwise estimate
|f(reiθ)| ≤ (|f ′(0)|R + |f(0)|) exp

(∫ r

0

|A(teiθ)|(r − t)dt

)
, θ ∈ [0, 2π), r ∈ (0, R).(16.3)(i) If f has a multiple zero in the origin, the right hand side of (16.3) is identiallyzero. Now f has to be identially zero, whih is a ontradition. Thus if f has azero at the origin, it must be simple.(ii) SineD(0, R) is open, we an make the same onlusion in every point ofD(0, R)by translation. Namely, let a ∈ D(0, R) arbitrary and S = R − |a| > 0 so that

a ∈ D(a, S) ⊂ D(0, R). De�ne f̃ , Ã : D(0, S) → C, f̃ = f(z + a), Ã = A(z + a).Now, sine Ã is analyti in D(0, S) and f̃ is a solution of (16.2) in D(0, S), Theorem
9.2 implies that f̃ satis�es the pointwise estimate
|f̃(reiθ)| ≤ (|f̃ ′(0)|S + |f̃(0)|) exp

(∫ r

0

|Ã(teiθ)|(r − t)dt

)
, θ ∈ [0, 2π), r ∈ (0, S).If f has a multiple zero at z = a, f̃ has a multiple zero at the origin and is identiallyzero by (16). Now f is identially zero, whih is a ontradition. 266



Theorem 16.2. Consider
f (k) + Af = 0, (16.4)where A is analyti in D(0, R) and k ∈ N. Let f be a non-trivial solution of (16.4).Now, all zeros of f are atmost of multipliity k − 1.Proof. Let a ∈ D(0, R) arbitrary. Now f(z) = (z − a)ng(z) in D(0, R) for some

n ∈ N0 and g analyti in D(0, R) suh that g(a) 6= 0. Let S = R − |a| so that
a ∈ D(a, S) ⊂ D(0, R). Now g has a power series presentation in the dis D(a, S),that is,

g(z) =

∞∑

j=0

aj(z − a)j,for some aj ∈ C, for all z ∈ D(a, S). Sine g(a) 6= 0, we have a0 6= 0. Now
f(z) =

∞∑

j=0

aj(z − a)n+jfor all z ∈ D(a, S) and
f (k)(z) =

∞∑

j=0

bj(z − a)n+j−k,where bj = (n+ j)(n+ j − 1) · · · (n+ j − (k − 1))aj, for all z ∈ D(a, S). Therefore
f (k)(z) = (z − a)n−kh(z),where h(z) =∑∞

j=0 bj(z − a)j. By (16.4) we have
A(z) = −f

(k)(z)

f(z)
=

1

(z − a)k
h(z)

g(z)for all z ∈ D(a, S). Sine A and g are analyti, h(z) has to have a zero atleast ofmultipliity k. Therefore, sine a0 6= 0 and b0 = 0, we have n(n−1) · · · (n−(k−1)) =
0. It follows that either n = 0 or n ∈ {1, 2, . . . , k − 1}. In the �rst ase f(a) 6= 0.In the seond ase f has a zero of order n ≤ k − 1 at z = a. 2Theorem 16.1 is a speial ase of Theorem 16.2 and an thus be proved by using thepower series argument in the proof of Theorem 16.2. On the other hand, Theorem16.2 an be proved by following the proof of Theorem 16.1 and using an estimatewhih is analogous to (16.3), if suh an estimate exists.Let f be as in Theorem 16.3. If f has a zero of order k we have in Theorem 16.3
S = 0. It follows that f is identially zero.Example. A non-trivial solution f of (16.4) with an analyti oe�ient A an havea zero of multipliity k − 1 when (16.4) is onsidered in a bounded domain D. Let

f(z) = z2k−1 + azk−1 = zk−1(zk + a),67



where a > 0. Now f has a zero of multipliity k − 1 at the origin. Moreover,
f (k)(z) =

(2k − 1)!

(k − 1)!
zk−1,so that

A(z) = −f
(k)(z)

f(z)
= −(2k − 1)!

(k − 1)!

1

zk + a
.Taking a > 0 large enough A is analyti in D. In partiular a may be hosen suhthat a pole of A belongs to ∂D.2. Generalize the assertion in Theorem 9.2 for the equation

f (k) + Ak−1f
(k−1) + · · ·+ A1f

′ + A0f = 0with analyti oe�ients in D(0, R). Can you use the reasoning also in the non-homogeneous ase (in whih the right hand side equals to an analyti funtion
Ak 6≡ 0 in D(0, R))?Solution. We will �rst state the results, and then provide the proofs. Bellow we usethe notation (j

n

)
= j!

n!(j−n)!
.Theorem 16.3. Suppose that f is a solution of f (k)+Ak−1f

(k−1)+. . .+A1f
′+A0f =

0 in D(0, R), where Aj is analyti in D(0, R) for all j. Then
∣∣f(reiθ)

∣∣ ≤ S exp

(∫ r

0

C(teiθ)dt

)
, θ ∈ [0, 2π), r ∈ (0, R),where

S =
k−1∑

j=0




j∑

n=0

j−n−1∑

m=0

(
j

n

)
∣∣∣(A(n)

j (0)f(0))(m)
∣∣∣

(k − j + n+m)!
Rk−j+n+m +

∣∣f (j)(0)
∣∣

j!
Rj


and

C(teiθ) =
k−1∑

j=0

j∑

n=0

(
j

n

) ∣∣∣A(n)
j (teiθ)

