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Abstra
tThis 
ourse was given in June-De
ember 2013 in University of Eastern Finland inorder to 
omplete earlier 
ourses Complex Analysis I and Riemann mapping theoremand the Diri
hlet problem (spring 2013) on 
omplex analysis.1. Maximum modulus prin
iple (on
e more)Re
all several fa
ts on maximum modulus of analyti
 fun
tions.Theorem 1.1 (Maximum modulus prin
iple for analyti
 fun
tions). Let
f : D → C be analyti
 in a domainD ⊂ C. If there exists z0 ∈ D su
h that |f(z)| ≤ |f(z0)|for all z ∈ D, then f is 
onstant.There are several ways to prove this result. One of them is to rely on the open mappingtheorem.Theorem 1.2 (Open mapping theorem for analyti
 fun
tions). If f : D → C isa non-
onstant analyti
 fun
tion in a domain D, then the set f(D) = {f(z) : z ∈ D} isopen.Theorem 1.1 has the following immediate 
onsequen
e (here we do not have to assumethe 
onne
tedness).Corollary 1.3. Let f : U → C be analyti
 in a bounded open set U and 
ontinuous inits 
losure U . Then |f | attains its maximum on the boundary ∂U .A lo
al version of Theorem 1.1 is stated next. This result is dedu
ed by 
onsideringa small open neighborhood of z0 and applying the theorem there. The 
onne
tedness isessential here.Theorem 1.4. Let f : D → C be analyti
 in a domain D ⊂ C. If there exists z0 ∈ Dsu
h that the fun
tion |f | has a lo
al maximum in z0, then f is 
onstant.It is worth noti
ing that the modulus of an analyti
 fun
tion may attain its globalminimum in an interior point of a domain; the fun
tion f(z) = z2 satis�es 0 = |f(0)| ≤
|f(z)| for all z in the unit dis
. However, this example falls into the the only possible
lass of examples as the following proposition shows.Proposition 1.5. Let f : D → C\{0} be analyti
 in a domain D. If there exists z0 ∈ Dsu
h that |f(z0)| ≤ |f(z)| for all z ∈ D, then f is 
onstant.We now prove one more version of the maximum modulus prin
iple. For this we needto �x notation.Let G ⊂ C, ϕ : G → R a fun
tion and z0 ∈ G or z0 = ∞ (the 
omplex in�nity). Thelimit superior of ϕ(z) as z approa
hes z0, denoted by lim supz→z0

ϕ(z), is de�ned by
lim sup
z→z0

ϕ(z) = lim
r→0+

sup{ϕ(z) : z ∈ G ∩D(z0, r)}.3



If z0 = ∞, then D(z0, r) is a dis
 in the standard metri
 of the extended 
omplex plane
Ĉ = C ∪ {∞} (on the Riemann sphere). Similarly, limit inferior of ϕ(z) as z approa
hes
z0, denoted by lim infz→z0 ϕ(z), is de�ned by

lim inf
z→z0

ϕ(z) = lim
r→0+

inf{ϕ(z) : z ∈ G ∩D(z0, r)}.It is easy to see that limz→z0 ϕ(z) exists and is equal to α if and only if lim infz→z0 ϕ(z) =
α = lim supz→z0

ϕ(z).If G ⊂ C, then the extended boundary ∂̂G of G is the boundary of G in Ĉ. Clearly,
∂̂G = ∂G if G is bounded in C, for otherwise ∂̂G = ∂G ∪ {∞}.Theorem 1.6. Let f : D → C be analyti
 in a domain D ⊂ C. If there exists M > 0su
h that

lim sup
z→z0

|f(z)| ≤Mfor all z0 ∈ ∂̂D, then |f(z)| ≤M for all z ∈ D.Proof. It su�
es to show that the set U = {z ∈ D : |f(z)| > M + δ} is empty for any�xed δ > 0. Sin
e |f | is 
ontinuous, U is open. Sin
e lim supz→z0
|f(z)| ≤ M for ea
h

z0 ∈ ∂̂D, there exists r = r(z0) > 0 su
h that |f(z)| < M + δ for all z ∈ D ∩ D(z0, r).Hen
e U ⊂ D. Sin
e this holds also if D is unbounded and z0 = ∞, U must be bounded.Thus, U is 
ompa
t by the Heine-Borel theorem. Now Corollary 1.3 applies. But, for
z ∈ ∂U , we have |f(z)| = M + δ if f is not 
onstant, sin
e U ⊂ {z : |f(z)| ≥ M + δ}.Therefore U = ∅ or f is 
onstant. But the assumption implies U = ∅ if f is 
onstant. 2Exer
ises1. Let D be a bounded domain and suppose that f is 
ontinuous on D and analyti
on D. Show that if there exists a 
onstant c ≥ 0 su
h that |f(z)| = c for all z ∈ ∂D,then either f is a 
onstant fun
tion or f has a zero.2. Let f be entire and non-
onstant, and let c > 0. Show that the 
losure of {z :

|f(z)| < c} is the set {z : |f(z)| ≤ c}.3. Let p be a non-
onstant polynomial and c > 0. Show that ea
h 
omponent of
{z : |p(z)| < c} 
ontains a zero of p.4. Let p be a non-
onstant polynomial and c > 0. Show that {z : |p(z)| = c} is a �niteunion of 
losed paths. Dis
uss the behavior of these paths as c→ ∞.5. Let f and g be analyti
 on D(0, r) with |f(z)| = |g(z)| for |z| = r. Show that ifneither f nor g vanishes in D(0, r), then there exists a 
onstant λ ∈ T su
h that
f = λg. 4



2. S
hwarz lemma and Borel-Carathéodory inequalityRe
all the result known as the S
hwarz lemma.Proposition 2.1 (S
hwarz lemma). Let f : D → C be analyti
 su
h that(i) |f(z)| ≤ 1 for all z ∈ D;(ii) f(0) = 0.Then |f(z)| ≤ |z| for all z ∈ D and |f ′(0)| ≤ 1.Moreover, if |f(z)| = |z| for some z ∈ D \ {0} or |f ′(0)| = 1, then f is a rotation:
f(z) = αz for all z ∈ D and for some α ∈ T.If f : D(0, R) → C is analyti
 su
h that |f(z)| ≤ M for all z ∈ D(0, R) and f(0) = 0,then S
hwarz lemma yields

|f(z)| ≤ M |z|
R

, z ∈ D(0, R). (2.1)Proposition 2.2 (Borel-Carathéodory inequality). Let f : D(0, R) → C be ana-lyti
, and denote M(r, f) = max|z|=r |f(z)| and A(r, f) = max|z|=r Re f(z) for 0 < r ≤ R.Then
M(r, f) ≤ 2r

R− r
A(R, f) +

R + r

R− r
|f(0)|, 0 < r < R.Proof. If f is a 
onstant, then the assertion is trivially true. If f is non-
onstant, assume�rst that f(0) = 0, and 
onsider the fun
tion

g(z) =
f(z)

2A(R, f)− f(z)
, z ∈ D(0, R).Now Re (2A(R, f)− f(z)) = 2A(R, f)− Re f(z) ≥ 2A(R, f)− A(|z|, f) ≥ A(R, f) > 0by the maximum modulus prin
iple of harmoni
 fun
tions. Hen
e g is analyti
 in D(0, R)with g(0) = 0. Moreover,

|g(z)|2 = u(z)2 + v(z)2

(2A(R, f)− u(z))2 + v(z)2
≤ 1,be
ause −2A(R, f)+u(z) ≤ u(z) ≤ 2A(R, f)−u(z) in D(0, R) by the maximum modulusprin
iple of harmoni
 fun
tions. Therefore (2.1) applies and gives |g(z)| ≤ r/R. This isequivalent to

|f(z)| =
∣∣∣∣
2A(R, f)g(z)

1 + g(z)

∣∣∣∣ ≤
2A(R, f) r

R

1− r
R

=
2A(R, f)r

R− r
, 0 < r = |z| < R,and the stated result is proved in the 
ase f(0) = 0. If f(0) 6= 0, then apply the resultalready obtained to f − f(0). Then

|f(z)− f(0)| ≤ 2r

R− r
max
|z|=R

Re (f(z)− f(0)) ≤ 2r

R− r
(A(R, f) + |f(0)|) ,5



and we are done. 2If A(R, f) ≥ 0, then the Borel-Carathéodory inequality is usually written in the(weaker) form
M(r, f) ≤ R + r

R− r
(A(r, f) + |f(0)|) , 0 < r < R.Exer
ises1. Consider the fun
tions −f and ±if to obtain inequalities similar to Borel-Carathéo-dory inequality involving min|z|=R Re f(z), max|z|=R Im f(z) or min|z|=R Im f(z).2. Sear
h for other versions of the Borel-Carathéodory inequality.3. Show by an example that what ever inequality of the same type of the Borel-Carathéodory inequality you establish, in ea
h 
ase on the right hand side youwill obtain a fa
tor, su
h 1/(R − r). Hint: 
onsider f(z) = −i log(1 − z) and

0 < r < R < 1.3. Convex fun
tions and Hadamard's three 
ir
les theoremLet [a, b] be an interval in the real line. A fun
tion f : [a, b] → R is 
onvex if
f(tx2 + (1− t)x1) ≤ tf(x2) + (1− t)f(x1)for all x1, x2 ∈ [a, b] and 0 ≤ t ≤ 1. A subset A ⊂ C is 
onvex if whenever z and w are in

A, the point tz + (1 − t)w is in A for all 0 ≤ t ≤ 1. That is, A is 
onvex when for anyendpoints in A the line segment joining the two points is also in A.Proposition 3.1. A fun
tion f : [a, b] → R is 
onvex if and only if the set A = {(x, y) :
a ≤ x ≤ y, f(x) ≤ y} is 
onvex.Proof. Suppose f : [a, b] → R is 
onvex and let (x1, y1), (x2, y2) ∈ A. If 0 ≤ t ≤ 1, then,by the de�nition of 
onvex fun
tions and the set A,

f(tx2 + (1− t)x1) ≤ tf(x2) + (1− t)f(x1) ≤ ty2 + (1− t)y1.Thus t(x2, y2) + (1− t)(x1, y1) = (tx2 + (1− t)x1, ty2 + (1− t)y1) ∈ A, so A is 
onvex.Suppose A is a 
onvex set and let x1, x2 ∈ [a, b]. Then
(tx2 + (1− t)x1, tf(x2) + (1− t)f(x1)) ∈ Aif 0 ≤ t ≤ 1. But the de�nition of A gives
f(tx2 + (1− t)x1) ≤ tf(x2) + (1− t)f(x1),that is, f is 
onvex. 26



Proposition 3.2. (a) A fun
tion f : [a, b] → R is 
onvex if and only if for any points
x1, . . . , xn ∈ [a, b] and real numbers t1, . . . , tn ≥ 0 with ∑n

k=1 tk = 1,
f

(
n∑

k=1

tkxk

)
≤

n∑

k=1

tkf(xk).(b) A set A ⊂ C is 
onvex if and only if for any points z1, . . . , zn ∈ A and real numbers
t1, . . . , tn ≥ 0 with ∑n

k=1 tk = 1, ∑n
k=1 tkzk ∈ A.Proposition 3.3. A di�erentiable fun
tion f : [a, b] → R is 
onvex if and only if f ′ isin
reasing.In this se
tion we are mostly 
on
erned with fun
tions f whi
h are not 
onvex, butwhi
h are logarithmi
ally 
onvex, that is, log f is 
onvex. Of 
ourse this assumes that fattains positive values only. It is easy to see that logarithmi
ally 
onvex fun
tions are
onvex, but not 
onversely.Theorem 3.4. Let −∞ < a < b < ∞ and G = {x + iy : a < x < b, y ∈ R}. Suppose

f : G→ C is 
ontinuous and f is analyti
 in G. De�ne M : [a, b] → R by
M(x) = sup

−∞<y<∞
|f(x+ iy)|.If |f(z)| < B for all z ∈ G, then logM is a 
onvex fun
tion.Before proving this theorem, note that to say that logM is 
onvex means that

(y − x) logM(u) ≤ (y − u) logM(x) + (u− x) logM(y) (3.1)for all a ≤ x < u < y ≤ b. To see this, let x = x2, y = x1 and u = tx2 + (1− t)x1. Now
u = tx+ y − ty = y + t(x− y)and thus y − u = t(y − x) and

u− x = y − x+ t(x− y) = (1− t)(y − x).By this 
hange of variables, (3.1) be
omes
logM(tx2 + (1− t)x1) ≤ t logM(x2) + (1− t) logM(x1).Further, as u runs over the range (x, y), the quotient t = y−u

y−x
runs over the values in

(0, 1). Taking the exponential of both sides of (3.1) gives
M(u)y−x ≤M(x)y−uMu−x, a ≤ x < u < y ≤ b. (3.2)Also, sin
e logM is 
onvex by Theorem 3.4, we have that logM is bounded by

max{logM(a), logM(b)}.This gives the following: 7



Corollary 3.5. If f and G are as in Theorem 3.4 and f is not 
onstant, then |f(z)| <
supw∈∂G |f(w)| for all z ∈ G.To prove Theorem 3.4 the following lemma is used.Lemma 3.6. If f and G are as in Theorem 3.4, and further suppose that |f(z)| ≤ 1 forall z ∈ ∂G. Then |f(z)| ≤ 1 for all z ∈ G.Proof. For ea
h ε > 0, let

gε(z) =
1

1 + ε(z − a)
, z ∈ G.Then

|gε(z)| ≤
1Re (1 + ε(z − a))

=
1

1 + ε(x− a)
≤ 1, z = x+ iy ∈ G.So for z ∈ ∂G we have |f(z)gε(z)| ≤ 1 by the assumption. Also, sin
e |f | is bounded by

B in G,
|f(z)gε(z)| ≤

B

|1 + ε(z − a)| =
B

|1 + ε(x− a) + iεy| ≤
B

ε| Im z| , z = x+ iy ∈ G. (3.3)So if R = {x + iy : a ≤ x ≤ b, |y| ≤ B
ε
}, inequality (3.3) and the assumption |f(z)| ≤ 1,

z ∈ ∂G, give |f(z)gε(z)| ≤ 1 for z ∈ ∂R. The maximum modulus prin
iple (Corollary 1.3)implies |f(z)gε(z)| ≤ 1 for z ∈ R. But if | Im (z)| > B
ε
, then (3.3) gives |f(z)gε(z)| ≤ 1.Thus this holds for all z ∈ G:

|f(z)| ≤ |gε(z)|−1 = |1 + ε(z − a)|.By letting ε→ 0, we obtain the lemma. 2Proof of Theorem 3.4. First observe that to prove the theorem, we need only to establish
M(u)b−a ≤M(a)b−uM(b)u−a, a < u < b.This follows by (3.2) be
ause the assumptions are valid in any substrip {ζ + iη : x < ζ <

y, η ∈ R} with a < x < y < b. To prove the inequality, re
all that for a 
onstant A > 0,
Az = exp(z logA) is an entire fun
tion of z with no zeros. So

g(z) =M(a)
b−z
b−aM(b)

z−a
b−ais entire, never vanishes, and

|g(z)| =M(a)
b−x
b−aM(b)

x−a
b−a , z = x+ iy, (3.4)provided that M(a) 6= 0 6= M(b). However, if either M(a) = 0 or M(b) = 0, then f ≡ 0.Sin
e the right hand side of (3.4) is a 
ontinuous fun
tion of x on [a, b] and never vanishes,

|g|−1 must be bounded in G. Also |g(a + iy)| = M(a) and |g(b + iy)| = M(b). Hen
e8



∣∣∣f(z)g(z)

∣∣∣ ≤ 1 for all z ∈ ∂G, and thus f/g satis�es the hypothesis of Lemma 3.6. It followsthat |f(z)| ≤ |g(z)| for all z ∈ G. This gives
|f(x+ iy)| ≤M(a)

b−x
b−a +M(b)

x−a
b−a , z = x+ iy.Therefore

M(x) ≤M(a)
b−x
b−a +M(b)

x−a
b−a , z = x+ iy,and we are done. 2Hadamard's Three Cir
les Theorem is an analogue of Theorem 3.4 for an annulus.Consider A(0;R1, R2) where 0 < R1 < R2 < ∞. If G is the strip {x + iy : logR1 <

x < logR2}, then the exponential fun
tion maps G onto A(0;R1, R2) and ∂G onto
∂A(0;R1, R2). Using this fa
t we 
an prove the following from Theorem 3.4:Theorem 3.7 (Hadamard's three 
ir
les theorem). Lat 0 < R1 < R2 < ∞ andsuppose f is analyti
 in A(0;R1, R2). If R1 < r1 ≤ r ≤ r2 < R2, then

logM(r, f) ≤ log r2 − log r

log r2 − log r1
M(r1, f) +

log r − log r1
log r2 − log r1

M(r2, f).Hadamard's three 
ir
les theorem says that logM(r, f) is a 
onvex fun
tion on log r.Exer
ises1. Let f : [a, b] → R and suppose that f(x) > 0 for all x ∈ [a, b] and that f has a
ontinuous se
ond derivative. Show that f is logarithmi
ally 
onvex if and only if
f ′′(x)f(x)− (f ′(x))2 ≥ 0 for all x ∈ [a, b].2. Show that if f : (a, b) → R is 
onvex, then f is 
ontinuous.3. Supply the details of the proof of Proposition 3.2.4. Supply the details of the proof of Proposition 3.3.5. Show that logarithmi
ally 
onvex fun
tions are 
onvex, but not 
onversely.6. Supply the details of the proof of Hadamard's three 
ir
les theorem.4. Hardy's 
onvexity theoremFor 0 < p <∞ and f analyti
 in D, write

Mp(r, f) =

(
1

2π

∫ 2π

0

|f(reiθ)|p dθ
) 1

p

.Let U ⊂ C be open and f : U → R 
ontinuous. If for ea
h 
losed dis
 D(z0, r) ⊂ U andea
h harmoni
 fun
tion h, de�ned in a neighborhood of D(z0, r), for whi
h f(z) ≤ h(z)in ∂D(z0, r) we have f(z) ≤ h(z) in D(z0, r), then f is 
alled subharmoni
 in U .9



Proposition 4.1 (Sub-Mean-Value Property). Let U ⊂ C be open and f : U → R
ontinuous. Then f is subharmoni
 in U if and only if for ea
h 
losed dis
 D(z0, r) ⊂ U ,
f satis�es the sub-mean-value-property

f(z0) ≤
1

2π

∫ 2π

0

f(z0 + reiθ) dθ.In fa
t, a 
ontinuous real-valued fun
tion f on an open set U is subharmoni
 if itsatis�es the small 
ir
le sub-mean-value-property : for ea
h z there exists ε(z) > 0 su
hthat D(z, ε(z)) ⊂ U and
f(z) ≤ 1

2π

∫ 2π

0

f(z + εeiθ) dθfor all ε ∈ (0, ε(z)). Therefore subharmoni
ity is a lo
al property.Lemma 4.2. Let 0 < p < ∞, and let f be analyti
 in an open set U ⊂ C. Then |f |p issubharmoni
 in U .Proof. In any neighborhood of any point where f is not zero, log |f | is harmoni
 andhen
e |f |p = exp(p log |f |) is subharmoni
 (be
ause the exponential fun
tion in in
reasingand 
onvex). In a neighborhood of a zero of f , |f |p 
learly satis�es the small 
ir
lesub-mean-value-property and is thus subharmoni
. 2Theorem 4.3 (Hardy's 
onvexity theorem). Let 0 < p < ∞ and f analyti
 in D.Then Mp(r, f) is a non-de
reasing fun
tion of r on [0, 1), and logMp(r, f) is a 
onvexfun
tion of log r.Proof. Let 0 < r1 < r2 < 1 (the 
ase r1 = 0 follows by the subharmoni
ity of |f |p). Let
g be the solution of the Diri
hlet problem on D(0, r2) with boundary data |f |p|∂D(0,r2).Then, sin
e |f |p is subharmoni
 in D, it follows that |f(z)|p ≤ g(z) on D(0, r2). Hen
e,by the mean-value-property of harmoni
 fun
tions, we have

Mp(r1, f) ≤M1(r1, g) = g(0) =M1(r2, g) =Mp(r2, f),and the �rst part of the assertion is proved. The 
onvexity follows from the followingmore general result that we will not prove now. For a proof, see [3, Theorem 1.6℄. 2Theorem 4.4. Let g be subharmoni
 in D, and let
m(g, r) =

1

2π

∫ 2π

0

g(reiθ) dθ, 0 ≤ r < 1.Thenm(g, r) is a non-de
reasing fun
tion of r on [0, 1), and logm(g, r) is a 
onvex fun
tionof log r. 10



5. Littlewood's subordination theoremLet F be analyti
 and univalent in D su
h that F (0) = 0. Let f be analyti
 in D, with
f(0) = 0, and suppose that the range of f is 
ontained in that of F . Then ω = F−1 ◦ fis well-de�ned and analyti
 in D, ω(0) = 0 and |ω(z)| ≤ 1 for all z ∈ D. By S
hwarz'slemma, then |ω(z)| ≤ |z| for all z ∈ D. This implies, in parti
ular, that the image under
f = F ◦ ω of ea
h dis
 D(0, r), r ∈ (0, 1), is 
ontained in the image of the same dis
under F .De�nition 5.1. An analyti
 fun
tion f in D is said to be subordinate to an analyti
fun
tion F if f = F ◦ ω for some ω analyti
 in D su
h that |ω(z)| ≤ |z|.The following result has many appli
ations of whi
h one of them is dis
ussed after thetheorem.Theorem 5.2 (Littlewood's subordination theorem). Let f and F be analyti
 in
D. If f is subordinate to F , then Mp(r, f) ≤Mp(r, F ) for all r ∈ [0, 1) and p ∈ (0,∞].Proof. We will dedu
e this from a more general result 
on
erning subharmoni
 fun
tions.Let G be subharmoni
 in D, and let g = G ◦ ω, where ω is analyti
 in D and |ω(z)| ≤ |z|for all z ∈ D. We will prove

∫ 2π

0

g(reiθ) dθ ≤
∫ 2π

0

G(reiθ) dθ, (5.1)from whi
h the theorem follows by means of Lemma 4.2. To prove this inequality, let
U be the harmoni
 fun
tion in D(0, r) su
h that U = G on ∂D(0, r). Then, as G issubharmoni
, G(z) ≤ U(z) for all z ∈ D(0, r). By setting u = U ◦ ω, we dedu
e g(z) =
G(ω(z)) ≤ U(ω(z)) = u(z) for all z ∈ D(0, r) (be
ause |ω(z)| ≤ |z| for all z ∈ D). Now
u = U ◦ ω is harmoni
, and hen
e the mean value property of harmoni
 fun
tions yields

1

2π

∫ 2π

0

g(reiθ) dθ ≤ 1

2π

∫ 2π

0

u(reiθ) dθ = u(0) = U(0)

=
1

2π

∫ 2π

0

U(reiθ) dθ =
1

2π

∫ 2π

0

G(reiθ) dθ,whi
h proves (5.1). 2Every analyti
 self-map ϕ of D indu
es a linear 
omposition operator de�ned by
Cϕ(f) = f ◦ ϕ. Littlewood's subordination theorem 
an be used to show that ea
h
omposition operator is bounded from ea
h Hardy spa
e of D into itself. To make thisstatement pre
ise, let us re
all the ne
essary de�nitions. For 0 < p <∞, the Hardy spa
e
Hp 
onsists of those analyti
 fun
tions in D for whi
h

‖f‖Hp = sup
0<r<1

Mp(r, f) = lim
r→1−

Mp(r, f) <∞.If p ≥ 1, then Hp equipped with the norm ‖ · ‖Hp is a Bana
h spa
e. If 0 < p < 1,then Hp is a 
omplete metri
 spa
e with respe
t to the metri
 d(f, g) = ‖f − g‖pHp. This11



metri
 is p-homogeneous, d(λf, 0) = |λ|pd(f, 0), and hen
e Hp is a quasi-Bana
h spa
ewhen 0 < p < 1. The operator T : X → Y is said to be bounded if there exists a 
onstant
C > 0 su
h that ‖T (x)‖Y ≤ C‖x‖X for all x ∈ X . The proof of the following lemma iseasy.Lemma 5.3. Let X and Y be normed linear spa
es and let T : X → Y be a linearoperator. Then the following 
onditions are equivalent:(1) T is uniformly 
ontinuous;(2) T is 
ontinuous;(3) T is 
ontinuous at 0 ∈ X ;(4) there exists a 
onstant C > 0 su
h that ‖T (x)‖Y ≤ C for all x ∈ X with ‖x‖X ≤ 1;(5) T is bounded.If X and Y are normed linear spa
es, then the operator norm of a linear operator
T : X → Y is de�ned by

‖T‖(X,Y ) = sup
‖x‖X≤1

‖T (x)‖Y .Lemma 5.3 implies
‖T‖(X,Y ) = inf{C : ‖T (x)‖Y ≤ C‖x‖X}.With these preparations we are ready to prove the boundedness of Cϕ on Hp. If

0 < p < 1, we still 
all Cϕ : Hp → Hp bounded if there exists C > 0 su
h that
‖Cϕ(f)‖Hp ≤ C‖f‖Hp for all f ∈ Hp even if Hp is not a normed spa
e (but just aquasi-Bana
h spa
e).Theorem 5.4. Let 0 < p <∞ and let ϕ be an analyti
 self-map of D. Then Cϕ : Hp →
Hp is bounded and

‖Cϕ‖(Hp.Hp) ≤
(
1 + |ϕ(0)|
1− |ϕ(0)|

) 1
p

.Proof. Let f ∈ Hp and ϕ(0) = a ∈ D. By Littlewood's subordination theorem,
Mp

p (r, f ◦ ϕ) =Mp
p (r, f ◦ ϕa ◦ ϕa ◦ ϕ) ≤Mp

p (r, f ◦ ϕa)

=
1

2π

∫

T

|(f ◦ ϕa)(rζ)|p|dζ |

=
1

2π

∫

ϕa(rT)

|f(w)|p|ϕ′
a(w)|r−1|dw|

≤
(
1 + |a|
1− |a|

)
1

2π

∫

ϕa(rT)

|f(w)|p |dw|
r

=

(
1 + |a|
1− |a|

)
1

2π

∫ 2π

0

|f(ϕa(re
iθ))|p|ϕ′

a(re
iθ)| dθ

=

(
1 + |a|
1− |a|

)
Mp

p (r, f ◦ ϕa · (ϕ′
a)

1
p ) dθ.

