Chapter 13

1. Since f'(0) = 1 and $|f'(z)| \le M \in (0, \infty) \ \forall z \in \mathbb{D}$, then $M \ge 1$.

2. Let f be analytic in \mathbb{D} such that f(0) = 0, $f'(0) = a \in \mathbb{C} \setminus \{0\}$ and $|f'(z)| \leq M \in (0,\infty) \ \forall z \in \mathbb{D}$. If $g(z) := \frac{f(z)}{a}$, then g is analytic in \mathbb{D} , g(0) = 0, g'(0) = 1 and $|g'(z)| \leq \frac{M}{|a|} \in (0,\infty) \ \forall z \in \mathbb{D}$. Now Lemma 13.3 implies that $D\left(0, \frac{1}{2(\frac{M}{|a|}+1)}\right) \subset g(\mathbb{D}) = \frac{f(\mathbb{D})}{a}$, and thus

$$D\left(0, \frac{|a|^2}{2(M+|a|)}\right) \subset f(\mathbb{D}).$$

3. Let $f : D(a,r) \to \mathbb{C}$ be analytic such that |f'(z) - f'(a)| < |f'(a)| for all $z \in D(a,r) \setminus \{a\}$. Then it is clear that $f'(z) \neq 0$ for all $z \in D(a,r)$, and so f is univalent in D(a,r).

Chapter 14

1. Let $n \in \mathbb{N}$ and $m \in \mathbb{Z}$ be arbitrary, and denote

$$a_{n,m}^+ = \log(\sqrt{n} + \sqrt{n-1}) + 2\pi i m$$

and

$$a_{n,m}^- = \log(\sqrt{n} - \sqrt{n-1}) + 2\pi i m.$$

It suffices to show that $|a_{n,m}^+ - a_{n+1,m+1}^+| < 10$, $|a_{n,m}^- - a_{n+1,m+1}^-| < 10$ and $|a_{1,m}^+ - a_{1,m+1}^-| < 10$. The last one is trivial, since

$$|a_{1,m}^+ - \bar{a}_{1,m+1}| = |i2\pi(m - (m+1))| = 2\pi < 10.$$

To prove the first one, write

$$|a_{n,m}^{+} - a_{n+1,m+1}^{+}| = \left|\log\frac{\sqrt{n} + \sqrt{n-1}}{\sqrt{n+1} + \sqrt{n}} - i2\pi\right|$$
$$\leq \log\frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n} + \sqrt{n-1}} + 2\pi.$$

Now

$$1 < \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n} + \sqrt{n-1}} \le \sqrt{2} + 1 < e^{10-2\pi}$$

$$\begin{aligned} \text{(if } g(x) &= \frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x} + \sqrt{x-1}}, \text{ then} \\ g'(x) &= \frac{\left(\frac{1}{2\sqrt{x+1}} + \frac{1}{2\sqrt{x}}\right)\left(\sqrt{x} + \sqrt{x-1}\right) - \left(\sqrt{x+1} + \sqrt{x}\right)\left(\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{x-1}}\right)}{(\sqrt{x} + \sqrt{x-1})^2} < 0, \end{aligned}$$

so $g(x) \le g(1)$ for all $x \ge 1$). Thus $|a_{n,m}^+ - a_{n+1,m+1}^+| < \log e^{10-2\pi} + 2\pi = 10$. Similarly

$$\begin{aligned} |\bar{a_{n,m}} - \bar{a_{n+1,m+1}}| &= \left| \log \frac{\sqrt{n} - \sqrt{n-1}}{\sqrt{n+1} - \sqrt{n}} - i2\pi \right| \\ &\leq \log \frac{\sqrt{n} - \sqrt{n-1}}{\sqrt{n+1} - \sqrt{n}} + 2\pi. \end{aligned}$$

Since

$$\frac{\sqrt{n}-\sqrt{n-1}}{\sqrt{n+1}-\sqrt{n}} = \left(\frac{\sqrt{n}-\sqrt{n-1}}{\sqrt{n+1}-\sqrt{n}}\frac{\sqrt{n}+\sqrt{n-1}}{\sqrt{n+1}+\sqrt{n}}\right)\frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n}+\sqrt{n-1}}$$
$$= \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n}+\sqrt{n-1}},$$

the calculation done above shows that $|a_{n,m}^- - a_{n+1,m+1}^-| < \log e^{10-2\pi} + 2\pi = 10$, and we are done.

2. The exercise was to prove the following lemma needed in the proof of Schottky's theorem.

Lemma 1. Let $z \in \mathbb{D}$ and let H be an analytic function in \mathbb{D} such that $H'(z) \neq 0$. Then the range of the function

$$h(\xi) = \frac{H(\xi) - H(z)}{H'(z)}, \qquad \xi \in D(z, 1 - |z|),$$

covers a disc of radius $\frac{1-|z|}{13}$.

Proof. Consider the function

$$f(\xi) = \frac{h\left(\xi(1-|z|)+z\right)}{1-|z|} = \frac{H\left(\xi(1-|z|)+z\right) - H(z)}{(1-|z|)H'(z)}, \qquad \xi \in \mathbb{D}.$$

Then f is analytic in \mathbb{D} and

$$f'(\xi) = \frac{H'\left(\xi(1-|z|)+z\right)\left(1-|z|\right)}{(1-|z|)H'(z)} = \frac{H'\left(\xi(1-|z|)+z\right)}{H'(z)}$$

and so f'(0) = 1. Thus, by the proof of Bloch-Landau's theorem, the range of f contains a disc of radius $\frac{1}{13}$. Hence, the range of h contains a disc of radius $\frac{1-|z|}{13}$.

Chapter 15

1. Let D be a simply connected domain and suppose that f is an analytic function on D which does not attain 0 or 1. Then, by Picard's little theorem, $D \neq \mathbb{C}$ if f is non-constant. Hence we can without loss of generality suppose that $D = \mathbb{D}$, and so the assumptions of Schottky's theorem hold. On the other hand, by the proof of the Schottky's theorem, there exists $g \in H(\mathbb{D})$ such that

$$\log f = \frac{\pi i}{2} (e^{2g} + 2 + e^{-2g}),$$

and so

$$f = \exp\left(\frac{\pi i}{2}(e^{2g} + 2 + e^{-2g})\right) \\ = -\exp\left(i\pi \frac{e^{2g} + e^{-2g}}{2}\right) \\ = -\exp(i\pi \cosh(2g)).$$