∣∣∣ (r − t)k−j+n−1

(k − j + n− 1)!
.The term (A

(n)
j (0)f(0))(m) above means funtions (A(n)

j f)(m) value at the orign. Inthe nonhomogeneous ase we obtain the following result.Theorem 16.4. Suppose that f is a solution of f (k)+Ak−1f
(k−1)+. . .+A1f

′+A0f =
Ak in D(0, R), where Aj is analyti in D(0, R) for all j and Ak 6≡ 0. Then
∣∣f(reiθ)

∣∣ ≤ B(reiθ)+

∫ r

0

B(seiθ)C(seiθ) exp

(∫ r

s

C(teiθ)dt

)
ds, θ ∈ [0, 2π), r ∈ (0, R),68



where
B(reiθ) =

∫ r

0

∣∣Ak(te
iθ)
∣∣ (r − t)k−1

(k − 1)!
dt

+

k−1∑

j=0




j∑

n=0

j−n−1∑

m=0

(
j

n

)
∣∣∣(A(n)

j (0)f(0))(m)
∣∣∣

(k − j + n +m)!
Rk−j+n+m +

∣∣f (j)(0)
∣∣

j!
Rj


and

C(teiθ) =

k−1∑

j=0

j∑

n=0

(
j

n

) ∣∣∣A(n)
j (teiθ)

∣∣∣ (r − t)k−j+n−1

(k − j + n− 1)!
.In the proofs of these two theorems, we use the following two Lemmas.Lemma 16.5. Let f and g be analyti in some domain. Then

gf (j) =

j∑

n=0

(−1)n
(
j

n

)
(g(n)f)(j−n).Proof. The ase j = 1 is a form of Leibniz rule, so suppose that the assertion holdsfor some j ∈ N. Then

gf (j+1) = (gf (j))′ − g′f (j)

=

(
j∑

n=0

(−1)n
(
j

n

)
(g(n)f)(j−n)

)′

−
j∑

n=0

(−1)n
(
j

n

)
(g(n+1)f)(j−n)

= (gf)(j+1) +

j∑

n=1

(−1)n
[(

j

n

)
+

(
j

n− 1

)]
(g(n)f)(j+1−n) + (−1)j+1g(j+1)f.Sine a simple alulation shows that (j

n

)
+
(

j

n−1

)
=
(
j+1
n

), the assertion follows byindution priniple. 2Lemma 16.6. Let g : (0, R) → R+ be integrable and 0 < t1 < t2 < . . . < tn < r <
R. Then ∫ r

0

∫ tn

0

· · ·
∫ t1

0

g(t)dtdt1 · · · dtn =

∫ r

0

g(t)
(r − t)n

n!
dt.Proof. It is known by Fubini's theorem that the assertion holds for n = 1, so69



suppose it holds for some n ∈ N. Then
∫ r

0

∫ tn+1

0

· · ·
∫ t1

0

g(t)dtdt1 · · · dtn =

∫ r

0

∫ tn+1

0

g(t)
(tn+1 − t)n

n!
dtdtn+1

=

∫ r

0

∫ r

0

g(t)
(tn+1 − t)n

n!
χ{t≤tn+1}(t)dtdtn+1

=

∫ r

0

g(t)

∫ r

0

(tn+1 − t)n

n!
χ{t≤tn+1}(tn+1)dtn+1dt

=

∫ r

0

g(t)

∫ r

t

(tn+1 − t)n

n!
dtn+1dt

=

∫ r

0

g(t)
(r − t)n

n!
dt,by Fubini's theorem. The assertion follows by indution priniple. 2Now we may prove the theorems above.Proof of Theorem 16.3. By applying the equality

f(z) =

∫ z

0

f ′(ξ)dξ + f(0), z ∈ D(0, R),

k times, we obtain
f(z) =

∫ z

0

∫ ξ1

0

· · ·
∫ ξk−1

0

f (k)(ξk)dξkdξk−1 · · · dξ1 +
k−1∑

j=0

f (j)(0)

j!
zj , z ∈ D(0, R).Thus, by using the ODE, we have

|f(z)| =
∣∣∣∣∣

∫ z

0

· · ·
∫ ξk−1

0

−
k−1∑

j=0

Aj(ξk)f
(j)(ξk)dξk · · · dξ1 +

k−1∑

j=0

f (j)(0)

j!
zj

∣∣∣∣∣

≤
k−1∑

j=0

∣∣∣∣
∫ z

0

· · ·
∫ ξk−1

0

Aj(ξk)f
(j)(ξk)dξk · · · dξ1

∣∣∣∣ +
k−1∑

j=0

∣∣f (j)(0)
∣∣

j!
Rj .70



By using Lemma 16.5, we may write the integrals as
∫ z

0

· · ·
∫ ξk−1

0

Aj(ξk)f
(j)(ξk)dξk · · · dξ1

=

∫ z

0

· · ·
∫ ξk−1

0

j∑

n=0

(−1)n
(
j

n

)
(A

(n)
j (ξk)f(ξk))

(j−n)dξk · · · dξ1

=

j∑

n=0

(−1)n
(
j

n

)∫ z

0

· · ·
∫ ξk−j+n−1

0

[
A

(n)
j (ξk−j+n)f(ξk−j+n)

−
j−n−1∑

m=0

(A
(n)
j (0)f(0))(m)

m!
zm

]
dξk−j+n · · · dξ1

=

j∑

n=0

(−1)n
(
j

n

)∫ z

0

· · ·
∫ ξk−j+n−1

0

A
(n)
j (ξk−j+n)f(ξk−j+n)dξk−j+n · · · dξ1

−
j−n−1∑

m=0

(A
(n)
j (0)f(0))(m)