(5.2)
12



Sin
e f ◦ ϕa · (ϕ′
a)

1
p is analyti
 in D by the lemma of the analyti
 logarithm, Hardy's
onvexity theorem shows that the right hand side is in
reasing in r and bounded by

‖f‖pHp, meanwhile the left hand side in
reases to ‖f ◦ ϕa‖pHp, as r → 1−. The assertionfollows. 2Exer
ises1. Use Littlewood's subordination theorem to show that Mp(r, f) is a non-de
reasingfun
tion of r.6. Jensen's formula and Poisson-Jensen formulaIf f is analyti
 and non-zero in an open set 
ontaining D(0, r), then log |f | is harmoni
there. Hen
e it has the mean-value-property, that is,
log |f(0)| = 1

2π

∫ 2π

0

log |f(reiθ)| dθ. (6.1)Suppose f has exa
tly one simple zero a = reit on the 
ir
le ∂D(0, r). If g(z) = f(z)(z −
a)−1, then (6.1) 
an be applied to g to obtain

log |g(0)| = 1

2π

∫ 2π

0

(
log |f(reiθ)| − log |reiθ − reit|

)
dθ.Sin
e log |g(0)| = log |f(0)| − log r and

∫ 2π

0

log |1− eiθ| dθ = 0,we dedu
e that (6.1) is valid if f has one simple zero on ∂D(0, r). By indu
tion the sameremains valid as long as f has no zeros on D(0, r).The next step is to examine what happens if f has zeros inside D(0, r). In this 
ase
log |f(z)| is no longer harmoni
 so that the mean-value-property is not present.Theorem 6.1 (Jensen's formula). Let f be analyti
 in a domain 
ontaining D(0, r)and suppose that a1, . . . , an are the zeros of f inD(0, r) repeated a

ording to multipli
ity.If f(0) 6= 0, then

1

2π

∫ 2π

0

log |f(reiθ)| dθ = log |f(0)|+
n∑

k=1

log
r

|ak|
.Proof. If b ∈ D, then the fun
tion −ϕb(z) = (z− b)/(1− bz) takes D onto itself and mapsthe boundary T onto itself. Hen
e

r2(z − ak)

r2 − akz13



maps D(0, r) onto itself and takes the boundary ∂D(0, r) to the boundary. This be
ause,by denoting ak = rbk and z = rw, we have bk, w ∈ D and
r2(z − ak)

r2 − akz
= r

w − bk

1− bkw
.Therefore

F (z) = f(z)
n∏

k=1

r2 − akz

r(z − ak)
= f(z)rn

n∏

k=1

r2 − akz

r2(z − ak)is analyti
 in an open set 
ontaining D(0, r), has no zeros in D(0, r), and |F (z)| = |f(z)|on ∂D(0, r). So (6.1) applies to F to give
log |F (0)| = 1

2π

∫ 2π

0

log |F (reiθ)| dθ = 1

2π

∫ 2π

0

log |f(reiθ)| dθ.However,
F (0) = f(0)

n∏

k=1

(
− r

ak

)
,so that Jensen's formula results. 2Theorem 6.1 yields the following inequality whi
h is named by Jensen.Corollary 6.2 (Jensen's inequality). Let f be analyti
 in a domain 
ontaining

D(0, r). If f(0) 6= 0, then
log |f(0)| ≤ 1

2π

∫ 2π

0

log |f(reiθ)| dθ.If the method of proof of Theorem 6.1 is used but the mean-value-property (6.1) isrepla
ed by
f(z) =

1

2π

∫ 2π

0

f(Reit)
R2 − |z|2
|z − Reit|2 dt, z ∈ D(0, R),the value of log |f(z)| 
an be found for z 6= ak, 1 ≤ k ≤ n.Theorem 6.3 (Poisson-Jensen formula for analyti
 fun
tions). Let f be analyti
in a domain 
ontaining D(0, r) and suppose that a1, . . . , an are the zeros of f in D(0, r)repeated a

ording to multipli
ity. If f(z) 6= 0, then

1

2π

∫ 2π

0

Re (reiθ + z

reiθ − z

)
log |f(reiθ)| dθ = log |f(z)|+

n∑

k=1

log

∣∣∣∣
r2 − akz

r(z − ak)

∣∣∣∣ .14



Exer
ises1. Show that ∫ 2π

0

log |1− eiθ| dθ = 0.2. Let f be analyti
 in a domain 
ontaining D(0, r) and suppose that a1, . . . , an arethe zeros of f in D(0, r) repeated a

ording to multipli
ity. Show that if f has azero at z = 0 of multipli
ity m ∈ N, then
1

2π

∫ 2π

0

log |f(reiθ)| dθ = log

∣∣∣∣
f (m)(0)

m!

∣∣∣∣ +m log r +

n∑

k=1

log
r

|ak|
.3. Supply the details of the proof of the Poisson-Jensen formula.4. Let f be meromorphi
 in a domain 
ontaining D(0, r) and suppose that a1, . . . , anand b1, . . . , bm are the zeros and poles of f in D(0, r) repeated a

ording to multi-pli
ity. State and prove the Poisson-Jensen formula in this 
ase.5. Let ν be a positive probability measure on X and f be a positive ν-integrablefun
tion on X . Show that

exp

(∫

X

log f(x) dν(x)

)
≤
∫

X

f(x) dν(x).7. Ja
k's lemmaThe following result has appli
ations in the theory of sub
lasses of univalent fun
tions.Lemma 7.1 (Ja
k's lemma). Let f : D → C be analyti
 and non-
onstant with f(0) =
0, and 0 < r < 1. If z0 ∈ ∂D(0, r) su
h that |f(z0)| = max|z|=r |f(z)|, then

z0f
′(z0) = xf(z0)for some x = x(f, z0) ≥ n ≥ 1, where an is the �rst non-zero 
oe�
ient in the Ma
laurinseries of f .Proof. Denote z = reiθ and f(z) = Reiφ = R(z)eiφ(z). Now for ea
h z ∈ ∂D(0, r) su
hthat |f(z)| =M(r, f) we must 
learly have

∂R

∂θ
= 0, R = R(reiθ).Hen
e, for R > 0,

0 =
1

R

∂R

∂θ
=

∂

∂θ
logR =

∂

∂θ
Re (log f) = Re ( ∂

∂θ
log f

)

= Re (f ′(reiθ)

f(reiθ)
reiθi

)
= − Im (

reiθ
f ′(reiθ)

f(reiθ)

)
.15



So we must have
z0f

′(z0)

f(z0)
= k(|z0|),where k is real and z0 is any of the points on the 
ir
le ∂D(0, r) at whi
h f attains itsmaximum value.Let an be the �rst non-zero 
oe�
ient in the Ma
laurin series of f . Then n ≥ 1,be
ause f vanishes at the origin by the assumption. Sin
e 
learly k(0) = n, the resultnow follows if we show that k is nonde
reasing.Let M(r, f) = max|z|=r |f(z)|. It is known that logM(r, f) is a 
ontinuous, 
onvex(by Hadamard's three 
ir
les theorem) and in
reasing (sin
e f is non-
onstant) fun
tionof log r. Hen
e

rM ′(r, f)

M(r, f)
= r(logM(r, f))′ = r

d logM(r, f)

dr
= r

d logM(r, f)

d log r

d log r

dr
=
d logM(r, f)

d log ris an in
reasing fun
tion of log r, and so of r, at those points for whi
h d logM(r, f)/d log rexists. At those points for whi
h this derivative does not exist, we know (Exer
ise) thatat least the left and right derivatives exist, and that the left derivative does not ex
eedthe right derivative. So, in any 
ase, rM ′(r, f)/M(r, f) is an in
reasing, though notne
essarily 
ontinuous, fun
tion of r. But
k(r) =

z0f
′(z0)

f(z0)
= Re (z0f ′(z0)

f(z0)

)
= Re (r ∂

∂r
log f(reiθ)

∣∣∣∣
z=z0

)

= r
∂ logR

∂r

∣∣∣∣
z=z0

= r
∂R/∂r

R

∣∣∣∣
z=z0

=
rM ′(r, f)

M(r, f)
,be
ause R|z=z0 = R(z0) =M(r, f). The assertion follows. 2If an is the �rst non-zero 
oe�
ient in the Ma
laurin series of f , then the proof aboveshows that the 
onstant x = x(f, z0) in the statement of Ja
k's lemma satis�es x ≥ n.Exer
ises1. Show that at those points for whi
h d logM(r, f)/d log r does not exist, the leftand right derivatives exist, and that the left derivative does not ex
eed the rightderivative. See [12, p. 21℄.8. Phragmen-Lindelöf theorem and Lindelöf's theoremIn this se
tion we dis
uss some result of E. Phragmen and E. Lindelöf (published in 1908)whi
h extend the Maximum modulus prin
iple by easing the requirement of boundednesson the boundary.Theorem 8.1 (Phragmen-Lindelöf theorem). Let D ⊂ C be a simply 
onne
ted do-main and f : D → C analyti
. Suppose there exists a bounded non-vanishing analyti
fun
tion g : D → C. If ∂̂D = A ∪ B and there exists a 
onstant M > 0 su
h that:16



(a) lim supz→a |f(z)| ≤M for all a ∈ A;(b) lim supz→b |f(z)||g(z)|η ≤M for all b ∈ B and η > 0;then |f(z)| ≤M for all z ∈ D.Proof. Let K > 0 su
h that |g(z)| ≤ K for all z ∈ D. Sin
e D is simply 
onne
ted,the lemma of the analyti
 logarithm (Lemma 2.6.2 in Riemann mapping theorem andthe Diri
hlet problem (spring 2013)) shows that there exists an analyti
 bran
h of log gon D. Hen
e h = exp(η log g) is an analyti
 bran
h of gη for η > 0, and |h| = |g|ηon D. De�ne F : D → C by F (z) = f(z)h(z)K−η. Then F is analyti
 on D and
|F (z)| = |f(z)||h(z)|K−η = |f(z)||g(z)|ηK−η ≤ |f(z)| for all z ∈ D. But then, by theassumptions (a) and (b), F satis�es the hypothesis of Theorem 1.6 with max{M,MK−η}in pla
e of M :

lim sup
z→a

|F (z)| ≤ lim sup
z→a

|f(z)| ≤M, a ∈ A;

lim sup
z→b

|F (z)| = lim sup
z→b

|f(z)||g(z)|ηK−η ≤MK−η, b ∈ B.Hen
e
|f(z)| = |F (z)|

|g(z)|ηK−η
≤M

max{Kη, 1}
|g(z)|ηfor all z ∈ D. By �xing z ∈ D arbitrarily and letting η → 0+, we dedu
e |f(z)| ≤ M forall z ∈ D. 2Corollary 8.2. Let f be analyti
 in the se
tor

G =
{
z : | arg z| < π

2a

}
,where a ≥ 1

2
. If there exists M > 0 su
h that lim supz→w |f(z)| ≤M for all w ∈ ∂G, andthere exist 
onstants P > 0 and b ∈ (0, a) su
h that |f(z)| ≤ P exp(|z|b) for all z ∈ Gwith |z| su�
iently large, then |f(z)| ≤M for all z ∈ G.Proof. Let c ∈ (b, a) and set g(z) = exp(−zc) for z ∈ G. If z = reiθ, |θ| < π/2a, thenRe zc = rc cos(cθ), and so

|g(z)| = exp(−rc cos(cθ)), z = reiθ ∈ G.Sin
e c ∈ (b, a), we have cos(cθ) ≥ cos cπ
2a

= δ > 0, and hen
e g is bounded on G. Also, if
η > 0 and z = reiθ ∈ G with |z| su�
iently large,

|f(z)||g(z)|η ≤ P exp(rb − ηrc cos(cθ)) ≤ P exp(rb − ηrcδ) = P exp(rc(rb−c − ηδ))by the assumption. Sin
e b < c, rb−c → 0+, as r → ∞, so that rc(rb−c − ηδ) → −∞, as
r → ∞. Thus

lim sup
G∋z→∞

|f(z)||g(z)|η = 0.17



Hen
e f and g satisfy the hypothesis of the Phragmen-Lindelöf theorem, and therefore
|f(z)| ≤ M for all z ∈ G as 
laimed. 2Note that the size of the angle of the se
tor G is the only relevant fa
t in this 
orollary;its position is in
onsequential. So if G is any se
tor of angle π/a the 
on
lusion remainsvalid.Corollary 8.3. Let f be analyti
 in the se
tor

G =
{
z : | arg z| < π

2a

}
,where a ≥ 1

2
. If there exists M > 0 su
h that lim supz→w |f(z)| ≤ M for all w ∈ ∂G andfor every δ > 0 there exists a 
onstant P = P (δ) > 0 su
h that |f(z)| ≤ P exp(δ|z|a) forall z ∈ G with |z| su�
iently large, then |f(z)| ≤ M for all z ∈ G.Proof. Consider the analyti
 fun
tion Fε : G → C, Fε(z) = f(z) exp(−εza), where

ε ∈ (0, 1]. If x > 0 and δ ∈ (0, ε), then, by the se
ond hypothesis on f , there exists
P = P (δ) > 0 su
h that

|Fε(x)| = |f(x)| exp(−εxa) ≤ P exp((δ − ε)xa)for all x su�
iently large. But then |Fε(x)| → 0, as x → ∞ in R. By using this and the�rst hypothesis on f , we dedu
e
M1 = sup

0<x<∞
|Fε(x)| <∞. (8.1)De�ne M2 = max{M1,M} and

H+ = {z ∈ G : 0 < arg z < π/2a}
H− = {z ∈ G : −π/2a < arg z < 0}.Then lim supz→w |f(z)| ≤ M2 for all w ∈ ∂H+ ∪ ∂H− by (8.1), the �rst hypothesis on fand the 
ontinuity of f on G. We may apply Corollary 8.2 (see the remark after the
orollary) to dedu
e |Fε(z)| ≤ M2 for all z ∈ H+ ∪ H−, and hen
e, |Fε(z)| ≤ M2 for all

z ∈ G.To 
omplete the proof, it remains to show that M2 =M . If M2 =M1 > M , then |F |assumes its maximum value in G at some point x ∈ (0,∞) be
ause we have already shownthat |Fε(x)| → 0, as x → ∞ in R, and lim supx→0+ |f(x)| = lim supx→0+ |Fε(x)| ≤ M <
M1. This would give that Fε is a 
onstant fun
tion by the maximum modulus prin
ipleand so M =M1. Thus M2 =M and |Fε(z)| ≤M for all z ∈ G, that is,

|f(z)| ≤M exp(εRe za), z ∈ G.Sin
e M is independent of ε ∈ (0, 1], we 
an let ε → 0+. It follows that |f(z)| ≤ M forall z ∈ G. 2Let G = {z ∈ C \ {0} : | arg z| < π/2a}, where a ≥ 1/2, and let f(z) = exp(za) for
z ∈ G. Then |f(z)| = exp(|z|a cos(a arg z)). So for z ∈ ∂G we have |f(z)| = 1, but f18



is 
learly unbounded in G. In fa
t, on any ray in G we have that |f(z)| → ∞. Thisshows that the growth restri
tion |f(z)| ≤ P exp(δ|z|a) in Corollary 8.3 is very deli
ateand 
annot be improved.We dis
uss two more 
onsequen
es of the Phragmen-Lindelöf theorem.Corollary 8.4. Suppose f(z) → α ∈ C, as z → ∞, along two rays emanating from theorigin, and assume that f is analyti
 and bounded in one of the se
tors between thesetwo rays. Then f(z) → α uniformly, as z → ∞, in that se
tor.Proof. We may assume that α = 0 and that the se
tor in question is Gτ = {z : | arg z| <
τ < π/2}. If this is not the 
ase, 
onsider g(z) = f(ωz2) − α, where ω ∈ T is suitably
hosen.Let ε > 0 and |f(z)| ≤ M for all z ∈ Gτ . By the assumption, there exists r0 = r0(ε) >
0 su
h that |f(z)| < ε for all z ∈ ∂Gτ with |z| ≥ r0. Let

F (z) =
z

z + λ
f(z), λ =

r0M

ε
, z ∈ Gτ .Then

|F (z)| = |z|
(|z|2 + 2|z|λRe z + λ2)

1
2

|f(z)| < |z|
(|z|2 + λ2)

1
2

|f(z)|, z ∈ Gτ ,and hen
e
|F (z)| < |z|

(|z|2 + λ2)
1
2

|f(z)| ≤ |z|M
λ

<
r0M

λ
= ε, z ∈ Gτ ∩D(0, r0),and

|F (z)| < |f(z)| < ε, z ∈ ∂Gτ \D(0, r0).It follows that lim supz→w |f(z)| ≤ ε for all w ∈ ∂Gτ . Moreover, for any 1 < b < a <∞,
|F (z)| < |f(z)| ≤ M ≤Me|z| ≤Me|z|

β ≤Me|z|
α

, z ∈ Gτ \ D.Choose a > 1 su
h that τ = π/2a < π/2. Then Corollary 8.2 yields |F (z)| ≤ ε for all
z ∈ Gτ . Therefore,

|f(z)| =
∣∣∣∣1 +

λ

z

∣∣∣∣ |F (z)| ≤
(
1 +

λ

|z|

)
|F (z)| ≤ 2ε, z ∈ Gτ \D(0, r0).It follows that f(z) → 0 uniformly as z → ∞ in the se
tor Gτ . 2Corollary 8.5. Suppose f(z) → α ∈ C along a ray emanating from the origin and

f(z) → β ∈ C along another ray also emanating from the origin. Moreover, suppose that
f is analyti
 and bounded in one of the two se
tors between these rays. Then α = β and
f(z) → α uniformly, as z → ∞, in that se
tor.19



Proof. Let θ1 < θ2, and suppose f(z) → α ∈ C along the ray R1 = {reiθ : r > 0, θ = θ1},and f(z) → β ∈ C along the ray R2 = {reiθ : r > 0, θ = θ2}. Consider the fun
tion
g(z) =

(
f(z)− α + β

2

)2in the se
tor G between these rays in whi
h f is analyti
 and bounded. Clearly,
g(z) →

(
α− α+ β

2

)2

=
1

4
(α− β)2along R1, and

g(z) →
(
β − α + β

2

)2

=
1

4
(β − α)2 =

1

4
(α− β)2along R2. Therefore Corollary 8.4 yields g(z) → 1

4
(α − β)2 uniformly in the se
tor G, as

z → ∞. Therefore,
g(z)− 1

4
(α−β)2 =

(
f(z) +

α + β

2

)2

− 1

4
(α−β)2 = (f(z)−α)(f(z)−β) → 0, z → ∞,uniformly in the se
tor G.Let ε > 0, and 
onsider Hr = G ∩ ∂D(0, r). Then

|f(z)− α||f(z)− β| ≤
(ε
2

)2
, z ∈ Hr,for all su�
iently large r. For ea
h z ∈ Hr we now have either |f(z) − α| ≤ ε/2 or

|f(z)− β| ≤ ε/2 (or both). If one of these inequalities, say |f(z)− α| ≤ ε/2, is satis�edfor all z ∈ Hr, then, by the hypothesis, for all z ∈ R2 with |z| su�
iently large, we have
|α− β| ≤ |f(z)− α|+ |f(z)− β| ≤ ε.If this is not the 
ase, denote Hr,α = {z ∈ Hr : |f(z) − α| ≤ ε/2} and Hr,β = {z ∈ Hr :

|f(z) − β| ≤ ε/2}. Sin
e Hr is 
losed and f is 
ontinuous, the sets Hr,α and Hr,β are
losed for all r large enough. Further, Hr,α ∪ Hr,β = Hr, and hen
e either one of thesesets is empty or their interse
tion is not. The former 
ase allows us to argue as earlier,and in the latter one we �nd z0 ∈ Hr,α ∩Hr,β, so that
|α− β| ≤ |f(z0)− α|+ |f(z0)− β| ≤ ε.Sin
e ε > 0 was arbitrary, we dedu
e α = β. Thus g(z) → 0 uniformly in the se
tor G,as z → ∞, and so f(z) → α = β uniformly in the se
tor G, as z → ∞. 2We �nish the se
tion by Lindelöf's theorem on non-tangential limits of analyti
 fun
-tions in the unit dis
. For this purpose, we will introdu
e some notation. For 0 < α < π/2,
onstru
t a se
tor with vertex ζ ∈ T, of angle 2α, symmetri
 with respe
t to the ray em-anating from ζ and passing through the origin. Draw the two line segments from theorigin perpendi
ular to the boundaries of this se
tor, and let Sα(ζ) denote the domainin D 
onstru
ted. An analyti
 fun
tion f : D → C is said to have a non-tangential limit

L at ζ ∈ T, if f(z) → L, as z → ζ inside ea
h domain Sα(ζ) with α ∈ (0, π/2).20



Theorem 8.6 (Lindelöf's theorem). Let f be an analyti
 fun
tion in D, and assumethat the radial limit limr→1− f(rζ) = L(ζ) exists for ζ ∈ T. If f is bounded in Sα(ζ)for α ∈ (0, π/2), then f(z) → L(ζ), as z → ζ inside Sα(ζ). In parti
ular, if f is abounded analyti
 fun
tion in D and limr→1− f(rζ) = L(ζ) exists for ζ ∈ T, then f have anon-tangential limit L(ζ) at ζ ∈ T.Proof. By 
onsidering f(ω(1 − z)) for ω = ei arg ζ ∈ T , we may translate the situationto the dis
 D(1, 1), and assume that f is analyti
 and bounded in the domain Gα(0) =
{1 − ζ/ω : ζ ∈ Sα(ζ)} and f(z) → L = L(ζ) ∈ C, as z → 0 along the positive real axis.Let fn(z) = f(z/n) for n ∈ N. The fun
tions fn are uniformly bounded in Gα(0), sothey 
onstitute a normal family there by Montel's theorem (the lo
al boundedness wouldsu�
e here). Therefore, by passing to a subsequen
e if ne
essary, we may assume that
fn 
onverges uniformly to an analyti
 fun
tion g in 
ompa
t subsets of Gα(0) as n→ ∞,hen
e in the set Υ = {z : | arg z| ≤ α/2, (cosα)/2 ≤ |z| ≤ cosα}. But for all real z in theinterval (0, 1), fn(z) → L, as n → ∞ by the hypothesis. It follows that g ≡ L, and thus
fn(z) → L uniformly in Υ. This implies that f(z) → L, as z → 0 inside Gα(0), and thetheorem is proved. 2Exer
ises1. Let D ⊂ C be a simply 
onne
ted domain and f : D → C analyti
. Suppose thereexists bounded non-vanishing analyti
 fun
tions gk : D → C, k = 1, . . . , n, and

∂̂D = A ∪ B1 ∪ · · · ∪ Bn su
h that:(a) lim supz→a |f(z)| ≤M for all a ∈ A;(b) lim supz→b |f(z)||gk(z)|η ≤M for all b ∈ Bk and η > 0.Show that |f(z)| ≤M for all z ∈ D.2. Let G = {z ∈ C : | Im z| < π/2} and suppose f : G → C is analyti
 and
lim supz→w |f(z)| ≤ M for all w ∈ ∂G. Also, suppose that there exist A > 0and a ∈ (0, 1) su
h that

|f(z)| < exp(A exp(a|Re z|)), z ∈ G.Show that |f(z)| ≤M for all z ∈ G. Examine exp(exp z) to see that this is the bestpossible growth 
ondition. Can we make a = 1 above?3. Let G = {z ∈ C : Re z > 0} and let f : G → C be analyti
 su
h that f(1) = 0and su
h that lim supz→w |f(z)| ≤ M for all w ∈ ∂G. Also, suppose that for some
δ ∈ (0, 1) there exists P = P (δ) > 0 su
h that

|f(z)| ≤ P exp
(
|z|1−δ

)
.Show that

|f(z)| ≤M

(
(1− x)2 + y2

(1 + x)2 + y2

) 1
2

, z = x+ iy.Hint: Consider f(z) = (1 + z)(1 − z)−1.21



4. Prove Liouville's theorem: If f is an entire fun
tion su
h that |f(z)| ≤ C|z|m forall |z| > R ∈ (0,∞) and for some 
onstants C,R ∈ (0,∞), then f is a polynomialwith deg(f) ≤ m.5. Let 0 < r,R <∞ and f : D(a, r) → D(f(a), R) analyti
. Show that
|f(a+ z)− f(a)| ≤ R

r
|z|, z ∈ D(0, r).Derive Liouville's theorem from this inequality. Have you seen this kind inequalitiesbefore?6. For 0 < α < 1, de�ne

