1. Let g(x) = log f(x). Becauce ¢"(x) = fﬁ(x)f(;:(g;fl(xw, ¢' is non-decreasing if and only

if f"(x)f(z)— (f'(z))? > 0. Thus f is logarithmically convex if and only if f”(z)f(z) —
(f'(x))? > 0 by the Proposition 3.3.

2. Suppose that f: (a,b) — R is convex function, that is,

[tz + (1 —t)z1) < tf(w2) + (1 —1)f(21)

for all x1,29 € (a,b), x1 < x9, and 0 < ¢t < 1. Let a < x; < x3 < x3 < b, and choose

t =221 Then 1 — ¢ = 2= and 25 = tz3 + (1 — )1, and thus

(w3 — 21) f(22) < (22 — 1) f(23) + (w3 — 22) f(21) + 22 f (02) — T2 f (22),

from which we have

f(iUQ) - f($1) < f(ﬂfa) - f(xz)‘

On the other hand,

Ty — 1 ($3—$1) - (1’2—1’1)
flaz) < o xlf(ws) + p— fa1),
and thus
f(x2) — f(x1) < flx3) — f(x1)
To — I - T3 — X1 ’

By applying these inequalities to points a < 1 < x93 < x < x+h; < x4+ hy < b we obtain

f(x2) — f(z1) <f(5’7+h1)_f(5’7) <f(37+h2>_f(37)'

To — Iq - hl - hg

Hence the function Fi(h) = w is bounded bellow and increasing in some interval

(0,0) and thus the limit limj,_,o+ F1(h) = f () exists. Similarly, by writing the convextity
condition as

f(:(}Q) < (173 - $I1i : Si?, - 172)f(x3) + iz : iif(xl),
we obtain
f(x3) — f(%) f($3) — f(x1)

< .
T3 — T2 T3 — X1

Hence, ifa <z —hy <z —h; <x <11 <29 <b, We have

f(l")—f(l"—hﬁ<f(95)—f(93—h1) f(xza) — f(x1)

< < .
ho hy T2 — X7

Thus the function Fy(h) = w is bounded above and decreasing in some interval

(0,9) and hence the limit lim;,_,o+ F2(h) = f’ (x) exists.
Now let = € (a,b). Since we know that f (z) and f’ (x) exist, we may write

lim f(z+h) — f(z) = <lim f($+hf>b_f(x)) <lim h) —0

h—0+ h—0+t h—0+
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and

T f(+h) - f(x) = (lim f(erh)_f(x))(limh):O.

h—0— h—0— h h—0—

Hence f is continuous at z. If f is convex in a closed interval [a, b], it is not nessessarily
continuous at the endpoints a and b. An easy counterexample is the function f : [0,1] = R
such that f(0) = f(1) =1 and f(z) =0forall 0 <z < 1.

3.a) Let f : [a,b] — R be convex, z1, ..., z, € [a,b] and ty, ..., t, > Osuch that Y  ¢; = 1.

If n = 1, the assertion is trivially true and if n = 2 the assertion is true by the definition
of convex functions. Suppose f(> 7 tix;) <> "  t;f(z;) for some n € N. Now

nt1 .
/ (Z tixi) =f (tn+1$n+1 + (1 —tys1) Z ﬂ)
i=1

i—1 1_tn+1
< toprf (@ngn) + (1= tagr) f Z Lt
> n+41 n+1 - tn+41 -,
+ + + 2Tt
<t f(@ng1) + (1 —thg1) Z 1—t1f(331)
— s

i=1
n+1

= Z tif (i),

since Htetin —

1_tn+1 :
Conversely suppose f(> 1 tix;) < > tif(z;) for any points x4, ...,x, € [a,b] and
the real numbers ¢y, ..., ¢, with > ¢; = 1. Then f(tzo+(1—t)xq) < tf(z2)+(1—1t)f(x1)

for all 21,9 € [a,b] and 0 <t < 1 since t + (1 —¢) = 1. So f is convex.

b) Suppose that A C C is convex. Again, the assertion is true for n = 1 trivially and for
n = 2 by the definition of convexity, so suppose that, for some n € N, >°" | t;z; € A holds
for all zq,...,2, € Aand t,,...,t, > 0 such that Z (ti=1.Then, if z1,...,2,41 € A

and t,,...,t,41 > 0 such that Z"Ht = 1, we have
n+1 n t
tizi = tho12ne1 (1 —1¢, —Zz € A
S = i+ (1=t Y e
because Y, T =1 and thus ) | — t T % €A

Conversely, suppose that >\ t;z; € A for all z1,...,z, € Aand t,,...,t, > 0 such
that Y, ¢; = 1. Then, by choosing n = 2 and ¢, =t we have tzo + (1 — t)z; € A, and
thus A is convex.

4. Let f : [a,b] — R be differentiable convex function and a < z; < x5 < b. Let



t1,t2 € (0,1), and define hy = t1(x2 — 1) and hy = ty(xy — x1). Then

fl@i4+h) = flzn)  flhze+ (1 —t)x) — f(2)

hl hl
< tif(xo) + (1 —ty) f(21) — f(21)
< I
_ f(x2) — f(21) _ f(z2) — f(z1) _ f(z2) — f(z1)
hl/tl To — I1 hg/tg
_ f(xa) = (taf (z1) + (1 —t2) f(22)
h

< flaz) — f(tﬂhl + (1 — t2)xs)
_ fw2) = f(z2 — hs)

hQ .

