1. Let $g(x) = \log f(x)$. Becauce $g''(x) = \frac{f''(x)f(x)-(f'(x))^2}{f(x)^2}$, g' is non-decreasing if and only if $f''(x)f(x) - (f'(x))^2 \ge 0$. Thus f is logarithmically convex if and only if $f''(x)f(x) - (f'(x))^2 \ge 0$ by the Proposition 3.3.

2. Suppose that $f:(a,b) \to \mathbb{R}$ is convex function, that is,

$$f(tx_2 + (1-t)x_1) \le tf(x_2) + (1-t)f(x_1)$$

for all $x_1, x_2 \in (a, b)$, $x_1 < x_2$, and 0 < t < 1. Let $a < x_1 < x_2 < x_3 < b$, and choose $t = \frac{x_2 - x_1}{x_3 - x_1}$. Then $1 - t = \frac{x_3 - x_2}{x_3 - x_1}$ and $x_2 = tx_3 + (1 - t)x_1$, and thus

$$(x_3 - x_1)f(x_2) \le (x_2 - x_1)f(x_3) + (x_3 - x_2)f(x_1) + x_2f(x_2) - x_2f(x_2),$$

from which we have

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

On the other hand,

$$f(x_2) \le \frac{x_2 - x_1}{x_3 - x_1} f(x_3) + \frac{(x_3 - x_1) - (x_2 - x_1)}{x_3 - x_1} f(x_1),$$

and thus

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1}.$$

By applying these inequalities to points $a < x_1 < x_2 < x < x + h_1 < x + h_2 < b$ we obtain

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x + h_1) - f(x)}{h_1} \le \frac{f(x + h_2) - f(x)}{h_2}.$$

Hence the function $F_1(h) = \frac{f(x+h)-f(x)}{h}$ is bounded below and increasing in some interval $(0, \delta)$ and thus the limit $\lim_{h\to 0^+} F_1(h) = f'_+(x)$ exists. Similarly, by writing the convextity condition as

$$f(x_2) \le \frac{(x_3 - x_1) - (x_3 - x_2)}{x_3 - x_1} f(x_3) + \frac{x_3 - x_2}{x_3 - x_1} f(x_1),$$

we obtain

$$\frac{f(x_3) - f(x_2)}{x_3 - x_2} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1}.$$

Hence, if $a < x - h_2 < x - h_1 < x < x_1 < x_2 < b$, we have

$$\frac{f(x) - f(x - h_2)}{h_2} \le \frac{f(x) - f(x - h_1)}{h_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Thus the function $F_2(h) = \frac{f(x) - f(x-h)}{h}$ is bounded above and decreasing in some interval $(0, \delta)$ and hence the limit $\lim_{h\to 0^+} F_2(h) = f'_-(x)$ exists.

Now let $x \in (a, b)$. Since we know that $f'_+(x)$ and $f'_-(x)$ exist, we may write

$$\lim_{h \to 0^+} f(x+h) - f(x) = \left(\lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h}\right) \left(\lim_{h \to 0^+} h\right) = 0$$

and

$$\lim_{h \to 0^{-}} f(x+h) - f(x) = \left(\lim_{h \to 0^{-}} \frac{f(x+h) - f(x)}{h}\right) \left(\lim_{h \to 0^{-}} h\right) = 0.$$

Hence f is continuous at x. If f is convex in a closed interval [a, b], it is not nessessarily continuous at the endpoints a and b. An easy counterexample is the function $f:[0,1] \to \mathbb{R}$ such that f(0) = f(1) = 1 and f(x) = 0 for all 0 < x < 1.

3. a) Let $f:[a,b] \to \mathbb{R}$ be convex, $x_1, ..., x_n \in [a,b]$ and $t_1, ..., t_n \ge 0$ such that $\sum_{i=1}^n t_i = 1$. If n = 1, the assertion is trivially true and if n = 2 the assertion is true by the definition of convex functions. Suppose $f(\sum_{i=1}^{n} t_i x_i) \leq \sum_{i=1}^{n} t_i f(x_i)$ for some $n \in \mathbb{N}$. Now

$$f\left(\sum_{i=1}^{n+1} t_i x_i\right) = f\left(t_{n+1} x_{n+1} + (1 - t_{n+1}) \sum_{i=1}^n \frac{t_i x_i}{1 - t_{n+1}}\right)$$

$$\leq t_{n+1} f(x_{n+1}) + (1 - t_{n+1}) f\left(\sum_{i=1}^n \frac{t_i x_i}{1 - t_{n+1}}\right)$$

$$\leq t_{n+1} f(x_{n+1}) + (1 - t_{n+1}) \sum_{i=1}^n \frac{t_i}{1 - t_{n+1}} f(x_i)$$

$$= \sum_{i=1}^{n+1} t_i f(x_i),$$

since $\frac{t_1+\ldots+t_n}{1-t_{n+1}} = 1$. Conversely suppose $f(\sum_{i=1}^n t_i x_i) \leq \sum_{i=1}^n t_i f(x_i)$ for any points $x_1, \ldots, x_n \in [a, b]$ and the real numbers t_1, \ldots, t_n with $\sum_{i=1}^n t_1 = 1$. Then $f(tx_2+(1-t)x_1) \leq tf(x_2)+(1-t)f(x_1)$ for all $x_1, x_2 \in [a, b]$ and $0 \le t \le 1$ since t + (1 - t) = 1. So f is convex.