ηα(z) =

(
1+z
1−z

)α − 1(
1+z
1−z

)α
+ 1

, z ∈ D.Des
ribe ηα(D) geometri
ally and show that ηα is a 
onformal map of D onto ηα(D).By using this fun
tion derive a version of Corollary 8.4 for the unit dis
.9. Gronwall-Bellman inequality with appli
ations to 
omplexODEsLemma 9.1 (Gronwall-Bellman inequality). Let −∞ < a < b ≤ ∞, and let u, v :
(a, b) → [0,∞) be integrable fun
tions. If there exists c > 0 su
h that

u(x) ≤ c+

∫ x

a

u(s)v(s) ds, x ∈ (a, b),then
u(x) ≤ c exp

(∫ x

a

v(t) dt

)
, x ∈ (a, b).Proof. By the assumptions,

u(t)v(t)

c+
∫ t

a
u(s)v(s) ds

≤ v(t), t ∈ (a, b),from whi
h an integration with respe
t to t from a to x results
log

(
c+

∫ x

a

u(s)v(s) ds

)
− log c ≤

∫ x

a

v(t) dt.The assertion follows by 
ombining this inequality with the assumption. 2Consider the 
omplex linear di�erential equation
f ′′ + Af = 0, (9.1)where A is an analyti
 fun
tion in D(0, R). It is well known that in this 
ase all solutions

f are analyti
 in D(0, R). We now apply Lemma 9.1 to obtain a growth estimate forsolutions of (9.1). See for example [5, 6℄. 22



Theorem 9.2. If A is analyti
 in D(0, R), then all non-trivial solutions of (9.1) satisfythe pointwise estimate
|f(reiθ)| ≤ (|f ′(0)|R + |f(0)|) exp

(∫ r

0

|A(teiθ)|(r − t) dt

)
, θ ∈ [0, 2π), r ∈ (0, R).Proof. Two integrations show that

f(z) =

∫ z

0

∫ ζ

0

f ′′(w) dw dζ + f ′(0)z + f(0),and hen
e (9.1) yields
|f(z)| ≤

∫ z

0

∫ ζ

0

|f(w)||A(w)| |dw| |dζ|+ |f ′(0)|R+ |f(0)|.By setting z = reiθ and using Fubini's theorem we dedu
e
|f(reiθ)| ≤

∫ r

0

∫ s

0

|f(teiθ)||A(teiθ)| dt ds+ |f ′(0)|R + |f(0)|

=

∫ r

0

|f(teiθ)||A(teiθ)|(r − t) dt+ |f ′(0)|R+ |f(0)|.The assertion now follows by Lemma 9.1. 2Exer
ises1. Show that all zeros of solutions of (9.1) with analyti
 
oe�
ient A in D(0, R) aresimple. What 
an you say about the zeros of solutions of f (k)+Af = 0? Sear
h for
on
rete examples.2. Generalize the assertion in Theorem 9.2 for the equation
f (k) + Ak−1f

(k−1) + · · ·+ A1f
′ + A0f = 0with analyti
 
oe�
ients in D(0, R). Can you use the reasoning also in the non-homogeneous 
ase (in whi
h the right hand side equals to an analyti
 fun
tion

Ak 6≡ 0 in D(0, R))?3. Prove a generalization of the Gronwall-Bellman inequality in the 
ase when theassumption reads
u(x) ≤ c(x) +

∫ x

a

u(s)v(s) ds, x ∈ (a, b),where u, v, c : (a, b) → [0,∞) are integrable fun
tions. Can you simplify the asser-tion if c is non-de
reasing?4. Dis
uss the sharpness of the growth estimate established in Theorem 9.2 by exam-ples. 23



10. Pseudohyperboli
 and hyperboli
 metri
s (brie�y)Re
all that the pseudohyperboli
 distan
e between two points z and w in D is
dph(z, w) = |ϕz(w)| =

∣∣∣∣
z − w

1− zw

∣∣∣∣ , ϕz(w) =
z − w

1− zw
.The hyperboli
 distan
e between two points z and w in D is de�ned as

dh(z, w) = inf

{∫

γ

2|dζ |
1− |ζ |2 =

∫ 1

0

2|γ′(t)|dt
1− |γ(t)|2 : γ pie
ewise C1 joining z and w}

= min

{∫

γ

2|dζ |
1− |ζ |2 =

∫ 1

0

2|γ′(t)|dt
1− |γ(t)|2 : γ pie
ewise C1 joining z and w}

= log
1 + dph(z, w)

1− dph(z, w)
= log

1 + |ϕz(w)|
1− |ϕz(w)|

.

(10.1)
The hyperboli
 metri
 is one of the most natural and important metri
s in D and deservesto be studied in detail at some point, but in this o

asion we do not 
on
entrate on thatand, in parti
ular, we skip the proofs of the above two fundamental equalities.It is 
lear by the de�nition that ρh(z, w) ∈ [0,∞). Moreover, for any �xed w ∈ D,
|ϕz(w)| → 1−, as |z| → 1−, and hen
e ρh(z, w) → ∞. This means that T is "in�nitely faraway" from ea
h point of D.It is immediate from (10.1) that both metri
s dh and dph are 
onformally invariant;for ea
h automorphism ψ of D,

dh(ψ(z), ψ(w)) = dh(z, w) and dph(ψ(z), ψ(w)) = dph(z, w).Moreover, the topologies indu
ed by dh, dph and the Eu
lidean metri
 de(·, ·) = | · − · |
oin
ide; the 
orresponding 
olle
tions of open sets are the same. We will use the followingnotations for Eu
lidean, hyperboli
 and pseudohyperboli
 dis
s, respe
tively:
D(a, r) = {z ∈ C : |a− z| < r}, a ∈ C, r ∈ (0,∞);

∆h(a, r) = {z ∈ D : dh(a, z) < r}, a ∈ D, r ∈ (0,∞);

∆ph(a, r) = {z ∈ D : dph(a, z) < r}, a ∈ D, r ∈ (0, 1).We will prove two basi
 lemmas that show that ea
h pseudohyperboli
 dis
 is anEu
lidean dis
 and, of 
ourse, vi
e versa.Lemma 10.1. Let a ∈ D and r ∈ (0, 1). Then ∆ph(a, r) is the Eu
lidean dis
 D(C,R),where
C =

1− r2

1− r2|a|2 a and R =
1− |a|2
1− r2|a|2 r.Proof. We start by deriving two equations, namely (10.2) and (10.3). Let α, β ∈ C. Now

|α− β|2 = (α− β)(α− β) = |α|2 − (αβ + βα) + |β|2.24



Sin
e z + z = 2Re (z) = 2Re (z) for all z ∈ C, we get
|α|2 + |β|2 − |α− β|2 = 2Re (αβ) = 2Re (αβ). (10.2)This is a
tually the law of 
osines. Namely, if α = aeit ja β = beis, where a, b > 0and t, s ∈ R, and we denote γ = s − t and c = |α − β| we get the familiar equation

c2 = a2 + b2 − 2ab cos γ.Let z ∈ C be arbitrary. By substituting α = 1 and β = az to (10.2) we get
1 + |a|2|z|2 − |1− az|2 = 2Re (az).On the other hand, by substituting α = z and β = a to (10.2) we get
|z|2 + |a|2 − |z − a|2 = 2Re (az).By substra
ting last two equations we get

1− |z|2 − |a|2 + |a|2|z|2 − |1− az|2 + |z − a|2 = 0,whi
h simpli�es to
|1− az|2 = |z − a|2 + (1− |a|2)(1− |z|2). (10.3)Let z ∈ D be arbitrary. Now by equation (10.3) we have

|ϕa(z)|2 =
|z − a|2
|1− az|2 =

|z − a|2
(1− |a|2)(1− |z|2) + |z − a|2 = r2.This is equivalent to

|z − a|2(1− r2) = (r2 − |a|2r2)(1− |z|2),and hen
e
|z − a|2 = r2 − |a|2r2

1− r2
− r2 − |a|2r2

1− r2
|z|2.Now by equation (10.2) we have

|z|2 + |a|2 − 2Re (az) = r2 − |a|2r2
1− r2

− r2 − |a|2r2
1− r2

|z|2,whi
h gives
|z|2

(
1 +

r2 − |a|2r2
1− r2

)
− 2Re (az) = r2 − |a|2r2

1− r2
− |a|2,whi
h simpli�es to

|z|2
(
1− |a|2r2
1− r2

)
− 2Re (az) = r2 − |a|2

1− r2
.Multipli
ation by fa
tor

A =
1− r2

1− |a|2r2 > 025



gives
|z|2 − 2Re (Aaz) = r2 − |a|2

1− |a|2r2 .Therefore
|z|2 − 2Re (Aaz) + |Aa|2 = r2 − |a|2

1− |a|2r2 + A2|a|2.and by equation (10.2) we obtain
|z − Aa|2 = r2 − |a|2

1− |a|2r2 + A2|a|2.That is,
|z −Aa|2 = (r2 − |a|2)(1− |a|2r2) + (1− r2)2|a|2

(1− |a|2r2)2 ,hen
e
|z − Aa|2 = r2 − |a|2r4 − |a|2 + |a|4r2 + |a|2 − 2|a|2r2 + r4|a|2

(1− |a|2r2)2 ,whi
h simpli�es to
|z − Aa|2 = r2(1− |a|2)2

(1− |a|2r2)2 .Now C = Aa, the right hand side is R2 and the proof is 
omplete. 2Lemma 10.2. Let C ∈ D \ {0} and R ∈ (0, 1 − |C|). Then the Eu
lidean dis
 D(C,R)is the pseudohyperboli
 dis
 ∆ph(a, r), where
a =

(1 +R2 − |C|2)−
√
(1 +R2 − |C|2)2 − 4|C|2
2|C|2 Cand

r =
(1 +R2 − |C|2)−

√
(1 +R2 − |C|2)2 − 4R2

2R
.Proof. Let �rst C ∈ [0, 1) so that a ∈ [0, 1). By Lemma 10.1,

C =
1− r2

1− r2a2
a and R =

1− a2

1− r2a2
r,and hen
e

C +R =
a− r2a + r − ra2

1− r2a2
=

(a+ r)(1− ra)

(1− ra)(1 + ra)
=

a + r

1 + raand
C − R =

a− r2a− r + ra2

1− r2a2
=

(a− r)(1 + ra)

(1− ra)(1 + ra)
=

a− r

1− ra
.Therefore

a+ r = C +R + raC + raR26



and
a− r = C − R− raC + raR.By adding these equations and dividing by 2 we get

a = C + raR. (10.4)By subtra
ting the equations and dividing by 2 we get
r = R + raC. (10.5)Equations (10.4) and (10.5) are in some sen
e symmetri
al. Namely, let P (x1, x2, x3, x4) =

x2+x3x1x4−x1. Now (10.4) is P (a, C, r, R) = 0 and equation (10.5) is P (r, R, a, C) = 0.By solving r from equation (10.5) we get
r =

R

1− aC
.Substituting this to (10.4) we have

a = C +
R2a

1− aC
.Multiplying both sides with 1− aC we get

a− a2C = C − aC2 +R2a,whi
h gives a quadrati
 equation for the 
enter a, that is,
0 = Ca2 − (1 +R2 − C2)a + C.Quadrati
 formula gives

a = a± =
(1 +R2 − C2)±

√
(1 +R2 − C2)2 − 4C2

2C
.A dire
t 
al
ulation shows that a+ > 1, and hen
e

a =
(1 +R2 − C2)−

√
(1 +R2 − C2)2 − 4C2

2C
.Solving for a in equation (10.4) gives

a =
C

1− rR
.Susbstituting this to (10.5) we have

r = R +
C2r

1− rR
.27



Multiplying both sides with 1− rR we get
r − r2R = R− rR2 + C2r,whi
h gives a quadrati
 equation for the radius r, that is,

0 = Rr2 − (1 +R2 − C2)r +R.Quadrati
 formula gives
r± =

(1 +R2 − C2)±
√
(1 +R2 − C2)2 − 4R2

2R
,of whi
h the a

eptable one is r−, and thus

r =
(1 +R2 − C2)−

√
(1 +R2 − C2)2 − 4R2

2R
.The general 
ase follows by rotating the 
enter of the Eu
lidean dis
 to the segment [0, 1).

2Lemma 10.3. Let a ∈ D and r ∈ (0, 1). Then there exists a 
onstant K = K(r) > 0su
h that
1

K
≤ 1− |z2|

1− |z1|
≤ Kfor all z1, z2 ∈ ∆ph(a, r).Proof. By the strong form of the triangle inequality (for proof, see (16.8)),

dph(z1, z2) =
dph(z1, a) + dph(z2, a)

1 + dph(z1, a)dph(z2, a)
<

2r

1 + r2
:= A(r).On the other hand, we 
an easily prove that

1− dph(z1, z2)
2 =

(1− |z1|2)(1− |z2|2)
|1− z1z2|2

, (10.6)and so
1− |z2|2
1− |z1|2

=
|1− z1z2|2

(1− |z1|2)(1− |z2|2)
· (1− |z2|2)2
|1− z1z2|2

<
1

1−A2

( 1− |z2|2
|1− z1z2|

)2
.However, |1− z1z2| > 1− |z2| > (1− |z2|2)/2, thus

1− |z2|
1− |z1|

< 2
1− |z2|2
1− |z1|2

<
8

1− A2
:= K(r).Sin
e z1, z2 ∈ ∆ph(a, r) are arbitrary, the assertion follows. 228



Exer
ises1. Show that (D, dh) is a 
omplete metri
 spa
e.2. Show that there exists C = C(r) > 0 su
h that C−1(1− |a|) ≤ |1− az| ≤ C(1− |a|)for all z ∈ ∆ph(a, r) and a ∈ D.3. Let 0 < p <∞, n ∈ N∪{0} and r ∈ (0, 1). Show that there exists C = C(p, n, r) > 0su
h that
|f (n)(z)|p ≤ C

(1− |z|)2+np

∫

∆ph(z,r)

|f(w)|p dA(w), z ∈ D.for all z ∈ D for all f ∈ H(D).11. Julia's lemma and Julia-Carathéodory theoremWe begin with re
alling the S
hwarz-Pi
k Theorem.Theorem 11.1 (S
hwarz-Pi
k Theorem). Let ϕ : D → C be analyti
 su
h that
|ϕ(z)| ≤ 1 for all z ∈ D. Then

|ϕ′(z)|(1− |z|2) ≤ 1− |ϕ(z)|2, z ∈ D.and ∣∣∣∣∣
ϕ(z)− ϕ(w)

1− ϕ(z)ϕ(w)

∣∣∣∣∣ ≤
∣∣∣∣
z − w

1− zw

∣∣∣∣ .Moreover, if either
|ϕ′(z)|(1− |z|2) = 1− |ϕ(z)|2for some z ∈ D or ∣∣∣∣∣
ϕ(z)− ϕ(w)

1− ϕ(z)ϕ(w)

∣∣∣∣∣ =
∣∣∣∣
z − w

1− zw

∣∣∣∣for some distin
t z, w ∈ D, then ϕ is a 
onformal self-map (an automorphism) of D.Geometri
ally, the S
hwarz-Pi
k Theorem says that the image of ∆ph(a, r) under ϕ is
ontained in ∆ph(ϕ(a), r). We 
an also interpret the S
hwarz-Pi
k Theorem in the waythat ea
h analyti
 self-map ϕ of D is a 
ontra
tion (not ne
essarily a stri
t) with respe
tto the pseudohyperboli
 metri
: dph(ϕ(z), ϕ(w)) = |ϕϕ(w)(ϕ(z))| ≤ |ϕw(z)| = dph(z, w)for all z, w ∈ D. This 
on
lusion is valid for the hyperboli
 metri
 as well, be
ause log 1+x
1−xis in
reasing on [0, 1), thus dh(ϕ(z), ϕ(w)) ≤ dh(z, w) for all z, w ∈ D.As a 
onsequen
e of the S
hwarz-Pi
k Theorem we get an upper bound for the modulusof ϕ.Corollary 11.2. If ϕ is an analyti
 self-map of the unit dis
 D, then

|ϕ(z)| ≤ |z|+ |ϕ(0)|
1 + |z||ϕ(0)| , z ∈ D.29



Proof. The fundamental identity of automorphisms imply
1−

∣∣∣∣∣
ϕ(0)− ϕ(z)

1− ϕ(0)ϕ(z)

∣∣∣∣∣

2

=
(1− |ϕ(0)|2)(1− |ϕ(z)|2)

|1− ϕ(0)ϕ(z)|2
,and hen
e

∣∣∣∣∣
ϕ(0)− ϕ(z)

1− ϕ(0)ϕ(z)

∣∣∣∣∣

2

≥ 1− (1− |ϕ(0)|2)(1− |ϕ(z)|2)
(1− |ϕ(0)||ϕ(z)|)2

=
(|ϕ(z)| − |ϕ(0)|)2
(1− |ϕ(0)||ϕ(z)|)2 .The S
hwarz-Pi
k Theorem implies

∣∣∣∣∣
ϕ(0)− ϕ(z)

1− ϕ(0)ϕ(z)

∣∣∣∣∣ ≤
∣∣∣∣
0− z

1− 0z

∣∣∣∣ = |z|,and thus
|ϕ(z)| − |ϕ(0)|
1− |ϕ(0)||ϕ(z)| ≤

||ϕ(z)| − |ϕ(0)||
1− |ϕ(0)||ϕ(z)| ≤

∣∣∣∣∣
ϕ(0)− ϕ(z)

1− ϕ(0)ϕ(z)

∣∣∣∣∣ ≤ |z|, z ∈ D.The assertion follows from this inequality. 2Corollary 11.2 shows, in parti
ular, that
1− |ϕ(z)|
1− |z| ≥ 1− |ϕ(0)|

1 + |z||ϕ(0)| ≥
1− |ϕ(0)|
1 + |ϕ(0)| > 0, z ∈ D,for ea
h analyti
 self-map ϕ of D. This observation is relevant to Julia's lemma below.For ζ ∈ T and k > 0, let

E(k, ζ) = {z ∈ D : |ζ − z|2 ≤ k(1− |z|2)}.A 
omputation shows that E(k, ζ) is a 
losed dis
 internally tangent to the unit 
ir
le Tat ζ with 
enter ζ

1+k
and radius k

k+1
. The boundary 
ir
le is 
alled an ori
ir
le (in somereferen
es a horo
ir
le).Lemma 11.3 (Julia's Lemma). Let ϕ : D → D be analyti
, ζ ∈ T and

d(ζ) = lim inf
z→ζ

1− |ϕ(z)|
1− |z| <∞,where the lower limit is taken as z approa
hes ζ unrestri
tedly in D. Let {an} be asequen
e along whi
h this lower limit is a
hieved and for whi
h ϕ(an) 
onverges to some

η. Then η ∈ T and
|η − ϕ(z)|2
1− |ϕ(z)|2 ≤ d(ζ)

|ζ − z|2
1− |z|2 , z ∈ D.Moreover, if equality holds for some z ∈ D, then ϕ is an automorphism of the dis
 D.30



Julia's Lemma shows that ϕ maps ea
h dis
 E(k, ζ) into the 
orresponding dis

E(kd(ζ), η).Proof. By the assumptions, an → ζ ∈ T and ϕ(an) → η ∈ D with

d(ζ) = lim
n→∞

1− |ϕ(an)|
1− |an|

<∞.We must have η ∈ T, for otherwise the limit above would not be �nite be
ause |an| → 1−,as n→ ∞. The S
hwarz-Pi
k Theorem gives
1−

∣∣∣∣∣
ϕ(z)− ϕ(an)

1− ϕ(z)ϕ(an)

∣∣∣∣∣

2

≥ 1−
∣∣∣∣
z − an
1− anz

∣∣∣∣
2

⇔ (1− |ϕ(z)|2)(1− |ϕ(an)|2)
|1− ϕ(an)ϕ(z)|2

≥ (1− |z|2)(1− |an|2)
|1− anz|2

⇔ |1− ϕ(an)ϕ(z)|2
1− |ϕ(z)|2 ≤ (1− |ϕ(an)|2)|1− anz|2

(1− |an|2)(1− |z|2)

(11.1)
for all z ∈ D. By letting n→ ∞ and using the fa
ts η, ζ ∈ T, we obtain

|η − ϕ(z)|2
1− |ϕ(z)|2 =

|1− ηϕ(z)|2
1− |ϕ(z)|2 ≤ d(ζ)

|1− ζz|2
1− |z|2 = d(ζ)

|ζ − z|2
1− |z|2 .This is the assertion. 2The quantity d(ζ) plays an important role in the study of the geometry of analyti
self-maps of D. While d(ζ) may be ∞, it must always always satisfy d(ζ) > 0.The geometri
 interpretation of Julia's Lemma is parti
ularly satisfying when ζ = η.In this 
ase the point ζ deserves to be 
alled a �xed point, but sin
e we do not assume
ontinuity on the boundary T we must extend the notation of �xed points to points on T.De�nition 11.4. Let ϕ : D → D be analyti
 and ζ ∈ T. Then ζ is a �xed point of ϕ if

limr→1− ϕ(rζ) = ζ .The S
hwarz-Pi
k Theorem implies that ea
h analyti
 ϕ : D → D has at most one�xed point in D. Namely, for otherwise there were two distin
t points z and w in D su
hthat ϕ(z) = z and ϕ(w) = w, and the S
hwarz-Pi
k Theorem would show that ϕ is anautomorphism - a 
ontradi
tion. Analyti
 funtions may have many �xed points on T.The S
hwarz-Pi
k Theorem tells us about the behavior of an analyti
 fun
tion ϕ neara �xed point in D: ϕ maps pseudohyperboli
 dis
s 
entered at the �xed point into other(smaller) pseudohyperboli
 dis
s 
entered at the �xed point. Julia's Lemma gives a similarstatement for a �xed point ζ ∈ T when d(ζ) is �nite: ϕ maps internally tangent dis
s at
ζ into (other) internally tangent dis
s at ζ .De�nition 11.5. For ζ ∈ T and α > 1 we de�ne a nontangential approa
h region at ζby

Γ(ζ, α) = {z ∈ D : |z − ζ | < α(1− |z|)}.31



A fun
tion f is said to have a nontangential limit at ζ ∈ T if
lim

z→ζ, z∈Γ(ζ,α)
f(z)exists for ea
h α > 1.Of 
ourse, the term nontangential refers to the fa
t that the boundary 
urves of Γ(ζ, α)have a 
orner at ζ , with angle less than π.De�nition 11.6. We say that an analyti
 fun
tion ϕ : D → D has a �nite angularderivative at ζ ∈ T if there is η ∈ T su
h that the analyti
 fun
tion

ϕ(z)− η

z − ζ
, z ∈ D,has a �nite nontangential limit as z → ζ . When it exists as �nite 
omplex number, thislimit is denoted by ϕ′(ζ).Julia-Carathéodory Theorem is a 
ir
le of ideas whi
h makes pre
ise the relationshipbetween the angular derivative ϕ′(ζ), the limit of ϕ′(z) at ζ , and the quantity d(ζ) fromJulia's Lemma.Theorem 11.7 (Julia-Carathéodory Theorem). Let ϕ : D → D be analyti
 and

ζ ∈ T. Then the following assertions are equivalent:(1) d(ζ) = lim inf
z→ζ

1− |ϕ(z)|
1− |z| < ∞, where the limit is taken as z approa
hes ζ unre-stri
tedly in D;(2) ϕ has a �nite angular derivative ϕ′(ζ) at ζ ;(3) Both ϕ and ϕ′ have �nite nontangential limits at ζ , with η ∈ T for η = limr→1− ϕ(rζ).Moreover, when these 
onditions hold, we have

lim
r→1−

ϕ′(rζ) = ϕ′(ζ) = d(ζ)ζηand d(ζ) is the nontangential limit of (1− |ϕ(z)|)/(1− |z|) as z → ζ , that is,
d(ζ) = lim

z→ζ, z∈Γ(ζ,α)

1− |ϕ(z)|
1− |z| , α > 1.The proof uses the following simple lemma.Lemma 11.8. Let 1 < α < β < ∞ and δ = (β − α)/(α + αβ). If z ∈ Γ(ζ, α) and

|λ| ≤ δ|ζ − z|, then z + λ ∈ Γ(ζ, β). 32



Proof. We have |z − ζ | < α(1 − |z|) for z ∈ Γ(ζ, α), and |λ| ≤ δ|ζ − z| by the otherassumption, so
|z + λ− ζ | ≤ |z − ζ |+ |λ| < α(1− |z|) + δ|ζ − z|

≤ α(1− |z|) + δα(1− |z|) = (α + δα)(1− |z|).On the other hand, |λ| ≤ δ|ζ − z| ≤ δα(1− |z|), so
1− |z + λ| ≥ 1− |z| − |λ| ≥ 1− |z| − δα(1− |z|) = (1− |z|)(1− δα).Therefore,
|z + λ− ζ | < (α + δα)(1− |z|) ≤ α + δα

1 − δα
(1− |z + λ|) = β(1− |z + λ|),and thus z + λ ∈ Γ(ζ, β) by the de�nition. 2Proof of Julia-Carathéodory Theorem. We will show that (1)⇒(2)⇒(3)⇒(1). For (1)⇒(2)re
all that by Julia's Lemma (Lemma 11.3) there exists η ∈ T su
h that

|η − ϕ(z)|2
1− |ϕ(z)|2 ≤ d(ζ)

|ζ − z|2
1− |z|2 , z ∈ D. (11.2)We �rst 
onsider the radial limit of (ϕ(z)− η)/(z − ζ) at ζ ∈ T. Now (11.2) yields

1− |ϕ(rζ)|
1− r

1 + r

1 + |ϕ(rζ)| =
(1− |ϕ(rζ)|)2
1− |ϕ(rζ)|2

1− r2

(1− r)2

≤ |η − ϕ(rζ)|2
1− |ϕ(rζ)|2

1− r2

(1− r)2

≤ d(ζ)
|ζ − rζ |2
1− r2

1− r2

(1− r)2
= d(ζ)