(k − j + n+m)!
zk−j+n+m,so, by denoting

S =
k−1∑

j=0




j∑

n=0

j−n−1∑

m=0

(
j

n

)
∣∣∣(A(n)

j (0)f(0))(m)
∣∣∣

(k − j + n+m)!
Rk−j+n+m +

∣∣f (j)(0)
∣∣

j!
Rj


 ,we have

|f(z)| ≤
k−1∑

j=0

j∑

n=0

(
j

n

)∫ z

0

· · ·
∫ ξk−j+n−1

0

∣∣∣A(n)
j (ξk−j+n)

∣∣∣ |f(ξk−j+n)| |dξk−j+n| · · · |dξ1|+S.By setting z = reiθ and ξj = tje
iθ, Lemma 16.6 gives

∫ z

0

· · ·
∫ ξk−j+n−1

0

∣∣∣A(n)
j (ξk−j+n)

∣∣∣ |f(ξk−j+n)||dξk−j+n| · · · |dξ1|

=

∫ r

0

· · ·
∫ tk−j+n−1

0

∣∣∣A(n)
j (tk−j+ne

iθ)
∣∣∣
∣∣f(tk−j+ne

iθ)
∣∣ dtk−j+n · · · dt1

=

∫ r

0

∣∣∣A(n)
j (teiθ)

∣∣∣
∣∣f(teiθ)

∣∣ (r − t)k−j+n−1

(k − j + n− 1)!
dt,so

|f(reiθ)| ≤
∫ r

0

∣∣f(teiθ)
∣∣
k−1∑

j=0

j∑

n=0

(
j

n

) ∣∣∣A(n)
j (teiθ)

∣∣∣ (r − t)k−j+n−1

(k − j + n− 1)!
dt+ S.The assertion now follows by Gronwall-Bellman inequality. 271



Proof of Theorem 16.4. Similarly as in the proof of Theorem 16.3, we have
|f(z)| =

∣∣∣∣∣

∫ z

0

· · ·
∫ ξk−1

0

Ak(ξk)−
k−1∑

j=0

Aj(ξk)f
(j)(ξk)dξk · · ·dξ1 +

k−1∑

j=0

f (j)(0)

j!
zj

∣∣∣∣∣

≤
k−1∑

j=0

∣∣∣∣
∫ z

0

· · ·
∫ ξk−1

0

Aj(ξk)f
(j)(ξk)dξk · · ·dξ1

∣∣∣∣+
∣∣∣∣
∫ z

0

· · ·
∫ ξk−1

0

Ak(ξk)dξk · · · dξ1
∣∣∣∣

+

k−1∑

j=0

∣∣f (j)(0)
∣∣

j!
Rj.By Lemma 16.6 we have

∣∣∣∣
∫ z

0

· · ·
∫ ξk−1

0

Ak(ξk)dξk · · ·dξ1
∣∣∣∣ ≤

∫ r

0

· · ·
∫ tk−1

0

|Ak(tke
iθ)|dtk · · · dt1

=

∫ r

0

|Ak(tke
iθ)|(r − t)k−1

(k − 1)!
dt,so, the same alulations that we did in the proof of Theorem 16.3 now show that

∣∣f(reiθ)
∣∣ ≤ B(reiθ) +

∫ r

0

C(teiθ)
∣∣f(teiθ)

∣∣ dt.The assertion now follows by exerise 3. 23. Prove a generalization of the Gronwall-Bellman inequality in the ase when theassumption reads
u(x) ≤ c(x) +

∫ x

a

u(s)v(s) ds, x ∈ (a, b),where u, v, c : (a, b) → [0,∞) are integrable funtions. Can you simplify the asser-tion if c is non-dereasing?Solution. Suppose that
u(x) ≤ c(x) +

∫ x

a

u(s)v(s)ds, x ∈ (a, b), (16.5)where u, v, c : (a, b) → [0,∞) are integrable funtions. Then
u(x) ≤ c(x) +

∫ x

a

c(s)v(s) exp
(∫ x

s

v(r)dr
)
ds.Proof. Let

f(s) = exp
(
−
∫ s

a

v(r)dr
)∫ s

a

v(r)u(r)dr, f(a) = 0.72



Then
f ′(s) =

(
u(s)−

∫ s

a

v(r)u(r)dr
)
v(s) exp

(
−
∫ s

a

v(r)dr
)
. (16.6)Hene

f(x) ≤
∫ x

a

c(s)v(s) exp
(
−
∫ x

a

v(r)dr
)
ds. (16.7)by (11.2) and (11.3). Now, by de�nition of f and (11.4), we obtain

∫ x

a

v(s)u(s)ds = exp
(∫ x

a

v(r)dr
)
f(x)

≤
∫ x

a

c(s)v(s) exp
(∫ x

a

v(r)dr −
∫ s

a

v(r)dr
)
ds

≤
∫ x

a

c(s)v(s) exp
(∫ x

s

v(r)dr
)
ds.Thus the assertion follows by the previous inequality and the assumption (11.2).Suppose that c is non-dereasing. Then the earlier result implies that

u(x) ≤ c(x) +
[
− c(x) exp

( ∫ x

s

v(r)dr
)]∣∣∣

s=x

s=a

= c(x) exp
(∫ x

a

v(r)dr
)
.4. Disuss the sharpness of the growth estimate established in Theorem 9.2 by exam-ples.Solution. Let f(z) = f ′(z) = f ′′(z) = ez, where z ∈ D. If f ′′ + Af = 0 and

z = r ∈ (0, 1), then
er ≤ 2 exp

(∫ r

0

(r − t)dt
)
= 2 exp

(r2
2

)by the Gronwall-Bellman inequality. Let f(z) = 1
1−z

, z ∈ D. Then f satis�es
f ′′ − 2

(1−z)2
f = 0. Now f(0) = f ′(0) = 1, and if θ = arg z = 0, then |f(reiθ)| = 1

1−r
,and the inequality of Theorem 9.2 gets the form

1

1− r
≤ 2 exp

(∫ r

0

2(r − t)