b) Suppose that $A \subset \mathbb{C}$ is convex. Again, the assertion is true for n = 1 trivially and for n = 2 by the definition of convexity, so suppose that, for some $n \in \mathbb{N}$, $\sum_{i=1}^{n} t_i z_i \in A$ holds for all $z_1, \ldots, z_n \in A$ and $t_z, \ldots, t_n \ge 0$ such that $\sum_{i=1}^{n} t_i = 1$. Then, if $z_1, \ldots, z_{n+1} \in A$ and $t_z, \ldots, t_{n+1} \ge 0$ such that $\sum_{i=1}^{n+1} t_i = 1$, we have

$$\sum_{i=1}^{n+1} t_i z_i = t_{n+1} z_{n+1} + (1 - t_{n+1}) \sum_{i=1}^n \frac{t_i}{1 - t_{n+1}} z_i \in A,$$

because $\sum_{i=1}^{n} \frac{t_i}{1-t_{n+1}} = 1$ and thus $\sum_{i=1}^{n} \frac{t_i}{1-t_{n+1}} z_i \in A$. Conversely, suppose that $\sum_{i=1}^{n} t_i z_i \in A$ for all $z_1, \ldots, z_n \in A$ and $t_z, \ldots, t_n \ge 0$ such that $\sum_{i=1}^{n} t_i = 1$. Then, by choosing n = 2 and $t_2 = t$ we have $tz_2 + (1-t)z_1 \in A$, and thus A is convex.

4. Let $f : [a,b] \to \mathbb{R}$ be differentiable convex function and $a \leq x_1 < x_2 \leq b$. Let

$$\begin{aligned} t_1, t_2 \in (0, 1), \text{ and define } h_1 &= t_1(x_2 - x_1) \text{ and } h_2 = t_2(x_2 - x_1). \text{ Then} \\ \\ \frac{f(x_1 + h_1) - f(x_1)}{h_1} &= \frac{f(t_1x_2 + (1 - t_1)x_1) - f(x_1)}{h_1} \\ &\leq \frac{t_1f(x_2) + (1 - t_1)f(x_1) - f(x_1)}{h_1} \\ &= \frac{f(x_2) - f(x_1)}{h_1/t_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{h_2/t_2} \\ &= \frac{f(x_2) - (t_2f(x_1) + (1 - t_2)f(x_2))}{h_2} \\ &\leq \frac{f(x_2) - f(t_2x_1 + (1 - t_2)x_2)}{h_2} \\ &= \frac{f(x_2) - f(x_2 - h_2)}{h_2}. \end{aligned}$$

By letting $h_1 \to 0$ we have

$$f'(x_1) \le \frac{f(x_2) - f(x_2 - h_2)}{h_2},$$

and by then letting $h_2 \to 0$, we obtain $f'(x_1) \leq f'(x_2)$.

Suppose then that $f : [a,b] \to \mathbb{R}$ is differentiable such that f' is increasing, and let $a \leq x_1 < x_2 < x_3 \leq b$. By the mean value theorem, there exist $y_1 \in (x_1, x_2)$ and $y_2 \in (x_2, x_3)$ such that

$$f'(y_1) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$
 and $f'(y_2) = \frac{f(x_3) - f(x_2)}{x_3 - x_2}$.

Hence

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leq \frac{f(x_2) - f(x_1)}{x_2 - x_1} + \left(\frac{f(x_3) - f(x_2)}{x_3 - x_2} - \frac{f(x_2) - f(x_1)}{x_2 - x_1}\right) \frac{x_3 - x_2}{x_3 - x_1} \\
= \frac{f(x_2) - f(x_1)}{x_2 - x_1} + \frac{(x_2 - x_1)f(x_3) - (x_3 - x_1)f(x_2) + (x_3 - x_2)f(x_1)}{(x_2 - x_1)(x_3 - x_1)} \\
= \frac{f(x_3) - f(x_1)}{x_3 - x_1}.$$

By defining $t = \frac{x_2 - x_1}{x_3 - x_1}$, we obtain $x_2 = tx_3 + (1 - t)x_1$ and

$$f(tx_3 + (1-t)x_1) \le tf(x_3) + (1-t)f(x_1),$$

and hence f is convex.

5. Let $f : [a, b] \to \mathbb{R}_+$ be logarithmically convex. Becauce $g(x) = e^x$ is increasing and convex (g' is increasing), we have

$$f(tx_2 + (1-t)x_1) = e^{\log f(tx_2 + (1-t)x_1)} \le e^{t\log f(x_2) + (1-t)\log f(x_1)} = tf(x_2) + (1-t)f(x_1)$$

 $\forall x_1, x_2 \in [a, b]$, and $t \in [0, 1]$. So f is convex. On the other hand, $f : \mathbb{R}_+ \to \mathbb{R}_+$, $f(x) = x^2$ is convex (f' is increasing), but $\log x^2$ is not $(f''(x)f(x) - (f'(x))^2 = 4x - 4x^2 < 0$ when $x \notin (0, 1]$).