= lim inf
z→ζ

1− |ϕ(z)|
1− |z| ≤ lim inf

r→1−

1− |ϕ(rζ)|
1− r

.Sin
e 1 + r → 2 ≥ 1 + |ϕ(rζ)|, we have
lim inf
r→1−

1− |ϕ(rζ)|
1− r

≤ lim inf
r→1−

1− |ϕ(rζ)|
1− r

1 + r

1 + |ϕ(rζ)|

≤ d(ζ) ≤ lim inf
r→1−

1− |ϕ(rζ)|
1− rand

lim sup
r→1−

1− |ϕ(rζ)|
1− r

≤ lim sup
r→1−

1− |ϕ(rζ)|
1− r

1 + r

1 + |ϕ(rζ)|

≤ d(ζ) ≤ lim inf
r→1−

1− |ϕ(rζ)|
1− r

.33



It follows that
lim
r→1−

1− |ϕ(rζ)|
1− r

= d(ζ) (11.3)and limr→1− |ϕ(rζ)| = 1. Furthermore, sin
e (11.2) yields
(1− |ϕ(rζ)|)2

(1− r)2
≤ |η − ϕ(rζ)|2

(1− r)2
≤ d(ζ)

|ζ − rζ |2(1− |ϕ(rζ)|2)
(1− r)2(1− r2)

= d(ζ)
(1− |ϕ(rζ)|2)

1− r2
,we have

lim
r→1−

|η − ϕ(rζ)|
1− r

= d(ζ). (11.4)By 
omparing (11.3) and (11.4) we dedu
e
lim
r→1−

1− |ϕ(rζ)|
|1− ηϕ(rζ)| = lim

r→1−

1− |ϕ(rζ)|
|η − ϕ(rζ)| = 1,and so arg(ηϕ(rζ)) → 0, as r → 1−, be
ause limr→1− |ϕ(rζ)| = 1. A
tually more is true,namely one 
an show that arg(1− ηϕ(rζ)) → 0, as r → 1− (Exer
ise 4!). Now this and(11.4) imply

lim
r→1−

η − ϕ(rζ)

ζ − rζ
= ζη lim

r→1−

1− ηϕ(rζ)

1− r
= ζηd(ζ).To �nish this part of the proof, we must extend this from radial 
onvergen
e to nontan-gential 
onvergen
e. To this end, �x an arbitrary nontangential approa
h region Γ(ζ, α).For z ∈ Γ(ζ, α), we have |ζ − z| < α(1− |z|) ≤ α(1− |z|2), so Julia's Lemma gives

|η − ϕ(z)|2
1− |ϕ(z)|2 ≤ d(ζ)

|ζ − z|2
1− |z|2 ≤ α|ζ − z|d(ζ), z ∈ Γ(ζ, α).This implies

|η − ϕ(z)|
|ζ − z| ≤ α(1 + |ϕ(z)|)1− |ϕ(z)|

|η − ϕ(z)| ≤ 2αd(ζ),and thus (η−ϕ(z))/(ζ−z) is bounded in Γ(ζ, α). Now, sin
e we have already shown that
(η− ϕ(z))/(ζ − z) has radial limit d(ζ)ηζ at ζ , Lindelöf's theorem shows that it tends tothe same limit in Γ(ζ, β) for any 1 < β < α. Sin
e α, and hen
e β, is arbitrary, we aredone.(2)⇒(3). Suppose that ϕ has �nite angular derivative at ζ . Then ϕ(z) → η as z → ζnontangentially. In parti
ular, η = limr→1− ϕ(rζ). Fix a nontangential approa
h region
Γ(ζ, α) and �x w ∈ Γ(ζ, α). Let r > 0 be small enough so that w + reiθ ∈ D for all
0 ≤ θ ≤ 2π. Then the Cau
hy Integral Formula applied to ϕ− η implies

ϕ′(w) = (ϕ− η)′(w) =
1

2π

∫ 2π

0

ϕ(w + reiθ)− η

reiθ
dθ

=
1

2π

∫ 2π

0

ϕ(w + reiθ)− η

w + reiθ − ζ
· w + reiθ − ζ

reiθ
dθ.34



Choose now r = δ|w − ζ |, where δ = (1 + 2α)−1. Then Lemma 11.8 guarantees that
w + reiθ ∈ Γ(ζ, β) for all 0 ≤ θ ≤ 2π, where

β = α
1 + δ

1− δα
= α

1 + 1
1+2α

1− α
1+2α

= 2α.Therefore, by the assumption (2), the quantity
ϕ(w + reiθ)− η

w + reiθ − ζis bounded for all w ∈ Γ(ζ, α) and 0 ≤ θ ≤ 2π. Sin
e
∣∣∣∣
w + reiθ − ζ

reiθ

∣∣∣∣ =
∣∣∣∣1 +

w − ζ

reiθ

∣∣∣∣ ≤ 1 +
1

δ
,we have ϕ′ bounded in Γ(ζ, α). Moreover, by setting w = tζ for 0 < t < 1, we dedu
e bythe bounded 
onvergen
e theorem and the assumption that

lim
t→1−

ϕ′(tζ) =
1

2π

∫ 2π

0

lim
t→1−

ϕ(tζ + reiθ)− η

tζ + reiθ − ζ
· tζ + reiθ − ζ

reiθ
dθ = ϕ′(ζ).Sin
e ϕ′ is bounded in Γ(ζ, α) and limt→1− ϕ

′(tζ) = ϕ′(ζ), Lindelöf's theorem shows that
ϕ′ has nontangential limit ϕ′(ζ) at ζ . Sin
e α is arbitrary we are done.(3)⇒(1). Let M <∞ be su
h that |ϕ′(rζ)| ≤ M for all r ∈ [0, 1). Then

|η − ϕ(rζ)| =
∣∣∣∣
∫ 1

r

ϕ′(tζ)ζ dt

∣∣∣∣ ≤ M(1− r),and hen
e
1− |ϕ(rζ)|
1− |rζ | ≤ |η − ϕ(rζ)|

1− r
≤M.Therefore d(ζ), being the lower limit, is �nite.In the proof of (1)⇒(2) we saw that

η − ϕ(z)

ζ − z
→ ζηd(ζ)as z → ζ nontangentially. This is the same as saying that

1− ηϕ(z)

1− ζz
→ d(ζ)as z → ζ nontangentially. In parti
ular, sin
e d(ζ) is positive by Corollary 11.2, also

|1− ηϕ(z)|
|1− ζz|

→ d(ζ)35



and
1−ηϕ(z)
|1−ηϕ(z)|

1−ζz

|1−ζz|

→ 1as z → ζ nontangentially. As a 
onsequen
e, we see that when z approa
hes ζ nontan-gentially, ϕ(z) approa
hes η nontangentially also. Nontangential 
onvergen
e of z to ζimplies | Im (1− ζz)| ≤ CRe (1− ζz) for some 
onstant C > 0, and hen
e
∣∣∣∣ Im 1− ζz

|1− ζz|

∣∣∣∣ ≤ CRe 1− ζz

|1− ζz|for all z 
lose enough to ζ . Therefore, by denoting
1− ηϕ(z)

|1− ηϕ(z)| = X1 + iY1 = Z1 and 1− ζz

|1− ζz|
= X2 + iY2 = Z2,we dedu
e

∣∣∣∣
X1

X2
− 1

∣∣∣∣ =
∣∣∣∣
Z1

Z2
− 1

∣∣∣∣

∣∣∣X1

X2
− 1
∣∣∣

∣∣∣Z1

Z2
− 1
∣∣∣
=

∣∣∣∣
Z1

Z2
− 1

∣∣∣∣
∣∣∣∣
X1 −X2

Z1 − Z2

∣∣∣∣
∣∣∣∣
Z2

X2

∣∣∣∣ ≤
∣∣∣∣
Z1

Z2
− 1

∣∣∣∣ (1 + C).Thus
lim
z→ζ

Re (1−ηϕ(z))
|1−ηϕ(z)|Re (1−ζz)

|1−ζz|

→ 1,so sin
e Re (1− ηϕ(z))Re (1− ζz)
=

Re (1− ηϕ(z))

|1− ηϕ(z)|
|1− ηϕ(z)|
|1− ζz|

|1− ζz|Re (1− ζz)

=
|1− ηϕ(z)|
|1− ζz|

· Re (1− ηϕ(z))

|1− ηϕ(z)|

/ Re (1− ζz)

|1− ζz|
,we have

lim
z→ζ

Re (1− ηϕ(z))Re (1− ζz)
= lim

z→ζ

|1− ηϕ(z)|
|1− ζz|

· 1 = d(ζ).Finally, the nontangential 
onvergen
e implies
lim
z→ζ

Re (1− ζz)

1− |z| = 1 = lim
z→ζ

Re (1− ηϕ(z))

1− |ϕ(z)| ,so sin
e
1− |ϕ(z)|
1− |z| =

1− |ϕ(z)|Re (1− ηϕ(z))

Re (1− ηϕ(z))Re (1− ζz)

Re (1− ζz)

1− |z| ,we have
lim
z→ζ

1− |ϕ(z)|
1− |z| = 1 · lim

z→ζ

Re (1− ηϕ(z))Re (1− ζz)
· 1 = d(ζ),as z approa
hes ζ nontangentially. This is what we wished to prove. 236



Exer
ises1. Show that E(k, ζ) = {z ∈ D : |ζ − z|2 ≤ k(1 − |z|2)} is a 
losed dis
 internallytangent to the unit 
ir
le T at ζ with 
enter ζ

1+k
and radius k

k+1
.2. Prove the statement related to the equality in Julia's Lemma.3. For 1 < p, α < ∞ and ζ ∈ T, denote Γp(ζ, α) = {z ∈ D : |z − ζ |p < α(1 − |z|)}.How the set Γp(ζ, α) 
hanges when p and α 
hange? Show that if 0 < δ < α−1 and

|λ| ≤ δ|ζ − z|p, then
z + λ ∈ Γp(ζ, β), β =

2p−1(α + δpαp)

1− δα
.Hint: Show �rst that (x+ y)p ≤ 2p−1(xp + yp) for all p > 1 and x, y ≥ 0, and thenimitate the proof of Lemma 11.8 to a
hieve the statement.4. Let zn ∈ D su
h that |zn| → 1−, as n → ∞, and limn→∞
1−|zn|
|1−zn| = 1. Show that

arg(1− zn) → 0, as n→ ∞.5. Let ν be a probability measure and 0 < p, q < ∞. Use Hölder's inequality to showthat (∫
dν

f p

)− 1
p

≤
(∫

f q dν

) 1
q

.12. S
hwarz-Pi
k theorem for hyperboli
 derivativeIn this se
tion we establish an analogue of S
hwarz-Pi
k theorem for hyperboli
 derivative.De�nition 12.1. The hyperboli
 derivative of an analyti
 self-map ϕ of D is
ϕ⋆(z) = ϕ′(z)

1− |z|2
1 − |ϕ(z)|2 , z ∈ D.First note the obvious fa
t that ϕ⋆ is not an analyti
 fun
tion in D. By S
hwarz-Pi
ktheorem, |ϕ⋆(z)| ≤ 1 and if ϕ⋆(z) ∈ T for some z ∈ D, then ϕ is a Möbius transformation.In other words, if ϕ is an analyti
 self-map of D, but not a Möbius transformation, then

ϕ⋆(z) ∈ D for all z ∈ D. Therefore we 
an measure the hyperboli
 distan
e betweenimages two points under the hyperboli
 derivative. This leads to the following S
hwarz-Pi
k theorem for hyperboli
 derivative.Theorem 12.2 (Beardon 1997). Let ϕ be an analyti
 self-map of D, but not an auto-morphism, su
h that ϕ(0) = 0. Then
dh(ϕ

⋆(0), ϕ⋆(z)) ≤ 2dh(0, z), z ∈ D. (12.1)Further, equality holds for ea
h z ∈ D when ϕ(z) = z2.To prove this result we will need the following lemma.37



Lemma 12.3. Let ϕ be an analyti
 self-map of D su
h that ϕ(0) = 0. If |ϕ(z0)| < |z0|,then both ϕ⋆(0) and ϕ⋆(z0) belong to ∆h

(
ϕ(z0)
z0

, dh(0, z0)
).Proof. Note �rst that z0 6= 0 by the assumptions ϕ(0) = 0 and |ϕ(z0)| < |z0|. Set

w0 = ϕ(z0) and de�ne
h(z) =

{
ϕ(z)
z
, z ∈ D \ {0}

ϕ′(0), z = 0.
.Then h is an analyti
 self-map of D by the S
hwarz lemma (be
ause ϕ(0) = 0). Moreover,

ϕ⋆(0) = ϕ′(0)
1− |0|2

1− |ϕ(0)|2 = ϕ′(0) = h(0) and h(z0) =
ϕ(z0)

z0
=
w0

z0
.The S
hwarz-Pi
k theorem implies

dh

(
ϕ⋆(0),

w0

z0

)
= dh(h(0), h(z0)) ≤ dh(0, z0),and hen
e

ϕ⋆(0) ∈ ∆h

(
w0

z0
, dh(0, z0)

)
= ∆h

(
f(z0)

z0
, dh(0, z0)

)
.De�ne now

g(z) =

{
ϕϕ(z0)

(ϕ(z))

ϕz0 (z)
, z ∈ D \ {z0}

ϕ⋆(z0), z = z0.
.Then

lim
z→z0

g(z) = lim
z→z0

ϕ(z0)−ϕ(z)

1−ϕ(z0)ϕ(z)

z0−z
1−z0z

= lim
z→z0

(
ϕ(z0)− ϕ(z)

z − z0

1− z0z

1− ϕ(z0)ϕ(z)

)

= ϕ′(z0)
1− |z0|2

1− |ϕ(z0)|2
= ϕ⋆(z0),and hen
e g is analyti
 in D. Further, by the S
hwarz-Pi
k theorem,

|g(z)| = dph(ϕ(z0), ϕ(z))

dph(z0, z)
≤ 1,and hen
e g is an analyti
 self-map of D. Moreover,

g(0) =
ϕϕ(z0)(ϕ(0))

ϕz0(0)
=
ϕ(z0)

z0
=
w0

z0
and g(z0) = ϕ⋆(z0),and the S
hwarz-Pi
k theorem yields

dh

(
w0

z0
, ϕ⋆(z0)

)
= dh(g(0), g(z0)) ≤ dh(0, z0).38



Thus
ϕ⋆(z0) ∈ ∆h

(
w0

z0
, dh(0, z0)

)
= ∆h

(
ϕ(z0)

z0
, dh(0, z0)

)
,and the proof is 
omplete. 2Proof of Theorem 12.2. The inequality (12.1) (for z 6= 0) follows by Lemma 12.3 and thetriangle inequality:

dh(ϕ
⋆(0), ϕ⋆(z)) ≤ dh

(
ϕ⋆(0),

ϕ(z)

z

)
+ dh

(
ϕ(z)

z
, ϕ⋆(z)

)
= 2dh(0, z), z ∈ D \ {0}.If ϕ(z) = z2, then ϕ′(z) = 2z and

ϕ⋆(z) = 2z
1− |z|2
1− |z|4 =

2z

1 + |z|2 , z ∈ D.Moreover,
dh(ϕ

⋆(0), ϕ⋆(z)) = dh(0, ϕ
⋆(z)) = log

1 + 2|z|
1+|z|2

1− 2|z|
1+|z|2

= log
(1 + |z|)2
(1− |z|)2 = 2dh(0, z), (12.2)so we have equality in (12.1) for ea
h z ∈ D. 2Exer
ises1. Dis
uss the general question of when equality in (12.1) holds for some �xed z ∈ D.Is it true that equality holds for ea
h z ∈ D if and only if ϕ(z) = z2?13. Blo
h-Landau theorem and Blo
h's theoremOne way to a
hieve Pi
ard's big theorem is to use the following remarkable result on therange of analyti
 fun
tions in D.Theorem 13.1 (Blo
h-Landau theorem). There exists a 
onstant R > 0 su
h thatthe range of ea
h analyti
 fun
tion f : D → C su
h that |f ′(0)| ≥ 1 
ontains a dis
 ofradius R.Proof. We may assume without loss of generality that |f ′(0)| = 1, for otherwise 
onsider

f/f ′(0). We will �rst treat the spe
ial 
ase where f is analyti
 in D.The fun
tion h : [0, 1] → [0,∞),

h(r) = (1− r)M(r, f ′) = sup
|z|=r

|f ′(z)|is 
ontinuous be
ause f is analyti
 in D. Moreover h(0) = (1 − 0)|f ′(0)| = 1 and h(1) =
(1−1)M(r, f ′) = 0 be
ause f ′ is analyti
 in D. Therefore there exists the largest s ∈ [0, 1)su
h that h(s) = 1. Let ξ ∈ D be one of the points su
h that |ξ| = s and

|f ′(ξ)| = max
|z|=s

|f ′(z)|.39



Consider for R = (1− s)/2 the fun
tion F : D → C,
F (z) = 2(f(Rz + ξ)− f(ξ)).This fun
tion is well-de�ned analyti
 fun
tion in D be
ause

|Rz + ξ| ≤ R|z|+ |ξ| ≤ 1− s

2
+ s =

1− s+ 2s

2
=

1 + s

2
< 1.Further

F (0) = 2(f(0 + ξ)− f(ξ)) = 0and
F ′(0) = 2R|f ′(ξ)| = 2RM(s, f ′) =

2Rh(s)

1− s
= 1.Furthermore, sin
e h(r) < 1 when r ∈ (s, 1) we have

|F ′(z)|
2

= R|f ′(Rz + ξ)| ≤ R sup{|f ′(w)| : |w| ≤ R + s}
= R sup{|f ′(w) : |w| = s+R}

=
R

1− (s+R)
h(s+R)

<
R

1− s+R
=

1−s
2

1− s− 1−s
2

=
1− s

2− 2s− 1 + s
=

1− s

1− s
= 1, (13.1)for all z ∈ D and thus |F ′(z)| ≤ 2 for all z ∈ D. Lemma 13.2 now implies that the rangeof F 
ontains the dis
 D(0, 1/6). From the de�nition of F we see that the range of fthen 
ontains the dis
 D(f(ξ), 1

12
). This 
ompletes the proof in the spe
ial 
ase when fis analyti
 in D.In the general 
ase, 
onsider the fun
tion

g(z) =
f(ρz)

ρ
,where ρ ∈ (0, 1). Then g is analyti
 in D, g′(z) = f ′(ρz) and hen
e g′(0) = f ′(0). Byrepla
ing f by ξ for a suitably 
hosen ξ ∈ T, we may assume without loss of generality,that f ′(0) = 1. Thus g satis�es the 
onditions of the spe
ial 
ase we just treated, so itsrange 
ontains a dis
 of radius ρ/12. By 
hoosing ρ = 12/13 we see that the range of f
ontains a dis
 of radius 1/13. 2Lemma 13.2. Let f be analyti
 in D su
h that f(0) = 0, f ′(0) = 1 and |f ′(z)| ≤ M ∈

(0,∞) for all z ∈ D. Then
D

(
0,

1

2(M + 1)

)
⊂ f(D).40



Proof. Consider the fun
tion
g(z) =

f ′(z)− 1

M + 1
.This fun
tion is analyti
 in D, g(0) = 0 and |g(z)| ≤ 1 for all z ∈ D. Therefore theS
hwarz lemma applies and gives

|g(z)| = |f ′(z)− 1|
M + 1

≤ |z|, z ∈ D,or equivalently
|f ′(z)− 1| ≤ (M + 1)|z|, z ∈ D.Sin
e f(0) = 0, we may use this inequality to dedu
e

|f(z)− z| =
∣∣∣∣
∫ z

0

f ′(ζ)− 1dζ

∣∣∣∣ ≤
∫ z

0

|f ′(z)− 1||dζ | ≤ (M + 1)

∫ z

0

|ζ ||dζ |

= (M + 1)
|z|2
2
, z ∈ D.This says in parti
ular, that for z ∈ ∂D(0, (M + 1)−1) we have

|f(z)− z| ≤ M + 1

2

1

(M + 1)2
=

1

2(M + 1)
.If now z ∈ ∂D(0, (M + 1)−1) and w ∈ D(0, (2(M + 1))−1), then

|f(z)− w − (z − w)| = |f(z)− z| ≤ 1

2(M + 1)
< |z − w|,and hen
e the fun
tions f(z)−w and z −w have exa
tly same number of zeros 
ountingmultipli
ities in D(0, (M + 1)−1) by Rou
hé's theorem. In parti
ular, f attains the value

w ∈ D(0, (2(m+ 1))−1) in D(0, (M + 1)−1) exa
tly on
e. Therefore we have shown that
D

(
0,

1

2(M + 1)

)
⊂ f

(
D

(
0,

1

M + 1

))
,whi
h is more than required. 2The surprising feature of Theorem 13.1 is of 
ourse the existen
e of the universal 
onstant

R > 0 in spite of the vast 
lass of fun
tions involved.Let f : D → C be analyti
 su
h that |f ′(0)| ≥ 1, and de�ne
L(f) = sup{r > 0 : f(D) 
ontains a dis
 of radius r}.If Φ denotes the set of those analyti
 fun
tions f : D → C su
h that |f ′(0)| ≥ 1, thenBlo
h-Landau theorem shows that the Landau's 
onstant

L = inf
f∈Φ

L(f)is positive. The proof we presented reveals that L ≥ 1/13. The exa
t value of Landau's
onstant is not known, but it has been as
ertained that 0.5 ≤ L ≤ 0.544.Theorem 13.1 is an immediate 
onsequen
e of an even more surprising quantitativedis
overy on the range of analyti
 fun
tions.41



Theorem 13.3 (Blo
h's theorem). Let f : D → C be analyti
 su
h that |f ′(0)| ≥ 1.Then there exists a dis
 D = D(f) ⊂ D su
h that f(D) 
ontains a dis
 of radius 0.43 and
f is univalent in D.Let B(f) be the supremum of all r > 0 for whi
h there exists a domain G ⊂ D onwhi
h f is univalent and f(G) 
ontains a dis
 of radius r. Then Blo
h's theorem showsthat the Blo
h's 
onstant

B = inf
f∈Φ

B(f)is larger than 0.43. The exa
t value of Blo
h's 
onstant is unknown, although Ahlfors andGrunsky (1937) showed that
0.433 ≈

√
3

4
≤ B ≤ 1√

1 +
√
3

Γ(1
3
)Γ(11

12
)

Γ(1
4
)

≈ 0.472,and 
onje
tured that the upper bound is a
tually the value of B.We will prove a weaker result. To do this we will need the following lemma.Lemma 13.4. Let g ∈ H(D(0, R)) su
h that g(0) = 0, |g′(0)| = µ > 0. If there exists
M ∈ (0,∞) su
h that |g(z)| ≤M for all z ∈ D(0, R), then

g(D(0, R)) ⊃ D

(
0,
R2µ2

6M

)
.Proof. By 
onsidering the fun
tion

f(z) =
g(Rz)

Rg′(0)
,it su�
es to show that: if f ∈ H(D), f(0) = 0, f ′(0) = 1 and |f(z)| ≤ M for all z ∈ D,then M ≥ 1 and

D

(
0,

1

6M

)
⊆ f(D).Let 0 < r < 1 and

f(z) = z + a2z
2 + . . . .A

ording to Cau
hy's estimate

|an| ≤
M

rnfor all n ∈ N. So 1 ≤ a1 ≤M . If |z| = (4M)−1, then
|f(z)| ≥ |z| −

∞∑

n=2

|an||z|n

≥ (4M)−1 −
∞∑

n=2

M

rn

(
1

4M

)n

= (4M)−1 − 1

16M − 4
= α.42



Here α ≥ 1/(6M). This is be
ause
1

4M
− 1

16M − 4
=

1

4

(
1

M
− 1

4M − 1

)
=

1

4

(
4M − 1−M

M(4M − 1)

)
=

1

4M

3M − 1

4M − 1
≥ 1

6Mis equivalent to
3M − 1

4M − 1
≥ 2

3
,whi
h is equivalent to

9M − 3 ≥ 8M − 2,that is, M ≥ 1. Suppose |w| < 1
6M

. It will be shown that g(z) = f(z)− w has a zero. Infa
t, for |z| = (4M)−1,
|f(z)− g(z)| = |w| < (6M)−1 ≤ |f(z)|.So by Rou
hé's theorem, f and g have the same amount of zeros in D(0, 1

4M
). Sin
e

f(0) = 0, g(z0) = 0 for some z0, we have
D

(
0,

1

6M

)
⊂ f(D)as desired. 2Theorem 13.5 (Blo
h's theorem). Let f be analyti
 in D su
h that f(0) = 0 and

f ′(0) = 1. Then there exists a dis
 D ⊆ D on whi
h f is univalent and su
h that f(D)
ontains a dis
 of radius 1/72.Proof. Let h(r) = (1 − r)M(r, f ′). Then h : [0, 1) → [0,∞) is 
ontinuous, h(0) = 1,
h(1) = 0. Let r0 = sup{r : h(r) = 1}, then h(r0) = 1, r0 < 1, and h(r) < 1 if r ∈ (r0, 1].Let a ∈ D be 
hosen with |a| = r0 and |f ′(a)| =M(r0, f

′). Then
|f ′(a)| = M(r, f ′)(1− r0)

1− r0
=

h(r0)

1− r0
=

1

1− r0
. (13.2)Now if

|z − a| < 1

2
(1− r0) = ρ0,then

|z| ≤ |z − a|+ |a| < 1

2
(1− r0) + r0 =

1 + r0
2

.Sin
e r0 < (r0 + 1)/2, the de�nition of r0 gives
|f ′(z)| ≤M

(
1 + r0

2
, f ′
)