(1− t)2
dt

)

= 2 exp(−2r − 2 log(1− r)) = 2e−2r 1

(1− r)2
.Let f(z) = e

1
1−z , z ∈ D. Then f satis�es f ′′ −

(
2

(1−z)3
+ 1

(1−z)4

)
f = 0. Now

f(0) = f ′(0) = e, and if θ = 0, the inequality of Theorem 9.2 holds in the form
e

1
1−r ≤ 2e−

4
3
r− 1

6 e
1

1−r e
1
6

1
(1−r)2 ,73



so
1 ≤ 2e−

4
3
r− 1

6 e
1
6

1
(1−r)2 .In every ase above, the right hand side of the inequality grows faster than the lefthand side, as r → 1−. Hene, it looks like the result of the Theorem 9.2 ould beimproved.10. Pseudohyperboli and hyperboli metris (brie�y)1. Show that (D, dh) is a omplete metri spae.Solution. By the letures, hyperboli distane between two points z and w in D is

dh(z, w) = inf

{∫

γ

2|dζ |
1− |ζ |2 =

∫ 1

0

2|γ′(t)|dt
1− |γ(t)|2 : γ pieewise C1 joining z and w}

= log
1 + dph(z, w)

1− dph(z, w)
= log

1 + |ϕz(w)|
1− |ϕz(w)|

.Let γ(a, b) denote a pieewise C1 urve whih is inside D and joins the points
a, b ∈ D. Let a, b, c ∈ D be arbitrary. Now

∫

γ(a,c)

2|dζ |
1− |ζ |2 =

∫

γ(a,b)

2|dζ |
1− |ζ |2 +

∫

γ(b,c)

2|dζ |
1− |ζ |2 .Therefore

inf

∫

γ(a,c)

2|dζ |
1− |ζ |2 ≤

∫

γ(a,b)

2|dζ |
1− |ζ |2 +

∫

γ(b,c)

2|dζ |
1− |ζ |2and moreover

inf

∫

γ(a,c)

2|dζ |
1− |ζ |2 ≤ inf

∫

γ(a,b)

2|dζ |
1− |ζ |2 + inf

∫

γ(b,c)

2|dζ |
1− |ζ |2 ,whih is equivalent to saying that

dh(a, c) ≤ dh(a, b) + dh(b, c).Thus, we have the triangle inequality for the hyperboli distane. Therefore, hyper-boli distane indeed is a metri.Let a, b, c ∈ D be arbitrary. By the triangle inequality for the hyperboli distanewe have
log

1 + dph(a, c)

1− dph(a, c)
≤ log

1 + dph(a, b)

1− dph(a, b)
+ log

1 + dph(b, c)

1− dph(b, c)
.By denoting x = dph(a, c), y = dph(a, b) and z = dph(b, c), we get

log
1 + x

1− x
≤ log

1 + y

1− y
+ log

1 + z

1− z
= log

1 + y

1− y

1 + z

1− z
.By taking the exponential from both sides, we get

1 + x

1− x
≤ 1 + y

1− y

1 + z

1− z
=: AB.74



Now, we an solve for x. By multiplying with 1− x, we get
1 + x ≤ AB − xABfrom whih we dedue
x(1 + AB) ≤ AB − 1whih gives

x ≤ AB − 1

1 + AB

=

(
1 + y

1− y

1 + z

1− z
− 1

)/(
1 +

1 + y

1− y

1 + z

1− z

)

=
(1 + y)(1 + z)− (1− y)(1− z)

(1− y)(1− z) + (1 + y)(1 + z)

=
1 + z + y + yz − 1 + z + y − yz

1− z − y + yz + 1 + z + y + yz)

=
2(y + z)

2(1 + yz)
=

y + z

1 + yz
.Realling the de�nition of x, y and z we get

dph(a, c) ≤
dph(a, b) + dph(b, c))

1 + dph(a, b)dph(b, c))
(16.8)for all a, b, c ∈ D. This is known as the strong form of triangle inequality for thepseudohyperboli metri. We see that the pseudohyperboli metri satis�es thetriangle inequality. Thus, the pseudohyperboli metri is indeed a metri.Let {zn} ⊂ D be a Cauhy sequene with respet to distane dh. Then it is bounded,that is, there exists R ∈ (0,∞) suh that dh(0, zn) ≤ R for all n ∈ N. Sine

dh(0, zn) = log 1+|zn|
1−|zn| , we have |zn| ≤ ρ := eR−1

eR+1
< 1 for all n ∈ N. By Bolzano-Weierstrass theorem the bounded sequene {zn} has a onverging subsequene withrespet to the standard metri inC. That is, there is a ξ ∈ D(0, ρ) and a subsequene

{znk
} suh that znk

→ ξ as k → ∞ in (C, | · |). Now,
dh(ξ, znk

) = inf

∫

γ(ξ,znk
)

2|dz|
1− |z|

≤ 2

∫

[ξ,znk
]

|dz|
1− |z|

≤ 2

1− ρ

∫

[ξ,znk
]

|dz|

=
2

1− ρ
|ξ − znk

| → 0,as k → ∞. We see that znk
→ ξ in dh and thus Cauhy sequene {zn} onverges to

