
1. Let g(x) = log f(x). Becauce g′′(x) = f ′′(x)f(x)−(f ′(x))2
f(x)2

, g′ is non-decreasing if and only

if f ′′(x)f(x) − (f ′(x))2 ≥ 0. Thus f is logarithmically convex if and only if f ′′(x)f(x) −
(f ′(x))2 ≥ 0 by the Proposition 3.3.

2. Suppose that f : (a, b)→ R is convex function, that is,

f(tx2 + (1− t)x1) ≤ tf(x2) + (1− t)f(x1)

for all x1, x2 ∈ (a, b), x1 < x2, and 0 < t < 1. Let a < x1 < x2 < x3 < b, and choose
t = x2−x1

x3−x1
. Then 1− t = x3−x2

x3−x1
and x2 = tx3 + (1− t)x1, and thus

(x3 − x1)f(x2) ≤ (x2 − x1)f(x3) + (x3 − x2)f(x1) + x2f(x2)− x2f(x2),

from which we have
f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x2)

x3 − x2
.

On the other hand,

f(x2) ≤
x2 − x1
x3 − x1

f(x3) +
(x3 − x1)− (x2 − x1)

x3 − x1
f(x1),

and thus
f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x1)

x3 − x1
.

By applying these inequalities to points a < x1 < x2 < x < x+h1 < x+h2 < b we obtain

f(x2)− f(x1)
x2 − x1

≤ f(x+ h1)− f(x)
h1

≤ f(x+ h2)− f(x)
h2

.

Hence the function F1(h) =
f(x+h)−f(x)

h
is bounded bellow and increasing in some interval

(0, δ) and thus the limit limh→0+ F1(h) = f ′+(x) exists. Similarly, by writing the convextity
condition as

f(x2) ≤
(x3 − x1)− (x3 − x2)

x3 − x1
f(x3) +

x3 − x2
x3 − x1

f(x1),

we obtain
f(x3)− f(x2)

x3 − x2
≤ f(x3)− f(x1)

x3 − x1
.

Hence, if a < x− h2 < x− h1 < x < x1 < x2 < b, we have

f(x)− f(x− h2)
h2

≤ f(x)− f(x− h1)
h1

≤ f(x2)− f(x1)
x2 − x1

.

Thus the function F2(h) =
f(x)−f(x−h)

h
is bounded above and decreasing in some interval

(0, δ) and hence the limit limh→0+ F2(h) = f ′−(x) exists.
Now let x ∈ (a, b). Since we know that f ′+(x) and f

′
−(x) exist, we may write

lim
h→0+

f(x+ h)− f(x) =
(

lim
h→0+

f(x+ h)− f(x)
h

)(
lim
h→0+

h

)
= 0
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and

lim
h→0−

f(x+ h)− f(x) =
(

lim
h→0−

f(x+ h)− f(x)
h

)(
lim
h→0−

h

)
= 0.

Hence f is continuous at x. If f is convex in a closed interval [a, b], it is not nessessarily
continuous at the endpoints a and b. An easy counterexample is the function f : [0, 1]→ R
such that f(0) = f(1) = 1 and f(x) = 0 for all 0 < x < 1.

3. a) Let f : [a, b]→ R be convex, x1, ..., xn ∈ [a, b] and t1, ..., tn ≥ 0 such that
∑n

i=1 ti = 1.
If n = 1, the assertion is trivially true and if n = 2 the assertion is true by the de�nition
of convex functions. Suppose f(

∑n
i=1 tixi) ≤

∑n
i=1 tif(xi) for some n ∈ N. Now

f

(
n+1∑
i=1

tixi

)
= f

(
tn+1xn+1 + (1− tn+1)

n∑
i=1

tixi
1− tn+1

)

≤ tn+1f(xn+1) + (1− tn+1)f

(
n∑

i=1

tixi
1− tn+1

)

≤ tn+1f(xn+1) + (1− tn+1)
n∑

i=1

ti
1− tn+1

f(xi)

=
n+1∑
i=1

tif(xi),

since t1+...+tn
1−tn+1

= 1.