= h

(
1

2
(1 + r0)

)(
1− 1

2
(1 + r0)

)−1

<

(
1− 1

2
(1 + r0)

)−1

=
1

1− 1
2
(1 + r0)

=
2

2− 1− r0

=
2

1− r0
=

1

ρ0
,

(13.3)
43



when |z − a ∗ | < ρ0. Combining (13.2) and (13.3) gives
|f ′(z)− f ′(a)| ≤ |f ′(z)|+ |f ′(a)| < 1

ρ0
+

1

1− r0
=

1

ρ0
+

1

2ρ0
=

3

2ρ0
. (13.4)A

ording to S
hwarz lemma, this implies

|f ′(z)− f ′(a)| < 3|z − a|
2ρ2

, z ∈ D(a, ρ0).Hen
e, if z ∈ D = D(0, ρ0/3), then
|f ′(z)− f ′(a)| < 1

2ρ0
= |f ′(a)| = 1

1− r0
.By Exer
ise 3 f is univalent on D.It remains to be proved that f(D) 
ontains a dis
 of radius 1/72. For this, de�ne

g : D
(
0,
ρ0
3

)
→ C,by setting

g(z) = f(z + a)− f(a).Then g(0) = 0, g′(z) = f ′(z + a), g′(0) = f ′(a) and |g′(a)| = |f ′(a)| = (2ρ0)
−1. If

z ∈ D(0, ρ0/3), then the line segment γ = [a, z + a] lies in D ⊂ D(a, ρ0). So by (13.3)
|g(z)| =

∣∣∣∣
∫

γ

f ′(w)dw

∣∣∣∣ ≤
1

ρ0
|z| < 1

3
.Applying Lemma 13.4

D(0, σ) ⊂ g(D(0, ρ0/3)),where
σ =

(
ρ0
3

)2 ( 1
2ρ0

)2

6 · 1
3

=
1
9
· 1
4

2
=

1

9 · 8 =
1

72
.If this is translated into a statement about f , we get

f(D) ⊃ D

(
f(a),

1

72

)
,and the proof if 
omplete. 2Exer
ises1. Let f be analyti
 in D su
h that f(0) = 0, f ′(0) = 1 and |f(z)| ≤ M ∈ (0,∞) forall z ∈ D. Prove that M ≥ 1. This shows that the dis
 D (0, 1

2(M+1)

) appearingin the statement of Lemma 13.2 is 
ontained in D(0, 1/4). Hint: pi
k the solutionfrom the proof of Lemma 13.4.2. Transform the statement of Lemma 13.2 to the 
ase in whi
h f is analyti
 in D su
hthat f(0) = 0, f ′(0) = a ∈ C \ {0} and |f ′(z)| ≤M ∈ (0,∞) for all z ∈ D.3. Let f : D(a, r) → C be analyti
 su
h that |f ′(z) − f ′(a)| < |f ′(a)| for all z ∈
D(a, r) \ {a}. Show that f is univalent in D(a, r).44



14. S
hottky's theoremAnother tool we will need to prove Pi
ard's big theorem is S
hottky's theorem.Theorem 14.1 (S
hottky's theorem). Let M > 0 and r ∈ (0, 1). If f : D → C isanalyti
, omits 0 and 1 in its range, and if |f(0)| ≤ M , then there exists a 
onstant
C = C(M, r) > 0 su
h that |f(z)| ≤ C for all z ∈ D(0, r).Proof. By the lemma of the analyti
 logarithm, there exists an analyti
 bran
h of log fon D, whi
h we 
hoose su
h that | Im (log f(0))| ≤ π. Now

log f(z)

2πi
= n ∈ Z,that is,

log f(z) = 2πin, n ∈ Z,that is,
log |f(z)|+ i arg f(z) = 2πin, n ∈ Z,that is,

f(z) = 1and hen
e g = log f/2πi does not attain integer values be
ause f(z) 6= 1 for all z ∈ D bythe hypothesis. Let √g and √
g − 1 be analyti
 square roots of g and g − 1 in D. Then

h =
√
g −√

g − 1 is analyti
 in D, vanishes nowhere in D and does not attain the values√
n±

√
n− 1 for n ∈ N: Indeed, if

√
g(z) +

√
g(z)− 1 =

√
n±

√
n− 1for some z ∈ D, n ∈ N, then

√
g(z) +

√
g(z)− 1 =

1√
g(z)−

√
g(z)− 1

=
1√

n±
√
n− 1

=

√
n∓

√
n− 1

n− (n− 1)
=

√
n∓

√
n− 1, (14.1)and by adding these identities, we get

2
√
g(z) = 2

√
nimplying g(z) = n; a 
ase that was ex
luded.Sin
e h is non-vanishing, there exists an analyti
 bran
h H = log h, and H does notattain the values

an,m = log(
√
n±

√
n− 1) + 2πim, n ∈ N, m ∈ Z.45



But every dis
 of radius 10 
ontains at least one of the points an,m (Exer
ise 1!) so therange of H does not 
over any dis
 of radius 10. If z ∈ D and H ′(z) 6= 0, then the rangeof the fun
tion
ξ 7→ H(ξ)−H(z)

H ′(z)
, ξ ∈ D(z, 1− |z|),
overs a dis
 of radius (1− |z|)/13 by the proof of Blo
h-Landau theorem (Exer
ise 2!),so the values of H �ll a dis
 of radius H ′(z)(1 − |z|)/13 (
enter H(z)). This quantity
annot ex
eed 10, so

|H ′(z)|(1− |z|) ≤ 130. (14.2)Although (14.2) was derived under the assumption H ′(z) 6= 0, it is 
learly also valid when
H ′(z) = 0. Now

|H(z)| ≤ |H(0)|+ |H(z)−H(0)|

= |H(0)|+
∣∣∣∣
∫ z

0

H ′(ζ)dζ

∣∣∣∣

≤ |H(0)|+ 130

∫ z

0

dζ

1− |ζ |
= |H(0)|+ 130 log

1

1− |z|
≤ |H(0)|+ 130 log

1

1− r
, |z| ≤ r. (14.3)By the de�nition of H

exp(H) = h =
√
g −

√
g − 1 =

√
log f

2πi
−
√

log f

2πi
− 1,so

eH + e−H =
√
g −

√
g − 1 +

1√
g −√

g − 1

=
(
√
g −√

g − 1)2(
√
g +

√
g − 1) +

√
g +

√
g − 1

g − (g − 1)

=
(
√
g −√

g − 1) · 1 +√
g +

√
g − 1

1
= 2

√
g. (14.4)Thus we have √

log f

2πi
=
eH + e−H

2
. (14.5)Hen
e,

log f = 2πi
e2H + 2 + e−2H

4
=
πi

2
(e2H + 2 + e−2H)and thus

|f(z)| =
∣∣∣∣exp

(
πi

1

(
e2H(z) + 2 + e−2H(z)

))∣∣∣∣ ≤ exp
(
π
(
e2|H(z)| + 1

))
.46



In view of (14.3) the theorem follows on
e we establish H(0) ≤ C1, where C1 is a 
onstantdepending only on the bound M on f(0).Assume for a moment that |f(0)| ≥ 1
2
. For su
h f equation (14.5) implies the existen
eof C2 = C2(M) su
h that

C2 ≥
∣∣∣∣
eH(0) + e−H(0)

2

∣∣∣∣ ≥
∣∣∣∣
eRe H(0) − e−Re H(0)

2

∣∣∣∣ = sinh Re H(0)whi
h gives us an upper bound of the desired type on Re H(0). Similarly we will get alower bound on Re H(0) by using the triangle inequality in the other way.The imaginary part poses no problem sin
e we always 
hoose H = log h su
h that
| Im (H(0))| ≤ π. We have now proved the theorem under the assumption |f(0)| ≥ 1

2
. If

|f(0)| ≤ 1
2
we may apply the just obtained result to 1− f instead of f . 2Exer
ises1. Show that every dis
 of radius 10 
ontains at least one of the points

an,m = log(
√
n±

√
n− 1) + 2πim, n ∈ N, m ∈ Z.2. Let z ∈ D and let H be an analyti
 fun
tion in D su
h that H ′(z) 6= 0 for all z ∈ D.Show that the range of the fun
tion

h(ξ) =
H(ξ)−H(z)

H ′(z)
, ξ ∈ D(z, 1− |z|),
overs a dis
 of radius 1−|z|

13
for all z ∈ D.15. Pi
ard's theoremsPi
ard's big theorem is a remarkable generalization of the Casorati-Weiertrass theorem.Theorem 15.1 (Pi
ard's big theorem). If f has an essential singularity at z0 ∈ C,then in ea
h open neighborhood of z0 the range of f omits at most one 
omplex value.Proof. By translation in C, we may assume that the singularity is situated in the origin,and by dilatation, that f is analyti
 in D(0, e2π) \ {0}. We will show that if f omits two
omplex numbers, say a and b 6= a, then 0 is either a pole or a removable singularity. Wemay assume that f omits 0 and 1, for otherwise 
onsider the fun
tion

f(z)− a

b− a
.Case I If |f(z)| → ∞ as z → 0, then 0 is a pole of f .Case II There exists a sequen
e zn for whi
h zn → 0 as n → ∞ and |f(zn)| ≤ M forall n ∈ N for some M > 0. Passing to a subsequen
e if ne
essary we may assume that47



1 > |z1| > . . . > |zn| > |zn+1| > . . . and zn → 0, n → ∞. For a �xed n ∈ N, 
onsider thefun
tion
ξ 7→ f(zne

2πiξ)whi
h is analyti
 in D, omits the values 0 and 1, and |f(zne2πi0)| ≤ M for all n ∈ N. ByS
hottky's theorem there exists a 
onstant C, depending only on the bound M , su
h that
|f(zne2πiζ)| ≤ C, ζ ∈ D

(
0,

1

2

)
.In parti
ular

|f(zne2πit)| ≤ C, t ∈
(
−1

2
,
1

2

)
,so that |f | is bounded by C on the 
ir
le |z| = |zn|. Sin
e the 
onstant C is independentof n we get by the maximum modulus prin
iple that |f | ≤ C on D(0, |z|) \ {0}. But then

0 is a removable singularity of f . 2An alternate phrasing of Theorem 15.1 is the following: If an analyti
 fun
tion f hasan essential singularity at a ∈ C, then in ea
h neighborhood of a f assumes ea
h 
omplexnumber, with one possible ex
eption, an in�nite number of times.Pi
ard's little theorem extends the fundamental theorem of algebra and Liouville'stheorem.Theorem 15.2 (Pi
ard's little theorem). If f is a non-
onstant entire fun
tion, thenthe range of f omits at most one 
omplex value.Proof. Consider the fun
tion g(z) = f(1/z) that is analyti
 outside of the origin. If z = 0is an essential singularity of g, then we are done by Pi
ard's big theorem. If z = 0 is apole of order m ∈ N or a removable singularity of g (say a pole of order m = 0), then
g 
an be written in the form g(z) = z−mh(z), where h is entire and m ∈ N ∪ {0}. Now
f(z) = zmh(1/z) for z ∈ C \ {z} so that

|f(z)| ≤ (|h(0)|+ 1)|z|mfor all z ∈ C with |z| su�
iently large. By Liouville's theorem (see Exer
ise 5 in Se
tion 8)
f is a polynomial and not a 
onstant by the hypothesis, so its range 
ontains C by thefundamental theorem of algebra. 2Corollary 15.3. Meromorphi
 non
onstant fun
tion in the 
omplex plane attains every
omplex value with atmost two ex
eptions.Proof. Let f be meromorphi
 in the 
omplex plane su
h that f never attains the values
a, b, c ∈ C. We 
laim that f is a 
onstant.Consider the fun
tion

g(z) =
(f(z)− a)(c− b)

(f(z)− b)(c− a)
.48



Sin
e c 6= b and f−a vanishes nowhere, the numerator has no zeros. Likewise, sin
e c 6= aand f − b vanishes nowhere, the denominator has no zeros. Suppose that z0 is a pole of f .Now
lim
z→z0

(f(z)− a)(c− b)

(f(z)− b)(c− a)
= lim

z→z0

(1− a
f(z)

)(c− b)

(1− b
f(z)

)(c− a)
=
c− b

c− a
6= 0.Therefore z0 is a removable singularity for g. By de�ning g(z0) = c−b

c−a
the fun
tion g willbe analyti
 and nonzero at z0. Thus the possible poles of the numerator and denominator
an
el, g is entire and vanishes nowhere.Moreover, g− 1 vanishes nowhere. Suppose that g(z0) = 1 for some z0 ∈ C. We 
laimthat this leads to a 
ontradi
tionSuppose that z0 is not a pole of f . Now

f(z0)c− f(z0)b− ac+ ab = f(z0)c− f(z0)a− bc + ab.By subtra
ting the �nite 
omplex number f(z0)c+ ab, we get
−f(z0)b− ac = −f(z0)a− bc,whi
h gives

(a− b)(f(z0)− c) = 0.This is a 
ontradi
tion be
ause a 6= b ja f − c vanishes nowhere.Suppose that z0 is a pole of f . Now
1 = g(z0) = lim

z→z0

(f(z)− a)(c− b)

(f(z)− b)(c− a)
= lim

z→z0

(1− a
f(z)

)(c− b)

(1− b
f(z)

)(c− a)
=
c− b

c− a
.This is a 
ontradi
tion be
ause a 6= b.Therefore g is an analyti
 fun
tion whi
h never attains the values 0 and 1. By Pi
ard'slittle theorem g is a 
onstant. Now

f(z)− a

f(z)− b
= dfor all z ∈ C, for some d ∈ C, d 6= 0. Thus

(1− d)f(z) = a− dbfor all z ∈ C. If d = 1, then 0 = a− b, whi
h is a 
ontradi
tion. It follows that d 6= 1 and
f is a 
onstant. 2An entire fun
tion is a meromorphi
 fun
tion whi
h never attains the value ∞. There-fore Pi
ard's little theorem and Corollary 15.3 
an be 
ombined as Corollary 15.4.Corollary 15.4. Meromorphi
 non
onstant fun
tion attains all the values in the set Ĉwith atmost two ex
eptions. 49



Example 15.5. The fun
tion
ez

ez − 1is meromorphi
 and omits the values 0 and 1.Nevanlinna theory 
on
erns the value distribution of meromorphi
 fun
tions. Corol-lary 15.3 gives a glimpse of the defe
t relation whi
h is a 
orollary of the se
ond funda-mental theorem of Nevanlinna theory.Exer
ises1. Let D be a simply 
onne
ted domain and suppose that f is an analyti
 fun
tionon D whi
h does not attain the values 0 or 1. Show that there exists ana analyti
fun
tion g on D su
h that f = − exp(iπ cosh(2g)) in D. Hint: Che
k the proof ofS
hottky's theorem.16. Solutions for exer
ises1. Maximum modulus prin
iple (on
e more)1. Let D be a bounded domain and suppose that f is 
ontinuous on D and analyti
on D. Show that if there exists a 
onstant c ≥ 0 su
h that |f(z)| = c for all z ∈ ∂D,then either f is a 
onstant fun
tion or f has a zero.Solution. If c = 0, then f ≡ 0 by the Maximum modulus prin
iple, and thus theassertion is proved in the 
ase c = 0. Let c > 0, and assume that f(z) 6= 0 for all
z ∈ D (for otherwise the assertion is again valid). Then |f | attains its maximumand minimum in ∂D by the Maximum and the Minimum modulus prin
iples. Hen
e
|f(z)| = c for all z ∈ D by the hypothesis |f(z)| = c for all z ∈ ∂D. Cau
hy-Riemannequations (or Theorem 1.2 or the Maximum modulus prin
iple) now show that fmust be 
onstant.2. Let f be entire and non-
onstant, and let c > 0. Show that the 
losure of {z :
|f(z)| < c} is the set {z : |f(z)| ≤ c}.Proof. Let c > 0 and denote Ac(f) = {z ∈ C : |f(z)| < c} and Bc(f) = {z ∈ C :
|f(z)| ≤ c} so that the 
laim reads Ac(f) = Bc(f). If z0 ∈ Ac(f), then there exists
{zn} su
h that |f(zn)| < c for all n ∈ N and zn → z0, as n→ ∞. By the 
ontinuityof |f |, it follows that |f(z0)| ≤ c, and thus z0 ∈ Bc(f). Conversely, let z0 ∈ Bc(f),that is, |f(z0)| ≤ c. If |f(z0)| < c, then z0 ∈ Ac(f) ⊂ Ac(f). If |f(z0)| = c, then,by Theorem 1.2, f(D(z0, r)) is open and thus f(z0) is an interior point of this set.Therefore there exists {zn} su
h that zn ∈ Ac(f) for all n ∈ N and zn → z0, as
n→ ∞. Thus z0 ∈ Ac(f). 23. Let p be a non-
onstant polynomial and c > 0. Show that ea
h 
omponent of
{z : |p(z)| < c} 
ontains a zero of p. 50



Proof. Let p be a non-
onstant polynomial and denote A = {z : |p(z)| < c}.Sin
e lim|z|→∞ |p(z)| = ∞, A is bounded. A may be dis
onne
ted. In that 
ase,
A = ∪{Aj}, where the 
omponents Aj are disjoint bounded domains and ∂Aj =
{z ∈ Aj : |p(z)| = c} for ea
h j as is seen by a reasoning similar to that in Exer
ise 2.Let Aj be arbitrary. If Aj does not 
ontain a zero of p, then p is a 
onstant in
Aj by Exer
ise 1. Then, as a polynomial, p is a 
onstant everywhere. This is a
ontradi
tion and the assertion follows. 24. Let p be a non-
onstant polynomial and c > 0. Show that {z : |p(z)| = c} is a �niteunion of 
losed paths. Dis
uss the behavior of these paths as c→ ∞.Proof. Let Ac(p) = {z : |p(z)| < c}. By the solution of Exer
ises 2 and 3, it is 
learthat Ac(p) is a union of disjoint bounded domains (the 
omponents of Ac(p)) and
∂Ac(p) = {z : |p(z)| = c}. Thus ∂Ac(p) is a union of 
losed (but not ne
essarilydisjoint) paths. By Exer
ise 3 every 
omponent of Ac(p) 
ontains at least one zeroof p. Polynomial p has �nitely many zeros, thus Ac(p) 
onsists of at most thesame number of 
omponents as is the degree of p, and this maximum number isattained for all c > 0 su�
iently small. When c in
reases, the paths unite andfor all su�
iently large c we have only one path. The size of this path in
reasesunboundedly in the sense that for ea
h R > 0, there exists c0 = c0(R) > 0 su
h that
D(0, R) ⊂ Ac(p) for all c ≥ c0. 25. Let f and g be analyti
 on D(0, r) with |f(z)| = |g(z)| for |z| = r. Show that ifneither f nor g vanishes in D(0, r), then there exists a 
onstant λ ∈ T su
h that
f = λg.Proof. If neither f nor g vanishes in D(0, r), the fun
tion f/g is analyti
 in D(0, r),and, by the hypothesis, |f(z)/g(z)| = 1 for all z ∈ ∂D(0, r). Exer
ise 1 yields f/g ≡
λ, where λ is a 
onstant. Clearly, this 
onstant satis�es |λ| = 1, and the assertionis proved. In the general 
ase f/g might have �nitely many isolated singularities on
∂D(0, r) that are the zeros of g. However, it is easy to see that these singularitiesare removable be
ause of the hypothesis, thus the pre
eding reasoning applies, andthe assertion follows. 22. S
hwarz lemma and Borel-Carathéodory inequality1. Consider the fun
tions −f and ±if to obtain inequalities similar to the Borel-Carathéodory inequality involving min|z|=R Re f(z), max|z|=R Im f(z) or
min|z|=R Im f(z).Solution. By repla
ing f by −f in the Borel-Carathéodory inequality, we obtain

M(r, f) ≤ − 2r

R − r
min
|z|=R

Re f(z) + R + r

R − r
|f(0)|. (16.1)51



In a similar manner, by repla
ing f by ±if , we dedu
e
M(r, f) ≤ − 2r

R − r
min
|z|=R

Im f(z) +
R + r

R− r
|f(0)|,

M(r, f) ≤ 2r

R− r
max
|z|=R

Im f(z) +
R + r

R− r
|f(0)|,respe
tively.2. Sear
h for other versions of the Borel-Carathéodory inequality.Solution. By using

g2(z) =
f 2(z)

2A2(R, f)− f 2(z)instead of g in the proof of the Borel-Carathéodory inequality, we obtain
M(r, f) ≤

√
2r

R− r

(
A(R, f) + |f(0)|

)
+ |f(0)|.See also [9℄.3. Show by an example that what ever inequality of the same type of the Borel-Carathéodory inequality you establish, in ea
h 
ase on the right hand side youwill obtain a fa
tor, su
h 1/(R − r). Hint: 
onsider f(z) = −i log(1 − z) and

0 < r < R < 1.Solution. Let f(z) = −i log(1 − z) and 0 < r < R < 1. Then f(0) = 0, A(R, f) =
max|z|=R Arg (1− z) = C(R) ∈ (0, π

2
) with C(R) → π/2, as R → 1−. Hen
e

M(r, f) ≥ log
1

1− r
=
A(R, f)

C(R)
log

1

1− r
.The Borel-Carathéodory inequality states that

M(r, f) ≤ 2r

R − r
A(R, f) +

R + r

R− r
|f(0)|, 0 < r < R < 1,whi
h in this 
ase reads as

log
1

1− r
≤ 2rC

R − r
≤ π

R− r
, 0 < r < R < 1.This example shows that in the Borel-Carathéodory type inequalities one mustalways have an unbounded fa
tor multiplying A(R, f) on the right hand side.For another example, 
onsider the fun
tion f(z) = −z(1 − z)−1 that maps D 
on-formally onto {z : Re z < 1/2}. Clearly, f(0) = 0, M(r, f) = r/(1 − r) and

max|z|=R Re f(z) < 1
2
. Therefore, Borel-Carathéodory inequality yields

r

1− r
≤ r

R − r
, 0 < r < R < 1.52



3. Convex fun
tions and Hadamard's three 
ir
les theoremExer
ises1. Let f : [a, b] → R and suppose that f(x) > 0 for all x ∈ [a, b] and that f has a
ontinuous se
ond derivative. Show that f is logarithmi
ally 
onvex if and only if
f ′′(x)f(x)− (f ′(x))2 ≥ 0 for all x ∈ [a, b].Solution. Let g(x) = log f(x). Be
au
e g′′(x) = f ′′(x)f(x)−(f ′(x))2

f(x)2
, g′ is non-de
reasingif and only if f ′′(x)f(x)− (f ′(x))2 ≥ 0. Thus f is logarithmi
ally 
onvex if and onlyif f ′′(x)f(x)− (f ′(x))2 ≥ 0 by the Proposition 3.3.2. Show that if f : (a, b) → R is 
onvex, then f is 
ontinuous.Solution. Suppose that f : (a, b) → R is 
onvex fun
tion, that is,

f(tx2 + (1− t)x1) ≤ tf(x2) + (1− t)f(x1)for all a < x1 < x2 < b, and 0 < t < 1. Let x3 ∈ (x2, b), and 
hoose t = x2−x1

x3−x1
∈

(0, 1). Then 1− t = x3−x2

x3−x1
and x2 = tx3 + (1− t)x1, and thus

(x3 − x1)f(x2) ≤ (x2 − x1)f(x3) + (x3 − x2)f(x1) + x2f(x2)− x2f(x2),from whi
h we have
f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x2)

x3 − x2
.On the other hand,

f(x2) ≤
x2 − x1
x3 − x1

f(x3) +
(x3 − x1)− (x2 − x1)

x3 − x1
f(x1),and thus

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x1)

x3 − x1
.By applying these inequalities to points a < x1 < x2 < x < x+ h1 < x+ h2 < b weobtain

f(x2)− f(x1)

x2 − x1
≤ f(x+ h1)− f(x)

h1
≤ f(x+ h2)− f(x)

h2
.Hen
e the fun
tion F1(h) =

f(x+h)−f(x)
h

is bounded bellow and in
reasing in (0, b−x)and thus the limit limh→0+ F1(h) = f ′
+(x) exists. Similarly, by writing the 
onvexity
ondition as

f(x2) ≤
(x3 − x1)− (x3 − x2)

x3 − x1
f(x3) +

x3 − x2
x3 − x1

f(x1),we obtain
f(x3)− f(x2)

x3 − x2
≤ f(x3)− f(x1)

x3 − x1
.53



Hen
e, if a < x− h2 < x− h1 < x < x1 < x2 < b, we have
f(x)− f(x− h2)

h2
≤ f(x)− f(x− h1)

h1
≤ f(x2)− f(x1)

x2 − x1
.Thus the fun
tion F2(h) = f(x)−f(x−h)

h
is bounded above and de
reasing in someinterval (0, δ) and hen
e the limit limh→0+ F2(h) = f ′