ξ in dh. Thus (D, dh) is a omplete metri spae.75



2. Show that there exists C = C(r) > 0 suh that C−1(1− |a|) ≤ |1− az| ≤ C(1− |a|)for all z ∈ ∆ph(a, r) and a ∈ D.Solution. Obviously
|1− az| ≥ 1− |a||z| ≥ 1− |a| ≥ 1− |a|

Cfor all C ≥ 1, so it su�es to prove the other inequality. If z ∈ ∆ph(a, r), then thereexists w ∈ D(0, r) suh that z = ϕa(w). Therefore
|1− az| = |1− aϕa(w)| =

1− |a|2
|1− aw| ≤

2(1− |a|)
1− r

,and the assertion follows.We an also dedue the seond inequality from Lemma 10.3. Namely, if |ϕa(z)| < r,then
(1− |z|2)(1− |a|2)

|1− az|2 = 1− |ϕa(z)| > 1− r,and so by Lemma 10.3,
|1− az|2 < 1

1− r
(1− |z|2)(1− |a|2)

<
4

1− r
(1− |z|)(1− |a|)

<
4K

1− r
(1− |a|)2for some onstant K(r) ≥ 1

4
. Hene,

|1− az| <
√

4K

1− r
(1− |a|) := C(r)(1− |a|)and the assertion follows.3. Let 0 < p <∞, n ∈ N∪{0} and r ∈ (0, 1). Show that there exists C = C(p, n, r) > 0suh that

|f (n)(z)|p ≤ C

(1− |z|)2+np

∫

∆ph(z,r)

|f(w)|p dA(w), z ∈ D.for all z ∈ D for all f ∈ H(D).Solution. Let 0 < p <∞ and let �rst n = 0. Sine |f |p is subharmoni,
|f(0)|p ≤ 1

2π

∫ 2π

0

|f(reiθ)|pdθ76



for all r ∈ (0, 1). Let f = g ◦ ϕa for some a ∈ D. Now
|g(a)|p .

∫

D(0,r)

|g(ϕa(z))|pdA(z)

=

∫

D(0,r)

|g(ϕa(z))|p|ϕ′
a(z)|

|1− az|4
(1− |a|2)2dA(z). (16.9)Here |1− az|4 ≤ 24 = 16 and 1− |a| ≤ 1− |a|2 ≤ 2(1− |a|). Thus we have

|g(a)|p . 1

(1− |a|)2
∫

D(0,r)

|g(ϕa(z))|p|ϕ′
a(z)|2dA(z)

=
1

(1− |a|)2
∫

∆ph(a,r)

|g(ξ)|pdA(ξ). (16.10)This is the assertion for n = 0.Consider now the dilatation funtion gs(z) = g(sz), where s ∈ (0, 1). Obviously,
gs

‖gs‖H∞

∈ H(D) and ∥∥∥∥
gs

‖gs‖H∞

∥∥∥∥
H∞

= 1,and hene we may apply Shwarz-Pik theorem to the funtion gs/‖gs‖H∞ to dedue
|g′s(0)|(1− 02) ≤ ‖gs‖H∞

(
1−

∣∣∣∣
g(0)

‖gs‖H∞

∣∣∣∣
2
)

≤ ||gs||H∞ . (16.11)Sine gs(z) = g(sz), we have g′s(z) = g′(sz)s, and equation (16.11) yields |g′s(0)| ≤
‖gs‖H∞ . This together with (16.10) gives

|g′(0)|p ≤ ‖gs‖pH∞

sp
≤ C(ρ)

sp
max
|z|≤s

1

(1− |z|)2
∫

∆ph(z,ρ)

|g(w)|p dA(w) (16.12)for all 0 < s, ρ < 1. Let now r ∈ (0, 1) be given. Choose s and ρ small enough sothat ∆(z, ρ) ⊂ D(0, r) for all z ∈ D(0, s). Then (16.12) gives
|g′(0)|p ≤ C(r)

∫

D(0,r)

|g(w)|p dA(w).By replaing g by f ◦ ϕa we get
|f ′(a)|(1− |a|2)p ≤ C(r)

∫

∆ph(a,r)

|f(ϕa(w))|pdA(w),from whih a hange of variable (see (16.10)) yields
|f ′(a)|p . 1

(1− |a|)p+2

∫

∆ph(a,r)

|f(z)|p dA(z).By ontinuing this proedure we obtain the general ase
|f (n)(a)|p . 1

(1− |a|)np+2

∫

∆ph(a,r)

|f(z)|p dA(z).See [8, Lemma 2.1℄. 77



11. Julia's lemma and Julia-Carathéodory theorem1. Show that E(k, ζ) = {z ∈ D : |ζ − z|2 ≤ k(1 − |z|2)} is a losed dis internallytangent to the unit irle T at ζ with enter ζ

1+k
and radius k

k+1
.Solution. Way 1. Let ζ ∈ T and k > 0 be arbitrary. Now z ∈ E(k, ζ) if and onlyif

|ζ − z|2 ≤ k(1− |z|2).By writing z = ζw we get
|ζ(1− w)|2 ≤ k(1− |ζw|2)so that
|1− w|2 ≤ k(1− |w|2).Now, sine |α + β|2 = |α|2 + |β|2 + 2Re(αβ), for all α, β ∈ C, we get

1− 2Re(w) + |w|2 ≤ k − k|w|2.By rearranging terms we get
−2Re(w) + (k + 1)|w|2 ≤ k − 1.By dividing with k + 1 we obtain
−2Re