Conversely suppose f(
∑n

i=1 tixi) ≤
∑n

i=1 tif(xi) for any points x1, ..., xn ∈ [a, b] and
the real numbers t1, ..., tn with

∑n
i=1 t1 = 1. Then f(tx2+(1−t)x1) ≤ tf(x2)+(1−t)f(x1)

for all x1, x2 ∈ [a, b] and 0 ≤ t ≤ 1 since t+ (1− t) = 1. So f is convex.

b) Suppose that A ⊂ C is convex. Again, the assertion is true for n = 1 trivially and for
n = 2 by the de�nition of convexity, so suppose that, for some n ∈ N,

∑n
i=1 tizi ∈ A holds

for all z1, . . . , zn ∈ A and tz, . . . , tn ≥ 0 such that
∑n

i=1 ti = 1. Then, if z1, . . . , zn+1 ∈ A
and tz, . . . , tn+1 ≥ 0 such that

∑n+1
i=1 ti = 1, we have

n+1∑
i=1

tizi = tn+1zn+1 + (1− tn+1)
n∑

i=1

ti
1− tn+1

zi ∈ A,

because
∑n

i=1
ti

1−tn+1
= 1 and thus

∑n
i=1

ti
1−tn+1

zi ∈ A.
Conversely, suppose that

∑n
i=1 tizi ∈ A for all z1, . . . , zn ∈ A and tz, . . . , tn ≥ 0 such

that
∑n

i=1 ti = 1. Then, by choosing n = 2 and t2 = t we have tz2 + (1 − t)z1 ∈ A, and
thus A is convex.

4. Let f : [a, b] → R be di�erentiable convex function and a ≤ x1 < x2 ≤ b. Let

2



t1, t2 ∈ (0, 1), and de�ne h1 = t1(x2 − x1) and h2 = t2(x2 − x1). Then

f(x1 + h1)− f(x1)
h1

=
f(t1x2 + (1− t1)x1)− f(x1)

h1

≤ t1f(x2) + (1− t1)f(x1)− f(x1)
h1

=
f(x2)− f(x1)

h1/t1
=
f(x2)− f(x1)

x2 − x1
=
f(x2)− f(x1)

h2/t2

=
f(x2)− (t2f(x1) + (1− t2)f(x2)

h2

≤ f(x2)− f(t2x1 + (1− t2)x2)
h2

=
f(x2)− f(x2 − h2)

h2
.

By letting h1 → 0 we have

f ′(x1) ≤
f(x2)− f(x2 − h2)

h2
,

and by then letting h2 → 0, we obtain f ′(x1) ≤ f ′(x2).
Suppose then that f : [a, b] → R is di�erentiable such that f ′ is increasing, and

let a ≤ x1 < x2 < x3 ≤ b. By the mean value theorem, there exist y1 ∈ (x1, x2) and
y2 ∈ (x2, x3) such that

f ′(y1) =
f(x2)− f(x1)

x2 − x1
and f ′(y2) =

f(x3)− f(x2)
x3 − x2

.

Hence

f(x2)− f(x1)
x2 − x1

≤ f(x2)− f(x1)
x2 − x1

+

(
f(x3)− f(x2)

x3 − x2
− f(x2)− f(x1)

x2 − x1

)
x3 − x2
x3 − x1

=
f(x2)− f(x1)

x2 − x1
+

(x2 − x1)f(x3)− (x3 − x1)f(x2) + (x3 − x2)f(x1)
(x2 − x1)(x3 − x1)

=
f(x3)− f(x1)

x3 − x1
.

By de�ning t = x2−x1

x3−x1
, we obtain x2 = tx3 + (1− t)x1 and

f(tx3 + (1− t)x1) ≤ tf(x3) + (1− t)f(x1),

and hence f is convex.