−(x) exists.Now let x ∈ (a, b). Sin
e we know that f ′
+(x) and f ′

−(x) exist, we may write
lim
h→0+

f(x+ h)− f(x) =

(
lim
h→0+

f(x+ h)− f(x)

h

)(
lim
h→0+

h

)
= 0and

lim
h→0−

f(x+ h)− f(x) =

(
lim
h→0−

f(x+ h)− f(x)

h

)(
lim
h→0−

h

)
= 0.Hen
e f is 
ontinuous at x. If f is 
onvex in a 
losed interval [a, b], it is notnessessarily 
ontinuous at the endpoints a and b. An easy 
ounterexample is thefun
tion f : [0, 1] → R su
h that f(0) = f(1) = 1 and f(x) = 0 for all 0 < x < 1.3. Supply the details of the proof of Proposition 3.2.Solution. (a) Let f : [a, b] → R be 
onvex, x1, . . . , xn ∈ [a, b] and t1, . . . , tn ≥ 0 su
hthat ∑n

i=1 ti = 1. Obviously ti ∈ [0, 1] for all i = 1, . . . , n. If n = 1, the assertion istrivially true and if n = 2 the assertion is true by the de�nition of 
onvex fun
tions.Suppose f(∑n

i=1 tixi) ≤
∑n

i=1 tif(xi) for all x1, . . . , xn ∈ [a, b] and t1, . . . , tn ∈ [0, 1]su
h that ∑n
i=1 ti = 1 for some n ∈ N. Suppose that t1, . . . , tn+1 ∈ [0, 1] su
h that∑n+1

i=1 ti = 1. Now
f

(
n+1∑

i=1

tixi

)
= f

(
tn+1xn+1 + (1− tn+1)

n∑

i=1

tixi
1− tn+1

)

≤ tn+1f(xn+1) + (1− tn+1)f

(
n∑

i=1

tixi
1− tn+1

)

≤ tn+1f(xn+1) + (1− tn+1)
n∑

i=1

ti
1− tn+1

f(xi)

=
n+1∑

i=1

tif(xi),sin
e t1+...+tn
1−tn+1

= 1.Conversely suppose f(∑n

i=1 tixi) ≤ ∑n

i=1 tif(xi) for any points x1, . . . , xn ∈ [a, b]and the real numbers t1, . . . , tn with ∑n
i=1 t1 = 1. Then f(tx2 + (1 − t)x1) ≤

tf(x2) + (1− t)f(x1) for all x1, x2 ∈ [a, b] and 0 ≤ t ≤ 1 sin
e t+ (1− t) = 1. So fis 
onvex.(b) Suppose that A ⊂ C is 
onvex. Again, the assertion is true for n = 1 triviallyand for n = 2 by the de�nition of 
onvexity, so suppose that, for some n ∈ N,54



∑n
i=1 tizi ∈ A holds for all z1, . . . , zn ∈ A and tz, . . . , tn ≥ 0 su
h that ∑n

i=1 ti = 1.Then, if z1, . . . , zn+1 ∈ A and tz, . . . , tn+1 ≥ 0 su
h that ∑n+1
i=1 ti = 1, we have

n+1∑

i=1

tizi = tn+1zn+1 + (1− tn+1)
n∑

i=1

ti
1− tn+1

zi ∈ A,be
ause ∑n
i=1

ti
1−tn+1

= 1 and thus ∑n
i=1

ti
1−tn+1

zi ∈ A.Conversely, suppose that∑n

i=1 tizi ∈ A for all z1, . . . , zn ∈ A and tz, . . . , tn ≥ 0 su
hthat ∑n

i=1 ti = 1. Then, by 
hoosing n = 2 and t2 = t we have tz2 + (1− t)z1 ∈ A,and thus A is 
onvex.4. Supply the details of the proof of Proposition 3.3.Solution. Let f : [a, b] → R be di�erentiable 
onvex fun
tion and a ≤ x1 < x2 ≤ b.Let t1, t2 ∈ (0, 1), and de�ne h1 = t1(x2 − x1) > 0 and h2 = t2(x2 − x1) > 0. Then
f(x1 + h1)− f(x1)

h1
=
f(t1x2 + (1− t1)x1)− f(x1)

h1

≤ t1f(x2) + (1− t1)f(x1)− f(x1)

h1

=
f(x2)− f(x1)

h1/t1
=
f(x2)− f(x1)

x2 − x1
=
f(x2)− f(x1)

h2/t2

=
f(x2)− (t2f(x1) + (1− t2)f(x2)

h2

≤ f(x2)− f(t2x1 + (1− t2)x2)

h2

=
f(x2)− f(x2 − h2)

h2
.By letting h1 → 0 we have

f ′(x1) = f ′
+(x1) ≤

f(x2)− f(x2 − h2)

h2
,and by then letting h2 → 0, we obtain f ′(x1) ≤ f ′

−(x2) = f ′(x2).Suppose then that f : [a, b] → R is di�erentiable su
h that f ′ is in
reasing, and let
a ≤ x1 < x2 < x3 ≤ b. By the mean value theorem, there exist y1 ∈ (x1, x2) and
y2 ∈ (x2, x3) su
h that

f ′(y1) =
f(x2)− f(x1)

x2 − x1
and f ′(y2) =

f(x3)− f(x2)

x3 − x2
.Hen
e

f(x2)− f(x1)

x2 − x1
≤ f(x2)− f(x1)

x2 − x1
+

(
f(x3)− f(x2)

x3 − x2
− f(x2)− f(x1)

x2 − x1

)
x3 − x2
x3 − x1

=
f(x2)− f(x1)

x2 − x1
+

(x2 − x1)f(x3)− (x3 − x1)f(x2) + (x3 − x2)f(x1)

(x2 − x1)(x3 − x1)

=
f(x3)− f(x1)

x3 − x1
. 55



By de�ning t = x2−x1

x3−x1
, we obtain x2 = tx3 + (1− t)x1 and
f(tx3 + (1− t)x1) ≤ tf(x3) + (1− t)f(x1),and hen
e f is 
onvex.5. Show that logarithmi
ally 
onvex fun
tions are 
onvex, but not 
onversely.Solution. Let f : [a, b] → R+ be logarithmi
ally 
onvex. Be
au
e g(x) = ex isin
reasing and 
onvex (g′ is in
reasing), we have

f(tx2 + (1− t)x1) = elog f(tx2+(1−t)x1) ≤ et log f(x2)+(1−t) log f(x1) = tf(x2) + (1− t)f(x1)for all x1, x2 ∈ [a, b], and t ∈ [0, 1]. So f is 
onvex. On the other hand, f : R+ → R+,
f(x) = x2 is 
onvex (f ′ is in
reasing), but log x2 is not (f ′′(x)f(x) − (f ′(x))2 =
4x− 4x2 < 0 when x /∈ (0, 1]).6. Supply the details of the proof of Hadamard's three 
ir
les theorem.Solution. Let 0 < R1 < R2 <∞ and suppose that f is analyti
 in A(0;R1, R2). Let
G = {x + iy : logR1 < x < logR2} and R1 < r1 ≤ r ≤ r2 < R2. Now the fun
tion
ez maps G onto A(0;R1, R2) (not inje
tive) and ∂G onto ∂A(0;R1, R2), and f is
ontinuous in A(0; r1, r2). Consider the fun
tion g(z) = f(ez), whi
h is now analyti
in G, 
ontinuous in Gr1,r2 ⊂ G, where Gr1,r2 = {x + iy : log r1 < x < log r2}, andthus also bounded in Gr1,r2 .De�ne the fun
tion M : [log r1, log r2] → R by

M(x) = sup
−∞<y<∞

|g(x+ iy)|.By Theorem 3.4 we know that logM is a 
onvex fun
tion, and hen
e
logM(log r) ≤ t logM(log r1) + (1− t) logM(log r2),where t = log r2−log r

log r2−log r1
and therefore 1− t = log r−log r1

log r2−log r1
. Now, by the de�nitions of Mand g, we have

M(log r) = sup
−∞<y<∞

|f(elog r+iy)| = sup
−∞<y<∞

|f(reiy)| = max
z∈∂D(0,r)

|f(z)| =M(r, f),and the assertion follows.4. Hardy's 
onvexity theoremIn this se
tion there were no exer
ises. 56



5. Littlewood's subordination theorem1. Use Littlewood's subordination theorem to show that Mp(r, f) is a non-de
reasingfun
tion of r.Solution. Let 0 < r1 < r2 < 1 be arbitrary. Let s = r1/r2 ∈ (0, 1). Take
f(z) = f

(s
s
z
)
= f 1

s
(sz) = F (ω(z)).Now,

F (z) = f 1
s
(z) and ω(z) = sz.so that f is subordinate to F and r1 ∈ (0, 1). Littlewood's subordination theoremimplies

Mp(r1, f) ≤Mp(r1, F ) =Mp(r2, f).6. Jensen's formula and Poisson-Jensen formula1. Show that ∫ 2π

0

log |1− eiθ| dθ = 0.Solution. First note that 1− ei2θ = −eiθ
(
eiθ − e−iθ

)
= −2ieiθ sin θ, so by 
hange ofvariable we have

∫ 2π

0

log
∣∣1− eiθ

∣∣ dθ = 2

∫ π

0

log
∣∣1− ei2θ

∣∣ dθ

= 2

∫ π

0

(log 2 + log |sin θ|) dθ

= 2π log 2 + 2

∫ π

0

log (sin θ) dθ.Now the assertion follows, if we 
an show that ∫ π

0
log sin θdθ = −π log 2. There areat least two ways to do this.Way 1. By 
hange of variable and known properties of the sine and 
osine fun
tions,we have

∫ π

0

log sin θdθ = 2

∫ π
2

0

log sin(2θ)dθ

= 2

∫ π
2

0

log 2 + log sin θ + log cos θdθ

= π log 2 + 2

∫ π
2

0

log sin θdθ + 2

∫ π
2

0

log sin θdθ

= π log 2 + 4

∫ π
2

0

log sin θdθ

= π log 2 + 2

∫ π

0

log sin θdθ.57



Hen
e ∫ π
2

0

log sin θdθ = −π log 2.Way 2. Consider the 
omplex variable fun
tion 1 − ei2z = −2ieiz sin z. Sin
e
1− ei2z = 1− e−2y(cos(2x) + i sin(2x)), z = x+ iy, we see that the prin
ipal bran
hof log (1− ei2z) is analyti
 in a region C \⋃n∈Z{z = x+ iy : x = nπ, y ≤ 0}.Let 0 < ε < π

2
, ρ > ε and Γ be a 
losed positively oriented path 
onsisting ofsegments [ε, π − ε], [π + iε, π + iρ], [π + iρ, iρ], and [iρ, iε], and 
ir
ular quadrants

C1(ε) and C2(ε) 
entered at 0 and π and joined to segments at points iε and ε, and
π − ε and π + iε. Sin
e log (1− ei2z) is analyti
 on Γ and inside it, we have

∫

Γ

log
(
1− ei2z

)
= 0.

6

-

iR

R
ε π − ε

iρ

iε π + iε

π + iρ�

Γ

r

r

r

r

rr

Firstly, be
ause the fun
tion ei2z = ei2xe−2y, is π-periodi
 with respe
t to x, the inte-grals over the verti
al sides of Γ 
an
el ea
h other. Se
ondly, ei2(x+iρ) = ei2xe−2ρ → 0,when ρ→ ∞, so the integral over the segment [π+iρ, iρ] tends to zero when ρ→ ∞.Thirdly,
lim
z→0

∣∣∣∣
1− ei2z

z

∣∣∣∣ = 2,so log |1− ei2z| grows like log |z| when z → 0, and hen
e
∣∣∣∣
∫

C1(ε)

log
(
1− ei2z

)
dz

∣∣∣∣ ≤
∫

C1(ε)

∣∣log
(
1− ei2z

)∣∣ |dz| ≤ π

2
ε max
z∈C1(ε)

∣∣log
(
1− ei2z

)∣∣→ 0,58



when ε → 0, be
ause limε→0 ε| log ε| = 0. Similar proof shows that the integral overthe quadrant C2(ε) 
entered at π tends to zero as ε→ 0. Hen
e we have
0 =

∫ π

0

log
(
1− ei2z

)
dz =

∫ π

0

(log 2 + log(−i) + iz + log sin z)dz

= π log 2 + π

(
−iπ

2

)
+ i

π2

2
+

∫ π

0

log sin zdz

= π log 2 +

∫ π

0

log sin zdz,whi
h is what we needed.2. Let f be analyti
 in a domain 
ontaining D(0, r) and suppose that a1, . . . , an arethe zeros of f in D(0, r) repeated a

ording to multipli
ity. Show that if f has azero at z = 0 of multipli
ity m ∈ N, then
1

2π

∫ 2π

0

log |f(reiθ)| dθ = log

∣∣∣∣
f (m)(0)

m!

∣∣∣∣ +m log r +
n∑

k=1

log
r

|ak|
.Solution. Now g(z) = f(z)

zm
is analyti
 in same domain as f and has same zerosex
luding the zero at the origin. Thus, by Jensen formula, we have

1

2π

∫ 2π

0

log

∣∣∣∣
f(reiθ)

(reiθ)m

∣∣∣∣ dθ = log

∣∣∣∣
f (m)(0)

m!

∣∣∣∣+
n∑

k=1

log
r

|ak|
,be
ause g(0) = f(m)(0)

m!
. The assertion follows by writing the left side as

1

2π

∫ 2π

0

log

∣∣∣∣
f(reiθ)

(reiθ)m

∣∣∣∣ dθ =
1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣ dθ − 1

2π

∫ 2π

0

log rmdθ

=
1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣ dθ −m log r.3. Supply the details of the proof of the Poisson-Jensen formula.Solution. If f is analyti
 and never vanishes in a domain 
ontaining D(0, r), then
log |f | is harmoni
 there and Poisson formula implies
log |f(z)| = 1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣ r
2 − |z|2

|z − reiθ|2dθ =
1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣ Re (reiθ + z

reiθ − z

)
dθfor all z ∈ D(0, r). Now r2(z−ak)

r2−akz
maps D(0, r) onto itself and ∂D(0, r) onto itself.Therefore

F (z) = f(z)

n∏

k=1

r2 − akz

r(z − ak)
= f(z)rn

n∏

k=1

r2 − akz

r2(z − ak)59



is analyti
 in a domain 
ontaining D(0, r), has no zeros in D(0, r), and |F (z)| =
|f(z)| on ∂D(0, r). Hen
e

log |F (z)| = 1

2π

∫ 2π

0

log
∣∣F (reiθ)

∣∣ Re (reiθ + z

reiθ − z

)
dθ

=
1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣ Re (reiθ + z

reiθ − z

)
dθfor all z ∈ D(0, r) \ {ak : 1 ≤ k ≤ n}. But

log |F (z)| = log |f(z)|+
n∑

k=1

log

∣∣∣∣
r2 − akz

r(z − ak)

∣∣∣∣ ,so
1

2π

∫ 2π

0

Re (reiθ + z

reiθ − z

)
log
∣∣f(reiθ)

∣∣ dθ = log |f(z)|+
n∑

k=1

log

∣∣∣∣
r2 − akz

r(z − ak)

∣∣∣∣ .4. Let f be meromorphi
 in a domain 
ontaining D(0, r) and suppose that a1, . . . , anand b1, . . . , bm are the zeros and poles of f in D(0, r) repeated a

ording to multi-pli
ity. State and prove the Poisson-Jensen formula in this 
ase.Solution. Let f be meromorphi
 in a domain 
ontaining D(0, r) and suppose that
a1, . . . , an and b1, . . . , bm are the zeros and poles of f in D(0, r) repeated a

ordingto multipli
ity. If f has no zero nor pole at z ∈ D(0, r), then

1

2π

∫ 2π

0

Re (reiθ + z

reiθ − z

)
log
∣∣f(reiθ)

∣∣ dθ = log |f(z)|+
n∑

k=1

log

∣∣∣∣
r2 − akz

r(z − ak)

∣∣∣∣

+

m∑

k=1

log

∣∣∣∣
r(z − bk)

r2 − bkz

∣∣∣∣ .Proof. As in proof of Jensen formula and in exer
ise 3, we �nd that
F (z) = f(z)

n∏

k=1

r2 − akz

r(z − ak)

m∏

k=1

r(z − bk)

r2 − bkzis analyti
 in an open set 
ontaining D(0, r), has no zeros in D(0, r), and |F (z)| =
|f(z)| on ∂D(0, r). Thus log |F | is harmoni
, and Poisson formula gives

log |F (z)| = 1

2π

∫ 2π

0

Re (reiθ + z

reiθ − z

)
log
∣∣F (reiθ)

∣∣ dθ

=
1

2π

∫ 2π

0

Re (reiθ + z

reiθ − z

)
log
∣∣f(reiθ)

∣∣ dθ.for all z ∈ D(0, r) \ ({ak : 1 ≤ k ≤ n} ∪ {bk : 1 ≤ k ≤ m}). Sin
e
log |F (z)| = log |f(z)|+

n∑

k=1

log

∣∣∣∣
r2 − akz

r(z − ak)

∣∣∣∣ +
m∑

k=1

log

∣∣∣∣
r(z − bk)

r2 − bkz

∣∣∣∣ ,the assertion follows. 60



5. Let ν be a positive probability measure on X and f be a positive ν-integrablefun
tion on X . Show that
exp

(∫

X

log f(x) dν(x)

)
≤
∫

X

f(x) dν(x).Solution. De�ne a real number y0 = ∫X f(x)dν(x), and 
hoose a = 1
y0

= ∂ log y
∂y

|y=y0and b = log y0. Then, be
ause log y is a 
on
ave fun
tion on the postitive real line,we have a(y − y0) + b ≥ log y for all y > 0 and a(y − y0) = log y0. Hen
e
exp

[∫

X

log f(x)dν(x)

]
≤ exp

[∫

X

a(f(x)− y0) + bdν(x)

]

= exp

[
a

(∫

X

f(x)dν(x)−
∫

X

y0dν(x)

)
+

∫

X

bdν(x)

]

= exp [a(y0 − y0 · 1) + b · 1]

= exp [log y0] = y0 =

∫

X

f(x)dν(x),be
ause ∫
X
dν(x) = 1 (ν is a propability measure).7. Ja
k's lemma1. Show that at those points for whi
h d logM(r, f)/d log r does not exist, the leftand right derivatives exist, and that the left derivative does not ex
eed the rightderivative. See [12, p. 21℄. Give a 
on
rete example of an analyti
 fun
tion f in Dsu
h that M(r, f) is not di�erentiable in the whole interval (0, 1).Solution. Let f : D → C be analyti
 and 0 < R1 < r1 < r < r2 < R2 < 1. Then

logM(r, f) ≤ log r2 − log r

log r2 − log r1
logM(r1, f) +

log r − log r1
log r2 − log r1

logM(r2, f)by Hadamard's three 
ir
les theorem. From this we have
logM(r, f) ≤ (log r2 − log r1)− (log r − log r1)

log r2 − log r1
logM(r1, f) +

log r − log r1
log r2 − log r1

logM(r2, f)

= (log r − log r1)
logM(r2, f)− logM(r1, f)

log r2 − log r1
+ logM(r1, f),and thus

logM(r, f)− logM(r1, f)

log r − log r1
≤ logM(r2, f)− logM(r1, f)

log r2 − log r1
.Similar 
al
ulation (write the 
oe�
ient of logM(r2, f) as (log r2−log r1)−(log r2−log r)

log r2−log r1
)shows that

logM(r2, f)− logM(r1, f)

log r2 − log r1
≤ logM(r2, f)− logM(r, f)

log r2 − log r
.61



Now, in a similar way as in Exer
ise 2 in Chapter 3, we see that the fun
tion
F1(r) =

logM(r,f)−logM(r1,f)
log r−log r1

is bounded below and in
reasing in some (r1, r1+ δ), andthe fun
tion F2(r) = logM(r2,f)−logM(r,f)
log r2−log r

is bounded above and in
reasing in some
(r2 − δ, r2). Therefore the limits

lim
r→r+1

F1(r) =

(
d logM(r, f)

d log r

)

+

∣∣∣∣
r=r1

and lim
r→r−2

F2(r) =

(
d logM(r, f)

d log r

)

−

∣∣∣∣
r=r2both exist. Now we need to show that (d logM(r,f)

d log r

)
−

≤
(

d logM(r,f)
d log r

)
+
. But thisfollows by letting r1 → r− and r2 → r+, and we are done.We don't have a 
on
rete example of an analyti
 fun
tion f in D su
h that M(r, f)is not di�erentiable in the whole interval (0, 1).8. Phragmen-Lindelöf theorem and Lindelöf's theorem1. Let D ⊂ C be a simply 
onne
ted domain and f : D → C analyti
. Supposethere exist bounded non-vanishing analyti
 fun
tions gk : D → C, k = 1, . . . , n, and

∂̂D = A ∪ B1 ∪ · · · ∪ Bn su
h that:(a) lim supz→a |f(z)| ≤M for all a ∈ A;(b) lim supz→b |f(z)||gk(z)|η ≤M for all b ∈ Bk and η > 0.Show that |f(z)| ≤M for all z ∈ D.Solution. Let K > 0 su
h that |gk(z)| ≤ K for all z ∈ D and k = 1, . . . , n. Sin
e Dis simply 
onne
ted, the lemma of the analyti
 logarithm shows that there exists ananalyti
 bran
h of log(gk) on D for every k = 1, . . . , n. Hen
e hk = exp(η log(gk))is an analyti
 bran
h of gηk for η > 0 and |hk| = |gk|η on D. De�ne F : D → C by
F (z) = f(z)

∏n
k=1 hk(z)K

−ηn. Then F is analyti
 on D and
|F (z) = |f(z)|

n∏

k=1

|gk(z)|ηK−ηn ≤ |f(z)|for all z ∈ D. But then, by the assumptions a) and b), F satis�es the hypothesis ofTheorem 1.6 with max{M,MK−η} in the pla
e of M :
lim sup

z→a

|F (z)| ≤ lim sup
z→a

|f(z)| ≤M, a ∈ A;and
lim sup

z→b

|F (z)| = lim sup
z→b

|f(z)|
n∏

k=1

|gk(z)|ηK−ηn

≤ lim sup
z→b

|f(z)|
n∏

k=1

|gk(z)|ηK−η

≤MK(n−1)ηK−η

=MK−η b ∈ Bk.62



when b ∈ ⋃n
k=1Bk. Hen
e

|f(z)| = |F (z)|∏n
k=1 |gk(z)|ηK−ηn

≤ max{M,MK−η}∏n
k=1 |gk(z)|ηK−ηnfor all z ∈ D. By �xing z ∈ D arbitrarily and letting η → 0+, we dedu
e |f(z)| ≤Mfor all z ∈ D.2. Let G = {z ∈ C : | Im z| < π/2} and suppose f : G → C is analyti
 and

lim supz→w |f(z)| ≤ M for all w ∈ ∂G. Also, suppose that there exist A > 0and a ∈ (0, 1) su
h that
|f(z)| < exp(A exp(a|Re z|)), z ∈ G.Show that |f(z)| ≤M for all z ∈ G. Examine exp(exp z) to see that this is the bestpossible growth 
ondition. Can we make a = 1 above?Solution. 1. Let T = {z : | arg(z)| < π

2
} and g(z) = f(log z). Then g is analyti
 in

T , log(T ) = G and log(∂T \ {0}) = ∂G. Thus
lim sup
z→ω∈∂T

|g(z)| = lim sup
z→w∈∂G

|f(z)| ≤M ∀ω ∈ ∂T.Also there exists A > 0 and a ∈ (0, 1) su
h that
|g(z)| = |f(log(z))| < exp(A exp[a|Re(log(z))|]) = expA|z|a < expA|z| ∀|z| ≥ 1.Corollary 8.3 implies f(z) ≤M ∀z ∈ G.Solution. 2. The result 
an also be dedu
ed by using the Phragmen-Lindelöf the-orem: Let b ∈ (a, 1) and B = (cos

(
bπ
2

)
)−1 ∈ (0,∞), and 
onsider the fun
tion

g(z) = exp
(
−B

(
ebz + e−bz

)). Sin
e Re (ez + e−z) =
(
eRe z + e−Re z

)
cos Im z and

ex + e−x ≥ e|x| for all x ∈ R, we have
|g(z)| = exp

(
−B

(
ebRe z + e−bRe z

)
cos(b Im z)

)

≤ exp
(
−Beb|Re z| cos

(
b
π

2

))

= exp (− exp(b|Re z|))for all z ∈ G. Hen
e g is bounded in G, and
|f(z)||g(z)|η ≤ exp [A exp(a|Re z|)− η exp(b|Re z|)] → 0,as z → ∞, z ∈ G, for all η > 0. The assertion follows by Phragmen-Lindelöftheorem.Let f(z) = exp(exp z). Then |f(z)| = exp

(
eRe z cos Im z

)
= 1 for all z ∈ ∂G and

|f(z)| ≤ exp(exp(Re z)) ≤ exp(exp(|Re z|)) for all z ∈ G, but limz→∞,z∈R+ |f(z)| =
limx→∞ exp(ex) = ∞, so the result of the exer
ise does't hold. Hen
e the growth
ondition given is the best possible, and we 
an not make a = 1.63



3. Let G = {z ∈ C : Re z > 0} and let f : G → C be analyti
 su
h that f(1) = 0and su
h that lim supz→w |f(z)| ≤ M for all w ∈ ∂G. Also, suppose that for some
δ ∈ (0, 1) there exists P = P (δ) > 0 su
h that

|f(z)| ≤ P exp
(
|z|1−δ

)
.Show that

|f(z)| ≤M

(
(1− x)2 + y2

(1 + x)2 + y2

) 1
2

, z = x+ iy.Hint: Consider f(z) = (1 + z)(1 − z)−1.Solution. Let
F (z) = f(z)