(
1

k + 1
w

)
+ |w|2 ≤ k − 1

k + 1
.By adding 1

(k+1)2
on both sides we get

(
1

k + 1

)2

− 2Re

(
1

k + 1
w

)
+ |w|2 ≤ k − 1

k + 1
+

1

(k + 1)2whih gives ∣∣∣∣
1

k + 1
− w

∣∣∣∣
2

≤
(

k

k + 1

)2

.Realling that z = ζw we get
∣∣∣∣z −

ζ

k + 1

∣∣∣∣
2

≤
(

k

k + 1

)2

.Thus
E(k, ζ) = D

(
ζ

k + 1
,

k

k + 1

)
.Moreover, this losed dis is internally tangent to the unit irle T at ζ .Way 2. We an dedue the assertion by using the following result.78



Lemma 16.7. The Eulidean irle given by the equation
α|z|2 + βz + βz + y = 0,where α, y ∈ R, β ∈ C, α 6= 0 and |β|2 > αy has enter −β/α and radius

(
√
|β|2 − αy)/|α|.Proof. Set w = az + b, so z = (w − b)/a, a 6= 0. Then
α|z|2 + βz + βz + y =

α

|a|2 (w − b)(w − b) +
β

a
(w − b) +

(β
a

)
(w − b) + y

=
α

|a|2
∣∣∣w +

βa

α
− b
∣∣∣
2

+ y − |β|2
α

= 0,and so
∣∣∣1
a
(w − b) +

β

α

∣∣∣ =
∣∣∣z + β

α

∣∣∣ = 1

|α|
√

|β|2 − αy.Thus the assertion follows. 2Now we may dedue the assertion by hoosing α = k + 1, β = −ζ and y = 1− k inLemma 16.7. By doing this we see that |z− ζ |2 = |z|2 +1− ζz− ζz = k(1− |z|2) isthe Eulidean disk with enter ζ/(k + 1) and radius k/(k + 1). On the other handif |z| = 1, then k(1− |z|2) = 0 = |ζ − z|2, and so ζ = z. Hene the assertion follows.2. Prove the statement related to the equality in Julia's Lemma.Solution. Suppose that
|η − ϕ(z0)|2
1− |ϕ(z0)|2

= d(ζ)
|ζ − z0|2
1− |z0|2for some z0 ∈ D. Beause d(ζ) ∈ (0,∞), we may write the inequality of Julia'slemma as

1

d(ζ)

1− |z|2
|ζ − z|2 − 1− |ϕ(z)|2

|η − ϕ(z)|2 ≤ 0, z ∈ D.By notiing that
1− |z|2 = Re(1− |z|2 + i2Im(ζz)) = Re(ζζ − zz + ζz − ζz)

= Re((ζ + z)(ζ − z)),we see that
Re

(
1

d(ζ)

ζ + z

ζ − z
− η + ϕ(z)

η − ϕ(z)

)
=

1

d(ζ)

1− |z|2
|ζ − z|2 − 1− |ϕ(z)|2

|η − ϕ(z)|2 ≤ 079



for all z ∈ D. Sine equality holds at z0 ∈ D, the maximum priniple for harmonifuntions implies that equality holds for all z ∈ D, and the open mapping theoremthen gives
1

d(ζ)

ζ + z

ζ − z
− η + ϕ(z)

η − ϕ(z)
= ic, z ∈ D,for some onstant c ∈ R. By solving ϕ(z) we get

ϕ(z) = η

(
1

d(ζ)

ζ + z

ζ − z
− 1− ic

)/(
1

d(ζ)

ζ + z

ζ − z
+ 1− ic

)

= λ
z − w

1− wz
,where

λ = ηζ
d(ζ) + 1 + icd(ζ)

d(ζ) + 1− icd(ζ)
and w = ζ

d(ζ)− 1 + icd(ζ)

d(ζ) + 1 + icd(ζ)
.Sine learly |λ| = 1 and |w| < 1 (|d(ζ)− 1| < d(ζ) + 1), we dedue that ϕ is anautomorphism of D.3. For 1 < p, α < ∞ and ζ ∈ T, denote Γp(ζ, α) = {z ∈ D : |z − ζ |p < α(1 − |z|)}.How the set Γp(ζ, α) hanges when p and α hange? Show that if 0 < δ < α−1 and

|λ| ≤ δ|ζ − z|p, then
z + λ ∈ Γp(ζ, β), β =

2p−1(α + δpαp)

1− δα
.Hint: Show �rst that (x+ y)p ≤ 2p−1(xp + yp) for all p > 1 and x, y ≥ 0, and thenimitate the proof of Lemma 11.8 to ahieve the statement.Solution. Now, Γp(ζ, α) is an open simply onneted subset of D. Here Γp(ζ, α) ∩

T = ζ . Also Γp(ζ, α) is symmetrial with respet to the line {ζt : t ∈ R}. Also
∂Γp(ζ, α) \ {ζt : t ∈ R} onsists of two smooth simple urves.Let ∂Γp(ζ, α) ∩ {ζt : t ∈ R} = {ζ, β}. As α inreases the 'angle' of Γp(ζ, α) at ζinreases and ∂Γp(ζ, α) beomes 'smoother' at β. As p inreases ∂Γp(ζ, α) beomes'smoother' at ζ . See Figure 1 (if Figure 1 is absent, its in Appendies).Lemma 16.8. The inequality

(x+ y)p ≤ 2p−1(xp + yp) (16.13)holds for all p > 1 and x, y ≥ 0.Proof. If x = 0 or y = 0, then the statement is trivially valid, so we may supposethat 0 < y ≤ x. The inequality (16.13) an be written in the form
(x
y
+ 1
)p