5. Let f : [a, b] → R+ be logarithmically convex. Becauce g(x) = ex is increasing and
convex (g′ is increasing), we have

f(tx2 + (1− t)x1) = elog f(tx2+(1−t)x1) ≤ et log f(x2)+(1−t) log f(x1) = tf(x2) + (1− t)f(x1)

3



∀x1, x2 ∈ [a, b], and t ∈ [0, 1]. So f is convex. On the other hand, f : R+ → R+, f(x) = x2

is convex (f ′ is increasing), but log x2 is not (f ′′(x)f(x)− (f ′(x))2 = 4x− 4x2 < 0 when
x /∈ (0, 1]).

6. Let 0 < R1 < R2 < ∞ and suppose that f is analytic in A(0;R1, R2). Let G =
{x+ iy : logR1 < x < logR2} and R1 < r1 ≤ r ≤ r2 < R2. Now the function ez maps G
onto A(0;R1, R2) and ∂G onto ∂A(0;R1, R2), and f is continuous in A(0; r1, r2). Consider
the function g(z) = f(ez), which is now analytic in G, continuous in Gr1,r2 ⊂ G, where
Gr1,r2 = {x+ iy : log r1 < x < log r2}, and thus also bounded in Gr1,r2 .

De�ne the function M : [log r1, log r2]→ R by

M(x) = sup
−∞<y<∞

|g(x+ iy)|.

By Theorem 3.4 we know that logM is a convex function, and hence

logM(log r) ≤ t logM(r1) + (1− t) logM(log r2),

where t = log r2−log r
log r2−log r1 and therefore 1− t = log r−log r1

log r2−log r1 . Now, by the de�nitions of M and
g, we have

M(log r) = sup
−∞<y<∞

|f(elog r+iy)| = sup
−∞<y<∞

|f(reiy)| = max
z∈∂D(0,r)

|f(z)| =M(r, f),

and the assertion follows.

1. Let f : D → C be analytic and 0 < r < 1. Let R1 ∈ (0, r), R2 ∈ (r, 1) and
r1, r2 ∈ (R1, R2) such that r1 < r < r2. Then

logM(r, f) ≤ log r2 − log r

log r2 − log r1
logM(r1, f) +

log r − log r1
log r2 − log r1

logM(r2, f)

by Hadamard's three circles theorem. From this we have

logM(r, f) ≤ (log r2 − log r1)− (log r − log r1)

log r2 − log r1
logM(r1, f) +

log r − log r1
log r2 − log r1

logM(r2, f)

= (log r − log r1)
logM(r2, f)− logM(r1, f)

log r2 − log r1
+ logM(r1, f),

and thus
logM(r, f)− logM(r1, f)

log r − log r1
≤ logM(r2, f)− logM(r1, f)

log r2 − log r1
.

Similar calculation (write the coe�cient of logM(r2, f) as
(log r2−log r1)−(log r2−log r)

log r2−log r1 ) shows
that

logM(r2, f)− logM(r1, f)

log r2 − log r1
≤ logM(r2, f)− logM(r, f)

log r2 − log r
.

On the other hand, by writing Hadamard's result as

((log r2 − log r) + (log r − log r1)) logM(r, f) ≤ (log r2 − log r) logM(r1, f)

+ (log r − log r1) logM(r2, f),
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we obtain
logM(r, f)− logM(r1, f)

log r − log r1
≤ logM(r2, f)− logM(r1, f)

log r2 − log r1
. (1)

Now, in a similar way as in exercise 2 in chapter 3, we see that the function F1(r) =
logM(r,f)−logM(r1,f)

log r−log r1 is bounded bellow and increasing in some (r1, r1+ δ), and the function

F2(r) =
logM(r2,f)−logM(r,f)

log r2−log r is bounded above and increasing in some (r2−δ, r2). Therefore
the limits

lim
r→r+1

F1(r) =

(
d logM(r, r)

d log r

)
+

∣∣∣∣
r=r1

and lim
r→r−2

F2(r) =

(
d logM(r, r)

d log r

)
−

∣∣∣∣
r=r2

both exist. Now we need to show that
(

d logM(r,r)
d log r

)
−
≤
(

d logM(r,r)
d log r

)
+
. But this follows

from inequality (1) by letting r1 → r− and r2 → r+, and we are done.
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