1 + z

1− z
.Then lim supz→w∈∂G |F (z)| ≤ M , be
ause lim supz→w∈∂G |f(z)| ≤ M . On the otherhand, |f(z)| ≤ P exp(|z|1−δ) for some δ ∈ (0, 1) by the hypothesis. Thus we obtain

|F (z)| ≤
∣∣∣1 + z

1− z

∣∣∣P exp(|z|1−δ) ≤ 1 + |z|
|1− |z||P exp(|z|1−δ) ≤ 3P exp(|z|1−δ),if z ∈ G and |z| > 2. Hen
e |F (z)| ≤ M in G by Corollary 8.2 and the assertionfollows.4. Prove Liouville's theorem: If f is an entire fun
tion su
h that |f(z)| ≤ C|z|m forall |z| > R ∈ (0,∞) and for some 
onstants C,R ∈ (0,∞), then f is a polynomialwith deg(f) ≤ m.Solution. 1. Assume that the 
laim is true in 
ase m = 1. This is the traditionalLiouville's theorem. Let

g(z) =

{
f(z)−f(0)

z
, z 6= 0;

f ′(0), z = 0.If we 
an show that g is a polynomial and deg(g) ≤ m−1, we obtain the 
laim. Weknow that f(z) ≤ C|z|m, where C,R ∈ (0,∞) are 
onstants and |z| > R. Hen
e if
|z| is su�
iently large, we obtain the inequality

|g(z)| ≤ A+B|z|m−1 < D|z|m−1,where A,B,D ∈ (0,∞) are 
onstants. Now g satis�es the assumptions of f with mrepla
ed by m− 1. By forming new fun
tions in analogous way, we 
an redu
e the
laim to the 
ase m = 1 where it is true. Thus f is a polynomial with deg(f) ≤ m.Solution. 2. Sin
e f is entire, its Ma
laurin series f(z) =
∑∞

k=0 akz
k, ak = f(k)(0)

k!
,
onverges for all z ∈ C. Now, Cau
hy's integral formula gives

|ak| =
∣∣∣∣
1

2π

∫

∂D(0,r)

f(ξ)

ξk+1
dξ

∣∣∣∣ ≤
1

2π

∫

∂D(0,r)

|f(ξ)|
|ξ|k+1

|dξ|

≤ 1

2π

∫

∂D(0,r)

C|ξ|m
|ξ|k+1

|dξ| = C

2π

∫

∂D(0,r)

rm−(k+1)|dξ| = Crm−k64



for all k ∈ N and r > R > 0. Hen
e, if k > m, we have |ak| ≤ limr→∞Crm−k = 0,and thus f is a polynomial of degree at most m.Solution. 3. Sin
e |f(z)| ≤ C|z|m for all |z| > R, we have |f(z)z−m| ≤ C for all
|z| > R. By substituting z = w−1 we get |f( 1

w
)wm| ≤ C for all w < 1

R
. Hen
e f( 1

w
)is analyti
 at w = 0 or has a pole of order n, n ≤ m, at w = 0. It follows that f isa polynomial with deg(f) ≤ m.5. Let 0 < r,R <∞ and f : D(a, r) → D(f(a), R) analyti
. Show that

|f(a+ z)− f(a)| ≤ R

r
|z|, z ∈ D(0, r).Derive Liouville's theorem from this inequality. Have you seen this kind inequalitiesbefore?Solution. Sin
e f(D(a, r)) ⊂ D(f(a), R), |f(a+ z) − f(a)| ≤ R for all z ∈ D(0, r).Consider the fun
tion g : D → C,

g(z) =
f(a+ rz)− f(a)

R
.We see that g(0) = 0 and |g(z)| ≤ R

R
= 1 for all z ∈ D. Thus S
hwarz lemma yields

|g(z)| ≤ |z| for all z ∈ D. Hen
e
|f(a+ z)− f(a)| ≤ R

r
|z|for all z ∈ D(0, r).To prove Liouville's theorem (every bounded entire fun
tion is 
onstant), supposethat f : C → C is entire and bounded. Then there exists R ∈ (0,∞) su
h that

f(z) ∈ D(f(0), R) for all z ∈ C. Hen
e
|f(z)− f(0)| ≤ R

r
|z|, z ∈ D(0, r),for all r ∈ (0,∞). By letting r → ∞, we obtain f(z) = f(0) for all z ∈ C.6. For 0 < α < 1, de�ne

ηα(z) =

(
1+z
1−z

)α − 1(
1+z
1−z

)α
+ 1

, z ∈ D.Des
ribe ηα(D) geometri
ally and show that ηα is a 
onformal map of D onto ηα(D).By using this fun
tion derive a version of Corollary 8.4 for the unit dis
.Solution. ηα(D) is a �lens� inside D with its verti
es at ηα(1) = 1 and ηα(−1) = −1,and with an angle of απ at them.Clearly 1+z
1−z

is a 
onformal map of D onto D1 = {z ∈ C : Re z > 0}, zα is a
onformal map of D1 onto D2 = {z ∈ C \ {0} : | arg z| < απ
2
} ⊂ D1 (zα = eα log zhas an analyti
 bran
h by the lemma of analyti
 logarithm), and z−1

z+1
is a 
onformalmap of D1 onto D. Thus ηα is a 
onformal map of D onto ηα(D) ⊂ D.65



Version of Corollary 8.4 Suppose that f(z) → c ∈ C as z → ω ∈ T, z ∈ D, alongtwo 
ir
ular ar
s 
entered at w ∈ C \ D and −w ∈ C (and interse
ting at ω). Let
D ⊂ D be the domain bounded by these ar
s. If f is analyti
 and bounded in D or
C \D, then f(z) → c uniformly as z → ω in D or C \D respe
tively.Proof. Let α ∈ (0, 1) su
h that απ is the angle at ω formed by the 
ir
ular ar
sbounding D. Then the fun
tion g(z) = 1+ωz

1−ωz
maps D onto the se
tor S+ = {z ∈

C\{0} : | arg z| < απ
2
} and C\D onto S− = C\S+. Hen
e h = f ◦g is bounded andanalyti
 in S+ or S− and h(z) → c as z → ∞ along the rays {z ∈ C : arg z = απ

2
}and {z ∈ C : arg z = −απ

2
}. Thus Corollary 8.4 implies h(z) → c uniformly as

z → ∞ in S+ or S− respe
tively, and hen
e f(z) → c uniformly as z → ∞ in D or
C \D.9. Gronwall-Bellman inequality with appli
ations to 
omplex ODEs1. Show that all zeros of solutions of (9.1) with analyti
 
oe�
ient A in D(0, R) aresimple. What 
an you say about the zeros of solutions of f (k)+Af = 0? Sear
h for
on
rete examples.Solution. Our observations are stated as Theorems 16.1 and 16.2 and as an example.Theorem 16.1. Consider the 
omplex linear di�erential equation

f ′′ + Af = 0. (16.2)where A is analyti
 in D(0, R). Let f be non-trivial solution of (16.2) in D(0, R).Now, all zeros of f are simple.Proof. By Theorem 9.2, if A is analyti
 in D(0, R), then all non-trivial solutions of(16.2) satisfy the pointwise estimate
|f(reiθ)| ≤ (|f ′(0)|R + |f(0)|) exp

(∫ r

0

|A(teiθ)|(r − t)dt

)
, θ ∈ [0, 2π), r ∈ (0, R).(16.3)(i) If f has a multiple zero in the origin, the right hand side of (16.3) is identi
allyzero. Now f has to be identi
ally zero, whi
h is a 
ontradi
tion. Thus if f has azero at the origin, it must be simple.(ii) Sin
eD(0, R) is open, we 
an make the same 
on
lusion in every point ofD(0, R)by translation. Namely, let a ∈ D(0, R) arbitrary and S = R − |a| > 0 so that

a ∈ D(a, S) ⊂ D(0, R). De�ne f̃ , Ã : D(0, S) → C, f̃ = f(z + a), Ã = A(z + a).Now, sin
e Ã is analyti
 in D(0, S) and f̃ is a solution of (16.2) in D(0, S), Theorem
9.2 implies that f̃ satis�es the pointwise estimate
|f̃(reiθ)| ≤ (|f̃ ′(0)|S + |f̃(0)|) exp

(∫ r

0

|Ã(teiθ)|(r − t)dt

)
, θ ∈ [0, 2π), r ∈ (0, S).If f has a multiple zero at z = a, f̃ has a multiple zero at the origin and is identi
allyzero by (16). Now f is identi
ally zero, whi
h is a 
ontradi
tion. 266



Theorem 16.2. Consider
f (k) + Af = 0, (16.4)where A is analyti
 in D(0, R) and k ∈ N. Let f be a non-trivial solution of (16.4).Now, all zeros of f are atmost of multipli
ity k − 1.Proof. Let a ∈ D(0, R) arbitrary. Now f(z) = (z − a)ng(z) in D(0, R) for some

n ∈ N0 and g analyti
 in D(0, R) su
h that g(a) 6= 0. Let S = R − |a| so that
a ∈ D(a, S) ⊂ D(0, R). Now g has a power series presentation in the dis
 D(a, S),that is,

g(z) =

∞∑

j=0

aj(z − a)j,for some aj ∈ C, for all z ∈ D(a, S). Sin
e g(a) 6= 0, we have a0 6= 0. Now
f(z) =

∞∑

j=0

aj(z − a)n+jfor all z ∈ D(a, S) and
f (k)(z) =

∞∑

j=0

bj(z − a)n+j−k,where bj = (n+ j)(n+ j − 1) · · · (n+ j − (k − 1))aj, for all z ∈ D(a, S). Therefore
f (k)(z) = (z − a)n−kh(z),where h(z) =∑∞

j=0 bj(z − a)j. By (16.4) we have
A(z) = −f

(k)(z)

f(z)
=

1

(z − a)k
h(z)

g(z)for all z ∈ D(a, S). Sin
e A and g are analyti
, h(z) has to have a zero atleast ofmultipli
ity k. Therefore, sin
e a0 6= 0 and b0 = 0, we have n(n−1) · · · (n−(k−1)) =
0. It follows that either n = 0 or n ∈ {1, 2, . . . , k − 1}. In the �rst 
ase f(a) 6= 0.In the se
ond 
ase f has a zero of order n ≤ k − 1 at z = a. 2Theorem 16.1 is a spe
ial 
ase of Theorem 16.2 and 
an thus be proved by using thepower series argument in the proof of Theorem 16.2. On the other hand, Theorem16.2 
an be proved by following the proof of Theorem 16.1 and using an estimatewhi
h is analogous to (16.3), if su
h an estimate exists.Let f be as in Theorem 16.3. If f has a zero of order k we have in Theorem 16.3
S = 0. It follows that f is identi
ally zero.Example. A non-trivial solution f of (16.4) with an analyti
 
oe�
ient A 
an havea zero of multipli
ity k − 1 when (16.4) is 
onsidered in a bounded domain D. Let

f(z) = z2k−1 + azk−1 = zk−1(zk + a),67



where a > 0. Now f has a zero of multipli
ity k − 1 at the origin. Moreover,
f (k)(z) =

(2k − 1)!

(k − 1)!
zk−1,so that

A(z) = −f
(k)(z)

f(z)
= −(2k − 1)!

(k − 1)!

1

zk + a
.Taking a > 0 large enough A is analyti
 in D. In parti
ular a may be 
hosen su
hthat a pole of A belongs to ∂D.2. Generalize the assertion in Theorem 9.2 for the equation

f (k) + Ak−1f
(k−1) + · · ·+ A1f

′ + A0f = 0with analyti
 
oe�
ients in D(0, R). Can you use the reasoning also in the non-homogeneous 
ase (in whi
h the right hand side equals to an analyti
 fun
tion
Ak 6≡ 0 in D(0, R))?Solution. We will �rst state the results, and then provide the proofs. Bellow we usethe notation (j

n

)
= j!

n!(j−n)!
.Theorem 16.3. Suppose that f is a solution of f (k)+Ak−1f

(k−1)+. . .+A1f
′+A0f =

0 in D(0, R), where Aj is analyti
 in D(0, R) for all j. Then
∣∣f(reiθ)

∣∣ ≤ S exp

(∫ r

0

C(teiθ)dt

)
, θ ∈ [0, 2π), r ∈ (0, R),where

S =
k−1∑

j=0




j∑

n=0

j−n−1∑

m=0

(
j

n

)
∣∣∣(A(n)

j (0)f(0))(m)
∣∣∣

(k − j + n+m)!
Rk−j+n+m +

∣∣f (j)(0)
∣∣

j!
Rj


and

C(teiθ) =
k−1∑

j=0

j∑

n=0

(
j

n

) ∣∣∣A(n)
j (teiθ)

∣∣∣ (r − t)k−j+n−1

(k − j + n− 1)!
.The term (A

(n)
j (0)f(0))(m) above means fun
tions (A(n)

j f)(m) value at the orign. Inthe nonhomogeneous 
ase we obtain the following result.Theorem 16.4. Suppose that f is a solution of f (k)+Ak−1f
(k−1)+. . .+A1f

′+A0f =
Ak in D(0, R), where Aj is analyti
 in D(0, R) for all j and Ak 6≡ 0. Then
∣∣f(reiθ)

∣∣ ≤ B(reiθ)+

∫ r

0

B(seiθ)C(seiθ) exp

(∫ r

s

C(teiθ)dt

)
ds, θ ∈ [0, 2π), r ∈ (0, R),68



where
B(reiθ) =

∫ r

0

∣∣Ak(te
iθ)
∣∣ (r − t)k−1

(k − 1)!
dt

+

k−1∑

j=0




j∑

n=0

j−n−1∑

m=0

(
j

n

)
∣∣∣(A(n)

j (0)f(0))(m)
∣∣∣

(k − j + n +m)!
Rk−j+n+m +

∣∣f (j)(0)
∣∣

j!
Rj


and

C(teiθ) =

k−1∑

j=0

j∑

n=0

(
j

n

) ∣∣∣A(n)
j (teiθ)

∣∣∣ (r − t)k−j+n−1

(k − j + n− 1)!
.In the proofs of these two theorems, we use the following two Lemmas.Lemma 16.5. Let f and g be analyti
 in some domain. Then

gf (j) =

j∑

n=0

(−1)n
(
j

n

)
(g(n)f)(j−n).Proof. The 
ase j = 1 is a form of Leibniz rule, so suppose that the assertion holdsfor some j ∈ N. Then

gf (j+1) = (gf (j))′ − g′f (j)

=

(
j∑

n=0

(−1)n
(
j

n

)
(g(n)f)(j−n)

)′

−
j∑

n=0

(−1)n
(
j

n

)
(g(n+1)f)(j−n)

= (gf)(j+1) +

j∑

n=1

(−1)n
[(

j

n

)
+

(
j

n− 1

)]
(g(n)f)(j+1−n) + (−1)j+1g(j+1)f.Sin
e a simple 
al
ulation shows that (j

n

)
+
(

j

n−1

)
=
(
j+1
n

), the assertion follows byindu
tion prin
iple. 2Lemma 16.6. Let g : (0, R) → R+ be integrable and 0 < t1 < t2 < . . . < tn < r <
R. Then ∫ r

0

∫ tn

0

· · ·
∫ t1

0

g(t)dtdt1 · · · dtn =

∫ r

0

g(t)
(r − t)n

n!
dt.Proof. It is known by Fubini's theorem that the assertion holds for n = 1, so69



suppose it holds for some n ∈ N. Then
∫ r

0

∫ tn+1

0

· · ·
∫ t1

0

g(t)dtdt1 · · · dtn =

∫ r

0

∫ tn+1

0

g(t)
(tn+1 − t)n

n!
dtdtn+1

=

∫ r

0

∫ r

0

g(t)
(tn+1 − t)n

n!
χ{t≤tn+1}(t)dtdtn+1

=

∫ r

0

g(t)

∫ r

0

(tn+1 − t)n

n!
χ{t≤tn+1}(tn+1)dtn+1dt

=

∫ r

0

g(t)

∫ r

t

(tn+1 − t)n

n!
dtn+1dt

=

∫ r

0

g(t)
(r − t)n

n!
dt,by Fubini's theorem. The assertion follows by indu
tion prin
iple. 2Now we may prove the theorems above.Proof of Theorem 16.3. By applying the equality

f(z) =

∫ z

0

f ′(ξ)dξ + f(0), z ∈ D(0, R),

k times, we obtain
f(z) =

∫ z

0

∫ ξ1

0

· · ·
∫ ξk−1

0

f (k)(ξk)dξkdξk−1 · · · dξ1 +
k−1∑

j=0

f (j)(0)

j!
zj , z ∈ D(0, R).Thus, by using the ODE, we have

|f(z)| =
∣∣∣∣∣

∫ z

0

· · ·
∫ ξk−1

0

−
k−1∑

j=0

Aj(ξk)f
(j)(ξk)dξk · · · dξ1 +

k−1∑

j=0

f (j)(0)

j!
zj

∣∣∣∣∣

≤
k−1∑

j=0

∣∣∣∣
∫ z

0

· · ·
∫ ξk−1

0

Aj(ξk)f
(j)(ξk)dξk · · · dξ1

∣∣∣∣ +
k−1∑

j=0

∣∣f (j)(0)
∣∣

j!
Rj .70



By using Lemma 16.5, we may write the integrals as
∫ z

0

· · ·
∫ ξk−1

0

Aj(ξk)f
(j)(ξk)dξk · · · dξ1

=

∫ z

0

· · ·
∫ ξk−1

0

j∑

n=0

(−1)n
(
j

n

)
(A

(n)
j (ξk)f(ξk))

(j−n)dξk · · · dξ1

=

j∑

n=0

(−1)n
(
j

n

)∫ z

0

· · ·
∫ ξk−j+n−1

0

[
A

(n)
j (ξk−j+n)f(ξk−j+n)

−
j−n−1∑

m=0

(A
(n)
j (0)f(0))(m)

m!
zm

]
dξk−j+n · · · dξ1

=

j∑

n=0

(−1)n
(
j

n

)∫ z

0

· · ·
∫ ξk−j+n−1

0

A
(n)
j (ξk−j+n)f(ξk−j+n)dξk−j+n · · · dξ1

−
j−n−1∑

m=0

(A
(n)
j (0)f(0))(m)

(k − j + n+m)!
zk−j+n+m,so, by denoting

S =
k−1∑

j=0




j∑

n=0

j−n−1∑

m=0

(
j

n

)
∣∣∣(A(n)

j (0)f(0))(m)
∣∣∣

(k − j + n+m)!
Rk−j+n+m +

∣∣f (j)(0)
∣∣

j!
Rj


 ,we have

|f(z)| ≤
k−1∑

j=0

j∑

n=0

(
j

n

)∫ z

0

· · ·
∫ ξk−j+n−1

0

∣∣∣A(n)
j (ξk−j+n)

∣∣∣ |f(ξk−j+n)| |dξk−j+n| · · · |dξ1|+S.By setting z = reiθ and ξj = tje
iθ, Lemma 16.6 gives

∫ z

0

· · ·
∫ ξk−j+n−1

0

∣∣∣A(n)
j (ξk−j+n)

∣∣∣ |f(ξk−j+n)||dξk−j+n| · · · |dξ1|

=

∫ r

0

· · ·
∫ tk−j+n−1

0

∣∣∣A(n)
j (tk−j+ne

iθ)
∣∣∣
∣∣f(tk−j+ne

iθ)
∣∣ dtk−j+n · · · dt1

=

∫ r

0

∣∣∣A(n)
j (teiθ)

∣∣∣
∣∣f(teiθ)

∣∣ (r − t)k−j+n−1

(k − j + n− 1)!
dt,so

|f(reiθ)| ≤
∫ r

0

∣∣f(teiθ)
∣∣
k−1∑

j=0

j∑

n=0

(
j

n

) ∣∣∣A(n)
j (teiθ)

∣∣∣ (r − t)k−j+n−1

(k − j + n− 1)!
dt+ S.The assertion now follows by Gronwall-Bellman inequality. 271



Proof of Theorem 16.4. Similarly as in the proof of Theorem 16.3, we have
|f(z)| =

∣∣∣∣∣

∫ z

0

· · ·
∫ ξk−1

0

Ak(ξk)−
k−1∑

j=0

Aj(ξk)f
(j)(ξk)dξk · · ·dξ1 +

k−1∑

j=0

f (j)(0)

j!
zj

∣∣∣∣∣

≤
k−1∑

j=0

∣∣∣∣
∫ z

0

· · ·
∫ ξk−1

0

Aj(ξk)f
(j)(ξk)dξk · · ·dξ1

∣∣∣∣+
∣∣∣∣
∫ z

0

· · ·
∫ ξk−1

0

Ak(ξk)dξk · · · dξ1
∣∣∣∣

+

k−1∑

j=0

∣∣f (j)(0)
∣∣

j!
Rj.By Lemma 16.6 we have

∣∣∣∣
∫ z

0

· · ·
∫ ξk−1

0

Ak(ξk)dξk · · ·dξ1
∣∣∣∣ ≤

∫ r

0

· · ·
∫ tk−1

0

|Ak(tke
iθ)|dtk · · · dt1

=

∫ r

0

|Ak(tke
iθ)|(r − t)k−1

(k − 1)!
dt,so, the same 
al
ulations that we did in the proof of Theorem 16.3 now show that

∣∣f(reiθ)
∣∣ ≤ B(reiθ) +

∫ r

0

C(teiθ)
∣∣f(teiθ)

∣∣ dt.The assertion now follows by exer
ise 3. 23. Prove a generalization of the Gronwall-Bellman inequality in the 
ase when theassumption reads
u(x) ≤ c(x) +

∫ x

a

u(s)v(s) ds, x ∈ (a, b),where u, v, c : (a, b) → [0,∞) are integrable fun
tions. Can you simplify the asser-tion if c is non-de
reasing?Solution. Suppose that
u(x) ≤ c(x) +

∫ x

a

u(s)v(s)ds, x ∈ (a, b), (16.5)where u, v, c : (a, b) → [0,∞) are integrable fun
tions. Then
u(x) ≤ c(x) +

∫ x

a

c(s)v(s) exp
(∫ x

s

v(r)dr
)
ds.Proof. Let

f(s) = exp
(
−
∫ s

a

v(r)dr
)∫ s

a

v(r)u(r)dr, f(a) = 0.72



Then
f ′(s) =

(
u(s)−

∫ s

a

v(r)u(r)dr
)
v(s) exp

(
−
∫ s

a

v(r)dr
)
. (16.6)Hen
e

f(x) ≤
∫ x

a

c(s)v(s) exp
(
−
∫ x

a

v(r)dr
)
ds. (16.7)by (11.2) and (11.3). Now, by de�nition of f and (11.4), we obtain

∫ x

a

v(s)u(s)ds = exp
(∫ x

a

v(r)dr
)
f(x)

≤
∫ x

a

c(s)v(s) exp
(∫ x

a

v(r)dr −
∫ s

a

v(r)dr
)
ds

≤
∫ x

a

c(s)v(s) exp
(∫ x

s

v(r)dr
)
ds.Thus the assertion follows by the previous inequality and the assumption (11.2).Suppose that c is non-de
reasing. Then the earlier result implies that

u(x) ≤ c(x) +
[
− c(x) exp

( ∫ x

s

v(r)dr
)]∣∣∣

s=x

s=a

= c(x) exp
(∫ x

a

v(r)dr
)
.4. Dis
uss the sharpness of the growth estimate established in Theorem 9.2 by exam-ples.Solution. Let f(z) = f ′(z) = f ′′(z) = ez, where z ∈ D. If f ′′ + Af = 0 and

z = r ∈ (0, 1), then
er ≤ 2 exp

(∫ r

0

(r − t)dt
)
= 2 exp

(r2
2

)by the Gronwall-Bellman inequality. Let f(z) = 1
1−z

, z ∈ D. Then f satis�es
f ′′ − 2

(1−z)2
f = 0. Now f(0) = f ′(0) = 1, and if θ = arg z = 0, then |f(reiθ)| = 1

1−r
,and the inequality of Theorem 9.2 gets the form

1

1− r
≤ 2 exp

(∫ r

0

2(r − t)

(1− t)2
dt

)

= 2 exp(−2r − 2 log(1− r)) = 2e−2r 1

(1− r)2
.Let f(z) = e

1
1−z , z ∈ D. Then f satis�es f ′′ −

(
2

(1−z)3
+ 1

(1−z)4

)
f = 0. Now

f(0) = f ′(0) = e, and if θ = 0, the inequality of Theorem 9.2 holds in the form
e

1
1−r ≤ 2e−

4
3
r− 1

6 e
1

1−r e
1
6

1
(1−r)2 ,73



so
1 ≤ 2e−

4
3
r− 1

6 e
1
6

1
(1−r)2 .In every 
ase above, the right hand side of the inequality grows faster than the lefthand side, as r → 1−. Hen
e, it looks like the result of the Theorem 9.2 
ould beimproved.10. Pseudohyperboli
 and hyperboli
 metri
s (brie�y)1. Show that (D, dh) is a 
omplete metri
 spa
e.Solution. By the le
tures, hyperboli
 distan
e between two points z and w in D is

dh(z, w) = inf

{∫

γ

2|dζ |
1− |ζ |2 =

∫ 1

0

2|γ′(t)|dt
1− |γ(t)|2 : γ pie
ewise C1 joining z and w}

= log
1 + dph(z, w)

1− dph(z, w)
= log

1 + |ϕz(w)|
1− |ϕz(w)|

.Let γ(a, b) denote a pie
ewise C1 
urve whi
h is inside D and joins the points
a, b ∈ D. Let a, b, c ∈ D be arbitrary. Now

∫

γ(a,c)

2|dζ |
1− |ζ |2 =

∫

γ(a,b)

2|dζ |
1− |ζ |2 +

∫

γ(b,c)

2|dζ |
1− |ζ |2 .Therefore

inf

∫

γ(a,c)

2|dζ |
1− |ζ |2 ≤

∫

γ(a,b)

2|dζ |
1− |ζ |2 +

∫

γ(b,c)

2|dζ |
1− |ζ |2and moreover

inf

∫

γ(a,c)