6. Let $0 < R_1 < R_2 < \infty$ and suppose that f is analytic in $A(0; R_1, R_2)$. Let $G = \{x + iy : \log R_1 < x < \log R_2\}$ and $R_1 < r_1 \le r \le r_2 < R_2$. Now the function e^z maps G onto $A(0; R_1, R_2)$ and ∂G onto $\partial A(0; R_1, R_2)$, and f is continuous in $\overline{A(0; r_1, r_2)}$. Consider the function $g(z) = f(e^z)$, which is now analytic in G, continuous in $\overline{G_{r_1,r_2}} \subset G$, where $G_{r_1,r_2} = \{x + iy : \log r_1 < x < \log r_2\}$, and thus also bounded in G_{r_1,r_2} .

Define the function $M : [\log r_1, \log r_2] \to \mathbb{R}$ by

$$M(x) = \sup_{-\infty < y < \infty} |g(x + iy)|.$$

By Theorem 3.4 we know that $\log M$ is a convex function, and hence

$$\log M(\log r) \le t \log M(r_1) + (1-t) \log M(\log r_2)$$

where $t = \frac{\log r_2 - \log r}{\log r_2 - \log r_1}$ and therefore $1 - t = \frac{\log r - \log r_1}{\log r_2 - \log r_1}$. Now, by the definitions of M and g, we have

$$M(\log r) = \sup_{-\infty < y < \infty} |f(e^{\log r + iy})| = \sup_{-\infty < y < \infty} |f(re^{iy})| = \max_{z \in \partial D(0,r)} |f(z)| = M(r, f),$$

and the assertion follows.

1. Let $f : \mathbb{D} \to \mathbb{C}$ be analytic and 0 < r < 1. Let $R_1 \in (0,r), R_2 \in (r,1)$ and $r_1, r_2 \in (R_1, R_2)$ such that $r_1 < r < r_2$. Then

$$\log M(r, f) \le \frac{\log r_2 - \log r}{\log r_2 - \log r_1} \log M(r_1, f) + \frac{\log r - \log r_1}{\log r_2 - \log r_1} \log M(r_2, f)$$

by Hadamard's three circles theorem. From this we have

$$\log M(r, f) \le \frac{(\log r_2 - \log r_1) - (\log r - \log r_1)}{\log r_2 - \log r_1} \log M(r_1, f) + \frac{\log r - \log r_1}{\log r_2 - \log r_1} \log M(r_2, f)$$
$$= (\log r - \log r_1) \frac{\log M(r_2, f) - \log M(r_1, f)}{\log r_2 - \log r_1} + \log M(r_1, f),$$

and thus

$$\frac{\log M(r,f) - \log M(r_1,f)}{\log r - \log r_1} \le \frac{\log M(r_2,f) - \log M(r_1,f)}{\log r_2 - \log r_1}.$$

Similar calculation (write the coefficient of $\log M(r_2, f)$ as $\frac{(\log r_2 - \log r_1) - (\log r_2 - \log r)}{\log r_2 - \log r_1}$) shows that $\log M(r_2, f) = \log M(r_2, f) - \log M(r_2, f) = \log M(r_2, f)$

$$\frac{\log M(r_2, f) - \log M(r_1, f)}{\log r_2 - \log r_1} \le \frac{\log M(r_2, f) - \log M(r, f)}{\log r_2 - \log r}$$

On the other hand, by writing Hadamard's result as

$$((\log r_2 - \log r) + (\log r - \log r_1)) \log M(r, f) \le (\log r_2 - \log r) \log M(r_1, f) + (\log r - \log r_1) \log M(r_2, f),$$

we obtain

$$\frac{\log M(r,f) - \log M(r_1,f)}{\log r - \log r_1} \le \frac{\log M(r_2,f) - \log M(r_1,f)}{\log r_2 - \log r_1}.$$
(1)

Now, in a similar way as in exercise 2 in chapter 3, we see that the function $F_1(r) = \frac{\log M(r,f) - \log M(r_1,f)}{\log r - \log r_1}$ is bounded below and increasing in some $(r_1, r_1 + \delta)$, and the function $F_2(r) = \frac{\log M(r_2,f) - \log M(r,f)}{\log r_2 - \log r}$ is bounded above and increasing in some $(r_2 - \delta, r_2)$. Therefore the limits

$$\lim_{r \to r_1^+} F_1(r) = \left(\frac{d \log M(r, r)}{d \log r}\right)_+ \Big|_{r=r_1} \text{ and } \lim_{r \to r_2^-} F_2(r) = \left(\frac{d \log M(r, r)}{d \log r}\right)_- \Big|_{r=r_2}$$

both exist. Now we need to show that $\left(\frac{d\log M(r,r)}{d\log r}\right)_{-} \leq \left(\frac{d\log M(r,r)}{d\log r}\right)_{+}$. But this follows from inequality (1) by letting $r_1 \to r^-$ and $r_2 \to r^+$, and we are done.