≤ 2p−1
[(x
y

)p
+ 1
]
.80



Figure 1: Sets Γp(1, α) (blak) for ζ = 1 and some di�erent α and p in D (gray diss)
81



Therefore it su�es to show that
f(t) = 2p−1(tp + 1)− (t + 1)pis non negative for all t ≥ 1. To see this it is enough to note that f(1) = 0 and

f ′(t) = p((2t)p−1 − (t + 1)p−1) ≥ 0for all t ≥ 1. The assertion follows. 2Now we an give a solution to Exerise 3. Suppose that 0 < δ < α−1, |λ| ≤ δ|ζ− z|pand z ∈ Γp(ζ, α). Then, by Lemma 16.6 and the triangle inequality, we obtain
|z + λ− ζ |p ≤ 2p−1(|z − ζ |p + |λ|p)

≤ 2p−1(α(1− |z|) + δpαp(1− |z|)p)
≤ 2p−1(1− |z|)(α+ δpαp)and 1− |z + λ| ≥ 1− |z| − |λ| ≥ 1− |z| − δα(1− |z|) = (1− |z|)(1− δα). Hene,

|z + λ− ζ |p ≤ 2p−1(1− |z|)(α + δpαp)

≤ 2p−1α+ δpαp

1− δα
(1− |z + λ|),and so z + λ ∈ Γp(ζ, β).4. Let zn ∈ D suh that |zn| → 1−, as n → ∞, and limn→∞

1−|zn|
|1−zn| = 1. Show that

arg(1− zn) → 0, as n→ ∞.Solution. First observe that zn → 1 as n→ ∞. Suppose that | arg(1− zn)| 6→ 0, as
n → ∞. Then, by passing to a subsequene if neessary, we �nd α > 1 suh that
zn /∈ Γ(1, α) for all n su�iently large. Thus

1− |zn|
|1− zn|

≤ 1− |zn|
α(1− |zn|)

=
1

αfor all n su�iently large, and hene
lim
n→∞

1− |zn|
|1− zn|

≤ 1

α
< 1whih is a ontradition.5. Let ν be a probability measure, 0 < p, q < ∞ and let f be positive ν-integrablefuntion. Use Hölder's inequality to show that

(∫
dν

f p

)− 1
p

≤
(∫

f q dν

) 1
q

.82



Solution. Let f be positive ν-integrable funtion. Then, sine p+q

q
, p+q

p
> 1 and

1/p+q

q
+ 1/p+q

p
= 1, Hölder's inequality gives

1 =

∫
dν =

∫ (
f

f

) pq
p+q

dν

≤



∫

dν
(
f

pq
p+q

)p+q
q




q
p+q (∫ (

f
pq
p+q

) p+q
p

dν

) p
p+q

=

[(∫
dν

f p

) 1
p
(∫

f qdν

) 1
q

] pq
p+q

.The assertion follovs by taking the power of p+q

pq
on both sides and then dividing by

(∫
dν
fp

) 1
p .12. Shwarz-Pik theorem for hyperboli derivative1. Disuss the general question of when equality in (12.1) holds for some �xed z ∈ D.Is it true that equality holds for eah z ∈ D if and only if ϕ(z) = z2?Solution. The equality in (12.1) holds at least for all funtions ϕ(z) = λz2, where

λ ∈ T; ϕ′(z) = λ2z,
ϕ∗(z) = λ2z

1− |z|2
1− |λz2|2 =

λ2z

1 + |z|2 ,and thus
dh(ϕ

∗(0), ϕ∗(z)) = dh(0, ϕ
∗(z)) = log

1 +
∣∣∣ λ2z
1+|z|2

∣∣∣

1−
∣∣∣ λ2z
1+|z|2

∣∣∣

= log

(
1 + |z|
1− |z|

)2

= 2dh(0, z).Let z ∈ D, and suppose that equality in (12.1) holds for funtion ϕ. Then
log

1 + dph(ϕ
∗(0), ϕ∗(z))

1− dph(ϕ∗(0), ϕ∗(z))
= 2 log

1 + |z|
1− |z| ,and thus

(1− |z|)2(1 + dph(ϕ
∗(0), ϕ∗(z))) = (1 + |z|)2(1− dph(ϕ

∗(0), ϕ∗(z))),whih is equivalent to
dph(ϕ

∗(0), ϕ∗(z))) =
2|z|

1 + |z|2 . (16.14)83



If we suppose that (16.14) holds, then
dh(ϕ

∗(0), ϕ∗(z)) = log
1 + 2|z|

1+|z|2

1− 2|z|
1+|z|2

= 2dh(0, z).Hene we see that (16.14) is neessary and su�ient ondition for equality in (12.1)to hold at point z.13. Bloh-Landau theorem and Bloh's theorem1. Let f be analyti in D suh that f(0) = 0, f ′(0) = 1 and |f(z)| ≤ M ∈ (0,∞) forall z ∈ D. Prove that M ≥ 1. This shows that the dis D (0, 1
2(M+1)

) appearing inthe statement of Lemma 13.2 is ontained in D(0, 1/4).Hint: pik the solution from the proof of Lemma 13.4.Solution. Let 0 < r < 1 and
f(z) = z + a2z