2|dζ |
1− |ζ |2 ≤ inf

∫

γ(a,b)

2|dζ |
1− |ζ |2 + inf

∫

γ(b,c)

2|dζ |
1− |ζ |2 ,whi
h is equivalent to saying that

dh(a, c) ≤ dh(a, b) + dh(b, c).Thus, we have the triangle inequality for the hyperboli
 distan
e. Therefore, hyper-boli
 distan
e indeed is a metri
.Let a, b, c ∈ D be arbitrary. By the triangle inequality for the hyperboli
 distan
ewe have
log

1 + dph(a, c)

1− dph(a, c)
≤ log

1 + dph(a, b)

1− dph(a, b)
+ log

1 + dph(b, c)

1− dph(b, c)
.By denoting x = dph(a, c), y = dph(a, b) and z = dph(b, c), we get

log
1 + x

1− x
≤ log

1 + y

1− y
+ log

1 + z

1− z
= log

1 + y

1− y

1 + z

1− z
.By taking the exponential from both sides, we get

1 + x

1− x
≤ 1 + y

1− y

1 + z

1− z
=: AB.74



Now, we 
an solve for x. By multiplying with 1− x, we get
1 + x ≤ AB − xABfrom whi
h we dedu
e
x(1 + AB) ≤ AB − 1whi
h gives

x ≤ AB − 1

1 + AB

=

(
1 + y

1− y

1 + z

1− z
− 1

)/(
1 +

1 + y

1− y

1 + z

1− z

)

=
(1 + y)(1 + z)− (1− y)(1− z)

(1− y)(1− z) + (1 + y)(1 + z)

=
1 + z + y + yz − 1 + z + y − yz

1− z − y + yz + 1 + z + y + yz)

=
2(y + z)

2(1 + yz)
=

y + z

1 + yz
.Re
alling the de�nition of x, y and z we get

dph(a, c) ≤
dph(a, b) + dph(b, c))

1 + dph(a, b)dph(b, c))
(16.8)for all a, b, c ∈ D. This is known as the strong form of triangle inequality for thepseudohyperboli
 metri
. We see that the pseudohyperboli
 metri
 satis�es thetriangle inequality. Thus, the pseudohyperboli
 metri
 is indeed a metri
.Let {zn} ⊂ D be a Cau
hy sequen
e with respe
t to distan
e dh. Then it is bounded,that is, there exists R ∈ (0,∞) su
h that dh(0, zn) ≤ R for all n ∈ N. Sin
e

dh(0, zn) = log 1+|zn|
1−|zn| , we have |zn| ≤ ρ := eR−1

eR+1
< 1 for all n ∈ N. By Bolzano-Weierstrass theorem the bounded sequen
e {zn} has a 
onverging subsequen
e withrespe
t to the standard metri
 inC. That is, there is a ξ ∈ D(0, ρ) and a subsequen
e

{znk
} su
h that znk

→ ξ as k → ∞ in (C, | · |). Now,
dh(ξ, znk

) = inf

∫

γ(ξ,znk
)

2|dz|
1− |z|

≤ 2

∫

[ξ,znk
]

|dz|
1− |z|

≤ 2

1− ρ

∫

[ξ,znk
]

|dz|

=
2

1− ρ
|ξ − znk

| → 0,as k → ∞. We see that znk
→ ξ in dh and thus Cau
hy sequen
e {zn} 
onverges to

ξ in dh. Thus (D, dh) is a 
omplete metri
 spa
e.75



2. Show that there exists C = C(r) > 0 su
h that C−1(1− |a|) ≤ |1− az| ≤ C(1− |a|)for all z ∈ ∆ph(a, r) and a ∈ D.Solution. Obviously
|1− az| ≥ 1− |a||z| ≥ 1− |a| ≥ 1− |a|

Cfor all C ≥ 1, so it su�
es to prove the other inequality. If z ∈ ∆ph(a, r), then thereexists w ∈ D(0, r) su
h that z = ϕa(w). Therefore
|1− az| = |1− aϕa(w)| =

1− |a|2
|1− aw| ≤

2(1− |a|)
1− r

,and the assertion follows.We 
an also dedu
e the se
ond inequality from Lemma 10.3. Namely, if |ϕa(z)| < r,then
(1− |z|2)(1− |a|2)

|1− az|2 = 1− |ϕa(z)| > 1− r,and so by Lemma 10.3,
|1− az|2 < 1

1− r
(1− |z|2)(1− |a|2)

<
4

1− r
(1− |z|)(1− |a|)

<
4K

1− r
(1− |a|)2for some 
onstant K(r) ≥ 1

4
. Hen
e,

|1− az| <
√

4K

1− r
(1− |a|) := C(r)(1− |a|)and the assertion follows.3. Let 0 < p <∞, n ∈ N∪{0} and r ∈ (0, 1). Show that there exists C = C(p, n, r) > 0su
h that

|f (n)(z)|p ≤ C

(1− |z|)2+np

∫

∆ph(z,r)

|f(w)|p dA(w), z ∈ D.for all z ∈ D for all f ∈ H(D).Solution. Let 0 < p <∞ and let �rst n = 0. Sin
e |f |p is subharmoni
,
|f(0)|p ≤ 1

2π

∫ 2π

0

|f(reiθ)|pdθ76



for all r ∈ (0, 1). Let f = g ◦ ϕa for some a ∈ D. Now
|g(a)|p .

∫

D(0,r)

|g(ϕa(z))|pdA(z)

=

∫

D(0,r)

|g(ϕa(z))|p|ϕ′
a(z)|

|1− az|4
(1− |a|2)2dA(z). (16.9)Here |1− az|4 ≤ 24 = 16 and 1− |a| ≤ 1− |a|2 ≤ 2(1− |a|). Thus we have

|g(a)|p . 1

(1− |a|)2
∫

D(0,r)

|g(ϕa(z))|p|ϕ′
a(z)|2dA(z)

=
1

(1− |a|)2
∫

∆ph(a,r)

|g(ξ)|pdA(ξ). (16.10)This is the assertion for n = 0.Consider now the dilatation fun
tion gs(z) = g(sz), where s ∈ (0, 1). Obviously,
gs

‖gs‖H∞

∈ H(D) and ∥∥∥∥
gs

‖gs‖H∞

∥∥∥∥
H∞

= 1,and hen
e we may apply S
hwarz-Pi
k theorem to the fun
tion gs/‖gs‖H∞ to dedu
e
|g′s(0)|(1− 02) ≤ ‖gs‖H∞

(
1−

∣∣∣∣
g(0)

‖gs‖H∞

∣∣∣∣
2
)

≤ ||gs||H∞ . (16.11)Sin
e gs(z) = g(sz), we have g′s(z) = g′(sz)s, and equation (16.11) yields |g′s(0)| ≤
‖gs‖H∞ . This together with (16.10) gives

|g′(0)|p ≤ ‖gs‖pH∞

sp
≤ C(ρ)

sp
max
|z|≤s

1

(1− |z|)2
∫

∆ph(z,ρ)

|g(w)|p dA(w) (16.12)for all 0 < s, ρ < 1. Let now r ∈ (0, 1) be given. Choose s and ρ small enough sothat ∆(z, ρ) ⊂ D(0, r) for all z ∈ D(0, s). Then (16.12) gives
|g′(0)|p ≤ C(r)

∫

D(0,r)

|g(w)|p dA(w).By repla
ing g by f ◦ ϕa we get
|f ′(a)|(1− |a|2)p ≤ C(r)

∫

∆ph(a,r)

|f(ϕa(w))|pdA(w),from whi
h a 
hange of variable (see (16.10)) yields
|f ′(a)|p . 1

(1− |a|)p+2

∫

∆ph(a,r)

|f(z)|p dA(z).By 
ontinuing this pro
edure we obtain the general 
ase
|f (n)(a)|p . 1

(1− |a|)np+2

∫

∆ph(a,r)

|f(z)|p dA(z).See [8, Lemma 2.1℄. 77



11. Julia's lemma and Julia-Carathéodory theorem1. Show that E(k, ζ) = {z ∈ D : |ζ − z|2 ≤ k(1 − |z|2)} is a 
losed dis
 internallytangent to the unit 
ir
le T at ζ with 
enter ζ

1+k
and radius k

k+1
.Solution. Way 1. Let ζ ∈ T and k > 0 be arbitrary. Now z ∈ E(k, ζ) if and onlyif

|ζ − z|2 ≤ k(1− |z|2).By writing z = ζw we get
|ζ(1− w)|2 ≤ k(1− |ζw|2)so that
|1− w|2 ≤ k(1− |w|2).Now, sin
e |α + β|2 = |α|2 + |β|2 + 2Re(αβ), for all α, β ∈ C, we get

1− 2Re(w) + |w|2 ≤ k − k|w|2.By rearranging terms we get
−2Re(w) + (k + 1)|w|2 ≤ k − 1.By dividing with k + 1 we obtain
−2Re

(
1

k + 1
w

)
+ |w|2 ≤ k − 1

k + 1
.By adding 1

(k+1)2
on both sides we get

(
1

k + 1

)2

− 2Re

(
1

k + 1
w

)
+ |w|2 ≤ k − 1

k + 1
+

1

(k + 1)2whi
h gives ∣∣∣∣
1

k + 1
− w

∣∣∣∣
2

≤
(

k

k + 1

)2

.Re
alling that z = ζw we get
∣∣∣∣z −

ζ

k + 1

∣∣∣∣
2

≤
(

k

k + 1

)2

.Thus
E(k, ζ) = D

(
ζ

k + 1
,

k

k + 1

)
.Moreover, this 
losed dis
 is internally tangent to the unit 
ir
le T at ζ .Way 2. We 
an dedu
e the assertion by using the following result.78



Lemma 16.7. The Eu
lidean 
ir
le given by the equation
α|z|2 + βz + βz + y = 0,where α, y ∈ R, β ∈ C, α 6= 0 and |β|2 > αy has 
enter −β/α and radius

(
√
|β|2 − αy)/|α|.Proof. Set w = az + b, so z = (w − b)/a, a 6= 0. Then
α|z|2 + βz + βz + y =

α

|a|2 (w − b)(w − b) +
β

a
(w − b) +

(β
a

)
(w − b) + y

=
α

|a|2
∣∣∣w +

βa

α
− b
∣∣∣
2

+ y − |β|2
α

= 0,and so
∣∣∣1
a
(w − b) +

β

α

∣∣∣ =
∣∣∣z + β

α

∣∣∣ = 1

|α|
√

|β|2 − αy.Thus the assertion follows. 2Now we may dedu
e the assertion by 
hoosing α = k + 1, β = −ζ and y = 1− k inLemma 16.7. By doing this we see that |z− ζ |2 = |z|2 +1− ζz− ζz = k(1− |z|2) isthe Eu
lidean disk with 
enter ζ/(k + 1) and radius k/(k + 1). On the other handif |z| = 1, then k(1− |z|2) = 0 = |ζ − z|2, and so ζ = z. Hen
e the assertion follows.2. Prove the statement related to the equality in Julia's Lemma.Solution. Suppose that
|η − ϕ(z0)|2
1− |ϕ(z0)|2

= d(ζ)
|ζ − z0|2
1− |z0|2for some z0 ∈ D. Be
ause d(ζ) ∈ (0,∞), we may write the inequality of Julia'slemma as

1

d(ζ)

1− |z|2
|ζ − z|2 − 1− |ϕ(z)|2

|η − ϕ(z)|2 ≤ 0, z ∈ D.By noti
ing that
1− |z|2 = Re(1− |z|2 + i2Im(ζz)) = Re(ζζ − zz + ζz − ζz)

= Re((ζ + z)(ζ − z)),we see that
Re

(
1

d(ζ)

ζ + z

ζ − z
− η + ϕ(z)

η − ϕ(z)

)
=

1

d(ζ)

1− |z|2
|ζ − z|2 − 1− |ϕ(z)|2

|η − ϕ(z)|2 ≤ 079



for all z ∈ D. Sin
e equality holds at z0 ∈ D, the maximum prin
iple for harmoni
fun
tions implies that equality holds for all z ∈ D, and the open mapping theoremthen gives
1

d(ζ)

ζ + z

ζ − z
− η + ϕ(z)

η − ϕ(z)
= ic, z ∈ D,for some 
onstant c ∈ R. By solving ϕ(z) we get

ϕ(z) = η

(
1

d(ζ)

ζ + z

ζ − z
− 1− ic

)/(
1

d(ζ)

ζ + z

ζ − z
+ 1− ic

)

= λ
z − w

1− wz
,where

λ = ηζ
d(ζ) + 1 + icd(ζ)

d(ζ) + 1− icd(ζ)
and w = ζ

d(ζ)− 1 + icd(ζ)

d(ζ) + 1 + icd(ζ)
.Sin
e 
learly |λ| = 1 and |w| < 1 (|d(ζ)− 1| < d(ζ) + 1), we dedu
e that ϕ is anautomorphism of D.3. For 1 < p, α < ∞ and ζ ∈ T, denote Γp(ζ, α) = {z ∈ D : |z − ζ |p < α(1 − |z|)}.How the set Γp(ζ, α) 
hanges when p and α 
hange? Show that if 0 < δ < α−1 and

|λ| ≤ δ|ζ − z|p, then
z + λ ∈ Γp(ζ, β), β =

2p−1(α + δpαp)

1− δα
.Hint: Show �rst that (x+ y)p ≤ 2p−1(xp + yp) for all p > 1 and x, y ≥ 0, and thenimitate the proof of Lemma 11.8 to a
hieve the statement.Solution. Now, Γp(ζ, α) is an open simply 
onne
ted subset of D. Here Γp(ζ, α) ∩

T = ζ . Also Γp(ζ, α) is symmetri
al with respe
t to the line {ζt : t ∈ R}. Also
∂Γp(ζ, α) \ {ζt : t ∈ R} 
onsists of two smooth simple 
urves.Let ∂Γp(ζ, α) ∩ {ζt : t ∈ R} = {ζ, β}. As α in
reases the 'angle' of Γp(ζ, α) at ζin
reases and ∂Γp(ζ, α) be
omes 'smoother' at β. As p in
reases ∂Γp(ζ, α) be
omes'smoother' at ζ . See Figure 1 (if Figure 1 is absent, its in Appendi
es).Lemma 16.8. The inequality

(x+ y)p ≤ 2p−1(xp + yp) (16.13)holds for all p > 1 and x, y ≥ 0.Proof. If x = 0 or y = 0, then the statement is trivially valid, so we may supposethat 0 < y ≤ x. The inequality (16.13) 
an be written in the form
(x
y
+ 1
)p

≤ 2p−1
[(x
y

)p
+ 1
]
.80



Figure 1: Sets Γp(1, α) (bla
k) for ζ = 1 and some di�erent α and p in D (gray dis
s)
81



Therefore it su�
es to show that
f(t) = 2p−1(tp + 1)− (t + 1)pis non negative for all t ≥ 1. To see this it is enough to note that f(1) = 0 and

f ′(t) = p((2t)p−1 − (t + 1)p−1) ≥ 0for all t ≥ 1. The assertion follows. 2Now we 
an give a solution to Exer
ise 3. Suppose that 0 < δ < α−1, |λ| ≤ δ|ζ− z|pand z ∈ Γp(ζ, α). Then, by Lemma 16.6 and the triangle inequality, we obtain
|z + λ− ζ |p ≤ 2p−1(|z − ζ |p + |λ|p)

≤ 2p−1(α(1− |z|) + δpαp(1− |z|)p)
≤ 2p−1(1− |z|)(α+ δpαp)and 1− |z + λ| ≥ 1− |z| − |λ| ≥ 1− |z| − δα(1− |z|) = (1− |z|)(1− δα). Hen
e,

|z + λ− ζ |p ≤ 2p−1(1− |z|)(α + δpαp)

≤ 2p−1α+ δpαp

1− δα
(1− |z + λ|),and so z + λ ∈ Γp(ζ, β).4. Let zn ∈ D su
h that |zn| → 1−, as n → ∞, and limn→∞

1−|zn|
|1−zn| = 1. Show that

arg(1− zn) → 0, as n→ ∞.Solution. First observe that zn → 1 as n→ ∞. Suppose that | arg(1− zn)| 6→ 0, as
n → ∞. Then, by passing to a subsequen
e if ne
essary, we �nd α > 1 su
h that
zn /∈ Γ(1, α) for all n su�
iently large. Thus

1− |zn|
|1− zn|

≤ 1− |zn|
α(1− |zn|)

=
1

αfor all n su�
iently large, and hen
e
lim
n→∞

1− |zn|
|1− zn|

≤ 1

α
< 1whi
h is a 
ontradi
tion.5. Let ν be a probability measure, 0 < p, q < ∞ and let f be positive ν-integrablefun
tion. Use Hölder's inequality to show that

(∫
dν

f p

)− 1
p

≤
(∫

f q dν

) 1
q

.82



Solution. Let f be positive ν-integrable fun
tion. Then, sin
e p+q

q
, p+q

p
> 1 and

1/p+q

q
+ 1/p+q

p
= 1, Hölder's inequality gives

1 =

∫
dν =

∫ (
f

f

) pq
p+q

dν

≤



∫

dν
(
f

pq
p+q

)p+q
q




q
p+q (∫ (

f
pq
p+q

) p+q
p

dν

) p
p+q

=

[(∫
dν

f p

) 1
p
(∫

f qdν

) 1
q

] pq
p+q

.The assertion follovs by taking the power of p+q

pq
on both sides and then dividing by

(∫
dν
fp

) 1
p .12. S
hwarz-Pi
k theorem for hyperboli
 derivative1. Dis
uss the general question of when equality in (12.1) holds for some �xed z ∈ D.Is it true that equality holds for ea
h z ∈ D if and only if ϕ(z) = z2?Solution. The equality in (12.1) holds at least for all fun
tions ϕ(z) = λz2, where

λ ∈ T; ϕ′(z) = λ2z,
ϕ∗(z) = λ2z

1− |z|2
1− |λz2|2 =

λ2z

1 + |z|2 ,and thus
dh(ϕ

∗(0), ϕ∗(z)) = dh(0, ϕ
∗(z)) = log

1 +
∣∣∣ λ2z
1+|z|2

∣∣∣

1−
∣∣∣ λ2z
1+|z|2

∣∣∣

= log

(
1 + |z|
1− |z|

)2

= 2dh(0, z).Let z ∈ D, and suppose that equality in (12.1) holds for fun
tion ϕ. Then
log

1 + dph(ϕ
∗(0), ϕ∗(z))

1− dph(ϕ∗(0), ϕ∗(z))
= 2 log

1 + |z|
1− |z| ,and thus

(1− |z|)2(1 + dph(ϕ
∗(0), ϕ∗(z))) = (1 + |z|)2(1− dph(ϕ

∗(0), ϕ∗(z))),whi
h is equivalent to
dph(ϕ

∗(0), ϕ∗(z))) =
2|z|

1 + |z|2 . (16.14)83



If we suppose that (16.14) holds, then
dh(ϕ

∗(0), ϕ∗(z)) = log
1 + 2|z|

1+|z|2

1− 2|z|
1+|z|2

= 2dh(0, z).Hen
e we see that (16.14) is ne
essary and su�
ient 
ondition for equality in (12.1)to hold at point z.13. Blo
h-Landau theorem and Blo
h's theorem1. Let f be analyti
 in D su
h that f(0) = 0, f ′(0) = 1 and |f(z)| ≤ M ∈ (0,∞) forall z ∈ D. Prove that M ≥ 1. This shows that the dis
 D (0, 1
2(M+1)

) appearing inthe statement of Lemma 13.2 is 
ontained in D(0, 1/4).Hint: pi
k the solution from the proof of Lemma 13.4.Solution. Let 0 < r < 1 and
f(z) = z + a2z

2 + . . . .A

ording to Cau
hy's estimate
|an| ≤

M

rnfor all n ∈ N. So 1 = a1 ≤ M .2. Transform the statement of Lemma 13.2 to the 
ase in whi
h f is analyti
 in D su
hthat f(0) = 0, f ′(0) = a ∈ C \ {0} and |f ′(z)| ≤M ∈ (0,∞) for all z ∈ D.Solution. Let f be analyti
 in D su
h that f(0) = 0, f ′(0) = a ∈ C \ {0} and
|f ′(z)| ≤ M ∈ (0,∞) ∀z ∈ D. If g(z) := f(z)

a
, then g is analyti
 in D, g(0) = 0,

g′(0) = 1 and |g′(z)| ≤ M
|a| ∈ (0,∞) ∀z ∈ D. Now Lemma 13.3 implies that

D

(
0, 1

2( M
|a|

+1)

)
⊂ g(D) = f(D)

a
, and thus

D

(
0,

|a|2
2(M + |a|)

)
⊂ f(D).3. Let f : D(a, r) → C be analyti
 su
h that |f ′(z) − f ′(a)| < |f ′(a)| for all z ∈

D(a, r) \ {a}. Show that f is univalent in D(a, r).Solution. Let z1, z2 ∈ D(a, r), z1 6= z2. Then
|f(z1)− f(z2)| =

∣∣∣∣
∫

[z1,z2]

f ′(z)dz

∣∣∣∣

≥
∣∣∣∣
∫

[z1,z2]

f ′(a)dz

∣∣∣∣−
∣∣∣∣
∫

[z1,z2]

(f ′(z)− f ′(a))dz

∣∣∣∣

≥ |f ′(a)||z1 − z2| −
∫

[z1,z2]

|f ′(z)− f ′(a)|dz| > 0by the hypothesis and so f is univalent in D(a, r).84



14. S
hottky's theorem1. Show that every dis
 of radius 10 
ontains at least one of the points
an,m = log(

√
n±

√
n− 1) + 2πim, n ∈ N, m ∈ Z.Solution. Let n ∈ N and m ∈ Z be arbitrary, and denote

a+n,m = log(
√
n+

√
n− 1) + 2πimand

a−n,m = log(
√
n−

√
n− 1) + 2πim.It su�
es to show that |a+n,m − a+n+1,m+1| < 10, |a−n,m − a−n+1,m+1| < 10 and |a+1,m −

a−1,m+1| < 10. The last one is trivial, sin
e
|a+1,m − a−1,m+1| = |i2π(m− (m+ 1))| = 2π < 10.To prove the �rst one, write
|a+n,m − a+n+1,m+1| =

∣∣∣∣log
√
n+

√
n− 1√

n + 1 +
√
n
− i2π

∣∣∣∣

≤ log

√
n+ 1 +

√
n√

n+
√
n− 1

+ 2π.Now
1 <

√
n+ 1 +

√
n√

n +
√
n− 1

≤
√
2 + 1 < e10−2π(if g(x) = √

x+1+
√
x√

x+
√
x−1

, then
g′(x) =

(
1

2
√
x+1

+ 1
2
√
x

)
(
√
x+

√
x− 1)− (

√
x+ 1 +

√
x)
(

1
2
√
x
+ 1

2
√
x−1

)

(
√
x+

√
x− 1)2

< 0,so g(x) ≤ g(1) for all x ≥ 1). Thus |a+n,m − a+n+1,m+1| < log e10−2π + 2π = 10.Similarly
|a−n,m − a−n+1,m+1| =

∣∣∣∣log
√
n−

√
n− 1√

n+ 1−√
n
− i2π

∣∣∣∣

≤ log

√
n−

√
n− 1√

n+ 1−√
n
+ 2π.Sin
e

√
n−

√
n− 1√

n+ 1−√
n
=

(√
n−

√
n− 1√

n + 1−√
n

√
n+

√
n− 1√

n+ 1 +
√
n

) √
n+ 1 +

√
n√

n+
√
n− 1

=

√
n+ 1 +

√
n√

n +
√
n− 1

,the 
al
ulation done above shows that |a−n,m− a−n+1,m+1| < log e10−2π +2π = 10, andwe are done. 85



2. Let z ∈ D and let H be an analyti
 fun
tion in D su
h that H ′(z) 6= 0 for all z ∈ D.Show that the range of the fun
tion
h(ξ) =

H(ξ)−H(z)

H ′(z)
, ξ ∈ D(z, 1− |z|),
overs a dis
 of radius 1−|z|

13
for all z ∈ D.Solution. Let z ∈ D be arbitrary. Consider the fun
tion

f(ξ) =
h (ξ(1− |z|) + z)

1− |z| =
H (ξ(1− |z|) + z)−H(z)

(1− |z|)H ′(z)
, ξ ∈ D.Then f is analyti
 in D and

f ′(ξ) =
H ′ (ξ(1− |z|) + z) (1− |z|)

(1− |z|)H ′(z)
=
H ′ (ξ(1− |z|) + z)

H ′(z)
,and so f ′(0) = 1. Thus, by the proof of Blo
h-Landau theorem, the range of f
ontains a dis
 of radius 1

13
. Hen
e, the range of h 
ontains a dis
 of radius 1−|z|

13
.15. Pi
ard's theorems1. Let D be a simply 
onne
ted domain and suppose that f is an analyti
 fun
tionon D whi
h does not attain the values 0 or 1. Show that there exists ana analyti
fun
tion g on D su
h that f = − exp(iπ cosh(2g)) in D. Hint: Che
k the proof ofS
hottky's theorem.Solution. By Pi
ard's little theorem, D 6= C if f is non-
onstant. Hen
e we 
anwithout loss of generality suppose that D = D, and so the assumptions of S
hottky'stheorem hold. On the other hand, by the proof of the S
hottky's theorem, thereexists g ∈ H(D) su
h that

log f =
πi

2
(e2g + 2 + e−2g),and so

f = exp

(
πi

2
(e2g + 2 + e−2g)

)
= − exp

(
iπ
e2g + e−2g

2

)
= − exp(iπ cosh(2g)).Referen
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