By letting hy — 0 we have

f(z2) — f(2a — hy)

fla < TR0

and by then letting hy — 0, we obtain f'(x1) < f'(x2).

Suppose then that f : [a,b] — R is differentiable such that f’ is increasing, and
let a < x1 < x93 < 3 < b. By the mean value theorem, there exist y; € (r1,x2) and
Y2 € (g, x3) such that

f(x) = f(21) f(x3) — f(‘Tz)'

') = Ty — 1 and f'(y2) = P—
Hence
f(z2) — f(1) < f(za) — f(z1) 4 (f(il?:%) — f(x2) _ f(x) — f(xl)) T3 — T3
_ f(z2) — f(m1) n (w0 — 1) f(w3) — (x5 — 1) f(22) + (23 — 22) f (1)
To — T1 (952 —$1)(1‘3 —1’1)
_ f($3) - f(xl)_

we obtain zo = tzz + (1 — t)z; and

fltes 4+ (1 —t)zy) <tf(xs) + (1 —t)f(z1),

By defining ¢t =

r3—x1’

and hence f is convex.

5. Let f : [a,b] — Ry be logarithmically convex. Becauce g(x) = €® is increasing and
convex (¢’ is increasing), we have

f(th + (1 _ t)xl) — plog f(twa+(1-t)z1) < etlos f(z2)+(1-t)log f(z1) _ tf($2) + (1 — t)f(xl)
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Va1, 9 € [a,b], and t € [0, 1]. So f is convex. On the other hand, f : R, — R,, f(z) = 22
is convex (f’ is increasing), but log z? is not (f”(z)f(z) — (f'(z))* = 4z — 42* < 0 when

x ¢ (0,1]).

6. Let 0 < Ry < Ry < oo and suppose that f is analytic in A(0; Ry, Rs). Let G =
{z+iy:logR <z <logRy} and Ry <r; <r <ry < Ry. Now the function e maps G
onto A(0; Ry, Ry) and G onto 0A(0; Ry, Ry), and f is continuous in A(0; 71, 75). Consider
the function g(z) = f(e®), which is now analytic in G, continuous in G,, ., C G, where
Grir = {x+iy :logr; < x <logry}, and thus also bounded in G,, ,,.

Define the function M : [logry,logry] — R by

M(z) = sup |g(z+1y)|.

—oo<y<oo

By Theorem 3.4 we know that log M is a convex function, and hence
log M (logr) < tlog M(ry) + (1 —t) log M(log ),

log 73— log r—1 -
where ¢ = °872=98T apd therefore 1 — ¢ = (22"—28"L Now, by the definitions of M and
logro—log Ty logro—logr1 )

g, we have

M(logr) = sup |f(e¢"")| = sup |f(re™)| = max |f(z)] = M(r,f),

—00<Y<oo —oo<y <00 z€0D(0,r)

and the assertion follows.

1. Let f : D — C be analytic and 0 < r < 1. Let Ry € (0,7), R € (r,1) and
r1,72 € (R, Ry) such that r; < r < ry. Then

logr — log ry

log M(r, f) < log M(r, f)

logry — logry
by Hadamard’s three circles theorem. From this we have

logry —logry) — (logr — logr) logr — logry

(
log M < log M log M
og (’I", f) = log Ty — log r 0g (Tla f) + 0og (T27 f)

1OgM(T27f) - IOgM(T’l,f)
log ry — logry

logry —logr;

= (logr —logry) +log M (ry, f),

and thus
log M (r, f) —log M(ry, f) < log M (rs, f) —10gM(7‘1,f)‘

logr — log ry - logry — logry

(log ro—log r1)—(log ro—logr)
log ro—log r1

log M(r3, f) —log M(r1, f) _ log M(rs, f) —log M(r, f)
logry — logry - logry — logr '

Similar calculation (write the coefficient of log M (79, f) as
that

) shows

On the other hand, by writing Hadamard’s result as

((logry —logr) + (logr — logry)) log M (r, f) < (logry — logr) log M (74, f)
+ (logr — logr) log M (rs, f),



we obtain

log M (r, ) —log M(r, f) _ log M(rs, f) —log M(r1, f) (1)
logr — logry - log ry — log ‘

Now, in a similar way as in exercise 2 in chapter 3, we see that the function F(r) =
log M(lg’gfijzi f(”’f ) is bounded bellow and increasing in some (r1, 71 +6), and the function

— log M(”‘Qvf)*lOg M(va
F2<T) - logra—logr

) is bounded above and increasing in some (r5— 6, r5). Therefore

the limits
dlog M dlog M
lim Fl(T) _ ( 0og (7”; T)) and lim Fg(T) — (Og_(?",?“))
r—sry dlogr 4 lrery r—ry dlogr — lr=rq

both exist. Now we need to show that (dlodgTM(T’r)> < (dbg—M(r’”) . But this follows
gr . dlogr +

from inequality (1) by letting 1 — r~ and ro — r™, and we are done.