2 + . . . .Aording to Cauhy's estimate
|an| ≤

M

rnfor all n ∈ N. So 1 = a1 ≤ M .2. Transform the statement of Lemma 13.2 to the ase in whih f is analyti in D suhthat f(0) = 0, f ′(0) = a ∈ C \ {0} and |f ′(z)| ≤M ∈ (0,∞) for all z ∈ D.Solution. Let f be analyti in D suh that f(0) = 0, f ′(0) = a ∈ C \ {0} and
|f ′(z)| ≤ M ∈ (0,∞) ∀z ∈ D. If g(z) := f(z)

a
, then g is analyti in D, g(0) = 0,

g′(0) = 1 and |g′(z)| ≤ M
|a| ∈ (0,∞) ∀z ∈ D. Now Lemma 13.3 implies that

D

(
0, 1

2( M
|a|

+1)

)
⊂ g(D) = f(D)

a
, and thus

D

(
0,

|a|2
2(M + |a|)

)
⊂ f(D).3. Let f : D(a, r) → C be analyti suh that |f ′(z) − f ′(a)| < |f ′(a)| for all z ∈

D(a, r) \ {a}. Show that f is univalent in D(a, r).Solution. Let z1, z2 ∈ D(a, r), z1 6= z2. Then
|f(z1)− f(z2)| =

∣∣∣∣
∫

[z1,z2]

f ′(z)dz

∣∣∣∣

≥
∣∣∣∣
∫

[z1,z2]

f ′(a)dz

∣∣∣∣−
∣∣∣∣
∫

[z1,z2]

(f ′(z)− f ′(a))dz

∣∣∣∣

≥ |f ′(a)||z1 − z2| −
∫

[z1,z2]

|f ′(z)− f ′(a)|dz| > 0by the hypothesis and so f is univalent in D(a, r).84



14. Shottky's theorem1. Show that every dis of radius 10 ontains at least one of the points
an,m = log(

√
n±

√
n− 1) + 2πim, n ∈ N, m ∈ Z.Solution. Let n ∈ N and m ∈ Z be arbitrary, and denote

a+n,m = log(
√
n+

√
n− 1) + 2πimand

a−n,m = log(
√
n−

√
n− 1) + 2πim.It su�es to show that |a+n,m − a+n+1,m+1| < 10, |a−n,m − a−n+1,m+1| < 10 and |a+1,m −

a−1,m+1| < 10. The last one is trivial, sine
|a+1,m − a−1,m+1| = |i2π(m− (m+ 1))| = 2π < 10.To prove the �rst one, write
|a+n,m − a+n+1,m+1| =

∣∣∣∣log
√
n+

√
n− 1√

n + 1 +
√
n
− i2π

∣∣∣∣

≤ log

√
n+ 1 +

√
n√

n+
√
n− 1

+ 2π.Now
1 <

√
n+ 1 +

√
n√

n +
√
n− 1

≤
√
2 + 1 < e10−2π(if g(x) = √

x+1+
√
x√

x+
√
x−1

, then
g′(x) =

(
1

2
√
x+1

+ 1
2
√
x

)
(
√
x+

√
x− 1)− (

√
x+ 1 +

√
x)
(

1
2
√
x
+ 1

2
√
x−1

)

(
√
x+

√
x− 1)2

< 0,so g(x) ≤ g(1) for all x ≥ 1). Thus |a+n,m − a+n+1,m+1| < log e10−2π + 2π = 10.Similarly
|a−n,m − a−n+1,m+1| =

∣∣∣∣log
√
n−

√
n− 1√

n+ 1−√
n
− i2π

∣∣∣∣

≤ log

√
n−

√
n− 1√

n+ 1−√
n
+ 2π.Sine

√
n−

√
n− 1√

n+ 1−√
n
=

(√
n−

√
n− 1√

n + 1−√
n

√
n+

√
n− 1√

n+ 1 +
√
n

) √
n+ 1 +

√
n√

n+
√
n− 1

=

√
n+ 1 +

√
n√

n +
√
n− 1

,the alulation done above shows that |a−n,m− a−n+1,m+1| < log e10−2π +2π = 10, andwe are done. 85



2. Let z ∈ D and let H be an analyti funtion in D suh that H ′(z) 6= 0 for all z ∈ D.Show that the range of the funtion
h(ξ) =

H(ξ)−H(z)

H ′(z)
, ξ ∈ D(z, 1− |z|),overs a dis of radius 1−|z|

13
for all z ∈ D.Solution. Let z ∈ D be arbitrary. Consider the funtion

f(ξ) =
h (ξ(1− |z|) + z)

1− |z| =
H (ξ(1− |z|) + z)−H(z)

(1− |z|)H ′(z)
, ξ ∈ D.Then f is analyti in D and

f ′(ξ) =
H ′ (ξ(1− |z|) + z) (1− |z|)

(1− |z|)H ′(z)
=
H ′ (ξ(1− |z|) + z)

H ′(z)
,and so f ′(0) = 1. Thus, by the proof of Bloh-Landau theorem, the range of fontains a dis of radius 1

13
. Hene, the range of h ontains a dis of radius 1−|z|

13
.15. Piard's theorems1. Let D be a simply onneted domain and suppose that f is an analyti funtionon D whih does not attain the values 0 or 1. Show that there exists ana analytifuntion g on D suh that f = − exp(iπ cosh(2g)) in D. Hint: Chek the proof ofShottky's theorem.Solution. By Piard's little theorem, D 6= C if f is non-onstant. Hene we anwithout loss of generality suppose that D = D, and so the assumptions of Shottky'stheorem hold. On the other hand, by the proof of the Shottky's theorem, thereexists g ∈ H(D) suh that

log f =
πi

2
(e2g + 2 + e−2g),and so

f = exp

(
πi

2
(e2g + 2 + e−2g)

)
= − exp

(
iπ
e2g + e−2g

2

)
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